1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 982 /// operator-specific functions that, given the known-zero or known-one bits 983 /// respectively, and a shift amount, compute the implied known-zero or 984 /// known-one bits of the shift operator's result respectively for that shift 985 /// amount. The results from calling KZF and KOF are conservatively combined for 986 /// all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<APInt(const APInt &, unsigned)> KZF, 991 function_ref<APInt(const APInt &, unsigned)> KOF) { 992 unsigned BitWidth = Known.getBitWidth(); 993 994 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 998 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 999 Known.Zero = KZF(Known.Zero, ShiftAmt); 1000 Known.One = KOF(Known.One, ShiftAmt); 1001 // If the known bits conflict, this must be an overflowing left shift, so 1002 // the shift result is poison. We can return anything we want. Choose 0 for 1003 // the best folding opportunity. 1004 if (Known.hasConflict()) 1005 Known.setAllZero(); 1006 1007 return; 1008 } 1009 1010 // If the shift amount could be greater than or equal to the bit-width of the 1011 // LHS, the value could be poison, but bail out because the check below is 1012 // expensive. 1013 // TODO: Should we just carry on? 1014 if (Known.getMaxValue().uge(BitWidth)) { 1015 Known.resetAll(); 1016 return; 1017 } 1018 1019 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1021 // limit value (which implies all bits are known). 1022 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1023 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 Known.resetAll(); 1028 1029 // If we know the shifter operand is nonzero, we can sometimes infer more 1030 // known bits. However this is expensive to compute, so be lazy about it and 1031 // only compute it when absolutely necessary. 1032 Optional<bool> ShifterOperandIsNonZero; 1033 1034 // Early exit if we can't constrain any well-defined shift amount. 1035 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1036 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1039 if (!*ShifterOperandIsNonZero) 1040 return; 1041 } 1042 1043 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1048 // Combine the shifted known input bits only for those shift amounts 1049 // compatible with its known constraints. 1050 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1051 continue; 1052 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1053 continue; 1054 // If we know the shifter is nonzero, we may be able to infer more known 1055 // bits. This check is sunk down as far as possible to avoid the expensive 1056 // call to isKnownNonZero if the cheaper checks above fail. 1057 if (ShiftAmt == 0) { 1058 if (!ShifterOperandIsNonZero.hasValue()) 1059 ShifterOperandIsNonZero = 1060 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1061 if (*ShifterOperandIsNonZero) 1062 continue; 1063 } 1064 1065 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1066 Known.One &= KOF(Known2.One, ShiftAmt); 1067 } 1068 1069 // If the known bits conflict, the result is poison. Return a 0 and hope the 1070 // caller can further optimize that. 1071 if (Known.hasConflict()) 1072 Known.setAllZero(); 1073 } 1074 1075 static void computeKnownBitsFromOperator(const Operator *I, 1076 const APInt &DemandedElts, 1077 KnownBits &Known, unsigned Depth, 1078 const Query &Q) { 1079 unsigned BitWidth = Known.getBitWidth(); 1080 1081 KnownBits Known2(BitWidth); 1082 switch (I->getOpcode()) { 1083 default: break; 1084 case Instruction::Load: 1085 if (MDNode *MD = 1086 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1087 computeKnownBitsFromRangeMetadata(*MD, Known); 1088 break; 1089 case Instruction::And: { 1090 // If either the LHS or the RHS are Zero, the result is zero. 1091 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1092 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1093 1094 Known &= Known2; 1095 1096 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1097 // here we handle the more general case of adding any odd number by 1098 // matching the form add(x, add(x, y)) where y is odd. 1099 // TODO: This could be generalized to clearing any bit set in y where the 1100 // following bit is known to be unset in y. 1101 Value *X = nullptr, *Y = nullptr; 1102 if (!Known.Zero[0] && !Known.One[0] && 1103 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1104 Known2.resetAll(); 1105 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1106 if (Known2.countMinTrailingOnes() > 0) 1107 Known.Zero.setBit(0); 1108 } 1109 break; 1110 } 1111 case Instruction::Or: 1112 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1113 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1114 1115 Known |= Known2; 1116 break; 1117 case Instruction::Xor: 1118 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1119 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1120 1121 Known ^= Known2; 1122 break; 1123 case Instruction::Mul: { 1124 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1125 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1126 Known, Known2, Depth, Q); 1127 break; 1128 } 1129 case Instruction::UDiv: { 1130 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1131 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1132 Known = KnownBits::udiv(Known, Known2); 1133 break; 1134 } 1135 case Instruction::Select: { 1136 const Value *LHS = nullptr, *RHS = nullptr; 1137 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1138 if (SelectPatternResult::isMinOrMax(SPF)) { 1139 computeKnownBits(RHS, Known, Depth + 1, Q); 1140 computeKnownBits(LHS, Known2, Depth + 1, Q); 1141 switch (SPF) { 1142 default: 1143 llvm_unreachable("Unhandled select pattern flavor!"); 1144 case SPF_SMAX: 1145 Known = KnownBits::smax(Known, Known2); 1146 break; 1147 case SPF_SMIN: 1148 Known = KnownBits::smin(Known, Known2); 1149 break; 1150 case SPF_UMAX: 1151 Known = KnownBits::umax(Known, Known2); 1152 break; 1153 case SPF_UMIN: 1154 Known = KnownBits::umin(Known, Known2); 1155 break; 1156 } 1157 break; 1158 } 1159 1160 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1161 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1162 1163 // Only known if known in both the LHS and RHS. 1164 Known.One &= Known2.One; 1165 Known.Zero &= Known2.Zero; 1166 1167 if (SPF == SPF_ABS) { 1168 // RHS from matchSelectPattern returns the negation part of abs pattern. 1169 // If the negate has an NSW flag we can assume the sign bit of the result 1170 // will be 0 because that makes abs(INT_MIN) undefined. 1171 if (match(RHS, m_Neg(m_Specific(LHS))) && 1172 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1173 Known.Zero.setSignBit(); 1174 } 1175 1176 break; 1177 } 1178 case Instruction::FPTrunc: 1179 case Instruction::FPExt: 1180 case Instruction::FPToUI: 1181 case Instruction::FPToSI: 1182 case Instruction::SIToFP: 1183 case Instruction::UIToFP: 1184 break; // Can't work with floating point. 1185 case Instruction::PtrToInt: 1186 case Instruction::IntToPtr: 1187 // Fall through and handle them the same as zext/trunc. 1188 LLVM_FALLTHROUGH; 1189 case Instruction::ZExt: 1190 case Instruction::Trunc: { 1191 Type *SrcTy = I->getOperand(0)->getType(); 1192 1193 unsigned SrcBitWidth; 1194 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1195 // which fall through here. 1196 Type *ScalarTy = SrcTy->getScalarType(); 1197 SrcBitWidth = ScalarTy->isPointerTy() ? 1198 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1199 Q.DL.getTypeSizeInBits(ScalarTy); 1200 1201 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1202 Known = Known.anyextOrTrunc(SrcBitWidth); 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 Known = Known.zextOrTrunc(BitWidth); 1205 break; 1206 } 1207 case Instruction::BitCast: { 1208 Type *SrcTy = I->getOperand(0)->getType(); 1209 if (SrcTy->isIntOrPtrTy() && 1210 // TODO: For now, not handling conversions like: 1211 // (bitcast i64 %x to <2 x i32>) 1212 !I->getType()->isVectorTy()) { 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 break; 1215 } 1216 break; 1217 } 1218 case Instruction::SExt: { 1219 // Compute the bits in the result that are not present in the input. 1220 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1221 1222 Known = Known.trunc(SrcBitWidth); 1223 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1224 // If the sign bit of the input is known set or clear, then we know the 1225 // top bits of the result. 1226 Known = Known.sext(BitWidth); 1227 break; 1228 } 1229 case Instruction::Shl: { 1230 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1231 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1232 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1233 APInt KZResult = KnownZero << ShiftAmt; 1234 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1235 // If this shift has "nsw" keyword, then the result is either a poison 1236 // value or has the same sign bit as the first operand. 1237 if (NSW && KnownZero.isSignBitSet()) 1238 KZResult.setSignBit(); 1239 return KZResult; 1240 }; 1241 1242 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1243 APInt KOResult = KnownOne << ShiftAmt; 1244 if (NSW && KnownOne.isSignBitSet()) 1245 KOResult.setSignBit(); 1246 return KOResult; 1247 }; 1248 1249 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1250 KZF, KOF); 1251 break; 1252 } 1253 case Instruction::LShr: { 1254 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1255 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1256 APInt KZResult = KnownZero.lshr(ShiftAmt); 1257 // High bits known zero. 1258 KZResult.setHighBits(ShiftAmt); 1259 return KZResult; 1260 }; 1261 1262 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1263 return KnownOne.lshr(ShiftAmt); 1264 }; 1265 1266 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1267 KZF, KOF); 1268 break; 1269 } 1270 case Instruction::AShr: { 1271 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1272 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1273 return KnownZero.ashr(ShiftAmt); 1274 }; 1275 1276 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1277 return KnownOne.ashr(ShiftAmt); 1278 }; 1279 1280 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1281 KZF, KOF); 1282 break; 1283 } 1284 case Instruction::Sub: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1287 DemandedElts, Known, Known2, Depth, Q); 1288 break; 1289 } 1290 case Instruction::Add: { 1291 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1292 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1293 DemandedElts, Known, Known2, Depth, Q); 1294 break; 1295 } 1296 case Instruction::SRem: 1297 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1298 APInt RA = Rem->getValue().abs(); 1299 if (RA.isPowerOf2()) { 1300 APInt LowBits = RA - 1; 1301 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1302 1303 // The low bits of the first operand are unchanged by the srem. 1304 Known.Zero = Known2.Zero & LowBits; 1305 Known.One = Known2.One & LowBits; 1306 1307 // If the first operand is non-negative or has all low bits zero, then 1308 // the upper bits are all zero. 1309 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1310 Known.Zero |= ~LowBits; 1311 1312 // If the first operand is negative and not all low bits are zero, then 1313 // the upper bits are all one. 1314 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1315 Known.One |= ~LowBits; 1316 1317 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1318 break; 1319 } 1320 } 1321 1322 // The sign bit is the LHS's sign bit, except when the result of the 1323 // remainder is zero. 1324 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1325 // If it's known zero, our sign bit is also zero. 1326 if (Known2.isNonNegative()) 1327 Known.makeNonNegative(); 1328 1329 break; 1330 case Instruction::URem: { 1331 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1332 const APInt &RA = Rem->getValue(); 1333 if (RA.isPowerOf2()) { 1334 APInt LowBits = (RA - 1); 1335 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1336 Known.Zero |= ~LowBits; 1337 Known.One &= LowBits; 1338 break; 1339 } 1340 } 1341 1342 // Since the result is less than or equal to either operand, any leading 1343 // zero bits in either operand must also exist in the result. 1344 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1345 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1346 1347 unsigned Leaders = 1348 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1349 Known.resetAll(); 1350 Known.Zero.setHighBits(Leaders); 1351 break; 1352 } 1353 case Instruction::Alloca: 1354 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1355 break; 1356 case Instruction::GetElementPtr: { 1357 // Analyze all of the subscripts of this getelementptr instruction 1358 // to determine if we can prove known low zero bits. 1359 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1360 // Accumulate the constant indices in a separate variable 1361 // to minimize the number of calls to computeForAddSub. 1362 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1363 1364 gep_type_iterator GTI = gep_type_begin(I); 1365 // If the inbounds keyword is not present, the offsets are added to the 1366 // base address with silently-wrapping two’s complement arithmetic. 1367 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1368 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1369 // TrailZ can only become smaller, short-circuit if we hit zero. 1370 if (Known.isUnknown()) 1371 break; 1372 1373 Value *Index = I->getOperand(i); 1374 1375 // Handle case when index is zero. 1376 Constant *CIndex = dyn_cast<Constant>(Index); 1377 if (CIndex && CIndex->isZeroValue()) 1378 continue; 1379 1380 if (StructType *STy = GTI.getStructTypeOrNull()) { 1381 // Handle struct member offset arithmetic. 1382 1383 assert(CIndex && 1384 "Access to structure field must be known at compile time"); 1385 1386 if (CIndex->getType()->isVectorTy()) 1387 Index = CIndex->getSplatValue(); 1388 1389 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1390 const StructLayout *SL = Q.DL.getStructLayout(STy); 1391 uint64_t Offset = SL->getElementOffset(Idx); 1392 AccConstIndices += Offset; 1393 continue; 1394 } 1395 1396 // Handle array index arithmetic. 1397 Type *IndexedTy = GTI.getIndexedType(); 1398 if (!IndexedTy->isSized()) { 1399 Known.resetAll(); 1400 break; 1401 } 1402 1403 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1404 KnownBits IndexBits(IndexBitWidth); 1405 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1406 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1407 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1408 KnownBits ScalingFactor(IndexBitWidth); 1409 // Multiply by current sizeof type. 1410 // &A[i] == A + i * sizeof(*A[i]). 1411 if (IndexTypeSize.isScalable()) { 1412 // For scalable types the only thing we know about sizeof is 1413 // that this is a multiple of the minimum size. 1414 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1415 } else if (IndexBits.isConstant()) { 1416 APInt IndexConst = IndexBits.getConstant(); 1417 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1418 IndexConst *= ScalingFactor; 1419 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1420 continue; 1421 } else { 1422 ScalingFactor.Zero = ~TypeSizeInBytes; 1423 ScalingFactor.One = TypeSizeInBytes; 1424 } 1425 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1426 1427 // If the offsets have a different width from the pointer, according 1428 // to the language reference we need to sign-extend or truncate them 1429 // to the width of the pointer. 1430 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1431 1432 Known = KnownBits::computeForAddSub( 1433 /*Add=*/true, 1434 /*NSW=*/IsInBounds, Known, IndexBits); 1435 } 1436 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1437 KnownBits Index(BitWidth); 1438 Index.Zero = ~AccConstIndices; 1439 Index.One = AccConstIndices; 1440 Known = KnownBits::computeForAddSub( 1441 /*Add=*/true, 1442 /*NSW=*/IsInBounds, Known, Index); 1443 } 1444 break; 1445 } 1446 case Instruction::PHI: { 1447 const PHINode *P = cast<PHINode>(I); 1448 // Handle the case of a simple two-predecessor recurrence PHI. 1449 // There's a lot more that could theoretically be done here, but 1450 // this is sufficient to catch some interesting cases. 1451 if (P->getNumIncomingValues() == 2) { 1452 for (unsigned i = 0; i != 2; ++i) { 1453 Value *L = P->getIncomingValue(i); 1454 Value *R = P->getIncomingValue(!i); 1455 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1456 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1457 Operator *LU = dyn_cast<Operator>(L); 1458 if (!LU) 1459 continue; 1460 unsigned Opcode = LU->getOpcode(); 1461 // Check for operations that have the property that if 1462 // both their operands have low zero bits, the result 1463 // will have low zero bits. 1464 if (Opcode == Instruction::Add || 1465 Opcode == Instruction::Sub || 1466 Opcode == Instruction::And || 1467 Opcode == Instruction::Or || 1468 Opcode == Instruction::Mul) { 1469 Value *LL = LU->getOperand(0); 1470 Value *LR = LU->getOperand(1); 1471 // Find a recurrence. 1472 if (LL == I) 1473 L = LR; 1474 else if (LR == I) 1475 L = LL; 1476 else 1477 continue; // Check for recurrence with L and R flipped. 1478 1479 // Change the context instruction to the "edge" that flows into the 1480 // phi. This is important because that is where the value is actually 1481 // "evaluated" even though it is used later somewhere else. (see also 1482 // D69571). 1483 Query RecQ = Q; 1484 1485 // Ok, we have a PHI of the form L op= R. Check for low 1486 // zero bits. 1487 RecQ.CxtI = RInst; 1488 computeKnownBits(R, Known2, Depth + 1, RecQ); 1489 1490 // We need to take the minimum number of known bits 1491 KnownBits Known3(BitWidth); 1492 RecQ.CxtI = LInst; 1493 computeKnownBits(L, Known3, Depth + 1, RecQ); 1494 1495 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1496 Known3.countMinTrailingZeros())); 1497 1498 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1499 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1500 // If initial value of recurrence is nonnegative, and we are adding 1501 // a nonnegative number with nsw, the result can only be nonnegative 1502 // or poison value regardless of the number of times we execute the 1503 // add in phi recurrence. If initial value is negative and we are 1504 // adding a negative number with nsw, the result can only be 1505 // negative or poison value. Similar arguments apply to sub and mul. 1506 // 1507 // (add non-negative, non-negative) --> non-negative 1508 // (add negative, negative) --> negative 1509 if (Opcode == Instruction::Add) { 1510 if (Known2.isNonNegative() && Known3.isNonNegative()) 1511 Known.makeNonNegative(); 1512 else if (Known2.isNegative() && Known3.isNegative()) 1513 Known.makeNegative(); 1514 } 1515 1516 // (sub nsw non-negative, negative) --> non-negative 1517 // (sub nsw negative, non-negative) --> negative 1518 else if (Opcode == Instruction::Sub && LL == I) { 1519 if (Known2.isNonNegative() && Known3.isNegative()) 1520 Known.makeNonNegative(); 1521 else if (Known2.isNegative() && Known3.isNonNegative()) 1522 Known.makeNegative(); 1523 } 1524 1525 // (mul nsw non-negative, non-negative) --> non-negative 1526 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1527 Known3.isNonNegative()) 1528 Known.makeNonNegative(); 1529 } 1530 1531 break; 1532 } 1533 } 1534 } 1535 1536 // Unreachable blocks may have zero-operand PHI nodes. 1537 if (P->getNumIncomingValues() == 0) 1538 break; 1539 1540 // Otherwise take the unions of the known bit sets of the operands, 1541 // taking conservative care to avoid excessive recursion. 1542 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1543 // Skip if every incoming value references to ourself. 1544 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1545 break; 1546 1547 Known.Zero.setAllBits(); 1548 Known.One.setAllBits(); 1549 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1550 Value *IncValue = P->getIncomingValue(u); 1551 // Skip direct self references. 1552 if (IncValue == P) continue; 1553 1554 // Change the context instruction to the "edge" that flows into the 1555 // phi. This is important because that is where the value is actually 1556 // "evaluated" even though it is used later somewhere else. (see also 1557 // D69571). 1558 Query RecQ = Q; 1559 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1560 1561 Known2 = KnownBits(BitWidth); 1562 // Recurse, but cap the recursion to one level, because we don't 1563 // want to waste time spinning around in loops. 1564 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1565 Known.Zero &= Known2.Zero; 1566 Known.One &= Known2.One; 1567 // If all bits have been ruled out, there's no need to check 1568 // more operands. 1569 if (!Known.Zero && !Known.One) 1570 break; 1571 } 1572 } 1573 break; 1574 } 1575 case Instruction::Call: 1576 case Instruction::Invoke: 1577 // If range metadata is attached to this call, set known bits from that, 1578 // and then intersect with known bits based on other properties of the 1579 // function. 1580 if (MDNode *MD = 1581 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1582 computeKnownBitsFromRangeMetadata(*MD, Known); 1583 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1584 computeKnownBits(RV, Known2, Depth + 1, Q); 1585 Known.Zero |= Known2.Zero; 1586 Known.One |= Known2.One; 1587 } 1588 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1589 switch (II->getIntrinsicID()) { 1590 default: break; 1591 case Intrinsic::abs: 1592 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1593 1594 // If the source's MSB is zero then we know the rest of the bits. 1595 if (Known2.isNonNegative()) { 1596 Known.Zero |= Known2.Zero; 1597 Known.One |= Known2.One; 1598 break; 1599 } 1600 1601 // Absolute value preserves trailing zero count. 1602 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1603 1604 // If this call is undefined for INT_MIN, the result is positive. We 1605 // also know it can't be INT_MIN if there is a set bit that isn't the 1606 // sign bit. 1607 Known2.One.clearSignBit(); 1608 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1609 Known.Zero.setSignBit(); 1610 // FIXME: Handle known negative input? 1611 // FIXME: Calculate the negated Known bits and combine them? 1612 break; 1613 case Intrinsic::bitreverse: 1614 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1615 Known.Zero |= Known2.Zero.reverseBits(); 1616 Known.One |= Known2.One.reverseBits(); 1617 break; 1618 case Intrinsic::bswap: 1619 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1620 Known.Zero |= Known2.Zero.byteSwap(); 1621 Known.One |= Known2.One.byteSwap(); 1622 break; 1623 case Intrinsic::ctlz: { 1624 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1625 // If we have a known 1, its position is our upper bound. 1626 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1627 // If this call is undefined for 0, the result will be less than 2^n. 1628 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1629 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1630 unsigned LowBits = Log2_32(PossibleLZ)+1; 1631 Known.Zero.setBitsFrom(LowBits); 1632 break; 1633 } 1634 case Intrinsic::cttz: { 1635 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1636 // If we have a known 1, its position is our upper bound. 1637 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1638 // If this call is undefined for 0, the result will be less than 2^n. 1639 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1640 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1641 unsigned LowBits = Log2_32(PossibleTZ)+1; 1642 Known.Zero.setBitsFrom(LowBits); 1643 break; 1644 } 1645 case Intrinsic::ctpop: { 1646 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1647 // We can bound the space the count needs. Also, bits known to be zero 1648 // can't contribute to the population. 1649 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1650 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1651 Known.Zero.setBitsFrom(LowBits); 1652 // TODO: we could bound KnownOne using the lower bound on the number 1653 // of bits which might be set provided by popcnt KnownOne2. 1654 break; 1655 } 1656 case Intrinsic::fshr: 1657 case Intrinsic::fshl: { 1658 const APInt *SA; 1659 if (!match(I->getOperand(2), m_APInt(SA))) 1660 break; 1661 1662 // Normalize to funnel shift left. 1663 uint64_t ShiftAmt = SA->urem(BitWidth); 1664 if (II->getIntrinsicID() == Intrinsic::fshr) 1665 ShiftAmt = BitWidth - ShiftAmt; 1666 1667 KnownBits Known3(BitWidth); 1668 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1669 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1670 1671 Known.Zero = 1672 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1673 Known.One = 1674 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1675 break; 1676 } 1677 case Intrinsic::uadd_sat: 1678 case Intrinsic::usub_sat: { 1679 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1680 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1681 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1682 1683 // Add: Leading ones of either operand are preserved. 1684 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1685 // as leading zeros in the result. 1686 unsigned LeadingKnown; 1687 if (IsAdd) 1688 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1689 Known2.countMinLeadingOnes()); 1690 else 1691 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1692 Known2.countMinLeadingOnes()); 1693 1694 Known = KnownBits::computeForAddSub( 1695 IsAdd, /* NSW */ false, Known, Known2); 1696 1697 // We select between the operation result and all-ones/zero 1698 // respectively, so we can preserve known ones/zeros. 