1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 134 AssumptionCache *AC, const Instruction *CxtI, 135 const DominatorTree *DT) { 136 assert(LHS->getType() == RHS->getType() && 137 "LHS and RHS should have the same type"); 138 assert(LHS->getType()->isIntOrIntVectorTy() && 139 "LHS and RHS should be integers"); 140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 146 } 147 148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 149 unsigned Depth, const Query &Q); 150 151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 152 const DataLayout &DL, unsigned Depth, 153 AssumptionCache *AC, const Instruction *CxtI, 154 const DominatorTree *DT) { 155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 156 Query(DL, AC, safeCxtI(V, CxtI), DT)); 157 } 158 159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 160 const Query &Q); 161 162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 163 unsigned Depth, AssumptionCache *AC, 164 const Instruction *CxtI, 165 const DominatorTree *DT) { 166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 167 Query(DL, AC, safeCxtI(V, CxtI), DT)); 168 } 169 170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 171 172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 173 AssumptionCache *AC, const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 179 AssumptionCache *AC, const Instruction *CxtI, 180 const DominatorTree *DT) { 181 bool NonNegative, Negative; 182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 183 return NonNegative; 184 } 185 186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 if (auto *CI = dyn_cast<ConstantInt>(V)) 190 return CI->getValue().isStrictlyPositive(); 191 192 // TODO: We'd doing two recursive queries here. We should factor this such 193 // that only a single query is needed. 194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 196 } 197 198 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 199 200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 201 AssumptionCache *AC, const Instruction *CxtI, 202 const DominatorTree *DT) { 203 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 204 safeCxtI(V1, safeCxtI(V2, CxtI)), 205 DT)); 206 } 207 208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 209 const Query &Q); 210 211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 212 unsigned Depth, AssumptionCache *AC, 213 const Instruction *CxtI, const DominatorTree *DT) { 214 return ::MaskedValueIsZero(V, Mask, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT)); 216 } 217 218 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 219 220 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 221 unsigned Depth, AssumptionCache *AC, 222 const Instruction *CxtI, 223 const DominatorTree *DT) { 224 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 225 } 226 227 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 228 APInt &KnownZero, APInt &KnownOne, 229 APInt &KnownZero2, APInt &KnownOne2, 230 unsigned Depth, const Query &Q) { 231 if (!Add) { 232 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 233 // We know that the top bits of C-X are clear if X contains less bits 234 // than C (i.e. no wrap-around can happen). For example, 20-X is 235 // positive if we can prove that X is >= 0 and < 16. 236 if (!CLHS->getValue().isNegative()) { 237 unsigned BitWidth = KnownZero.getBitWidth(); 238 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 239 // NLZ can't be BitWidth with no sign bit 240 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 241 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 242 243 // If all of the MaskV bits are known to be zero, then we know the 244 // output top bits are zero, because we now know that the output is 245 // from [0-C]. 246 if ((KnownZero2 & MaskV) == MaskV) { 247 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 248 // Top bits known zero. 249 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 250 } 251 } 252 } 253 } 254 255 unsigned BitWidth = KnownZero.getBitWidth(); 256 257 // If an initial sequence of bits in the result is not needed, the 258 // corresponding bits in the operands are not needed. 259 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 260 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 261 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 262 263 // Carry in a 1 for a subtract, rather than a 0. 264 APInt CarryIn(BitWidth, 0); 265 if (!Add) { 266 // Sum = LHS + ~RHS + 1 267 std::swap(KnownZero2, KnownOne2); 268 CarryIn.setBit(0); 269 } 270 271 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 272 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 273 274 // Compute known bits of the carry. 275 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 276 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 277 278 // Compute set of known bits (where all three relevant bits are known). 279 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 280 APInt RHSKnown = KnownZero2 | KnownOne2; 281 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 282 APInt Known = LHSKnown & RHSKnown & CarryKnown; 283 284 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 285 "known bits of sum differ"); 286 287 // Compute known bits of the result. 288 KnownZero = ~PossibleSumOne & Known; 289 KnownOne = PossibleSumOne & Known; 290 291 // Are we still trying to solve for the sign bit? 292 if (!Known.isNegative()) { 293 if (NSW) { 294 // Adding two non-negative numbers, or subtracting a negative number from 295 // a non-negative one, can't wrap into negative. 296 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 297 KnownZero |= APInt::getSignBit(BitWidth); 298 // Adding two negative numbers, or subtracting a non-negative number from 299 // a negative one, can't wrap into non-negative. 