1699 if (IsAdd) { 1700 Known.One.setHighBits(LeadingKnown); 1701 Known.Zero.clearAllBits(); 1702 } else { 1703 Known.Zero.setHighBits(LeadingKnown); 1704 Known.One.clearAllBits(); 1705 } 1706 break; 1707 } 1708 case Intrinsic::umin: 1709 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1710 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1711 Known = KnownBits::umin(Known, Known2); 1712 break; 1713 case Intrinsic::umax: 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 Known = KnownBits::umax(Known, Known2); 1717 break; 1718 case Intrinsic::smin: 1719 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1720 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1721 Known = KnownBits::smin(Known, Known2); 1722 break; 1723 case Intrinsic::smax: 1724 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1725 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1726 Known = KnownBits::smax(Known, Known2); 1727 break; 1728 case Intrinsic::x86_sse42_crc32_64_64: 1729 Known.Zero.setBitsFrom(32); 1730 break; 1731 } 1732 } 1733 break; 1734 case Instruction::ShuffleVector: { 1735 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1736 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1737 if (!Shuf) { 1738 Known.resetAll(); 1739 return; 1740 } 1741 // For undef elements, we don't know anything about the common state of 1742 // the shuffle result. 1743 APInt DemandedLHS, DemandedRHS; 1744 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1745 Known.resetAll(); 1746 return; 1747 } 1748 Known.One.setAllBits(); 1749 Known.Zero.setAllBits(); 1750 if (!!DemandedLHS) { 1751 const Value *LHS = Shuf->getOperand(0); 1752 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1753 // If we don't know any bits, early out. 1754 if (Known.isUnknown()) 1755 break; 1756 } 1757 if (!!DemandedRHS) { 1758 const Value *RHS = Shuf->getOperand(1); 1759 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1760 Known.One &= Known2.One; 1761 Known.Zero &= Known2.Zero; 1762 } 1763 break; 1764 } 1765 case Instruction::InsertElement: { 1766 const Value *Vec = I->getOperand(0); 1767 const Value *Elt = I->getOperand(1); 1768 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1769 // Early out if the index is non-constant or out-of-range. 1770 unsigned NumElts = DemandedElts.getBitWidth(); 1771 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 Known.One.setAllBits(); 1776 Known.Zero.setAllBits(); 1777 unsigned EltIdx = CIdx->getZExtValue(); 1778 // Do we demand the inserted element? 1779 if (DemandedElts[EltIdx]) { 1780 computeKnownBits(Elt, Known, Depth + 1, Q); 1781 // If we don't know any bits, early out. 1782 if (Known.isUnknown()) 1783 break; 1784 } 1785 // We don't need the base vector element that has been inserted. 1786 APInt DemandedVecElts = DemandedElts; 1787 DemandedVecElts.clearBit(EltIdx); 1788 if (!!DemandedVecElts) { 1789 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1790 Known.One &= Known2.One; 1791 Known.Zero &= Known2.Zero; 1792 } 1793 break; 1794 } 1795 case Instruction::ExtractElement: { 1796 // Look through extract element. If the index is non-constant or 1797 // out-of-range demand all elements, otherwise just the extracted element. 1798 const Value *Vec = I->getOperand(0); 1799 const Value *Idx = I->getOperand(1); 1800 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1801 if (isa<ScalableVectorType>(Vec->getType())) { 1802 // FIXME: there's probably *something* we can do with scalable vectors 1803 Known.resetAll(); 1804 break; 1805 } 1806 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1807 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1808 if (CIdx && CIdx->getValue().ult(NumElts)) 1809 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1810 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1811 break; 1812 } 1813 case Instruction::ExtractValue: 1814 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1815 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1816 if (EVI->getNumIndices() != 1) break; 1817 if (EVI->getIndices()[0] == 0) { 1818 switch (II->getIntrinsicID()) { 1819 default: break; 1820 case Intrinsic::uadd_with_overflow: 1821 case Intrinsic::sadd_with_overflow: 1822 computeKnownBitsAddSub(true, II->getArgOperand(0), 1823 II->getArgOperand(1), false, DemandedElts, 1824 Known, Known2, Depth, Q); 1825 break; 1826 case Intrinsic::usub_with_overflow: 1827 case Intrinsic::ssub_with_overflow: 1828 computeKnownBitsAddSub(false, II->getArgOperand(0), 1829 II->getArgOperand(1), false, DemandedElts, 1830 Known, Known2, Depth, Q); 1831 break; 1832 case Intrinsic::umul_with_overflow: 1833 case Intrinsic::smul_with_overflow: 1834 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1835 DemandedElts, Known, Known2, Depth, Q); 1836 break; 1837 } 1838 } 1839 } 1840 break; 1841 case Instruction::Freeze: 1842 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1843 Depth + 1)) 1844 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1845 break; 1846 } 1847 } 1848 1849 /// Determine which bits of V are known to be either zero or one and return 1850 /// them. 1851 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1852 unsigned Depth, const Query &Q) { 1853 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1854 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1855 return Known; 1856 } 1857 1858 /// Determine which bits of V are known to be either zero or one and return 1859 /// them. 1860 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1861 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1862 computeKnownBits(V, Known, Depth, Q); 1863 return Known; 1864 } 1865 1866 /// Determine which bits of V are known to be either zero or one and return 1867 /// them in the Known bit set. 1868 /// 1869 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1870 /// we cannot optimize based on the assumption that it is zero without changing 1871 /// it to be an explicit zero. If we don't change it to zero, other code could 1872 /// optimized based on the contradictory assumption that it is non-zero. 1873 /// Because instcombine aggressively folds operations with undef args anyway, 1874 /// this won't lose us code quality. 1875 /// 1876 /// This function is defined on values with integer type, values with pointer 1877 /// type, and vectors of integers. In the case 1878 /// where V is a vector, known zero, and known one values are the 1879 /// same width as the vector element, and the bit is set only if it is true 1880 /// for all of the demanded elements in the vector specified by DemandedElts. 1881 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1882 KnownBits &Known, unsigned Depth, const Query &Q) { 1883 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1884 // No demanded elts or V is a scalable vector, better to assume we don't 1885 // know anything. 1886 Known.resetAll(); 1887 return; 1888 } 1889 1890 assert(V && "No Value?"); 1891 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1892 1893 #ifndef NDEBUG 1894 Type *Ty = V->getType(); 1895 unsigned BitWidth = Known.getBitWidth(); 1896 1897 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1898 "Not integer or pointer type!"); 1899 1900 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1901 assert( 1902 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1903 "DemandedElt width should equal the fixed vector number of elements"); 1904 } else { 1905 assert(DemandedElts == APInt(1, 1) && 1906 "DemandedElt width should be 1 for scalars"); 1907 } 1908 1909 Type *ScalarTy = Ty->getScalarType(); 1910 if (ScalarTy->isPointerTy()) { 1911 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1912 "V and Known should have same BitWidth"); 1913 } else { 1914 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1915 "V and Known should have same BitWidth"); 1916 } 1917 #endif 1918 1919 const APInt *C; 1920 if (match(V, m_APInt(C))) { 1921 // We know all of the bits for a scalar constant or a splat vector constant! 1922 Known.One = *C; 1923 Known.Zero = ~Known.One; 1924 return; 1925 } 1926 // Null and aggregate-zero are all-zeros. 1927 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1928 Known.setAllZero(); 1929 return; 1930 } 1931 // Handle a constant vector by taking the intersection of the known bits of 1932 // each element. 1933 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1934 // We know that CDV must be a vector of integers. Take the intersection of 1935 // each element. 1936 Known.Zero.setAllBits(); Known.One.setAllBits(); 1937 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1938 if (!DemandedElts[i]) 1939 continue; 1940 APInt Elt = CDV->getElementAsAPInt(i); 1941 Known.Zero &= ~Elt; 1942 Known.One &= Elt; 1943 } 1944 return; 1945 } 1946 1947 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1948 // We know that CV must be a vector of integers. Take the intersection of 1949 // each element. 1950 Known.Zero.setAllBits(); Known.One.setAllBits(); 1951 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1952 if (!DemandedElts[i]) 1953 continue; 1954 Constant *Element = CV->getAggregateElement(i); 1955 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1956 if (!ElementCI) { 1957 Known.resetAll(); 1958 return; 1959 } 1960 const APInt &Elt = ElementCI->getValue(); 1961 Known.Zero &= ~Elt; 1962 Known.One &= Elt; 1963 } 1964 return; 1965 } 1966 1967 // Start out not knowing anything. 1968 Known.resetAll(); 1969 1970 // We can't imply anything about undefs. 1971 if (isa<UndefValue>(V)) 1972 return; 1973 1974 // There's no point in looking through other users of ConstantData for 1975 // assumptions. Confirm that we've handled them all. 1976 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1977 1978 // All recursive calls that increase depth must come after this. 1979 if (Depth == MaxAnalysisRecursionDepth) 1980 return; 1981 1982 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1983 // the bits of its aliasee. 1984 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1985 if (!GA->isInterposable()) 1986 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1987 return; 1988 } 1989 1990 if (const Operator *I = dyn_cast<Operator>(V)) 1991 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1992 1993 // Aligned pointers have trailing zeros - refine Known.Zero set 1994 if (isa<PointerType>(V->getType())) { 1995 Align Alignment = V->getPointerAlignment(Q.DL); 1996 Known.Zero.setLowBits(Log2(Alignment)); 1997 } 1998 1999 // computeKnownBitsFromAssume strictly refines Known. 2000 // Therefore, we run them after computeKnownBitsFromOperator. 2001 2002 // Check whether a nearby assume intrinsic can determine some known bits. 2003 computeKnownBitsFromAssume(V, Known, Depth, Q); 2004 2005 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2006 } 2007 2008 /// Return true if the given value is known to have exactly one 2009 /// bit set when defined. For vectors return true if every element is known to 2010 /// be a power of two when defined. Supports values with integer or pointer 2011 /// types and vectors of integers. 2012 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2013 const Query &Q) { 2014 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2015 2016 // Attempt to match against constants. 2017 if (OrZero && match(V, m_Power2OrZero())) 2018 return true; 2019 if (match(V, m_Power2())) 2020 return true; 2021 2022 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2023 // it is shifted off the end then the result is undefined. 2024 if (match(V, m_Shl(m_One(), m_Value()))) 2025 return true; 2026 2027 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2028 // the bottom. If it is shifted off the bottom then the result is undefined. 2029 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2030 return true; 2031 2032 // The remaining tests are all recursive, so bail out if we hit the limit. 2033 if (Depth++ == MaxAnalysisRecursionDepth) 2034 return false; 2035 2036 Value *X = nullptr, *Y = nullptr; 2037 // A shift left or a logical shift right of a power of two is a power of two 2038 // or zero. 2039 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2040 match(V, m_LShr(m_Value(X), m_Value())))) 2041 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2042 2043 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2044 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2045 2046 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2047 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2048 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2049 2050 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2051 // A power of two and'd with anything is a power of two or zero. 2052 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2053 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2054 return true; 2055 // X & (-X) is always a power of two or zero. 2056 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2057 return true; 2058 return false; 2059 } 2060 2061 // Adding a power-of-two or zero to the same power-of-two or zero yields 2062 // either the original power-of-two, a larger power-of-two or zero. 2063 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2064 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2065 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2066 Q.IIQ.hasNoSignedWrap(VOBO)) { 2067 if (match(X, m_And(m_Specific(Y), m_Value())) || 2068 match(X, m_And(m_Value(), m_Specific(Y)))) 2069 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2070 return true; 2071 if (match(Y, m_And(m_Specific(X), m_Value())) || 2072 match(Y, m_And(m_Value(), m_Specific(X)))) 2073 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2074 return true; 2075 2076 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2077 KnownBits LHSBits(BitWidth); 2078 computeKnownBits(X, LHSBits, Depth, Q); 2079 2080 KnownBits RHSBits(BitWidth); 2081 computeKnownBits(Y, RHSBits, Depth, Q); 2082 // If i8 V is a power of two or zero: 2083 // ZeroBits: 1 1 1 0 1 1 1 1 2084 // ~ZeroBits: 0 0 0 1 0 0 0 0 2085 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2086 // If OrZero isn't set, we cannot give back a zero result. 2087 // Make sure either the LHS or RHS has a bit set. 2088 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2089 return true; 2090 } 2091 } 2092 2093 // An exact divide or right shift can only shift off zero bits, so the result 2094 // is a power of two only if the first operand is a power of two and not 2095 // copying a sign bit (sdiv int_min, 2). 2096 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2097 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2098 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2099 Depth, Q); 2100 } 2101 2102 return false; 2103 } 2104 2105 /// Test whether a GEP's result is known to be non-null. 2106 /// 2107 /// Uses properties inherent in a GEP to try to determine whether it is known 2108 /// to be non-null. 2109 /// 2110 /// Currently this routine does not support vector GEPs. 2111 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2112 const Query &Q) { 2113 const Function *F = nullptr; 2114 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2115 F = I->getFunction(); 2116 2117 if (!GEP->isInBounds() || 2118 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2119 return false; 2120 2121 // FIXME: Support vector-GEPs. 2122 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2123 2124 // If the base pointer is non-null, we cannot walk to a null address with an 2125 // inbounds GEP in address space zero. 2126 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2127 return true; 2128 2129 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2130 // If so, then the GEP cannot produce a null pointer, as doing so would 2131 // inherently violate the inbounds contract within address space zero. 2132 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2133 GTI != GTE; ++GTI) { 2134 // Struct types are easy -- they must always be indexed by a constant. 2135 if (StructType *STy = GTI.getStructTypeOrNull()) { 2136 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2137 unsigned ElementIdx = OpC->getZExtValue(); 2138 const StructLayout *SL = Q.DL.getStructLayout(STy); 2139 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2140 if (ElementOffset > 0) 2141 return true; 2142 continue; 2143 } 2144 2145 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2146 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2147 continue; 2148 2149 // Fast path the constant operand case both for efficiency and so we don't 2150 // increment Depth when just zipping down an all-constant GEP. 2151 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2152 if (!OpC->isZero()) 2153 return true; 2154 continue; 2155 } 2156 2157 // We post-increment Depth here because while isKnownNonZero increments it 2158 // as well, when we pop back up that increment won't persist. We don't want 2159 // to recurse 10k times just because we have 10k GEP operands. We don't 2160 // bail completely out because we want to handle constant GEPs regardless 2161 // of depth. 2162 if (Depth++ >= MaxAnalysisRecursionDepth) 2163 continue; 2164 2165 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2166 return true; 2167 } 2168 2169 return false; 2170 } 2171 2172 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2173 const Instruction *CtxI, 2174 const DominatorTree *DT) { 2175 if (isa<Constant>(V)) 2176 return false; 2177 2178 if (!CtxI || !DT) 2179 return false; 2180 2181 unsigned NumUsesExplored = 0; 2182 for (auto *U : V->users()) { 2183 // Avoid massive lists 2184 if (NumUsesExplored >= DomConditionsMaxUses) 2185 break; 2186 NumUsesExplored++; 2187 2188 // If the value is used as an argument to a call or invoke, then argument 2189 // attributes may provide an answer about null-ness. 2190 if (const auto *CB = dyn_cast<CallBase>(U)) 2191 if (auto *CalledFunc = CB->getCalledFunction()) 2192 for (const Argument &Arg : CalledFunc->args()) 2193 if (CB->getArgOperand(Arg.getArgNo()) == V && 2194 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2195 return true; 2196 2197 // If the value is used as a load/store, then the pointer must be non null. 2198 if (V == getLoadStorePointerOperand(U)) { 2199 const Instruction *I = cast<Instruction>(U); 2200 if (!NullPointerIsDefined(I->getFunction(), 2201 V->getType()->getPointerAddressSpace()) && 2202 DT->dominates(I, CtxI)) 2203 return true; 2204 } 2205 2206 // Consider only compare instructions uniquely controlling a branch 2207 CmpInst::Predicate Pred; 2208 if (!match(const_cast<User *>(U), 2209 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2210 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2211 continue; 2212 2213 SmallVector<const User *, 4> WorkList; 2214 SmallPtrSet<const User *, 4> Visited; 2215 for (auto *CmpU : U->users()) { 2216 assert(WorkList.empty() && "Should be!"); 2217 if (Visited.insert(CmpU).second) 2218 WorkList.push_back(CmpU); 2219 2220 while (!WorkList.empty()) { 2221 auto *Curr = WorkList.pop_back_val(); 2222 2223 // If a user is an AND, add all its users to the work list. We only 2224 // propagate "pred != null" condition through AND because it is only 2225 // correct to assume that all conditions of AND are met in true branch. 2226 // TODO: Support similar logic of OR and EQ predicate? 2227 if (Pred == ICmpInst::ICMP_NE) 2228 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2229 if (BO->getOpcode() == Instruction::And) { 2230 for (auto *BOU : BO->users()) 2231 if (Visited.insert(BOU).second) 2232 WorkList.push_back(BOU); 2233 continue; 2234 } 2235 2236 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2237 assert(BI->isConditional() && "uses a comparison!"); 2238 2239 BasicBlock *NonNullSuccessor = 2240 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2241 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2242 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2243 return true; 2244 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2245 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2246 return true; 2247 } 2248 } 2249 } 2250 } 2251 2252 return false; 2253 } 2254 2255 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2256 /// ensure that the value it's attached to is never Value? 'RangeType' is 2257 /// is the type of the value described by the range. 2258 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2259 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2260 assert(NumRanges >= 1); 2261 for (unsigned i = 0; i < NumRanges; ++i) { 2262 ConstantInt *Lower = 2263 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2264 ConstantInt *Upper = 2265 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2266 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2267 if (Range.contains(Value)) 2268 return false; 2269 } 2270 return true; 2271 } 2272 2273 /// Return true if the given value is known to be non-zero when defined. For 2274 /// vectors, return true if every demanded element is known to be non-zero when 2275 /// defined. For pointers, if the context instruction and dominator tree are 2276 /// specified, perform context-sensitive analysis and return true if the 2277 /// pointer couldn't possibly be null at the specified instruction. 2278 /// Supports values with integer or pointer type and vectors of integers. 2279 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2280 const Query &Q) { 2281 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2282 // vector 2283 if (isa<ScalableVectorType>(V->getType())) 2284 return false; 2285 2286 if (auto *C = dyn_cast<Constant>(V)) { 2287 if (C->isNullValue()) 2288 return false; 2289 if (isa<ConstantInt>(C)) 2290 // Must be non-zero due to null test above. 2291 return true; 2292 2293 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2294 // See the comment for IntToPtr/PtrToInt instructions below. 2295 if (CE->getOpcode() == Instruction::IntToPtr || 2296 CE->getOpcode() == Instruction::PtrToInt) 2297 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2298 .getFixedSize() <= 2299 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2300 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2301 } 2302 2303 // For constant vectors, check that all elements are undefined or known 2304 // non-zero to determine that the whole vector is known non-zero. 2305 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2306 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2307 if (!DemandedElts[i]) 2308 continue; 2309 Constant *Elt = C->getAggregateElement(i); 2310 if (!Elt || Elt->isNullValue()) 2311 return false; 2312 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2313 return false; 2314 } 2315 return true; 2316 } 2317 2318 // A global variable in address space 0 is non null unless extern weak 2319 // or an absolute symbol reference. Other address spaces may have null as a 2320 // valid address for a global, so we can't assume anything. 2321 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2322 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2323 GV->getType()->getAddressSpace() == 0) 2324 return true; 2325 } else 2326 return false; 2327 } 2328 2329 if (auto *I = dyn_cast<Instruction>(V)) { 2330 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2331 // If the possible ranges don't contain zero, then the value is 2332 // definitely non-zero. 2333 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2334 const APInt ZeroValue(Ty->getBitWidth(), 0); 2335 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2336 return true; 2337 } 2338 } 2339 } 2340 2341 if (isKnownNonZeroFromAssume(V, Q)) 2342 return true; 2343 2344 // Some of the tests below are recursive, so bail out if we hit the limit. 2345 if (Depth++ >= MaxAnalysisRecursionDepth) 2346 return false; 2347 2348 // Check for pointer simplifications. 2349 2350 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2351 // Alloca never returns null, malloc might. 2352 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2353 return true; 2354 2355 // A byval, inalloca may not be null in a non-default addres space. A 2356 // nonnull argument is assumed never 0. 2357 if (const Argument *A = dyn_cast<Argument>(V)) { 2358 if (((A->hasPassPointeeByValueCopyAttr() && 2359 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2360 A->hasNonNullAttr())) 2361 return true; 2362 } 2363 2364 // A Load tagged with nonnull metadata is never null. 2365 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2366 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2367 return true; 2368 2369 if (const auto *Call = dyn_cast<CallBase>(V)) { 2370 if (Call->isReturnNonNull()) 2371 return true; 2372 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2373 return isKnownNonZero(RP, Depth, Q); 2374 } 2375 } 2376 2377 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2378 return true; 2379 2380 // Check for recursive pointer simplifications. 2381 if (V->getType()->isPointerTy()) { 2382 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2383 // do not alter the value, or at least not the nullness property of the 2384 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2385 // 2386 // Note that we have to take special care to avoid looking through 2387 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2388 // as casts that can alter the value, e.g., AddrSpaceCasts. 2389 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2390 return isGEPKnownNonNull(GEP, Depth, Q); 2391 2392 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2393 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2394 2395 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2396 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2397 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2398 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2399 } 2400 2401 // Similar to int2ptr above, we can look through ptr2int here if the cast 2402 // is a no-op or an extend and not a truncate. 2403 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2404 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2405 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2406 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2407 2408 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2409 2410 // X | Y != 0 if X != 0 or Y != 0. 2411 Value *X = nullptr, *Y = nullptr; 2412 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2413 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2414 isKnownNonZero(Y, DemandedElts, Depth, Q); 2415 2416 // ext X != 0 if X != 0. 2417 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2418 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2419 2420 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2421 // if the lowest bit is shifted off the end. 2422 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2423 // shl nuw can't remove any non-zero bits. 2424 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2425 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2426 return isKnownNonZero(X, Depth, Q); 2427 2428 KnownBits Known(BitWidth); 2429 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2430 if (Known.One[0]) 2431 return true; 2432 } 2433 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2434 // defined if the sign bit is shifted off the end. 2435 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2436 // shr exact can only shift out zero bits. 2437 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2438 if (BO->isExact()) 2439 return isKnownNonZero(X, Depth, Q); 2440 2441 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2442 if (Known.isNegative()) 2443 return true; 2444 2445 // If the shifter operand is a constant, and all of the bits shifted 2446 // out are known to be zero, and X is known non-zero then at least one 2447 // non-zero bit must remain. 2448 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2449 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2450 // Is there a known one in the portion not shifted out? 2451 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2452 return true; 2453 // Are all the bits to be shifted out known zero? 2454 if (Known.countMinTrailingZeros() >= ShiftVal) 2455 return isKnownNonZero(X, DemandedElts, Depth, Q); 2456 } 2457 } 2458 // div exact can only produce a zero if the dividend is zero. 2459 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2460 return isKnownNonZero(X, DemandedElts, Depth, Q); 2461 } 2462 // X + Y. 2463 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2464 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2465 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2466 2467 // If X and Y are both non-negative (as signed values) then their sum is not 2468 // zero unless both X and Y are zero. 2469 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2470 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2471 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2472 return true; 2473 2474 // If X and Y are both negative (as signed values) then their sum is not 2475 // zero unless both X and Y equal INT_MIN. 2476 if (XKnown.isNegative() && YKnown.isNegative()) { 2477 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2478 // The sign bit of X is set. If some other bit is set then X is not equal 2479 // to INT_MIN. 2480 if (XKnown.One.intersects(Mask)) 2481 return true; 2482 // The sign bit of Y is set. If some other bit is set then Y is not equal 2483 // to INT_MIN. 2484 if (YKnown.One.intersects(Mask)) 2485 return true; 2486 } 2487 2488 // The sum of a non-negative number and a power of two is not zero. 2489 if (XKnown.isNonNegative() && 2490 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2491 return true; 2492 if (YKnown.isNonNegative() && 2493 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2494 return true; 2495 } 2496 // X * Y. 2497 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2498 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2499 // If X and Y are non-zero then so is X * Y as long as the multiplication 2500 // does not overflow. 2501 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2502 isKnownNonZero(X, DemandedElts, Depth, Q) && 2503 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2504 return true; 2505 } 2506 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2507 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2508 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2509 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2510 return true; 2511 } 2512 // PHI 2513 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2514 // Try and detect a recurrence that monotonically increases from a 2515 // starting value, as these are common as induction variables. 2516 if (PN->getNumIncomingValues() == 2) { 2517 Value *Start = PN->getIncomingValue(0); 2518 Value *Induction = PN->getIncomingValue(1); 2519 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2520 std::swap(Start, Induction); 2521 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2522 if (!C->isZero() && !C->isNegative()) { 2523 ConstantInt *X; 2524 if (Q.IIQ.UseInstrInfo && 2525 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2526 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2527 !X->isNegative()) 2528 return true; 2529 } 2530 } 2531 } 2532 // Check if all incoming values are non-zero using recursion. 2533 Query RecQ = Q; 2534 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2535 return llvm::all_of(PN->operands(), [&](const Use &U) { 2536 if (U.get() == PN) 2537 return true; 2538 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2539 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2540 }); 2541 } 2542 // ExtractElement 2543 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2544 const Value *Vec = EEI->getVectorOperand(); 2545 const Value *Idx = EEI->getIndexOperand(); 2546 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2547 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2548 unsigned NumElts = VecTy->getNumElements(); 2549 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2550 if (CIdx && CIdx->getValue().ult(NumElts)) 2551 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2552 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2553 } 2554 } 2555 // Freeze 2556 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2557 auto *Op = FI->getOperand(0); 2558 if (isKnownNonZero(Op, Depth, Q) && 2559 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2560 return true; 2561 } 2562 2563 KnownBits Known(BitWidth); 2564 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2565 return Known.One != 0; 2566 } 2567 2568 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2569 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2570 // vector 2571 if (isa<ScalableVectorType>(V->getType())) 2572 return false; 2573 2574 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2575 APInt DemandedElts = 2576 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2577 return isKnownNonZero(V, DemandedElts, Depth, Q); 2578 } 2579 2580 /// Return true if V2 == V1 + X, where X is known non-zero. 2581 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2582 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2583 if (!BO || BO->getOpcode() != Instruction::Add) 2584 return false; 2585 Value *Op = nullptr; 2586 if (V2 == BO->getOperand(0)) 2587 Op = BO->getOperand(1); 2588 else if (V2 == BO->getOperand(1)) 2589 Op = BO->getOperand(0); 2590 else 2591 return false; 2592 return isKnownNonZero(Op, 0, Q); 2593 } 2594 2595 /// Return true if it is known that V1 != V2. 2596 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2597 if (V1 == V2) 2598 return false; 2599 if (V1->getType() != V2->getType()) 2600 // We can't look through casts yet. 2601 return false; 2602 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2603 return true; 2604 2605 if (V1->getType()->isIntOrIntVectorTy()) { 2606 // Are any known bits in V1 contradictory to known bits in V2? If V1 2607 // has a known zero where V2 has a known one, they must not be equal. 2608 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2609 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2610 2611 if (Known1.Zero.intersects(Known2.One) || 2612 Known2.Zero.intersects(Known1.One)) 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2619 /// simplify operations downstream. Mask is known to be zero for bits that V 2620 /// cannot have. 2621 /// 2622 /// This function is defined on values with integer type, values with pointer 2623 /// type, and vectors of integers. In the case 2624 /// where V is a vector, the mask, known zero, and known one values are the 2625 /// same width as the vector element, and the bit is set only if it is true 2626 /// for all of the elements in the vector. 2627 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2628 const Query &Q) { 2629 KnownBits Known(Mask.getBitWidth()); 2630 computeKnownBits(V, Known, Depth, Q); 2631 return Mask.isSubsetOf(Known.Zero); 2632 } 2633 2634 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2635 // Returns the input and lower/upper bounds. 2636 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2637 const APInt *&CLow, const APInt *&CHigh) { 2638 assert(isa<Operator>(Select) && 2639 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2640 "Input should be a Select!"); 2641 2642 const Value *LHS = nullptr, *RHS = nullptr; 2643 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2644 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2645 return false; 2646 2647 if (!match(RHS, m_APInt(CLow))) 2648 return false; 2649 2650 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2651 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2652 if (getInverseMinMaxFlavor(SPF) != SPF2) 2653 return false; 2654 2655 if (!match(RHS2, m_APInt(CHigh))) 2656 return false; 2657 2658 if (SPF == SPF_SMIN) 2659 std::swap(CLow, CHigh); 2660 2661 In = LHS2; 2662 return CLow->sle(*CHigh); 2663 } 2664 2665 /// For vector constants, loop over the elements and find the constant with the 2666 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2667 /// or if any element was not analyzed; otherwise, return the count for the 2668 /// element with the minimum number of sign bits. 2669 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2670 const APInt &DemandedElts, 2671 unsigned TyBits) { 2672 const auto *CV = dyn_cast<Constant>(V); 2673 if (!CV || !isa<FixedVectorType>(CV->getType())) 2674 return 0; 2675 2676 unsigned MinSignBits = TyBits; 2677 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2678 for (unsigned i = 0; i != NumElts; ++i) { 2679 if (!DemandedElts[i]) 2680 continue; 2681 // If we find a non-ConstantInt, bail out. 2682 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2683 if (!Elt) 2684 return 0; 2685 2686 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2687 } 2688 2689 return MinSignBits; 2690 } 2691 2692 static unsigned ComputeNumSignBitsImpl(const Value *V, 2693 const APInt &DemandedElts, 2694 unsigned Depth, const Query &Q); 2695 2696 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2697 unsigned Depth, const Query &Q) { 2698 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2699 assert(Result > 0 && "At least one sign bit needs to be present!"); 2700 return Result; 2701 } 2702 2703 /// Return the number of times the sign bit of the register is replicated into 2704 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2705 /// (itself), but other cases can give us information. For example, immediately 2706 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2707 /// other, so we return 3. For vectors, return the number of sign bits for the 2708 /// vector element with the minimum number of known sign bits of the demanded 2709 /// elements in the vector specified by DemandedElts. 2710 static unsigned ComputeNumSignBitsImpl(const Value *V, 2711 const APInt &DemandedElts, 2712 unsigned Depth, const Query &Q) { 2713 Type *Ty = V->getType(); 2714 2715 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2716 // vector 2717 if (isa<ScalableVectorType>(Ty)) 2718 return 1; 2719 2720 #ifndef NDEBUG 2721 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2722 2723 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2724 assert( 2725 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2726 "DemandedElt width should equal the fixed vector number of elements"); 2727 } else { 2728 assert(DemandedElts == APInt(1, 1) && 2729 "DemandedElt width should be 1 for scalars"); 2730 } 2731 #endif 2732 2733 // We return the minimum number of sign bits that are guaranteed to be present 2734 // in V, so for undef we have to conservatively return 1. We don't have the 2735 // same behavior for poison though -- that's a FIXME today. 2736 2737 Type *ScalarTy = Ty->getScalarType(); 2738 unsigned TyBits = ScalarTy->isPointerTy() ? 2739 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2740 Q.DL.getTypeSizeInBits(ScalarTy); 2741 2742 unsigned Tmp, Tmp2; 2743 unsigned FirstAnswer = 1; 2744 2745 // Note that ConstantInt is handled by the general computeKnownBits case 2746 // below. 2747 2748 if (Depth == MaxAnalysisRecursionDepth) 2749 return 1; 2750 2751 if (auto *U = dyn_cast<Operator>(V)) { 2752 switch (Operator::getOpcode(V)) { 2753 default: break; 2754 case Instruction::SExt: 2755 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2756 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2757 2758 case Instruction::SDiv: { 2759 const APInt *Denominator; 2760 // sdiv X, C -> adds log(C) sign bits. 2761 if (match(U->getOperand(1), m_APInt(Denominator))) { 2762 2763 // Ignore non-positive denominator. 2764 if (!Denominator->isStrictlyPositive()) 2765 break; 2766 2767 // Calculate the incoming numerator bits. 2768 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2769 2770 // Add floor(log(C)) bits to the numerator bits. 2771 return std::min(TyBits, NumBits + Denominator->logBase2()); 2772 } 2773 break; 2774 } 2775 2776 case Instruction::SRem: { 2777 const APInt *Denominator; 2778 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2779 // positive constant. This let us put a lower bound on the number of sign 2780 // bits. 2781 if (match(U->getOperand(1), m_APInt(Denominator))) { 2782 2783 // Ignore non-positive denominator. 2784 if (!Denominator->isStrictlyPositive()) 2785 break; 2786 2787 // Calculate the incoming numerator bits. SRem by a positive constant 2788 // can't lower the number of sign bits. 2789 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2790 2791 // Calculate the leading sign bit constraints by examining the 2792 // denominator. Given that the denominator is positive, there are two 2793 // cases: 2794 // 2795 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2796 // (1 << ceilLogBase2(C)). 2797 // 2798 // 2. the numerator is negative. Then the result range is (-C,0] and 2799 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2800 // 2801 // Thus a lower bound on the number of sign bits is `TyBits - 2802 // ceilLogBase2(C)`. 2803 2804 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2805 return std::max(NumrBits, ResBits); 2806 } 2807 break; 2808 } 2809 2810 case Instruction::AShr: { 2811 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2812 // ashr X, C -> adds C sign bits. Vectors too. 2813 const APInt *ShAmt; 2814 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2815 if (ShAmt->uge(TyBits)) 2816 break; // Bad shift. 2817 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2818 Tmp += ShAmtLimited; 2819 if (Tmp > TyBits) Tmp = TyBits; 2820 } 2821 return Tmp; 2822 } 2823 case Instruction::Shl: { 2824 const APInt *ShAmt; 2825 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2826 // shl destroys sign bits. 2827 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (ShAmt->uge(TyBits) || // Bad shift. 2829 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2830 Tmp2 = ShAmt->getZExtValue(); 2831 return Tmp - Tmp2; 2832 } 2833 break; 2834 } 2835 case Instruction::And: 2836 case Instruction::Or: 2837 case Instruction::Xor: // NOT is handled here. 2838 // Logical binary ops preserve the number of sign bits at the worst. 2839 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2840 if (Tmp != 1) { 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 FirstAnswer = std::min(Tmp, Tmp2); 2843 // We computed what we know about the sign bits as our first 2844 // answer. Now proceed to the generic code that uses 2845 // computeKnownBits, and pick whichever answer is better. 2846 } 2847 break; 2848 2849 case Instruction::Select: { 2850 // If we have a clamp pattern, we know that the number of sign bits will 2851 // be the minimum of the clamp min/max range. 2852 const Value *X; 2853 const APInt *CLow, *CHigh; 2854 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2855 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2856 2857 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2858 if (Tmp == 1) break; 2859 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2860 return std::min(Tmp, Tmp2); 2861 } 2862 2863 case Instruction::Add: 2864 // Add can have at most one carry bit. Thus we know that the output 2865 // is, at worst, one more bit than the inputs. 2866 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2867 if (Tmp == 1) break; 2868 2869 // Special case decrementing a value (ADD X, -1): 2870 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2871 if (CRHS->isAllOnesValue()) { 2872 KnownBits Known(TyBits); 2873 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2874 2875 // If the input is known to be 0 or 1, the output is 0/-1, which is 2876 // all sign bits set. 2877 if ((Known.Zero | 1).isAllOnesValue()) 2878 return TyBits; 2879 2880 // If we are subtracting one from a positive number, there is no carry 2881 // out of the result. 2882 if (Known.isNonNegative()) 2883 return Tmp; 2884 } 2885 2886 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (Tmp2 == 1) break; 2888 return std::min(Tmp, Tmp2) - 1; 2889 2890 case Instruction::Sub: 2891 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2892 if (Tmp2 == 1) break; 2893 2894 // Handle NEG. 2895 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2896 if (CLHS->isNullValue()) { 2897 KnownBits Known(TyBits); 2898 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2899 // If the input is known to be 0 or 1, the output is 0/-1, which is 2900 // all sign bits set. 2901 if ((Known.Zero | 1).isAllOnesValue()) 2902 return TyBits; 2903 2904 // If the input is known to be positive (the sign bit is known clear), 2905 // the output of the NEG has the same number of sign bits as the 2906 // input. 2907 if (Known.isNonNegative()) 2908 return Tmp2; 2909 2910 // Otherwise, we treat this like a SUB. 2911 } 2912 2913 // Sub can have at most one carry bit. Thus we know that the output 2914 // is, at worst, one more bit than the inputs. 2915 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2916 if (Tmp == 1) break; 2917 return std::min(Tmp, Tmp2) - 1; 2918 2919 case Instruction::Mul: { 2920 // The output of the Mul can be at most twice the valid bits in the 2921 // inputs. 2922 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 if (SignBitsOp0 == 1) break; 2924 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2925 if (SignBitsOp1 == 1) break; 2926 unsigned OutValidBits = 2927 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2928 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2929 } 2930 2931 case Instruction::PHI: { 2932 const PHINode *PN = cast<PHINode>(U); 2933 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2934 // Don't analyze large in-degree PHIs. 2935 if (NumIncomingValues > 4) break; 2936 // Unreachable blocks may have zero-operand PHI nodes. 2937 if (NumIncomingValues == 0) break; 2938 2939 // Take the minimum of all incoming values. This can't infinitely loop 2940 // because of our depth threshold. 2941 Query RecQ = Q; 2942 Tmp = TyBits; 2943 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2944 if (Tmp == 1) return Tmp; 2945 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2946 Tmp = std::min( 2947 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2948 } 2949 return Tmp; 2950 } 2951 2952 case Instruction::Trunc: 2953 // FIXME: it's tricky to do anything useful for this, but it is an 2954 // important case for targets like X86. 2955 break; 2956 2957 case Instruction::ExtractElement: 2958 // Look through extract element. At the moment we keep this simple and 2959 // skip tracking the specific element. But at least we might find 2960 // information valid for all elements of the vector (for example if vector 2961 // is sign extended, shifted, etc). 2962 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2963 2964 case Instruction::ShuffleVector: { 2965 // Collect the minimum number of sign bits that are shared by every vector 2966 // element referenced by the shuffle. 2967 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2968 if (!Shuf) { 2969 // FIXME: Add support for shufflevector constant expressions. 2970 return 1; 2971 } 2972 APInt DemandedLHS, DemandedRHS; 2973 // For undef elements, we don't know anything about the common state of 2974 // the shuffle result. 2975 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2976 return 1; 2977 Tmp = std::numeric_limits<unsigned>::max(); 2978 if (!!DemandedLHS) { 2979 const Value *LHS = Shuf->getOperand(0); 2980 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2981 } 2982 // If we don't know anything, early out and try computeKnownBits 2983 // fall-back. 2984 if (Tmp == 1) 2985 break; 2986 if (!!DemandedRHS) { 2987 const Value *RHS = Shuf->getOperand(1); 2988 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2989 Tmp = std::min(Tmp, Tmp2); 2990 } 2991 // If we don't know anything, early out and try computeKnownBits 2992 // fall-back. 2993 if (Tmp == 1) 2994 break; 2995 assert(Tmp <= Ty->getScalarSizeInBits() && 2996 "Failed to determine minimum sign bits"); 2997 return Tmp; 2998 } 2999 case Instruction::Call: { 3000 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3001 switch (II->getIntrinsicID()) { 3002 default: break; 3003 case Intrinsic::abs: 3004 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3005 if (Tmp == 1) break; 3006 3007 // Absolute value reduces number of sign bits by at most 1. 3008 return Tmp - 1; 3009 } 3010 } 3011 } 3012 } 3013 } 3014 3015 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3016 // use this information. 3017 3018 // If we can examine all elements of a vector constant successfully, we're 3019 // done (we can't do any better than that). If not, keep trying. 3020 if (unsigned VecSignBits = 3021 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3022 return VecSignBits; 3023 3024 KnownBits Known(TyBits); 3025 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3026 3027 // If we know that the sign bit is either zero or one, determine the number of 3028 // identical bits in the top of the input value. 3029 return std::max(FirstAnswer, Known.countMinSignBits()); 3030 } 3031 3032 /// This function computes the integer multiple of Base that equals V. 3033 /// If successful, it returns true and returns the multiple in 3034 /// Multiple. If unsuccessful, it returns false. It looks 3035 /// through SExt instructions only if LookThroughSExt is true. 3036 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3037 bool LookThroughSExt, unsigned Depth) { 3038 assert(V && "No Value?"); 3039 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3040 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3041 3042 Type *T = V->getType(); 3043 3044 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3045 3046 if (Base == 0) 3047 return false; 3048 3049 if (Base == 1) { 3050 Multiple = V; 3051 return true; 3052 } 3053 3054 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3055 Constant *BaseVal = ConstantInt::get(T, Base); 3056 if (CO && CO == BaseVal) { 3057 // Multiple is 1. 3058 Multiple = ConstantInt::get(T, 1); 3059 return true; 3060 } 3061 3062 if (CI && CI->getZExtValue() % Base == 0) { 3063 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3064 return true; 3065 } 3066 3067 if (Depth == MaxAnalysisRecursionDepth) return false; 3068 3069 Operator *I = dyn_cast<Operator>(V); 3070 if (!I) return false; 3071 3072 switch (I->getOpcode()) { 3073 default: break; 3074 case Instruction::SExt: 3075 if (!LookThroughSExt) return false; 3076 // otherwise fall through to ZExt 3077 LLVM_FALLTHROUGH; 3078 case Instruction::ZExt: 3079 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3080 LookThroughSExt, Depth+1); 3081 case Instruction::Shl: 3082 case Instruction::Mul: { 3083 Value *Op0 = I->getOperand(0); 3084 Value *Op1 = I->getOperand(1); 3085 3086 if (I->getOpcode() == Instruction::Shl) { 3087 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3088 if (!Op1CI) return false; 3089 // Turn Op0 << Op1 into Op0 * 2^Op1 3090 APInt Op1Int = Op1CI->getValue(); 3091 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3092 APInt API(Op1Int.getBitWidth(), 0); 3093 API.setBit(BitToSet); 3094 Op1 = ConstantInt::get(V->getContext(), API); 3095 } 3096 3097 Value *Mul0 = nullptr; 3098 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3099 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3100 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3101 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3102 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3103 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3104 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3105 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3106 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3107 3108 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3109 Multiple = ConstantExpr::getMul(MulC, Op1C); 3110 return true; 3111 } 3112 3113 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3114 if (Mul0CI->getValue() == 1) { 3115 // V == Base * Op1, so return Op1 3116 Multiple = Op1; 3117 return true; 3118 } 3119 } 3120 3121 Value *Mul1 = nullptr; 3122 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3123 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3124 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3125 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3126 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3127 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3128 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3129 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3130 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3131 3132 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3133 Multiple = ConstantExpr::getMul(MulC, Op0C); 3134 return true; 3135 } 3136 3137 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3138 if (Mul1CI->getValue() == 1) { 3139 // V == Base * Op0, so return Op0 3140 Multiple = Op0; 3141 return true; 3142 } 3143 } 3144 } 3145 } 3146 3147 // We could not determine if V is a multiple of Base. 3148 return false; 3149 } 3150 3151 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3152 const TargetLibraryInfo *TLI) { 3153 const Function *F = CB.getCalledFunction(); 3154 if (!F) 3155 return Intrinsic::not_intrinsic; 3156 3157 if (F->isIntrinsic()) 3158 return F->getIntrinsicID(); 3159 3160 // We are going to infer semantics of a library function based on mapping it 3161 // to an LLVM intrinsic. Check that the library function is available from 3162 // this callbase and in this environment. 3163 LibFunc Func; 3164 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3165 !CB.onlyReadsMemory()) 3166 return Intrinsic::not_intrinsic; 3167 3168 switch (Func) { 3169 default: 3170 break; 3171 case LibFunc_sin: 3172 case LibFunc_sinf: 3173 case LibFunc_sinl: 3174 return Intrinsic::sin; 3175 case LibFunc_cos: 3176 case LibFunc_cosf: 3177 case LibFunc_cosl: 3178 return Intrinsic::cos; 3179 case LibFunc_exp: 3180 case LibFunc_expf: 3181 case LibFunc_expl: 3182 return Intrinsic::exp; 3183 case LibFunc_exp2: 3184 case LibFunc_exp2f: 3185 case LibFunc_exp2l: 3186 return Intrinsic::exp2; 3187 case LibFunc_log: 3188 case LibFunc_logf: 3189 case LibFunc_logl: 3190 return Intrinsic::log; 3191 case LibFunc_log10: 3192 case LibFunc_log10f: 3193 case LibFunc_log10l: 3194 return Intrinsic::log10; 3195 case LibFunc_log2: 3196 case LibFunc_log2f: 3197 case LibFunc_log2l: 3198 return Intrinsic::log2; 3199 case LibFunc_fabs: 3200 case LibFunc_fabsf: 3201 case LibFunc_fabsl: 3202 return Intrinsic::fabs; 3203 case LibFunc_fmin: 3204 case LibFunc_fminf: 3205 case LibFunc_fminl: 3206 return Intrinsic::minnum; 3207 case LibFunc_fmax: 3208 case LibFunc_fmaxf: 3209 case LibFunc_fmaxl: 3210 return Intrinsic::maxnum; 3211 case LibFunc_copysign: 3212 case LibFunc_copysignf: 3213 case LibFunc_copysignl: 3214 return Intrinsic::copysign; 3215 case LibFunc_floor: 3216 case LibFunc_floorf: 3217 case LibFunc_floorl: 3218 return Intrinsic::floor; 3219 case LibFunc_ceil: 3220 case LibFunc_ceilf: 3221 case LibFunc_ceill: 3222 return Intrinsic::ceil; 3223 case LibFunc_trunc: 3224 case LibFunc_truncf: 3225 case LibFunc_truncl: 3226 return Intrinsic::trunc; 3227 case LibFunc_rint: 3228 case LibFunc_rintf: 3229 case LibFunc_rintl: 3230 return Intrinsic::rint; 3231 case LibFunc_nearbyint: 3232 case LibFunc_nearbyintf: 3233 case LibFunc_nearbyintl: 3234 return Intrinsic::nearbyint; 3235 case LibFunc_round: 3236 case LibFunc_roundf: 3237 case LibFunc_roundl: 3238 return Intrinsic::round; 3239 case LibFunc_roundeven: 3240 case LibFunc_roundevenf: 3241 case LibFunc_roundevenl: 3242 return Intrinsic::roundeven; 3243 case LibFunc_pow: 3244 case LibFunc_powf: 3245 case LibFunc_powl: 3246 return Intrinsic::pow; 3247 case LibFunc_sqrt: 3248 case LibFunc_sqrtf: 3249 case LibFunc_sqrtl: 3250 return Intrinsic::sqrt; 3251 } 3252 3253 return Intrinsic::not_intrinsic; 3254 } 3255 3256 /// Return true if we can prove that the specified FP value is never equal to 3257 /// -0.0. 3258 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3259 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3260 /// the same as +0.0 in floating-point ops. 3261 /// 3262 /// NOTE: this function will need to be revisited when we support non-default 3263 /// rounding modes! 3264 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3265 unsigned Depth) { 3266 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3267 return !CFP->getValueAPF().isNegZero(); 3268 3269 if (Depth == MaxAnalysisRecursionDepth) 3270 return false; 3271 3272 auto *Op = dyn_cast<Operator>(V); 3273 if (!Op) 3274 return false; 3275 3276 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3277 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3278 return true; 3279 3280 // sitofp and uitofp turn into +0.0 for zero. 3281 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3282 return true; 3283 3284 if (auto *Call = dyn_cast<CallInst>(Op)) { 3285 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3286 switch (IID) { 3287 default: 3288 break; 3289 // sqrt(-0.0) = -0.0, no other negative results are possible. 3290 case Intrinsic::sqrt: 3291 case Intrinsic::canonicalize: 3292 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3293 // fabs(x) != -0.0 3294 case Intrinsic::fabs: 3295 return true; 3296 } 3297 } 3298 3299 return false; 3300 } 3301 3302 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3303 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3304 /// bit despite comparing equal. 3305 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3306 const TargetLibraryInfo *TLI, 3307 bool SignBitOnly, 3308 unsigned Depth) { 3309 // TODO: This function does not do the right thing when SignBitOnly is true 3310 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3311 // which flips the sign bits of NaNs. See 3312 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3313 3314 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3315 return !CFP->getValueAPF().isNegative() || 3316 (!SignBitOnly && CFP->getValueAPF().isZero()); 3317 } 3318 3319 // Handle vector of constants. 3320 if (auto *CV = dyn_cast<Constant>(V)) { 3321 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3322 unsigned NumElts = CVFVTy->getNumElements(); 3323 for (unsigned i = 0; i != NumElts; ++i) { 3324 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3325 if (!CFP) 3326 return false; 3327 if (CFP->getValueAPF().isNegative() && 3328 (SignBitOnly || !CFP->getValueAPF().isZero())) 3329 return false; 3330 } 3331 3332 // All non-negative ConstantFPs. 3333 return true; 3334 } 3335 } 3336 3337 if (Depth == MaxAnalysisRecursionDepth) 3338 return false; 3339 3340 const Operator *I = dyn_cast<Operator>(V); 3341 if (!I) 3342 return false; 3343 3344 switch (I->getOpcode()) { 3345 default: 3346 break; 3347 // Unsigned integers are always nonnegative. 3348 case Instruction::UIToFP: 3349 return true; 3350 case Instruction::FMul: 3351 case Instruction::FDiv: 3352 // X * X is always non-negative or a NaN. 3353 // X / X is always exactly 1.0 or a NaN. 3354 if (I->getOperand(0) == I->getOperand(1) && 3355 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3356 return true; 3357 3358 LLVM_FALLTHROUGH; 3359 case Instruction::FAdd: 3360 case Instruction::FRem: 3361 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3362 Depth + 1) && 3363 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3364 Depth + 1); 3365 case Instruction::Select: 3366 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3367 Depth + 1) && 3368 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3369 Depth + 1); 3370 case Instruction::FPExt: 3371 case Instruction::FPTrunc: 3372 // Widening/narrowing never change sign. 3373 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3374 Depth + 1); 3375 case Instruction::ExtractElement: 3376 // Look through extract element. At the moment we keep this simple and skip 3377 // tracking the specific element. But at least we might find information 3378 // valid for all elements of the vector. 3379 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3380 Depth + 1); 3381 case Instruction::Call: 3382 const auto *CI = cast<CallInst>(I); 3383 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3384 switch (IID) { 3385 default: 3386 break; 3387 case Intrinsic::maxnum: { 3388 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3389 auto isPositiveNum = [&](Value *V) { 3390 if (SignBitOnly) { 3391 // With SignBitOnly, this is tricky because the result of 3392 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3393 // a constant strictly greater than 0.0. 3394 const APFloat *C; 3395 return match(V, m_APFloat(C)) && 3396 *C > APFloat::getZero(C->getSemantics()); 3397 } 3398 3399 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3400 // maxnum can't be ordered-less-than-zero. 3401 return isKnownNeverNaN(V, TLI) && 3402 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3403 }; 3404 3405 // TODO: This could be improved. We could also check that neither operand 3406 // has its sign bit set (and at least 1 is not-NAN?). 3407 return isPositiveNum(V0) || isPositiveNum(V1); 3408 } 3409 3410 case Intrinsic::maximum: 3411 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3412 Depth + 1) || 3413 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3414 Depth + 1); 3415 case Intrinsic::minnum: 3416 case Intrinsic::minimum: 3417 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3418 Depth + 1) && 3419 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3420 Depth + 1); 3421 case Intrinsic::exp: 3422 case Intrinsic::exp2: 3423 case Intrinsic::fabs: 3424 return true; 3425 3426 case Intrinsic::sqrt: 3427 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3428 if (!SignBitOnly) 3429 return true; 3430 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3431 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3432 3433 case Intrinsic::powi: 3434 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3435 // powi(x,n) is non-negative if n is even. 3436 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3437 return true; 3438 } 3439 // TODO: This is not correct. Given that exp is an integer, here are the 3440 // ways that pow can return a negative value: 3441 // 3442 // pow(x, exp) --> negative if exp is odd and x is negative. 3443 // pow(-0, exp) --> -inf if exp is negative odd. 3444 // pow(-0, exp) --> -0 if exp is positive odd. 3445 // pow(-inf, exp) --> -0 if exp is negative odd. 3446 // pow(-inf, exp) --> -inf if exp is positive odd. 3447 // 3448 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3449 // but we must return false if x == -0. Unfortunately we do not currently 3450 // have a way of expressing this constraint. See details in 3451 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3452 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3453 Depth + 1); 3454 3455 case Intrinsic::fma: 3456 case Intrinsic::fmuladd: 3457 // x*x+y is non-negative if y is non-negative. 3458 return I->getOperand(0) == I->getOperand(1) && 3459 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3460 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3461 Depth + 1); 3462 } 3463 break; 3464 } 3465 return false; 3466 } 3467 3468 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3469 const TargetLibraryInfo *TLI) { 3470 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3471 } 3472 3473 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3474 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3475 } 3476 3477 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3478 unsigned Depth) { 3479 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3480 3481 // If we're told that infinities won't happen, assume they won't. 3482 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3483 if (FPMathOp->hasNoInfs()) 3484 return true; 3485 3486 // Handle scalar constants. 3487 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3488 return !CFP->isInfinity(); 3489 3490 if (Depth == MaxAnalysisRecursionDepth) 3491 return false; 3492 3493 if (auto *Inst = dyn_cast<Instruction>(V)) { 3494 switch (Inst->getOpcode()) { 3495 case Instruction::Select: { 3496 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3497 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3498 } 3499 case Instruction::SIToFP: 3500 case Instruction::UIToFP: { 3501 // Get width of largest magnitude integer (remove a bit if signed). 3502 // This still works for a signed minimum value because the largest FP 3503 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3504 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3505 if (Inst->getOpcode() == Instruction::SIToFP) 3506 --IntSize; 3507 3508 // If the exponent of the largest finite FP value can hold the largest 3509 // integer, the result of the cast must be finite. 3510 Type *FPTy = Inst->getType()->getScalarType(); 3511 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3512 } 3513 default: 3514 break; 3515 } 3516 } 3517 3518 // try to handle fixed width vector constants 3519 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3520 if (VFVTy && isa<Constant>(V)) { 3521 // For vectors, verify that each element is not infinity. 3522 unsigned NumElts = VFVTy->getNumElements(); 3523 for (unsigned i = 0; i != NumElts; ++i) { 3524 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3525 if (!Elt) 3526 return false; 3527 if (isa<UndefValue>(Elt)) 3528 continue; 3529 auto *CElt = dyn_cast<ConstantFP>(Elt); 3530 if (!CElt || CElt->isInfinity()) 3531 return false; 3532 } 3533 // All elements were confirmed non-infinity or undefined. 3534 return true; 3535 } 3536 3537 // was not able to prove that V never contains infinity 3538 return false; 3539 } 3540 3541 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3542 unsigned Depth) { 3543 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3544 3545 // If we're told that NaNs won't happen, assume they won't. 3546 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3547 if (FPMathOp->hasNoNaNs()) 3548 return true; 3549 3550 // Handle scalar constants. 3551 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3552 return !CFP->isNaN(); 3553 3554 if (Depth == MaxAnalysisRecursionDepth) 3555 return false; 3556 3557 if (auto *Inst = dyn_cast<Instruction>(V)) { 3558 switch (Inst->getOpcode()) { 3559 case Instruction::FAdd: 3560 case Instruction::FSub: 3561 // Adding positive and negative infinity produces NaN. 3562 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3563 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3564 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3565 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3566 3567 case Instruction::FMul: 3568 // Zero multiplied with infinity produces NaN. 3569 // FIXME: If neither side can be zero fmul never produces NaN. 3570 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3571 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3572 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3573 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3574 3575 case Instruction::FDiv: 3576 case Instruction::FRem: 3577 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3578 return false; 3579 3580 case Instruction::Select: { 3581 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3582 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3583 } 3584 case Instruction::SIToFP: 3585 case Instruction::UIToFP: 3586 return true; 3587 case Instruction::FPTrunc: 3588 case Instruction::FPExt: 3589 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3590 default: 3591 break; 3592 } 3593 } 3594 3595 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3596 switch (II->getIntrinsicID()) { 3597 case Intrinsic::canonicalize: 3598 case Intrinsic::fabs: 3599 case Intrinsic::copysign: 3600 case Intrinsic::exp: 3601 case Intrinsic::exp2: 3602 case Intrinsic::floor: 3603 case Intrinsic::ceil: 3604 case Intrinsic::trunc: 3605 case Intrinsic::rint: 3606 case Intrinsic::nearbyint: 3607 case Intrinsic::round: 3608 case Intrinsic::roundeven: 3609 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3610 case Intrinsic::sqrt: 3611 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3612 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3613 case Intrinsic::minnum: 3614 case Intrinsic::maxnum: 3615 // If either operand is not NaN, the result is not NaN. 3616 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3617 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3618 default: 3619 return false; 3620 } 3621 } 3622 3623 // Try to handle fixed width vector constants 3624 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3625 if (VFVTy && isa<Constant>(V)) { 3626 // For vectors, verify that each element is not NaN. 3627 unsigned NumElts = VFVTy->getNumElements(); 3628 for (unsigned i = 0; i != NumElts; ++i) { 3629 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3630 if (!Elt) 3631 return false; 3632 if (isa<UndefValue>(Elt)) 3633 continue; 3634 auto *CElt = dyn_cast<ConstantFP>(Elt); 3635 if (!CElt || CElt->isNaN()) 3636 return false; 3637 } 3638 // All elements were confirmed not-NaN or undefined. 3639 return true; 3640 } 3641 3642 // Was not able to prove that V never contains NaN 3643 return false; 3644 } 3645 3646 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3647 3648 // All byte-wide stores are splatable, even of arbitrary variables. 3649 if (V->getType()->isIntegerTy(8)) 3650 return V; 3651 3652 LLVMContext &Ctx = V->getContext(); 3653 3654 // Undef don't care. 3655 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3656 if (isa<UndefValue>(V)) 3657 return UndefInt8; 3658 3659 // Return Undef for zero-sized type. 3660 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3661 return UndefInt8; 3662 3663 Constant *C = dyn_cast<Constant>(V); 3664 if (!C) { 3665 // Conceptually, we could handle things like: 3666 // %a = zext i8 %X to i16 3667 // %b = shl i16 %a, 8 3668 // %c = or i16 %a, %b 3669 // but until there is an example that actually needs this, it doesn't seem 3670 // worth worrying about. 3671 return nullptr; 3672 } 3673 3674 // Handle 'null' ConstantArrayZero etc. 3675 if (C->isNullValue()) 3676 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3677 3678 // Constant floating-point values can be handled as integer values if the 3679 // corresponding integer value is "byteable". An important case is 0.0. 3680 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3681 Type *Ty = nullptr; 3682 if (CFP->getType()->isHalfTy()) 3683 Ty = Type::getInt16Ty(Ctx); 3684 else if (CFP->getType()->isFloatTy()) 3685 Ty = Type::getInt32Ty(Ctx); 3686 else if (CFP->getType()->isDoubleTy()) 3687 Ty = Type::getInt64Ty(Ctx); 3688 // Don't handle long double formats, which have strange constraints. 3689 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3690 : nullptr; 3691 } 3692 3693 // We can handle constant integers that are multiple of 8 bits. 3694 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3695 if (CI->getBitWidth() % 8 == 0) { 3696 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3697 if (!CI->getValue().isSplat(8)) 3698 return nullptr; 3699 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3700 } 3701 } 3702 3703 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3704 if (CE->getOpcode() == Instruction::IntToPtr) { 3705 auto PS = DL.getPointerSizeInBits( 3706 cast<PointerType>(CE->getType())->getAddressSpace()); 3707 return isBytewiseValue( 3708 ConstantExpr::getIntegerCast(CE->getOperand(0), 3709 Type::getIntNTy(Ctx, PS), false), 3710 DL); 3711 } 3712 } 3713 3714 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3715 if (LHS == RHS) 3716 return LHS; 3717 if (!LHS || !RHS) 3718 return nullptr; 3719 if (LHS == UndefInt8) 3720 return RHS; 3721 if (RHS == UndefInt8) 3722 return LHS; 3723 return nullptr; 3724 }; 3725 3726 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3727 Value *Val = UndefInt8; 3728 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3729 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3730 return nullptr; 3731 return Val; 3732 } 3733 3734 if (isa<ConstantAggregate>(C)) { 3735 Value *Val = UndefInt8; 3736 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3737 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3738 return nullptr; 3739 return Val; 3740 } 3741 3742 // Don't try to handle the handful of other constants. 3743 return nullptr; 3744 } 3745 3746 // This is the recursive version of BuildSubAggregate. It takes a few different 3747 // arguments. Idxs is the index within the nested struct From that we are 3748 // looking at now (which is of type IndexedType). IdxSkip is the number of 3749 // indices from Idxs that should be left out when inserting into the resulting 3750 // struct. To is the result struct built so far, new insertvalue instructions 3751 // build on that. 3752 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3753 SmallVectorImpl<unsigned> &Idxs, 3754 unsigned IdxSkip, 3755 Instruction *InsertBefore) { 3756 StructType *STy = dyn_cast<StructType>(IndexedType); 3757 if (STy) { 3758 // Save the original To argument so we can modify it 3759 Value *OrigTo = To; 3760 // General case, the type indexed by Idxs is a struct 3761 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3762 // Process each struct element recursively 3763 Idxs.push_back(i); 3764 Value *PrevTo = To; 3765 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3766 InsertBefore); 3767 Idxs.pop_back(); 3768 if (!To) { 3769 // Couldn't find any inserted value for this index? Cleanup 3770 while (PrevTo != OrigTo) { 3771 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3772 PrevTo = Del->getAggregateOperand(); 3773 Del->eraseFromParent(); 3774 } 3775 // Stop processing elements 3776 break; 3777 } 3778 } 3779 // If we successfully found a value for each of our subaggregates 3780 if (To) 3781 return To; 3782 } 3783 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3784 // the struct's elements had a value that was inserted directly. In the latter 3785 // case, perhaps we can't determine each of the subelements individually, but 3786 // we might be able to find the complete struct somewhere. 3787 3788 // Find the value that is at that particular spot 3789 Value *V = FindInsertedValue(From, Idxs); 3790 3791 if (!V) 3792 return nullptr; 3793 3794 // Insert the value in the new (sub) aggregate 3795 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3796 "tmp", InsertBefore); 3797 } 3798 3799 // This helper takes a nested struct and extracts a part of it (which is again a 3800 // struct) into a new value. For example, given the struct: 3801 // { a, { b, { c, d }, e } } 3802 // and the indices "1, 1" this returns 3803 // { c, d }. 3804 // 3805 // It does this by inserting an insertvalue for each element in the resulting 3806 // struct, as opposed to just inserting a single struct. This will only work if 3807 // each of the elements of the substruct are known (ie, inserted into From by an 3808 // insertvalue instruction somewhere). 3809 // 3810 // All inserted insertvalue instructions are inserted before InsertBefore 3811 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3812 Instruction *InsertBefore) { 3813 assert(InsertBefore && "Must have someplace to insert!"); 3814 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3815 idx_range); 3816 Value *To = UndefValue::get(IndexedType); 3817 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3818 unsigned IdxSkip = Idxs.size(); 3819 3820 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3821 } 3822 3823 /// Given an aggregate and a sequence of indices, see if the scalar value 3824 /// indexed is already around as a register, for example if it was inserted 3825 /// directly into the aggregate. 3826 /// 3827 /// If InsertBefore is not null, this function will duplicate (modified) 3828 /// insertvalues when a part of a nested struct is extracted. 3829 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3830 Instruction *InsertBefore) { 3831 // Nothing to index? Just return V then (this is useful at the end of our 3832 // recursion). 3833 if (idx_range.empty()) 3834 return V; 3835 // We have indices, so V should have an indexable type. 3836 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3837 "Not looking at a struct or array?"); 3838 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3839 "Invalid indices for type?"); 3840 3841 if (Constant *C = dyn_cast<Constant>(V)) { 3842 C = C->getAggregateElement(idx_range[0]); 3843 if (!C) return nullptr; 3844 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3845 } 3846 3847 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3848 // Loop the indices for the insertvalue instruction in parallel with the 3849 // requested indices 3850 const unsigned *req_idx = idx_range.begin(); 3851 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3852 i != e; ++i, ++req_idx) { 3853 if (req_idx == idx_range.end()) { 3854 // We can't handle this without inserting insertvalues 3855 if (!InsertBefore) 3856 return nullptr; 3857 3858 // The requested index identifies a part of a nested aggregate. Handle 3859 // this specially. For example, 3860 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3861 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3862 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3863 // This can be changed into 3864 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3865 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3866 // which allows the unused 0,0 element from the nested struct to be 3867 // removed. 3868 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3869 InsertBefore); 3870 } 3871 3872 // This insert value inserts something else than what we are looking for. 3873 // See if the (aggregate) value inserted into has the value we are 3874 // looking for, then. 3875 if (*req_idx != *i) 3876 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3877 InsertBefore); 3878 } 3879 // If we end up here, the indices of the insertvalue match with those 3880 // requested (though possibly only partially). Now we recursively look at 3881 // the inserted value, passing any remaining indices. 3882 return FindInsertedValue(I->getInsertedValueOperand(), 3883 makeArrayRef(req_idx, idx_range.end()), 3884 InsertBefore); 3885 } 3886 3887 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3888 // If we're extracting a value from an aggregate that was extracted from 3889 // something else, we can extract from that something else directly instead. 3890 // However, we will need to chain I's indices with the requested indices. 3891 3892 // Calculate the number of indices required 3893 unsigned size = I->getNumIndices() + idx_range.size(); 3894 // Allocate some space to put the new indices in 3895 SmallVector<unsigned, 5> Idxs; 3896 Idxs.reserve(size); 3897 // Add indices from the extract value instruction 3898 Idxs.append(I->idx_begin(), I->idx_end()); 3899 3900 // Add requested indices 3901 Idxs.append(idx_range.begin(), idx_range.end()); 3902 3903 assert(Idxs.size() == size 3904 && "Number of indices added not correct?"); 3905 3906 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3907 } 3908 // Otherwise, we don't know (such as, extracting from a function return value 3909 // or load instruction) 3910 return nullptr; 3911 } 3912 3913 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3914 unsigned CharSize) { 3915 // Make sure the GEP has exactly three arguments. 3916 if (GEP->getNumOperands() != 3) 3917 return false; 3918 3919 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3920 // CharSize. 3921 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3922 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3923 return false; 3924 3925 // Check to make sure that the first operand of the GEP is an integer and 3926 // has value 0 so that we are sure we're indexing into the initializer. 3927 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3928 if (!FirstIdx || !FirstIdx->isZero()) 3929 return false; 3930 3931 return true; 3932 } 3933 3934 bool llvm::getConstantDataArrayInfo(const Value *V, 3935 ConstantDataArraySlice &Slice, 3936 unsigned ElementSize, uint64_t Offset) { 3937 assert(V); 3938 3939 // Look through bitcast instructions and geps. 3940 V = V->stripPointerCasts(); 3941 3942 // If the value is a GEP instruction or constant expression, treat it as an 3943 // offset. 3944 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3945 // The GEP operator should be based on a pointer to string constant, and is 3946 // indexing into the string constant. 3947 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3948 return false; 3949 3950 // If the second index isn't a ConstantInt, then this is a variable index 3951 // into the array. If this occurs, we can't say anything meaningful about 3952 // the string. 3953 uint64_t StartIdx = 0; 3954 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3955 StartIdx = CI->getZExtValue(); 3956 else 3957 return false; 3958 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3959 StartIdx + Offset); 3960 } 3961 3962 // The GEP instruction, constant or instruction, must reference a global 3963 // variable that is a constant and is initialized. The referenced constant 3964 // initializer is the array that we'll use for optimization. 3965 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3966 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3967 return false; 3968 3969 const ConstantDataArray *Array; 3970 ArrayType *ArrayTy; 3971 if (GV->getInitializer()->isNullValue()) { 3972 Type *GVTy = GV->getValueType(); 3973 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3974 // A zeroinitializer for the array; there is no ConstantDataArray. 3975 Array = nullptr; 3976 } else { 3977 const DataLayout &DL = GV->getParent()->getDataLayout(); 3978 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3979 uint64_t Length = SizeInBytes / (ElementSize / 8); 3980 if (Length <= Offset) 3981 return false; 3982 3983 Slice.Array = nullptr; 3984 Slice.Offset = 0; 3985 Slice.Length = Length - Offset; 3986 return true; 3987 } 3988 } else { 3989 // This must be a ConstantDataArray. 3990 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3991 if (!Array) 3992 return false; 3993 ArrayTy = Array->getType(); 3994 } 3995 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3996 return false; 3997 3998 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3999 if (Offset > NumElts) 4000 return false; 4001 4002 Slice.Array = Array; 4003 Slice.Offset = Offset; 4004 Slice.Length = NumElts - Offset; 4005 return true; 4006 } 4007 4008 /// This function computes the length of a null-terminated C string pointed to 4009 /// by V. If successful, it returns true and returns the string in Str. 4010 /// If unsuccessful, it returns false. 4011 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4012 uint64_t Offset, bool TrimAtNul) { 4013 ConstantDataArraySlice Slice; 4014 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4015 return false; 4016 4017 if (Slice.Array == nullptr) { 4018 if (TrimAtNul) { 4019 Str = StringRef(); 4020 return true; 4021 } 4022 if (Slice.Length == 1) { 4023 Str = StringRef("", 1); 4024 return true; 4025 } 4026 // We cannot instantiate a StringRef as we do not have an appropriate string 4027 // of 0s at hand. 4028 return false; 4029 } 4030 4031 // Start out with the entire array in the StringRef. 4032 Str = Slice.Array->getAsString(); 4033 // Skip over 'offset' bytes. 4034 Str = Str.substr(Slice.Offset); 4035 4036 if (TrimAtNul) { 4037 // Trim off the \0 and anything after it. If the array is not nul 4038 // terminated, we just return the whole end of string. The client may know 4039 // some other way that the string is length-bound. 4040 Str = Str.substr(0, Str.find('\0')); 4041 } 4042 return true; 4043 } 4044 4045 // These next two are very similar to the above, but also look through PHI 4046 // nodes. 4047 // TODO: See if we can integrate these two together. 4048 4049 /// If we can compute the length of the string pointed to by 4050 /// the specified pointer, return 'len+1'. If we can't, return 0. 4051 static uint64_t GetStringLengthH(const Value *V, 4052 SmallPtrSetImpl<const PHINode*> &PHIs, 4053 unsigned CharSize) { 4054 // Look through noop bitcast instructions. 4055 V = V->stripPointerCasts(); 4056 4057 // If this is a PHI node, there are two cases: either we have already seen it 4058 // or we haven't. 4059 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4060 if (!PHIs.insert(PN).second) 4061 return ~0ULL; // already in the set. 4062 4063 // If it was new, see if all the input strings are the same length. 4064 uint64_t LenSoFar = ~0ULL; 4065 for (Value *IncValue : PN->incoming_values()) { 4066 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4067 if (Len == 0) return 0; // Unknown length -> unknown. 4068 4069 if (Len == ~0ULL) continue; 4070 4071 if (Len != LenSoFar && LenSoFar != ~0ULL) 4072 return 0; // Disagree -> unknown. 4073 LenSoFar = Len; 4074 } 4075 4076 // Success, all agree. 4077 return LenSoFar; 4078 } 4079 4080 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4081 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4082 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4083 if (Len1 == 0) return 0; 4084 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4085 if (Len2 == 0) return 0; 4086 if (Len1 == ~0ULL) return Len2; 4087 if (Len2 == ~0ULL) return Len1; 4088 if (Len1 != Len2) return 0; 4089 return Len1; 4090 } 4091 4092 // Otherwise, see if we can read the string. 4093 ConstantDataArraySlice Slice; 4094 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4095 return 0; 4096 4097 if (Slice.Array == nullptr) 4098 return 1; 4099 4100 // Search for nul characters 4101 unsigned NullIndex = 0; 4102 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4103 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4104 break; 4105 } 4106 4107 return NullIndex + 1; 4108 } 4109 4110 /// If we can compute the length of the string pointed to by 4111 /// the specified pointer, return 'len+1'. If we can't, return 0. 4112 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4113 if (!V->getType()->isPointerTy()) 4114 return 0; 4115 4116 SmallPtrSet<const PHINode*, 32> PHIs; 4117 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4118 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4119 // an empty string as a length. 4120 return Len == ~0ULL ? 1 : Len; 4121 } 4122 4123 const Value * 4124 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4125 bool MustPreserveNullness) { 4126 assert(Call && 4127 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4128 if (const Value *RV = Call->getReturnedArgOperand()) 4129 return RV; 4130 // This can be used only as a aliasing property. 4131 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4132 Call, MustPreserveNullness)) 4133 return Call->getArgOperand(0); 4134 return nullptr; 4135 } 4136 4137 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4138 const CallBase *Call, bool MustPreserveNullness) { 4139 switch (Call->getIntrinsicID()) { 4140 case Intrinsic::launder_invariant_group: 4141 case Intrinsic::strip_invariant_group: 4142 case Intrinsic::aarch64_irg: 4143 case Intrinsic::aarch64_tagp: 4144 return true; 4145 case Intrinsic::ptrmask: 4146 return !MustPreserveNullness; 4147 default: 4148 return false; 4149 } 4150 } 4151 4152 /// \p PN defines a loop-variant pointer to an object. Check if the 4153 /// previous iteration of the loop was referring to the same object as \p PN. 4154 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4155 const LoopInfo *LI) { 4156 // Find the loop-defined value. 4157 Loop *L = LI->getLoopFor(PN->getParent()); 4158 if (PN->getNumIncomingValues() != 2) 4159 return true; 4160 4161 // Find the value from previous iteration. 4162 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4163 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4164 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4165 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4166 return true; 4167 4168 // If a new pointer is loaded in the loop, the pointer references a different 4169 // object in every iteration. E.g.: 4170 // for (i) 4171 // int *p = a[i]; 4172 // ... 4173 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4174 if (!L->isLoopInvariant(Load->getPointerOperand())) 4175 return false; 4176 return true; 4177 } 4178 4179 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4180 if (!V->getType()->isPointerTy()) 4181 return V; 4182 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4183 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4184 V = GEP->getPointerOperand(); 4185 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4186 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4187 V = cast<Operator>(V)->getOperand(0); 4188 if (!V->getType()->isPointerTy()) 4189 return V; 4190 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4191 if (GA->isInterposable()) 4192 return V; 4193 V = GA->getAliasee(); 4194 } else { 4195 if (auto *PHI = dyn_cast<PHINode>(V)) { 4196 // Look through single-arg phi nodes created by LCSSA. 4197 if (PHI->getNumIncomingValues() == 1) { 4198 V = PHI->getIncomingValue(0); 4199 continue; 4200 } 4201 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4202 // CaptureTracking can know about special capturing properties of some 4203 // intrinsics like launder.invariant.group, that can't be expressed with 4204 // the attributes, but have properties like returning aliasing pointer. 4205 // Because some analysis may assume that nocaptured pointer is not 4206 // returned from some special intrinsic (because function would have to 4207 // be marked with returns attribute), it is crucial to use this function 4208 // because it should be in sync with CaptureTracking. Not using it may 4209 // cause weird miscompilations where 2 aliasing pointers are assumed to 4210 // noalias. 4211 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4212 V = RP; 4213 continue; 4214 } 4215 } 4216 4217 return V; 4218 } 4219 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4220 } 4221 return V; 4222 } 4223 4224 void llvm::getUnderlyingObjects(const Value *V, 4225 SmallVectorImpl<const Value *> &Objects, 4226 LoopInfo *LI, unsigned MaxLookup) { 4227 SmallPtrSet<const Value *, 4> Visited; 4228 SmallVector<const Value *, 4> Worklist; 4229 Worklist.push_back(V); 4230 do { 4231 const Value *P = Worklist.pop_back_val(); 4232 P = getUnderlyingObject(P, MaxLookup); 4233 4234 if (!Visited.insert(P).second) 4235 continue; 4236 4237 if (auto *SI = dyn_cast<SelectInst>(P)) { 4238 Worklist.push_back(SI->getTrueValue()); 4239 Worklist.push_back(SI->getFalseValue()); 4240 continue; 4241 } 4242 4243 if (auto *PN = dyn_cast<PHINode>(P)) { 4244 // If this PHI changes the underlying object in every iteration of the 4245 // loop, don't look through it. Consider: 4246 // int **A; 4247 // for (i) { 4248 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4249 // Curr = A[i]; 4250 // *Prev, *Curr; 4251 // 4252 // Prev is tracking Curr one iteration behind so they refer to different 4253 // underlying objects. 4254 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4255 isSameUnderlyingObjectInLoop(PN, LI)) 4256 for (Value *IncValue : PN->incoming_values()) 4257 Worklist.push_back(IncValue); 4258 continue; 4259 } 4260 4261 Objects.push_back(P); 4262 } while (!Worklist.empty()); 4263 } 4264 4265 /// This is the function that does the work of looking through basic 4266 /// ptrtoint+arithmetic+inttoptr sequences. 4267 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4268 do { 4269 if (const Operator *U = dyn_cast<Operator>(V)) { 4270 // If we find a ptrtoint, we can transfer control back to the 4271 // regular getUnderlyingObjectFromInt. 4272 if (U->getOpcode() == Instruction::PtrToInt) 4273 return U->getOperand(0); 4274 // If we find an add of a constant, a multiplied value, or a phi, it's 4275 // likely that the other operand will lead us to the base 4276 // object. We don't have to worry about the case where the 4277 // object address is somehow being computed by the multiply, 4278 // because our callers only care when the result is an 4279 // identifiable object. 4280 if (U->getOpcode() != Instruction::Add || 4281 (!isa<ConstantInt>(U->getOperand(1)) && 4282 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4283 !isa<PHINode>(U->getOperand(1)))) 4284 return V; 4285 V = U->getOperand(0); 4286 } else { 4287 return V; 4288 } 4289 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4290 } while (true); 4291 } 4292 4293 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4294 /// ptrtoint+arithmetic+inttoptr sequences. 4295 /// It returns false if unidentified object is found in getUnderlyingObjects. 4296 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4297 SmallVectorImpl<Value *> &Objects) { 4298 SmallPtrSet<const Value *, 16> Visited; 4299 SmallVector<const Value *, 4> Working(1, V); 4300 do { 4301 V = Working.pop_back_val(); 4302 4303 SmallVector<const Value *, 4> Objs; 4304 getUnderlyingObjects(V, Objs); 4305 4306 for (const Value *V : Objs) { 4307 if (!Visited.insert(V).second) 4308 continue; 4309 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4310 const Value *O = 4311 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4312 if (O->getType()->isPointerTy()) { 4313 Working.push_back(O); 4314 continue; 4315 } 4316 } 4317 // If getUnderlyingObjects fails to find an identifiable object, 4318 // getUnderlyingObjectsForCodeGen also fails for safety. 4319 if (!isIdentifiedObject(V)) { 4320 Objects.clear(); 4321 return false; 4322 } 4323 Objects.push_back(const_cast<Value *>(V)); 4324 } 4325 } while (!Working.empty()); 4326 return true; 4327 } 4328 4329 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4330 AllocaInst *Result = nullptr; 4331 SmallPtrSet<Value *, 4> Visited; 4332 SmallVector<Value *, 4> Worklist; 4333 4334 auto AddWork = [&](Value *V) { 4335 if (Visited.insert(V).second) 4336 Worklist.push_back(V); 4337 }; 4338 4339 AddWork(V); 4340 do { 4341 V = Worklist.pop_back_val(); 4342 assert(Visited.count(V)); 4343 4344 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4345 if (Result && Result != AI) 4346 return nullptr; 4347 Result = AI; 4348 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4349 AddWork(CI->getOperand(0)); 4350 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4351 for (Value *IncValue : PN->incoming_values()) 4352 AddWork(IncValue); 4353 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4354 AddWork(SI->getTrueValue()); 4355 AddWork(SI->getFalseValue()); 4356 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4357 if (OffsetZero && !GEP->hasAllZeroIndices()) 4358 return nullptr; 4359 AddWork(GEP->getPointerOperand()); 4360 } else { 4361 return nullptr; 4362 } 4363 } while (!Worklist.empty()); 4364 4365 return Result; 4366 } 4367 4368 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4369 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4370 for (const User *U : V->users()) { 4371 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4372 if (!II) 4373 return false; 4374 4375 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4376 continue; 4377 4378 if (AllowDroppable && II->isDroppable()) 4379 continue; 4380 4381 return false; 4382 } 4383 return true; 4384 } 4385 4386 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4387 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4388 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4389 } 4390 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4391 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4392 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4393 } 4394 4395 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4396 if (!LI.isUnordered()) 4397 return true; 4398 const Function &F = *LI.getFunction(); 4399 // Speculative load may create a race that did not exist in the source. 4400 return F.hasFnAttribute(Attribute::SanitizeThread) || 4401 // Speculative load may load data from dirty regions. 4402 F.hasFnAttribute(Attribute::SanitizeAddress) || 4403 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4404 } 4405 4406 4407 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4408 const Instruction *CtxI, 4409 const DominatorTree *DT) { 4410 const Operator *Inst = dyn_cast<Operator>(V); 4411 if (!Inst) 4412 return false; 4413 4414 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4415 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4416 if (C->canTrap()) 4417 return false; 4418 4419 switch (Inst->getOpcode()) { 4420 default: 4421 return true; 4422 case Instruction::UDiv: 4423 case Instruction::URem: { 4424 // x / y is undefined if y == 0. 4425 const APInt *V; 4426 if (match(Inst->getOperand(1), m_APInt(V))) 4427 return *V != 0; 4428 return false; 4429 } 4430 case Instruction::SDiv: 4431 case Instruction::SRem: { 4432 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4433 const APInt *Numerator, *Denominator; 4434 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4435 return false; 4436 // We cannot hoist this division if the denominator is 0. 4437 if (*Denominator == 0) 4438 return false; 4439 // It's safe to hoist if the denominator is not 0 or -1. 4440 if (*Denominator != -1) 4441 return true; 4442 // At this point we know that the denominator is -1. It is safe to hoist as 4443 // long we know that the numerator is not INT_MIN. 4444 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4445 return !Numerator->isMinSignedValue(); 4446 // The numerator *might* be MinSignedValue. 4447 return false; 4448 } 4449 case Instruction::Load: { 4450 const LoadInst *LI = cast<LoadInst>(Inst); 4451 if (mustSuppressSpeculation(*LI)) 4452 return false; 4453 const DataLayout &DL = LI->getModule()->getDataLayout(); 4454 return isDereferenceableAndAlignedPointer( 4455 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4456 DL, CtxI, DT); 4457 } 4458 case Instruction::Call: { 4459 auto *CI = cast<const CallInst>(Inst); 4460 const Function *Callee = CI->getCalledFunction(); 4461 4462 // The called function could have undefined behavior or side-effects, even 4463 // if marked readnone nounwind. 4464 return Callee && Callee->isSpeculatable(); 4465 } 4466 case Instruction::VAArg: 4467 case Instruction::Alloca: 4468 case Instruction::Invoke: 4469 case Instruction::CallBr: 4470 case Instruction::PHI: 4471 case Instruction::Store: 4472 case Instruction::Ret: 4473 case Instruction::Br: 4474 case Instruction::IndirectBr: 4475 case Instruction::Switch: 4476 case Instruction::Unreachable: 4477 case Instruction::Fence: 4478 case Instruction::AtomicRMW: 4479 case Instruction::AtomicCmpXchg: 4480 case Instruction::LandingPad: 4481 case Instruction::Resume: 4482 case Instruction::CatchSwitch: 4483 case Instruction::CatchPad: 4484 case Instruction::CatchRet: 4485 case Instruction::CleanupPad: 4486 case Instruction::CleanupRet: 4487 return false; // Misc instructions which have effects 4488 } 4489 } 4490 4491 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4492 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4493 } 4494 4495 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4496 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4497 switch (OR) { 4498 case ConstantRange::OverflowResult::MayOverflow: 4499 return OverflowResult::MayOverflow; 4500 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4501 return OverflowResult::AlwaysOverflowsLow; 4502 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4503 return OverflowResult::AlwaysOverflowsHigh; 4504 case ConstantRange::OverflowResult::NeverOverflows: 4505 return OverflowResult::NeverOverflows; 4506 } 4507 llvm_unreachable("Unknown OverflowResult"); 4508 } 4509 4510 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4511 static ConstantRange computeConstantRangeIncludingKnownBits( 4512 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4513 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4514 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4515 KnownBits Known = computeKnownBits( 4516 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4517 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4518 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4519 ConstantRange::PreferredRangeType RangeType = 4520 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4521 return CR1.intersectWith(CR2, RangeType); 4522 } 4523 4524 OverflowResult llvm::computeOverflowForUnsignedMul( 4525 const Value *LHS, const Value *RHS, const DataLayout &DL, 4526 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4527 bool UseInstrInfo) { 4528 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4529 nullptr, UseInstrInfo); 4530 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4531 nullptr, UseInstrInfo); 4532 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4533 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4534 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4535 } 4536 4537 OverflowResult 4538 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4539 const DataLayout &DL, AssumptionCache *AC, 4540 const Instruction *CxtI, 4541 const DominatorTree *DT, bool UseInstrInfo) { 4542 // Multiplying n * m significant bits yields a result of n + m significant 4543 // bits. If the total number of significant bits does not exceed the 4544 // result bit width (minus 1), there is no overflow. 4545 // This means if we have enough leading sign bits in the operands 4546 // we can guarantee that the result does not overflow. 4547 // Ref: "Hacker's Delight" by Henry Warren 4548 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4549 4550 // Note that underestimating the number of sign bits gives a more 4551 // conservative answer. 4552 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4553 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4554 4555 // First handle the easy case: if we have enough sign bits there's 4556 // definitely no overflow. 4557 if (SignBits > BitWidth + 1) 4558 return OverflowResult::NeverOverflows; 4559 4560 // There are two ambiguous cases where there can be no overflow: 4561 // SignBits == BitWidth + 1 and 4562 // SignBits == BitWidth 4563 // The second case is difficult to check, therefore we only handle the 4564 // first case. 4565 if (SignBits == BitWidth + 1) { 4566 // It overflows only when both arguments are negative and the true 4567 // product is exactly the minimum negative number. 4568 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4569 // For simplicity we just check if at least one side is not negative. 4570 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4571 nullptr, UseInstrInfo); 4572 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4573 nullptr, UseInstrInfo); 4574 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4575 return OverflowResult::NeverOverflows; 4576 } 4577 return OverflowResult::MayOverflow; 4578 } 4579 4580 OverflowResult llvm::computeOverflowForUnsignedAdd( 4581 const Value *LHS, const Value *RHS, const DataLayout &DL, 4582 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4583 bool UseInstrInfo) { 4584 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4585 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4586 nullptr, UseInstrInfo); 4587 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4588 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4589 nullptr, UseInstrInfo); 4590 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4591 } 4592 4593 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4594 const Value *RHS, 4595 const AddOperator *Add, 4596 const DataLayout &DL, 4597 AssumptionCache *AC, 4598 const Instruction *CxtI, 4599 const DominatorTree *DT) { 4600 if (Add && Add->hasNoSignedWrap()) { 4601 return OverflowResult::NeverOverflows; 4602 } 4603 4604 // If LHS and RHS each have at least two sign bits, the addition will look 4605 // like 4606 // 4607 // XX..... + 4608 // YY..... 4609 // 4610 // If the carry into the most significant position is 0, X and Y can't both 4611 // be 1 and therefore the carry out of the addition is also 0. 4612 // 4613 // If the carry into the most significant position is 1, X and Y can't both 4614 // be 0 and therefore the carry out of the addition is also 1. 4615 // 4616 // Since the carry into the most significant position is always equal to 4617 // the carry out of the addition, there is no signed overflow. 4618 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4619 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4620 return OverflowResult::NeverOverflows; 4621 4622 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4623 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4624 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4625 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4626 OverflowResult OR = 4627 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4628 if (OR != OverflowResult::MayOverflow) 4629 return OR; 4630 4631 // The remaining code needs Add to be available. Early returns if not so. 4632 if (!Add) 4633 return OverflowResult::MayOverflow; 4634 4635 // If the sign of Add is the same as at least one of the operands, this add 4636 // CANNOT overflow. If this can be determined from the known bits of the 4637 // operands the above signedAddMayOverflow() check will have already done so. 4638 // The only other way to improve on the known bits is from an assumption, so 4639 // call computeKnownBitsFromAssume() directly. 4640 bool LHSOrRHSKnownNonNegative = 4641 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4642 bool LHSOrRHSKnownNegative = 4643 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4644 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4645 KnownBits AddKnown(LHSRange.getBitWidth()); 4646 computeKnownBitsFromAssume( 4647 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4648 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4649 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4650 return OverflowResult::NeverOverflows; 4651 } 4652 4653 return OverflowResult::MayOverflow; 4654 } 4655 4656 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4657 const Value *RHS, 4658 const DataLayout &DL, 4659 AssumptionCache *AC, 4660 const Instruction *CxtI, 4661 const DominatorTree *DT) { 4662 // Checking for conditions implied by dominating conditions may be expensive. 4663 // Limit it to usub_with_overflow calls for now. 4664 if (match(CxtI, 4665 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4666 if (auto C = 4667 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4668 if (*C) 4669 return OverflowResult::NeverOverflows; 4670 return OverflowResult::AlwaysOverflowsLow; 4671 } 4672 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4673 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4674 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4675 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4676 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4677 } 4678 4679 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4680 const Value *RHS, 4681 const DataLayout &DL, 4682 AssumptionCache *AC, 4683 const Instruction *CxtI, 4684 const DominatorTree *DT) { 4685 // If LHS and RHS each have at least two sign bits, the subtraction 4686 // cannot overflow. 4687 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4688 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4689 return OverflowResult::NeverOverflows; 4690 4691 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4692 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4693 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4694 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4695 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4696 } 4697 4698 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4699 const DominatorTree &DT) { 4700 SmallVector<const BranchInst *, 2> GuardingBranches; 4701 SmallVector<const ExtractValueInst *, 2> Results; 4702 4703 for (const User *U : WO->users()) { 4704 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4705 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4706 4707 if (EVI->getIndices()[0] == 0) 4708 Results.push_back(EVI); 4709 else { 4710 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4711 4712 for (const auto *U : EVI->users()) 4713 if (const auto *B = dyn_cast<BranchInst>(U)) { 4714 assert(B->isConditional() && "How else is it using an i1?"); 4715 GuardingBranches.push_back(B); 4716 } 4717 } 4718 } else { 4719 // We are using the aggregate directly in a way we don't want to analyze 4720 // here (storing it to a global, say). 4721 return false; 4722 } 4723 } 4724 4725 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4726 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4727 if (!NoWrapEdge.isSingleEdge()) 4728 return false; 4729 4730 // Check if all users of the add are provably no-wrap. 4731 for (const auto *Result : Results) { 4732 // If the extractvalue itself is not executed on overflow, the we don't 4733 // need to check each use separately, since domination is transitive. 4734 if (DT.dominates(NoWrapEdge, Result->getParent())) 4735 continue; 4736 4737 for (auto &RU : Result->uses()) 4738 if (!DT.dominates(NoWrapEdge, RU)) 4739 return false; 4740 } 4741 4742 return true; 4743 }; 4744 4745 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4746 } 4747 4748 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4749 // See whether I has flags that may create poison 4750 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4751 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4752 return true; 4753 } 4754 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4755 if (ExactOp->isExact()) 4756 return true; 4757 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4758 auto FMF = FP->getFastMathFlags(); 4759 if (FMF.noNaNs() || FMF.noInfs()) 4760 return true; 4761 } 4762 4763 unsigned Opcode = Op->getOpcode(); 4764 4765 // Check whether opcode is a poison/undef-generating operation 4766 switch (Opcode) { 4767 case Instruction::Shl: 4768 case Instruction::AShr: 4769 case Instruction::LShr: { 4770 // Shifts return poison if shiftwidth is larger than the bitwidth. 4771 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4772 SmallVector<Constant *, 4> ShiftAmounts; 4773 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4774 unsigned NumElts = FVTy->getNumElements(); 4775 for (unsigned i = 0; i < NumElts; ++i) 4776 ShiftAmounts.push_back(C->getAggregateElement(i)); 4777 } else if (isa<ScalableVectorType>(C->getType())) 4778 return true; // Can't tell, just return true to be safe 4779 else 4780 ShiftAmounts.push_back(C); 4781 4782 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4783 auto *CI = dyn_cast<ConstantInt>(C); 4784 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4785 }); 4786 return !Safe; 4787 } 4788 return true; 4789 } 4790 case Instruction::FPToSI: 4791 case Instruction::FPToUI: 4792 // fptosi/ui yields poison if the resulting value does not fit in the 4793 // destination type. 4794 return true; 4795 case Instruction::Call: 4796 case Instruction::CallBr: 4797 case Instruction::Invoke: { 4798 const auto *CB = cast<CallBase>(Op); 4799 return !CB->hasRetAttr(Attribute::NoUndef); 4800 } 4801 case Instruction::InsertElement: 4802 case Instruction::ExtractElement: { 4803 // If index exceeds the length of the vector, it returns poison 4804 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4805 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4806 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4807 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4808 return true; 4809 return false; 4810 } 4811 case Instruction::ShuffleVector: { 4812 // shufflevector may return undef. 4813 if (PoisonOnly) 4814 return false; 4815 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4816 ? cast<ConstantExpr>(Op)->getShuffleMask() 4817 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4818 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4819 } 4820 case Instruction::FNeg: 4821 case Instruction::PHI: 4822 case Instruction::Select: 4823 case Instruction::URem: 4824 case Instruction::SRem: 4825 case Instruction::ExtractValue: 4826 case Instruction::InsertValue: 4827 case Instruction::Freeze: 4828 case Instruction::ICmp: 4829 case Instruction::FCmp: 4830 return false; 4831 case Instruction::GetElementPtr: { 4832 const auto *GEP = cast<GEPOperator>(Op); 4833 return GEP->isInBounds(); 4834 } 4835 default: { 4836 const auto *CE = dyn_cast<ConstantExpr>(Op); 4837 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4838 return false; 4839 else if (Instruction::isBinaryOp(Opcode)) 4840 return false; 4841 // Be conservative and return true. 4842 return true; 4843 } 4844 } 4845 } 4846 4847 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4848 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4849 } 4850 4851 bool llvm::canCreatePoison(const Operator *Op) { 4852 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4853 } 4854 4855 static bool programUndefinedIfUndefOrPoison(const Value *V, 4856 bool PoisonOnly); 4857 4858 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4859 AssumptionCache *AC, 4860 const Instruction *CtxI, 4861 const DominatorTree *DT, 4862 unsigned Depth, bool PoisonOnly) { 4863 if (Depth >= MaxAnalysisRecursionDepth) 4864 return false; 4865 4866 if (isa<MetadataAsValue>(V)) 4867 return false; 4868 4869 if (const auto *A = dyn_cast<Argument>(V)) { 4870 if (A->hasAttribute(Attribute::NoUndef)) 4871 return true; 4872 } 4873 4874 if (auto *C = dyn_cast<Constant>(V)) { 4875 if (isa<UndefValue>(C)) 4876 return PoisonOnly; 4877 4878 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4879 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4880 return true; 4881 4882 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4883 return (PoisonOnly || !C->containsUndefElement()) && 4884 !C->containsConstantExpression(); 4885 } 4886 4887 // Strip cast operations from a pointer value. 4888 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4889 // inbounds with zero offset. To guarantee that the result isn't poison, the 4890 // stripped pointer is checked as it has to be pointing into an allocated 4891 // object or be null `null` to ensure `inbounds` getelement pointers with a 4892 // zero offset could not produce poison. 4893 // It can strip off addrspacecast that do not change bit representation as 4894 // well. We believe that such addrspacecast is equivalent to no-op. 4895 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4896 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4897 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4898 return true; 4899 4900 auto OpCheck = [&](const Value *V) { 4901 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4902 PoisonOnly); 4903 }; 4904 4905 if (auto *Opr = dyn_cast<Operator>(V)) { 4906 // If the value is a freeze instruction, then it can never 4907 // be undef or poison. 4908 if (isa<FreezeInst>(V)) 4909 return true; 4910 4911 if (const auto *CB = dyn_cast<CallBase>(V)) { 4912 if (CB->hasRetAttr(Attribute::NoUndef)) 4913 return true; 4914 } 4915 4916 if (const auto *PN = dyn_cast<PHINode>(V)) { 4917 unsigned Num = PN->getNumIncomingValues(); 4918 bool IsWellDefined = true; 4919 for (unsigned i = 0; i < Num; ++i) { 4920 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4921 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4922 DT, Depth + 1, PoisonOnly)) { 4923 IsWellDefined = false; 4924 break; 4925 } 4926 } 4927 if (IsWellDefined) 4928 return true; 4929 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4930 return true; 4931 } 4932 4933 if (auto *I = dyn_cast<LoadInst>(V)) 4934 if (I->getMetadata(LLVMContext::MD_noundef)) 4935 return true; 4936 4937 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4938 return true; 4939 4940 // CxtI may be null or a cloned instruction. 4941 if (!CtxI || !CtxI->getParent() || !DT) 4942 return false; 4943 4944 auto *DNode = DT->getNode(CtxI->getParent()); 4945 if (!DNode) 4946 // Unreachable block 4947 return false; 4948 4949 // If V is used as a branch condition before reaching CtxI, V cannot be 4950 // undef or poison. 4951 // br V, BB1, BB2 4952 // BB1: 4953 // CtxI ; V cannot be undef or poison here 4954 auto *Dominator = DNode->getIDom(); 4955 while (Dominator) { 4956 auto *TI = Dominator->getBlock()->getTerminator(); 4957 4958 Value *Cond = nullptr; 4959 if (auto BI = dyn_cast<BranchInst>(TI)) { 4960 if (BI->isConditional()) 4961 Cond = BI->getCondition(); 4962 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4963 Cond = SI->getCondition(); 4964 } 4965 4966 if (Cond) { 4967 if (Cond == V) 4968 return true; 4969 else if (PoisonOnly && isa<Operator>(Cond)) { 4970 // For poison, we can analyze further 4971 auto *Opr = cast<Operator>(Cond); 4972 if (propagatesPoison(Opr) && 4973 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4974 return true; 4975 } 4976 } 4977 4978 Dominator = Dominator->getIDom(); 4979 } 4980 4981 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4982 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4983 return true; 4984 4985 return false; 4986 } 4987 4988 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4989 const Instruction *CtxI, 4990 const DominatorTree *DT, 4991 unsigned Depth) { 4992 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4993 } 4994 4995 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4996 const Instruction *CtxI, 4997 const DominatorTree *DT, unsigned Depth) { 4998 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4999 } 5000 5001 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5002 const DataLayout &DL, 5003 AssumptionCache *AC, 5004 const Instruction *CxtI, 5005 const DominatorTree *DT) { 5006 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5007 Add, DL, AC, CxtI, DT); 5008 } 5009 5010 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5011 const Value *RHS, 5012 const DataLayout &DL, 5013 AssumptionCache *AC, 5014 const Instruction *CxtI, 5015 const DominatorTree *DT) { 5016 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5017 } 5018 5019 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5020 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5021 // of time because it's possible for another thread to interfere with it for an 5022 // arbitrary length of time, but programs aren't allowed to rely on that. 5023 5024 // If there is no successor, then execution can't transfer to it. 5025 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5026 return !CRI->unwindsToCaller(); 5027 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5028 return !CatchSwitch->unwindsToCaller(); 5029 if (isa<ResumeInst>(I)) 5030 return false; 5031 if (isa<ReturnInst>(I)) 5032 return false; 5033 if (isa<UnreachableInst>(I)) 5034 return false; 5035 5036 // Calls can throw, or contain an infinite loop, or kill the process. 5037 if (const auto *CB = dyn_cast<CallBase>(I)) { 5038 // Call sites that throw have implicit non-local control flow. 5039 if (!CB->doesNotThrow()) 5040 return false; 5041 5042 // A function which doens't throw and has "willreturn" attribute will 5043 // always return. 5044 if (CB->hasFnAttr(Attribute::WillReturn)) 5045 return true; 5046 5047 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5048 // etc. and thus not return. However, LLVM already assumes that 5049 // 5050 // - Thread exiting actions are modeled as writes to memory invisible to 5051 // the program. 5052 // 5053 // - Loops that don't have side effects (side effects are volatile/atomic 5054 // stores and IO) always terminate (see http://llvm.org/PR965). 5055 // Furthermore IO itself is also modeled as writes to memory invisible to 5056 // the program. 5057 // 5058 // We rely on those assumptions here, and use the memory effects of the call 5059 // target as a proxy for checking that it always returns. 5060 5061 // FIXME: This isn't aggressive enough; a call which only writes to a global 5062 // is guaranteed to return. 5063 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5064 } 5065 5066 // Other instructions return normally. 5067 return true; 5068 } 5069 5070 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5071 // TODO: This is slightly conservative for invoke instruction since exiting 5072 // via an exception *is* normal control for them. 5073 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5074 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5075 return false; 5076 return true; 5077 } 5078 5079 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5080 const Loop *L) { 5081 // The loop header is guaranteed to be executed for every iteration. 5082 // 5083 // FIXME: Relax this constraint to cover all basic blocks that are 5084 // guaranteed to be executed at every iteration. 5085 if (I->getParent() != L->getHeader()) return false; 5086 5087 for (const Instruction &LI : *L->getHeader()) { 5088 if (&LI == I) return true; 5089 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5090 } 5091 llvm_unreachable("Instruction not contained in its own parent basic block."); 5092 } 5093 5094 bool llvm::propagatesPoison(const Operator *I) { 5095 switch (I->getOpcode()) { 5096 case Instruction::Freeze: 5097 case Instruction::Select: 5098 case Instruction::PHI: 5099 case Instruction::Call: 5100 case Instruction::Invoke: 5101 return false; 5102 case Instruction::ICmp: 5103 case Instruction::FCmp: 5104 case Instruction::GetElementPtr: 5105 return true; 5106 default: 5107 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5108 return true; 5109 5110 // Be conservative and return false. 5111 return false; 5112 } 5113 } 5114 5115 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5116 SmallPtrSetImpl<const Value *> &Operands) { 5117 switch (I->getOpcode()) { 5118 case Instruction::Store: 5119 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5120 break; 5121 5122 case Instruction::Load: 5123 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5124 break; 5125 5126 case Instruction::AtomicCmpXchg: 5127 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5128 break; 5129 5130 case Instruction::AtomicRMW: 5131 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5132 break; 5133 5134 case Instruction::UDiv: 5135 case Instruction::SDiv: 5136 case Instruction::URem: 5137 case Instruction::SRem: 5138 Operands.insert(I->getOperand(1)); 5139 break; 5140 5141 case Instruction::Call: 5142 case Instruction::Invoke: { 5143 const CallBase *CB = cast<CallBase>(I); 5144 if (CB->isIndirectCall()) 5145 Operands.insert(CB->getCalledOperand()); 5146 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5147 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5148 Operands.insert(CB->getArgOperand(i)); 5149 } 5150 break; 5151 } 5152 5153 default: 5154 break; 5155 } 5156 } 5157 5158 bool llvm::mustTriggerUB(const Instruction *I, 5159 const SmallSet<const Value *, 16>& KnownPoison) { 5160 SmallPtrSet<const Value *, 4> NonPoisonOps; 5161 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5162 5163 for (const auto *V : NonPoisonOps) 5164 if (KnownPoison.count(V)) 5165 return true; 5166 5167 return false; 5168 } 5169 5170 static bool programUndefinedIfUndefOrPoison(const Value *V, 5171 bool PoisonOnly) { 5172 // We currently only look for uses of values within the same basic 5173 // block, as that makes it easier to guarantee that the uses will be 5174 // executed given that Inst is executed. 5175 // 5176 // FIXME: Expand this to consider uses beyond the same basic block. To do 5177 // this, look out for the distinction between post-dominance and strong 5178 // post-dominance. 5179 const BasicBlock *BB = nullptr; 5180 BasicBlock::const_iterator Begin; 5181 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5182 BB = Inst->getParent(); 5183 Begin = Inst->getIterator(); 5184 Begin++; 5185 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5186 BB = &Arg->getParent()->getEntryBlock(); 5187 Begin = BB->begin(); 5188 } else { 5189 return false; 5190 } 5191 5192 BasicBlock::const_iterator End = BB->end(); 5193 5194 if (!PoisonOnly) { 5195 // Be conservative & just check whether a value is passed to a noundef 5196 // argument. 5197 // Instructions that raise UB with a poison operand are well-defined 5198 // or have unclear semantics when the input is partially undef. 5199 // For example, 'udiv x, (undef | 1)' isn't UB. 5200 5201 for (auto &I : make_range(Begin, End)) { 5202 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5203 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5204 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5205 CB->getArgOperand(i) == V) 5206 return true; 5207 } 5208 } 5209 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5210 break; 5211 } 5212 return false; 5213 } 5214 5215 // Set of instructions that we have proved will yield poison if Inst 5216 // does. 5217 SmallSet<const Value *, 16> YieldsPoison; 5218 SmallSet<const BasicBlock *, 4> Visited; 5219 5220 YieldsPoison.insert(V); 5221 auto Propagate = [&](const User *User) { 5222 if (propagatesPoison(cast<Operator>(User))) 5223 YieldsPoison.insert(User); 5224 }; 5225 for_each(V->users(), Propagate); 5226 Visited.insert(BB); 5227 5228 unsigned Iter = 0; 5229 while (Iter++ < MaxAnalysisRecursionDepth) { 5230 for (auto &I : make_range(Begin, End)) { 5231 if (mustTriggerUB(&I, YieldsPoison)) 5232 return true; 5233 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5234 return false; 5235 5236 // Mark poison that propagates from I through uses of I. 5237 if (YieldsPoison.count(&I)) 5238 for_each(I.users(), Propagate); 5239 } 5240 5241 if (auto *NextBB = BB->getSingleSuccessor()) { 5242 if (Visited.insert(NextBB).second) { 5243 BB = NextBB; 5244 Begin = BB->getFirstNonPHI()->getIterator(); 5245 End = BB->end(); 5246 continue; 5247 } 5248 } 5249 5250 break; 5251 } 5252 return false; 5253 } 5254 5255 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5256 return ::programUndefinedIfUndefOrPoison(Inst, false); 5257 } 5258 5259 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5260 return ::programUndefinedIfUndefOrPoison(Inst, true); 5261 } 5262 5263 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5264 if (FMF.noNaNs()) 5265 return true; 5266 5267 if (auto *C = dyn_cast<ConstantFP>(V)) 5268 return !C->isNaN(); 5269 5270 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5271 if (!C->getElementType()->isFloatingPointTy()) 5272 return false; 5273 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5274 if (C->getElementAsAPFloat(I).isNaN()) 5275 return false; 5276 } 5277 return true; 5278 } 5279 5280 if (isa<ConstantAggregateZero>(V)) 5281 return true; 5282 5283 return false; 5284 } 5285 5286 static bool isKnownNonZero(const Value *V) { 5287 if (auto *C = dyn_cast<ConstantFP>(V)) 5288 return !C->isZero(); 5289 5290 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5291 if (!C->getElementType()->isFloatingPointTy()) 5292 return false; 5293 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5294 if (C->getElementAsAPFloat(I).isZero()) 5295 return false; 5296 } 5297 return true; 5298 } 5299 5300 return false; 5301 } 5302 5303 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5304 /// Given non-min/max outer cmp/select from the clamp pattern this 5305 /// function recognizes if it can be substitued by a "canonical" min/max 5306 /// pattern. 5307 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5308 Value *CmpLHS, Value *CmpRHS, 5309 Value *TrueVal, Value *FalseVal, 5310 Value *&LHS, Value *&RHS) { 5311 // Try to match 5312 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5313 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5314 // and return description of the outer Max/Min. 5315 5316 // First, check if select has inverse order: 5317 if (CmpRHS == FalseVal) { 5318 std::swap(TrueVal, FalseVal); 5319 Pred = CmpInst::getInversePredicate(Pred); 5320 } 5321 5322 // Assume success now. If there's no match, callers should not use these anyway. 5323 LHS = TrueVal; 5324 RHS = FalseVal; 5325 5326 const APFloat *FC1; 5327 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5328 return {SPF_UNKNOWN, SPNB_NA, false}; 5329 5330 const APFloat *FC2; 5331 switch (Pred) { 5332 case CmpInst::FCMP_OLT: 5333 case CmpInst::FCMP_OLE: 5334 case CmpInst::FCMP_ULT: 5335 case CmpInst::FCMP_ULE: 5336 if (match(FalseVal, 5337 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5338 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5339 *FC1 < *FC2) 5340 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5341 break; 5342 case CmpInst::FCMP_OGT: 5343 case CmpInst::FCMP_OGE: 5344 case CmpInst::FCMP_UGT: 5345 case CmpInst::FCMP_UGE: 5346 if (match(FalseVal, 5347 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5348 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5349 *FC1 > *FC2) 5350 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5351 break; 5352 default: 5353 break; 5354 } 5355 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 } 5358 5359 /// Recognize variations of: 5360 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5361 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5362 Value *CmpLHS, Value *CmpRHS, 5363 Value *TrueVal, Value *FalseVal) { 5364 // Swap the select operands and predicate to match the patterns below. 5365 if (CmpRHS != TrueVal) { 5366 Pred = ICmpInst::getSwappedPredicate(Pred); 5367 std::swap(TrueVal, FalseVal); 5368 } 5369 const APInt *C1; 5370 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5371 const APInt *C2; 5372 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5373 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5374 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5375 return {SPF_SMAX, SPNB_NA, false}; 5376 5377 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5378 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5379 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5380 return {SPF_SMIN, SPNB_NA, false}; 5381 5382 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5383 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5384 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5385 return {SPF_UMAX, SPNB_NA, false}; 5386 5387 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5388 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5389 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5390 return {SPF_UMIN, SPNB_NA, false}; 5391 } 5392 return {SPF_UNKNOWN, SPNB_NA, false}; 5393 } 5394 5395 /// Recognize variations of: 5396 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5397 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5398 Value *CmpLHS, Value *CmpRHS, 5399 Value *TVal, Value *FVal, 5400 unsigned Depth) { 5401 // TODO: Allow FP min/max with nnan/nsz. 5402 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5403 5404 Value *A = nullptr, *B = nullptr; 5405 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5406 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5407 return {SPF_UNKNOWN, SPNB_NA, false}; 5408 5409 Value *C = nullptr, *D = nullptr; 5410 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5411 if (L.Flavor != R.Flavor) 5412 return {SPF_UNKNOWN, SPNB_NA, false}; 5413 5414 // We have something like: x Pred y ? min(a, b) : min(c, d). 5415 // Try to match the compare to the min/max operations of the select operands. 5416 // First, make sure we have the right compare predicate. 5417 switch (L.Flavor) { 5418 case SPF_SMIN: 5419 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5420 Pred = ICmpInst::getSwappedPredicate(Pred); 5421 std::swap(CmpLHS, CmpRHS); 5422 } 5423 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5424 break; 5425 return {SPF_UNKNOWN, SPNB_NA, false}; 5426 case SPF_SMAX: 5427 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5428 Pred = ICmpInst::getSwappedPredicate(Pred); 5429 std::swap(CmpLHS, CmpRHS); 5430 } 5431 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5432 break; 5433 return {SPF_UNKNOWN, SPNB_NA, false}; 5434 case SPF_UMIN: 5435 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5436 Pred = ICmpInst::getSwappedPredicate(Pred); 5437 std::swap(CmpLHS, CmpRHS); 5438 } 5439 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5440 break; 5441 return {SPF_UNKNOWN, SPNB_NA, false}; 5442 case SPF_UMAX: 5443 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5444 Pred = ICmpInst::getSwappedPredicate(Pred); 5445 std::swap(CmpLHS, CmpRHS); 5446 } 5447 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5448 break; 5449 return {SPF_UNKNOWN, SPNB_NA, false}; 5450 default: 5451 return {SPF_UNKNOWN, SPNB_NA, false}; 5452 } 5453 5454 // If there is a common operand in the already matched min/max and the other 5455 // min/max operands match the compare operands (either directly or inverted), 5456 // then this is min/max of the same flavor. 5457 5458 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5459 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5460 if (D == B) { 5461 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5462 match(A, m_Not(m_Specific(CmpRHS))))) 5463 return {L.Flavor, SPNB_NA, false}; 5464 } 5465 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5466 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5467 if (C == B) { 5468 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5469 match(A, m_Not(m_Specific(CmpRHS))))) 5470 return {L.Flavor, SPNB_NA, false}; 5471 } 5472 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5473 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5474 if (D == A) { 5475 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5476 match(B, m_Not(m_Specific(CmpRHS))))) 5477 return {L.Flavor, SPNB_NA, false}; 5478 } 5479 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5480 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5481 if (C == A) { 5482 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5483 match(B, m_Not(m_Specific(CmpRHS))))) 5484 return {L.Flavor, SPNB_NA, false}; 5485 } 5486 5487 return {SPF_UNKNOWN, SPNB_NA, false}; 5488 } 5489 5490 /// If the input value is the result of a 'not' op, constant integer, or vector 5491 /// splat of a constant integer, return the bitwise-not source value. 5492 /// TODO: This could be extended to handle non-splat vector integer constants. 5493 static Value *getNotValue(Value *V) { 5494 Value *NotV; 5495 if (match(V, m_Not(m_Value(NotV)))) 5496 return NotV; 5497 5498 const APInt *C; 5499 if (match(V, m_APInt(C))) 5500 return ConstantInt::get(V->getType(), ~(*C)); 5501 5502 return nullptr; 5503 } 5504 5505 /// Match non-obvious integer minimum and maximum sequences. 5506 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5507 Value *CmpLHS, Value *CmpRHS, 5508 Value *TrueVal, Value *FalseVal, 5509 Value *&LHS, Value *&RHS, 5510 unsigned Depth) { 5511 // Assume success. If there's no match, callers should not use these anyway. 5512 LHS = TrueVal; 5513 RHS = FalseVal; 5514 5515 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5516 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5517 return SPR; 5518 5519 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5520 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5521 return SPR; 5522 5523 // Look through 'not' ops to find disguised min/max. 5524 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5525 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5526 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5527 switch (Pred) { 5528 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5529 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5530 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5531 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5532 default: break; 5533 } 5534 } 5535 5536 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5537 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5538 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5539 switch (Pred) { 5540 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5541 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5542 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5543 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5544 default: break; 5545 } 5546 } 5547 5548 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5549 return {SPF_UNKNOWN, SPNB_NA, false}; 5550 5551 // Z = X -nsw Y 5552 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5553 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5554 if (match(TrueVal, m_Zero()) && 5555 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5556 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5557 5558 // Z = X -nsw Y 5559 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5560 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5561 if (match(FalseVal, m_Zero()) && 5562 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5563 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5564 5565 const APInt *C1; 5566 if (!match(CmpRHS, m_APInt(C1))) 5567 return {SPF_UNKNOWN, SPNB_NA, false}; 5568 5569 // An unsigned min/max can be written with a signed compare. 5570 const APInt *C2; 5571 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5572 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5573 // Is the sign bit set? 5574 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5575 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5576 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5577 C2->isMaxSignedValue()) 5578 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5579 5580 // Is the sign bit clear? 5581 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5582 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5583 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5584 C2->isMinSignedValue()) 5585 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5586 } 5587 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 } 5590 5591 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5592 assert(X && Y && "Invalid operand"); 5593 5594 // X = sub (0, Y) || X = sub nsw (0, Y) 5595 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5596 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5597 return true; 5598 5599 // Y = sub (0, X) || Y = sub nsw (0, X) 5600 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5601 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5602 return true; 5603 5604 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5605 Value *A, *B; 5606 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5607 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5608 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5609 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5610 } 5611 5612 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5613 FastMathFlags FMF, 5614 Value *CmpLHS, Value *CmpRHS, 5615 Value *TrueVal, Value *FalseVal, 5616 Value *&LHS, Value *&RHS, 5617 unsigned Depth) { 5618 if (CmpInst::isFPPredicate(Pred)) { 5619 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5620 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5621 // purpose of identifying min/max. Disregard vector constants with undefined 5622 // elements because those can not be back-propagated for analysis. 5623 Value *OutputZeroVal = nullptr; 5624 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5625 !cast<Constant>(TrueVal)->containsUndefElement()) 5626 OutputZeroVal = TrueVal; 5627 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5628 !cast<Constant>(FalseVal)->containsUndefElement()) 5629 OutputZeroVal = FalseVal; 5630 5631 if (OutputZeroVal) { 5632 if (match(CmpLHS, m_AnyZeroFP())) 5633 CmpLHS = OutputZeroVal; 5634 if (match(CmpRHS, m_AnyZeroFP())) 5635 CmpRHS = OutputZeroVal; 5636 } 5637 } 5638 5639 LHS = CmpLHS; 5640 RHS = CmpRHS; 5641 5642 // Signed zero may return inconsistent results between implementations. 5643 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5644 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5645 // Therefore, we behave conservatively and only proceed if at least one of the 5646 // operands is known to not be zero or if we don't care about signed zero. 5647 switch (Pred) { 5648 default: break; 5649 // FIXME: Include OGT/OLT/UGT/ULT. 5650 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5651 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5652 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5653 !isKnownNonZero(CmpRHS)) 5654 return {SPF_UNKNOWN, SPNB_NA, false}; 5655 } 5656 5657 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5658 bool Ordered = false; 5659 5660 // When given one NaN and one non-NaN input: 5661 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5662 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5663 // ordered comparison fails), which could be NaN or non-NaN. 5664 // so here we discover exactly what NaN behavior is required/accepted. 5665 if (CmpInst::isFPPredicate(Pred)) { 5666 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5667 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5668 5669 if (LHSSafe && RHSSafe) { 5670 // Both operands are known non-NaN. 5671 NaNBehavior = SPNB_RETURNS_ANY; 5672 } else if (CmpInst::isOrdered(Pred)) { 5673 // An ordered comparison will return false when given a NaN, so it 5674 // returns the RHS. 5675 Ordered = true; 5676 if (LHSSafe) 5677 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5678 NaNBehavior = SPNB_RETURNS_NAN; 5679 else if (RHSSafe) 5680 NaNBehavior = SPNB_RETURNS_OTHER; 5681 else 5682 // Completely unsafe. 5683 return {SPF_UNKNOWN, SPNB_NA, false}; 5684 } else { 5685 Ordered = false; 5686 // An unordered comparison will return true when given a NaN, so it 5687 // returns the LHS. 5688 if (LHSSafe) 5689 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5690 NaNBehavior = SPNB_RETURNS_OTHER; 5691 else if (RHSSafe) 5692 NaNBehavior = SPNB_RETURNS_NAN; 5693 else 5694 // Completely unsafe. 5695 return {SPF_UNKNOWN, SPNB_NA, false}; 5696 } 5697 } 5698 5699 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5700 std::swap(CmpLHS, CmpRHS); 5701 Pred = CmpInst::getSwappedPredicate(Pred); 5702 if (NaNBehavior == SPNB_RETURNS_NAN) 5703 NaNBehavior = SPNB_RETURNS_OTHER; 5704 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5705 NaNBehavior = SPNB_RETURNS_NAN; 5706 Ordered = !Ordered; 5707 } 5708 5709 // ([if]cmp X, Y) ? X : Y 5710 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5711 switch (Pred) { 5712 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5713 case ICmpInst::ICMP_UGT: 5714 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5715 case ICmpInst::ICMP_SGT: 5716 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5717 case ICmpInst::ICMP_ULT: 5718 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5719 case ICmpInst::ICMP_SLT: 5720 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5721 case FCmpInst::FCMP_UGT: 5722 case FCmpInst::FCMP_UGE: 5723 case FCmpInst::FCMP_OGT: 5724 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5725 case FCmpInst::FCMP_ULT: 5726 case FCmpInst::FCMP_ULE: 5727 case FCmpInst::FCMP_OLT: 5728 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5729 } 5730 } 5731 5732 if (isKnownNegation(TrueVal, FalseVal)) { 5733 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5734 // match against either LHS or sext(LHS). 5735 auto MaybeSExtCmpLHS = 5736 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5737 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5738 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5739 if (match(TrueVal, MaybeSExtCmpLHS)) { 5740 // Set the return values. If the compare uses the negated value (-X >s 0), 5741 // swap the return values because the negated value is always 'RHS'. 5742 LHS = TrueVal; 5743 RHS = FalseVal; 5744 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5745 std::swap(LHS, RHS); 5746 5747 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5748 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5749 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5750 return {SPF_ABS, SPNB_NA, false}; 5751 5752 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5753 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5754 return {SPF_ABS, SPNB_NA, false}; 5755 5756 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5757 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5758 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5759 return {SPF_NABS, SPNB_NA, false}; 5760 } 5761 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5762 // Set the return values. If the compare uses the negated value (-X >s 0), 5763 // swap the return values because the negated value is always 'RHS'. 5764 LHS = FalseVal; 5765 RHS = TrueVal; 5766 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5767 std::swap(LHS, RHS); 5768 5769 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5770 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5771 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5772 return {SPF_NABS, SPNB_NA, false}; 5773 5774 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5775 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5776 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5777 return {SPF_ABS, SPNB_NA, false}; 5778 } 5779 } 5780 5781 if (CmpInst::isIntPredicate(Pred)) 5782 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5783 5784 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5785 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5786 // semantics than minNum. Be conservative in such case. 5787 if (NaNBehavior != SPNB_RETURNS_ANY || 5788 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5789 !isKnownNonZero(CmpRHS))) 5790 return {SPF_UNKNOWN, SPNB_NA, false}; 5791 5792 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5793 } 5794 5795 /// Helps to match a select pattern in case of a type mismatch. 5796 /// 5797 /// The function processes the case when type of true and false values of a 5798 /// select instruction differs from type of the cmp instruction operands because 5799 /// of a cast instruction. The function checks if it is legal to move the cast 5800 /// operation after "select". If yes, it returns the new second value of 5801 /// "select" (with the assumption that cast is moved): 5802 /// 1. As operand of cast instruction when both values of "select" are same cast 5803 /// instructions. 5804 /// 2. As restored constant (by applying reverse cast operation) when the first 5805 /// value of the "select" is a cast operation and the second value is a 5806 /// constant. 5807 /// NOTE: We return only the new second value because the first value could be 5808 /// accessed as operand of cast instruction. 5809 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5810 Instruction::CastOps *CastOp) { 5811 auto *Cast1 = dyn_cast<CastInst>(V1); 5812 if (!Cast1) 5813 return nullptr; 5814 5815 *CastOp = Cast1->getOpcode(); 5816 Type *SrcTy = Cast1->getSrcTy(); 5817 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5818 // If V1 and V2 are both the same cast from the same type, look through V1. 5819 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5820 return Cast2->getOperand(0); 5821 return nullptr; 5822 } 5823 5824 auto *C = dyn_cast<Constant>(V2); 5825 if (!C) 5826 return nullptr; 5827 5828 Constant *CastedTo = nullptr; 5829 switch (*CastOp) { 5830 case Instruction::ZExt: 5831 if (CmpI->isUnsigned()) 5832 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5833 break; 5834 case Instruction::SExt: 5835 if (CmpI->isSigned()) 5836 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5837 break; 5838 case Instruction::Trunc: 5839 Constant *CmpConst; 5840 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5841 CmpConst->getType() == SrcTy) { 5842 // Here we have the following case: 5843 // 5844 // %cond = cmp iN %x, CmpConst 5845 // %tr = trunc iN %x to iK 5846 // %narrowsel = select i1 %cond, iK %t, iK C 5847 // 5848 // We can always move trunc after select operation: 5849 // 5850 // %cond = cmp iN %x, CmpConst 5851 // %widesel = select i1 %cond, iN %x, iN CmpConst 5852 // %tr = trunc iN %widesel to iK 5853 // 5854 // Note that C could be extended in any way because we don't care about 5855 // upper bits after truncation. It can't be abs pattern, because it would 5856 // look like: 5857 // 5858 // select i1 %cond, x, -x. 5859 // 5860 // So only min/max pattern could be matched. Such match requires widened C 5861 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5862 // CmpConst == C is checked below. 5863 CastedTo = CmpConst; 5864 } else { 5865 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5866 } 5867 break; 5868 case Instruction::FPTrunc: 5869 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5870 break; 5871 case Instruction::FPExt: 5872 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5873 break; 5874 case Instruction::FPToUI: 5875 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5876 break; 5877 case Instruction::FPToSI: 5878 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5879 break; 5880 case Instruction::UIToFP: 5881 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5882 break; 5883 case Instruction::SIToFP: 5884 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5885 break; 5886 default: 5887 break; 5888 } 5889 5890 if (!CastedTo) 5891 return nullptr; 5892 5893 // Make sure the cast doesn't lose any information. 5894 Constant *CastedBack = 5895 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5896 if (CastedBack != C) 5897 return nullptr; 5898 5899 return CastedTo; 5900 } 5901 5902 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5903 Instruction::CastOps *CastOp, 5904 unsigned Depth) { 5905 if (Depth >= MaxAnalysisRecursionDepth) 5906 return {SPF_UNKNOWN, SPNB_NA, false}; 5907 5908 SelectInst *SI = dyn_cast<SelectInst>(V); 5909 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5910 5911 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5912 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5913 5914 Value *TrueVal = SI->getTrueValue(); 5915 Value *FalseVal = SI->getFalseValue(); 5916 5917 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5918 CastOp, Depth); 5919 } 5920 5921 SelectPatternResult llvm::matchDecomposedSelectPattern( 5922 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5923 Instruction::CastOps *CastOp, unsigned Depth) { 5924 CmpInst::Predicate Pred = CmpI->getPredicate(); 5925 Value *CmpLHS = CmpI->getOperand(0); 5926 Value *CmpRHS = CmpI->getOperand(1); 5927 FastMathFlags FMF; 5928 if (isa<FPMathOperator>(CmpI)) 5929 FMF = CmpI->getFastMathFlags(); 5930 5931 // Bail out early. 5932 if (CmpI->isEquality()) 5933 return {SPF_UNKNOWN, SPNB_NA, false}; 5934 5935 // Deal with type mismatches. 5936 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5937 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5938 // If this is a potential fmin/fmax with a cast to integer, then ignore 5939 // -0.0 because there is no corresponding integer value. 5940 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5941 FMF.setNoSignedZeros(); 5942 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5943 cast<CastInst>(TrueVal)->getOperand(0), C, 5944 LHS, RHS, Depth); 5945 } 5946 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5947 // If this is a potential fmin/fmax with a cast to integer, then ignore 5948 // -0.0 because there is no corresponding integer value. 5949 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5950 FMF.setNoSignedZeros(); 5951 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5952 C, cast<CastInst>(FalseVal)->getOperand(0), 5953 LHS, RHS, Depth); 5954 } 5955 } 5956 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5957 LHS, RHS, Depth); 5958 } 5959 5960 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5961 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5962 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5963 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5964 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5965 if (SPF == SPF_FMINNUM) 5966 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5967 if (SPF == SPF_FMAXNUM) 5968 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5969 llvm_unreachable("unhandled!"); 5970 } 5971 5972 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5973 if (SPF == SPF_SMIN) return SPF_SMAX; 5974 if (SPF == SPF_UMIN) return SPF_UMAX; 5975 if (SPF == SPF_SMAX) return SPF_SMIN; 5976 if (SPF == SPF_UMAX) return SPF_UMIN; 5977 llvm_unreachable("unhandled!"); 5978 } 5979 5980 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5981 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5982 } 5983 5984 std::pair<Intrinsic::ID, bool> 5985 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5986 // Check if VL contains select instructions that can be folded into a min/max 5987 // vector intrinsic and return the intrinsic if it is possible. 5988 // TODO: Support floating point min/max. 5989 bool AllCmpSingleUse = true; 5990 SelectPatternResult SelectPattern; 5991 SelectPattern.Flavor = SPF_UNKNOWN; 5992 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5993 Value *LHS, *RHS; 5994 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5995 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5996 CurrentPattern.Flavor == SPF_FMINNUM || 5997 CurrentPattern.Flavor == SPF_FMAXNUM || 5998 !I->getType()->isIntOrIntVectorTy()) 5999 return false; 6000 if (SelectPattern.Flavor != SPF_UNKNOWN && 6001 SelectPattern.Flavor != CurrentPattern.Flavor) 6002 return false; 6003 SelectPattern = CurrentPattern; 6004 AllCmpSingleUse &= 6005 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6006 return true; 6007 })) { 6008 switch (SelectPattern.Flavor) { 6009 case SPF_SMIN: 6010 return {Intrinsic::smin, AllCmpSingleUse}; 6011 case SPF_UMIN: 6012 return {Intrinsic::umin, AllCmpSingleUse}; 6013 case SPF_SMAX: 6014 return {Intrinsic::smax, AllCmpSingleUse}; 6015 case SPF_UMAX: 6016 return {Intrinsic::umax, AllCmpSingleUse}; 6017 default: 6018 llvm_unreachable("unexpected select pattern flavor"); 6019 } 6020 } 6021 return {Intrinsic::not_intrinsic, false}; 6022 } 6023 6024 /// Return true if "icmp Pred LHS RHS" is always true. 6025 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6026 const Value *RHS, const DataLayout &DL, 6027 unsigned Depth) { 6028 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6029 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6030 return true; 6031 6032 switch (Pred) { 6033 default: 6034 return false; 6035 6036 case CmpInst::ICMP_SLE: { 6037 const APInt *C; 6038 6039 // LHS s<= LHS +_{nsw} C if C >= 0 6040 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6041 return !C->isNegative(); 6042 return false; 6043 } 6044 6045 case CmpInst::ICMP_ULE: { 6046 const APInt *C; 6047 6048 // LHS u<= LHS +_{nuw} C for any C 6049 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6050 return true; 6051 6052 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6053 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6054 const Value *&X, 6055 const APInt *&CA, const APInt *&CB) { 6056 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6057 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6058 return true; 6059 6060 // If X & C == 0 then (X | C) == X +_{nuw} C 6061 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6062 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6063 KnownBits Known(CA->getBitWidth()); 6064 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6065 /*CxtI*/ nullptr, /*DT*/ nullptr); 6066 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6067 return true; 6068 } 6069 6070 return false; 6071 }; 6072 6073 const Value *X; 6074 const APInt *CLHS, *CRHS; 6075 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6076 return CLHS->ule(*CRHS); 6077 6078 return false; 6079 } 6080 } 6081 } 6082 6083 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6084 /// ALHS ARHS" is true. Otherwise, return None. 6085 static Optional<bool> 6086 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6087 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6088 const DataLayout &DL, unsigned Depth) { 6089 switch (Pred) { 6090 default: 6091 return None; 6092 6093 case CmpInst::ICMP_SLT: 6094 case CmpInst::ICMP_SLE: 6095 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6096 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6097 return true; 6098 return None; 6099 6100 case CmpInst::ICMP_ULT: 6101 case CmpInst::ICMP_ULE: 6102 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6103 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6104 return true; 6105 return None; 6106 } 6107 } 6108 6109 /// Return true if the operands of the two compares match. IsSwappedOps is true 6110 /// when the operands match, but are swapped. 6111 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6112 const Value *BLHS, const Value *BRHS, 6113 bool &IsSwappedOps) { 6114 6115 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6116 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6117 return IsMatchingOps || IsSwappedOps; 6118 } 6119 6120 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6121 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6122 /// Otherwise, return None if we can't infer anything. 6123 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6124 CmpInst::Predicate BPred, 6125 bool AreSwappedOps) { 6126 // Canonicalize the predicate as if the operands were not commuted. 6127 if (AreSwappedOps) 6128 BPred = ICmpInst::getSwappedPredicate(BPred); 6129 6130 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6131 return true; 6132 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6133 return false; 6134 6135 return None; 6136 } 6137 6138 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6139 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6140 /// Otherwise, return None if we can't infer anything. 6141 static Optional<bool> 6142 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6143 const ConstantInt *C1, 6144 CmpInst::Predicate BPred, 6145 const ConstantInt *C2) { 6146 ConstantRange DomCR = 6147 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6148 ConstantRange CR = 6149 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6150 ConstantRange Intersection = DomCR.intersectWith(CR); 6151 ConstantRange Difference = DomCR.difference(CR); 6152 if (Intersection.isEmptySet()) 6153 return false; 6154 if (Difference.isEmptySet()) 6155 return true; 6156 return None; 6157 } 6158 6159 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6160 /// false. Otherwise, return None if we can't infer anything. 6161 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6162 CmpInst::Predicate BPred, 6163 const Value *BLHS, const Value *BRHS, 6164 const DataLayout &DL, bool LHSIsTrue, 6165 unsigned Depth) { 6166 Value *ALHS = LHS->getOperand(0); 6167 Value *ARHS = LHS->getOperand(1); 6168 6169 // The rest of the logic assumes the LHS condition is true. If that's not the 6170 // case, invert the predicate to make it so. 6171 CmpInst::Predicate APred = 6172 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6173 6174 // Can we infer anything when the two compares have matching operands? 6175 bool AreSwappedOps; 6176 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6177 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6178 APred, BPred, AreSwappedOps)) 6179 return Implication; 6180 // No amount of additional analysis will infer the second condition, so 6181 // early exit. 6182 return None; 6183 } 6184 6185 // Can we infer anything when the LHS operands match and the RHS operands are 6186 // constants (not necessarily matching)? 6187 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6188 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6189 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6190 return Implication; 6191 // No amount of additional analysis will infer the second condition, so 6192 // early exit. 6193 return None; 6194 } 6195 6196 if (APred == BPred) 6197 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6198 return None; 6199 } 6200 6201 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6202 /// false. Otherwise, return None if we can't infer anything. We expect the 6203 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6204 static Optional<bool> 6205 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6206 const Value *RHSOp0, const Value *RHSOp1, 6207 6208 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6209 // The LHS must be an 'or' or an 'and' instruction. 6210 assert((LHS->getOpcode() == Instruction::And || 6211 LHS->getOpcode() == Instruction::Or) && 6212 "Expected LHS to be 'and' or 'or'."); 6213 6214 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6215 6216 // If the result of an 'or' is false, then we know both legs of the 'or' are 6217 // false. Similarly, if the result of an 'and' is true, then we know both 6218 // legs of the 'and' are true. 6219 Value *ALHS, *ARHS; 6220 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6221 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6222 // FIXME: Make this non-recursion. 6223 if (Optional<bool> Implication = isImpliedCondition( 6224 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6225 return Implication; 6226 if (Optional<bool> Implication = isImpliedCondition( 6227 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6228 return Implication; 6229 return None; 6230 } 6231 return None; 6232 } 6233 6234 Optional<bool> 6235 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6236 const Value *RHSOp0, const Value *RHSOp1, 6237 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6238 // Bail out when we hit the limit. 6239 if (Depth == MaxAnalysisRecursionDepth) 6240 return None; 6241 6242 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6243 // example. 6244 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6245 return None; 6246 6247 Type *OpTy = LHS->getType(); 6248 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6249 6250 // FIXME: Extending the code below to handle vectors. 6251 if (OpTy->isVectorTy()) 6252 return None; 6253 6254 assert(OpTy->isIntegerTy(1) && "implied by above"); 6255 6256 // Both LHS and RHS are icmps. 6257 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6258 if (LHSCmp) 6259 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6260 Depth); 6261 6262 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6263 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6264 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6265 if (LHSBO) { 6266 if ((LHSBO->getOpcode() == Instruction::And || 6267 LHSBO->getOpcode() == Instruction::Or)) 6268 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6269 Depth); 6270 } 6271 return None; 6272 } 6273 6274 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6275 const DataLayout &DL, bool LHSIsTrue, 6276 unsigned Depth) { 6277 // LHS ==> RHS by definition 6278 if (LHS == RHS) 6279 return LHSIsTrue; 6280 6281 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6282 if (RHSCmp) 6283 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6284 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6285 LHSIsTrue, Depth); 6286 return None; 6287 } 6288 6289 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6290 // condition dominating ContextI or nullptr, if no condition is found. 6291 static std::pair<Value *, bool> 6292 getDomPredecessorCondition(const Instruction *ContextI) { 6293 if (!ContextI || !ContextI->getParent()) 6294 return {nullptr, false}; 6295 6296 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6297 // dominator tree (eg, from a SimplifyQuery) instead? 6298 const BasicBlock *ContextBB = ContextI->getParent(); 6299 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6300 if (!PredBB) 6301 return {nullptr, false}; 6302 6303 // We need a conditional branch in the predecessor. 6304 Value *PredCond; 6305 BasicBlock *TrueBB, *FalseBB; 6306 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6307 return {nullptr, false}; 6308 6309 // The branch should get simplified. Don't bother simplifying this condition. 6310 if (TrueBB == FalseBB) 6311 return {nullptr, false}; 6312 6313 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6314 "Predecessor block does not point to successor?"); 6315 6316 // Is this condition implied by the predecessor condition? 6317 return {PredCond, TrueBB == ContextBB}; 6318 } 6319 6320 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6321 const Instruction *ContextI, 6322 const DataLayout &DL) { 6323 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6324 auto PredCond = getDomPredecessorCondition(ContextI); 6325 if (PredCond.first) 6326 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6327 return None; 6328 } 6329 6330 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6331 const Value *LHS, const Value *RHS, 6332 const Instruction *ContextI, 6333 const DataLayout &DL) { 6334 auto PredCond = getDomPredecessorCondition(ContextI); 6335 if (PredCond.first) 6336 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6337 PredCond.second); 6338 return None; 6339 } 6340 6341 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6342 APInt &Upper, const InstrInfoQuery &IIQ) { 6343 unsigned Width = Lower.getBitWidth(); 6344 const APInt *C; 6345 switch (BO.getOpcode()) { 6346 case Instruction::Add: 6347 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6348 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6349 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6350 // 'add nuw x, C' produces [C, UINT_MAX]. 6351 Lower = *C; 6352 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6353 if (C->isNegative()) { 6354 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6355 Lower = APInt::getSignedMinValue(Width); 6356 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6357 } else { 6358 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6359 Lower = APInt::getSignedMinValue(Width) + *C; 6360 Upper = APInt::getSignedMaxValue(Width) + 1; 6361 } 6362 } 6363 } 6364 break; 6365 6366 case Instruction::And: 6367 if (match(BO.getOperand(1), m_APInt(C))) 6368 // 'and x, C' produces [0, C]. 6369 Upper = *C + 1; 6370 break; 6371 6372 case Instruction::Or: 6373 if (match(BO.getOperand(1), m_APInt(C))) 6374 // 'or x, C' produces [C, UINT_MAX]. 6375 Lower = *C; 6376 break; 6377 6378 case Instruction::AShr: 6379 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6380 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6381 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6382 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6383 } else if (match(BO.getOperand(0), m_APInt(C))) { 6384 unsigned ShiftAmount = Width - 1; 6385 if (!C->isNullValue() && IIQ.isExact(&BO)) 6386 ShiftAmount = C->countTrailingZeros(); 6387 if (C->isNegative()) { 6388 // 'ashr C, x' produces [C, C >> (Width-1)] 6389 Lower = *C; 6390 Upper = C->ashr(ShiftAmount) + 1; 6391 } else { 6392 // 'ashr C, x' produces [C >> (Width-1), C] 6393 Lower = C->ashr(ShiftAmount); 6394 Upper = *C + 1; 6395 } 6396 } 6397 break; 6398 6399 case Instruction::LShr: 6400 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6401 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6402 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6403 } else if (match(BO.getOperand(0), m_APInt(C))) { 6404 // 'lshr C, x' produces [C >> (Width-1), C]. 6405 unsigned ShiftAmount = Width - 1; 6406 if (!C->isNullValue() && IIQ.isExact(&BO)) 6407 ShiftAmount = C->countTrailingZeros(); 6408 Lower = C->lshr(ShiftAmount); 6409 Upper = *C + 1; 6410 } 6411 break; 6412 6413 case Instruction::Shl: 6414 if (match(BO.getOperand(0), m_APInt(C))) { 6415 if (IIQ.hasNoUnsignedWrap(&BO)) { 6416 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6417 Lower = *C; 6418 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6419 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6420 if (C->isNegative()) { 6421 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6422 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6423 Lower = C->shl(ShiftAmount); 6424 Upper = *C + 1; 6425 } else { 6426 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6427 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6428 Lower = *C; 6429 Upper = C->shl(ShiftAmount) + 1; 6430 } 6431 } 6432 } 6433 break; 6434 6435 case Instruction::SDiv: 6436 if (match(BO.getOperand(1), m_APInt(C))) { 6437 APInt IntMin = APInt::getSignedMinValue(Width); 6438 APInt IntMax = APInt::getSignedMaxValue(Width); 6439 if (C->isAllOnesValue()) { 6440 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6441 // where C != -1 and C != 0 and C != 1 6442 Lower = IntMin + 1; 6443 Upper = IntMax + 1; 6444 } else if (C->countLeadingZeros() < Width - 1) { 6445 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6446 // where C != -1 and C != 0 and C != 1 6447 Lower = IntMin.sdiv(*C); 6448 Upper = IntMax.sdiv(*C); 6449 if (Lower.sgt(Upper)) 6450 std::swap(Lower, Upper); 6451 Upper = Upper + 1; 6452 assert(Upper != Lower && "Upper part of range has wrapped!"); 6453 } 6454 } else if (match(BO.getOperand(0), m_APInt(C))) { 6455 if (C->isMinSignedValue()) { 6456 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6457 Lower = *C; 6458 Upper = Lower.lshr(1) + 1; 6459 } else { 6460 // 'sdiv C, x' produces [-|C|, |C|]. 6461 Upper = C->abs() + 1; 6462 Lower = (-Upper) + 1; 6463 } 6464 } 6465 break; 6466 6467 case Instruction::UDiv: 6468 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6469 // 'udiv x, C' produces [0, UINT_MAX / C]. 6470 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6471 } else if (match(BO.getOperand(0), m_APInt(C))) { 6472 // 'udiv C, x' produces [0, C]. 6473 Upper = *C + 1; 6474 } 6475 break; 6476 6477 case Instruction::SRem: 6478 if (match(BO.getOperand(1), m_APInt(C))) { 6479 // 'srem x, C' produces (-|C|, |C|). 6480 Upper = C->abs(); 6481 Lower = (-Upper) + 1; 6482 } 6483 break; 6484 6485 case Instruction::URem: 6486 if (match(BO.getOperand(1), m_APInt(C))) 6487 // 'urem x, C' produces [0, C). 6488 Upper = *C; 6489 break; 6490 6491 default: 6492 break; 6493 } 6494 } 6495 6496 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6497 APInt &Upper) { 6498 unsigned Width = Lower.getBitWidth(); 6499 const APInt *C; 6500 switch (II.getIntrinsicID()) { 6501 case Intrinsic::ctpop: 6502 case Intrinsic::ctlz: 6503 case Intrinsic::cttz: 6504 // Maximum of set/clear bits is the bit width. 6505 assert(Lower == 0 && "Expected lower bound to be zero"); 6506 Upper = Width + 1; 6507 break; 6508 case Intrinsic::uadd_sat: 6509 // uadd.sat(x, C) produces [C, UINT_MAX]. 6510 if (match(II.getOperand(0), m_APInt(C)) || 6511 match(II.getOperand(1), m_APInt(C))) 6512 Lower = *C; 6513 break; 6514 case Intrinsic::sadd_sat: 6515 if (match(II.getOperand(0), m_APInt(C)) || 6516 match(II.getOperand(1), m_APInt(C))) { 6517 if (C->isNegative()) { 6518 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6519 Lower = APInt::getSignedMinValue(Width); 6520 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6521 } else { 6522 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6523 Lower = APInt::getSignedMinValue(Width) + *C; 6524 Upper = APInt::getSignedMaxValue(Width) + 1; 6525 } 6526 } 6527 break; 6528 case Intrinsic::usub_sat: 6529 // usub.sat(C, x) produces [0, C]. 6530 if (match(II.getOperand(0), m_APInt(C))) 6531 Upper = *C + 1; 6532 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6533 else if (match(II.getOperand(1), m_APInt(C))) 6534 Upper = APInt::getMaxValue(Width) - *C + 1; 6535 break; 6536 case Intrinsic::ssub_sat: 6537 if (match(II.getOperand(0), m_APInt(C))) { 6538 if (C->isNegative()) { 6539 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6540 Lower = APInt::getSignedMinValue(Width); 6541 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6542 } else { 6543 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6544 Lower = *C - APInt::getSignedMaxValue(Width); 6545 Upper = APInt::getSignedMaxValue(Width) + 1; 6546 } 6547 } else if (match(II.getOperand(1), m_APInt(C))) { 6548 if (C->isNegative()) { 6549 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6550 Lower = APInt::getSignedMinValue(Width) - *C; 6551 Upper = APInt::getSignedMaxValue(Width) + 1; 6552 } else { 6553 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6554 Lower = APInt::getSignedMinValue(Width); 6555 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6556 } 6557 } 6558 break; 6559 case Intrinsic::umin: 6560 case Intrinsic::umax: 6561 case Intrinsic::smin: 6562 case Intrinsic::smax: 6563 if (!match(II.getOperand(0), m_APInt(C)) && 6564 !match(II.getOperand(1), m_APInt(C))) 6565 break; 6566 6567 switch (II.getIntrinsicID()) { 6568 case Intrinsic::umin: 6569 Upper = *C + 1; 6570 break; 6571 case Intrinsic::umax: 6572 Lower = *C; 6573 break; 6574 case Intrinsic::smin: 6575 Lower = APInt::getSignedMinValue(Width); 6576 Upper = *C + 1; 6577 break; 6578 case Intrinsic::smax: 6579 Lower = *C; 6580 Upper = APInt::getSignedMaxValue(Width) + 1; 6581 break; 6582 default: 6583 llvm_unreachable("Must be min/max intrinsic"); 6584 } 6585 break; 6586 case Intrinsic::abs: 6587 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6588 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6589 if (match(II.getOperand(1), m_One())) 6590 Upper = APInt::getSignedMaxValue(Width) + 1; 6591 else 6592 Upper = APInt::getSignedMinValue(Width) + 1; 6593 break; 6594 default: 6595 break; 6596 } 6597 } 6598 6599 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6600 APInt &Upper, const InstrInfoQuery &IIQ) { 6601 const Value *LHS = nullptr, *RHS = nullptr; 6602 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6603 if (R.Flavor == SPF_UNKNOWN) 6604 return; 6605 6606 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6607 6608 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6609 // If the negation part of the abs (in RHS) has the NSW flag, 6610 // then the result of abs(X) is [0..SIGNED_MAX], 6611 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6612 Lower = APInt::getNullValue(BitWidth); 6613 if (match(RHS, m_Neg(m_Specific(LHS))) && 6614 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6615 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6616 else 6617 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6618 return; 6619 } 6620 6621 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6622 // The result of -abs(X) is <= 0. 6623 Lower = APInt::getSignedMinValue(BitWidth); 6624 Upper = APInt(BitWidth, 1); 6625 return; 6626 } 6627 6628 const APInt *C; 6629 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6630 return; 6631 6632 switch (R.Flavor) { 6633 case SPF_UMIN: 6634 Upper = *C + 1; 6635 break; 6636 case SPF_UMAX: 6637 Lower = *C; 6638 break; 6639 case SPF_SMIN: 6640 Lower = APInt::getSignedMinValue(BitWidth); 6641 Upper = *C + 1; 6642 break; 6643 case SPF_SMAX: 6644 Lower = *C; 6645 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6646 break; 6647 default: 6648 break; 6649 } 6650 } 6651 6652 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6653 AssumptionCache *AC, 6654 const Instruction *CtxI, 6655 unsigned Depth) { 6656 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6657 6658 if (Depth == MaxAnalysisRecursionDepth) 6659 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6660 6661 const APInt *C; 6662 if (match(V, m_APInt(C))) 6663 return ConstantRange(*C); 6664 6665 InstrInfoQuery IIQ(UseInstrInfo); 6666 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6667 APInt Lower = APInt(BitWidth, 0); 6668 APInt Upper = APInt(BitWidth, 0); 6669 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6670 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6671 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6672 setLimitsForIntrinsic(*II, Lower, Upper); 6673 else if (auto *SI = dyn_cast<SelectInst>(V)) 6674 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6675 6676 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6677 6678 if (auto *I = dyn_cast<Instruction>(V)) 6679 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6680 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6681 6682 if (CtxI && AC) { 6683 // Try to restrict the range based on information from assumptions. 6684 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6685 if (!AssumeVH) 6686 continue; 6687 CallInst *I = cast<CallInst>(AssumeVH); 6688 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6689 "Got assumption for the wrong function!"); 6690 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6691 "must be an assume intrinsic"); 6692 6693 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6694 continue; 6695 Value *Arg = I->getArgOperand(0); 6696 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6697 // Currently we just use information from comparisons. 6698 if (!Cmp || Cmp->getOperand(0) != V) 6699 continue; 6700 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6701 AC, I, Depth + 1); 6702 CR = CR.intersectWith( 6703 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6704 } 6705 } 6706 6707 return CR; 6708 } 6709 6710 static Optional<int64_t> 6711 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6712 // Skip over the first indices. 6713 gep_type_iterator GTI = gep_type_begin(GEP); 6714 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6715 /*skip along*/; 6716 6717 // Compute the offset implied by the rest of the indices. 6718 int64_t Offset = 0; 6719 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6720 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6721 if (!OpC) 6722 return None; 6723 if (OpC->isZero()) 6724 continue; // No offset. 6725 6726 // Handle struct indices, which add their field offset to the pointer. 6727 if (StructType *STy = GTI.getStructTypeOrNull()) { 6728 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6729 continue; 6730 } 6731 6732 // Otherwise, we have a sequential type like an array or fixed-length 6733 // vector. Multiply the index by the ElementSize. 6734 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6735 if (Size.isScalable()) 6736 return None; 6737 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6738 } 6739 6740 return Offset; 6741 } 6742 6743 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6744 const DataLayout &DL) { 6745 Ptr1 = Ptr1->stripPointerCasts(); 6746 Ptr2 = Ptr2->stripPointerCasts(); 6747 6748 // Handle the trivial case first. 6749 if (Ptr1 == Ptr2) { 6750 return 0; 6751 } 6752 6753 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6754 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6755 6756 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6757 // as in "P" and "gep P, 1". 6758 // Also do this iteratively to handle the the following case: 6759 // Ptr_t1 = GEP Ptr1, c1 6760 // Ptr_t2 = GEP Ptr_t1, c2 6761 // Ptr2 = GEP Ptr_t2, c3 6762 // where we will return c1+c2+c3. 6763 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6764 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6765 // are the same, and return the difference between offsets. 6766 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6767 const Value *Ptr) -> Optional<int64_t> { 6768 const GEPOperator *GEP_T = GEP; 6769 int64_t OffsetVal = 0; 6770 bool HasSameBase = false; 6771 while (GEP_T) { 6772 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6773 if (!Offset) 6774 return None; 6775 OffsetVal += *Offset; 6776 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6777 if (Op0 == Ptr) { 6778 HasSameBase = true; 6779 break; 6780 } 6781 GEP_T = dyn_cast<GEPOperator>(Op0); 6782 } 6783 if (!HasSameBase) 6784 return None; 6785 return OffsetVal; 6786 }; 6787 6788 if (GEP1) { 6789 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6790 if (Offset) 6791 return -*Offset; 6792 } 6793 if (GEP2) { 6794 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6795 if (Offset) 6796 return Offset; 6797 } 6798 6799 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6800 // base. After that base, they may have some number of common (and 6801 // potentially variable) indices. After that they handle some constant 6802 // offset, which determines their offset from each other. At this point, we 6803 // handle no other case. 6804 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6805 return None; 6806 6807 // Skip any common indices and track the GEP types. 6808 unsigned Idx = 1; 6809 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6810 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6811 break; 6812 6813 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6814 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6815 if (!Offset1 || !Offset2) 6816 return None; 6817 return *Offset2 - *Offset1; 6818 } 6819