300 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 301 KnownOne |= APInt::getSignBit(BitWidth); 302 } 303 } 304 } 305 306 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 307 APInt &KnownZero, APInt &KnownOne, 308 APInt &KnownZero2, APInt &KnownOne2, 309 unsigned Depth, const Query &Q) { 310 unsigned BitWidth = KnownZero.getBitWidth(); 311 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 312 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 313 314 bool isKnownNegative = false; 315 bool isKnownNonNegative = false; 316 // If the multiplication is known not to overflow, compute the sign bit. 317 if (NSW) { 318 if (Op0 == Op1) { 319 // The product of a number with itself is non-negative. 320 isKnownNonNegative = true; 321 } else { 322 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 323 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 324 bool isKnownNegativeOp1 = KnownOne.isNegative(); 325 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 326 // The product of two numbers with the same sign is non-negative. 327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 329 // The product of a negative number and a non-negative number is either 330 // negative or zero. 331 if (!isKnownNonNegative) 332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 333 isKnownNonZero(Op0, Depth, Q)) || 334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 335 isKnownNonZero(Op1, Depth, Q)); 336 } 337 } 338 339 // If low bits are zero in either operand, output low known-0 bits. 340 // Also compute a conservative estimate for high known-0 bits. 341 // More trickiness is possible, but this is sufficient for the 342 // interesting case of alignment computation. 343 KnownOne.clearAllBits(); 344 unsigned TrailZ = KnownZero.countTrailingOnes() + 345 KnownZero2.countTrailingOnes(); 346 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 347 KnownZero2.countLeadingOnes(), 348 BitWidth) - BitWidth; 349 350 TrailZ = std::min(TrailZ, BitWidth); 351 LeadZ = std::min(LeadZ, BitWidth); 352 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 353 APInt::getHighBitsSet(BitWidth, LeadZ); 354 355 // Only make use of no-wrap flags if we failed to compute the sign bit 356 // directly. This matters if the multiplication always overflows, in 357 // which case we prefer to follow the result of the direct computation, 358 // though as the program is invoking undefined behaviour we can choose 359 // whatever we like here. 360 if (isKnownNonNegative && !KnownOne.isNegative()) 361 KnownZero.setBit(BitWidth - 1); 362 else if (isKnownNegative && !KnownZero.isNegative()) 363 KnownOne.setBit(BitWidth - 1); 364 } 365 366 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 367 APInt &KnownZero, 368 APInt &KnownOne) { 369 unsigned BitWidth = KnownZero.getBitWidth(); 370 unsigned NumRanges = Ranges.getNumOperands() / 2; 371 assert(NumRanges >= 1); 372 373 KnownZero.setAllBits(); 374 KnownOne.setAllBits(); 375 376 for (unsigned i = 0; i < NumRanges; ++i) { 377 ConstantInt *Lower = 378 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 379 ConstantInt *Upper = 380 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 381 ConstantRange Range(Lower->getValue(), Upper->getValue()); 382 383 // The first CommonPrefixBits of all values in Range are equal. 384 unsigned CommonPrefixBits = 385 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 386 387 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 388 KnownOne &= Range.getUnsignedMax() & Mask; 389 KnownZero &= ~Range.getUnsignedMax() & Mask; 390 } 391 } 392 393 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 394 SmallVector<const Value *, 16> WorkSet(1, I); 395 SmallPtrSet<const Value *, 32> Visited; 396 SmallPtrSet<const Value *, 16> EphValues; 397 398 // The instruction defining an assumption's condition itself is always 399 // considered ephemeral to that assumption (even if it has other 400 // non-ephemeral users). See r246696's test case for an example. 401 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 402 return true; 403 404 while (!WorkSet.empty()) { 405 const Value *V = WorkSet.pop_back_val(); 406 if (!Visited.insert(V).second) 407 continue; 408 409 // If all uses of this value are ephemeral, then so is this value. 410 if (std::all_of(V->user_begin(), V->user_end(), 411 [&](const User *U) { return EphValues.count(U); })) { 412 if (V == E) 413 return true; 414 415 EphValues.insert(V); 416 if (const User *U = dyn_cast<User>(V)) 417 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 418 J != JE; ++J) { 419 if (isSafeToSpeculativelyExecute(*J)) 420 WorkSet.push_back(*J); 421 } 422 } 423 } 424 425 return false; 426 } 427 428 // Is this an intrinsic that cannot be speculated but also cannot trap? 429 static bool isAssumeLikeIntrinsic(const Instruction *I) { 430 if (const CallInst *CI = dyn_cast<CallInst>(I)) 431 if (Function *F = CI->getCalledFunction()) 432 switch (F->getIntrinsicID()) { 433 default: break; 434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 435 case Intrinsic::assume: 436 case Intrinsic::dbg_declare: 437 case Intrinsic::dbg_value: 438 case Intrinsic::invariant_start: 439 case Intrinsic::invariant_end: 440 case Intrinsic::lifetime_start: 441 case Intrinsic::lifetime_end: 442 case Intrinsic::objectsize: 443 case Intrinsic::ptr_annotation: 444 case Intrinsic::var_annotation: 445 return true; 446 } 447 448 return false; 449 } 450 451 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 452 const DominatorTree *DT) { 453 Instruction *Inv = cast<Instruction>(V); 454 455 // There are two restrictions on the use of an assume: 456 // 1. The assume must dominate the context (or the control flow must 457 // reach the assume whenever it reaches the context). 458 // 2. The context must not be in the assume's set of ephemeral values 459 // (otherwise we will use the assume to prove that the condition 460 // feeding the assume is trivially true, thus causing the removal of 461 // the assume). 462 463 if (DT) { 464 if (DT->dominates(Inv, CxtI)) { 465 return true; 466 } else if (Inv->getParent() == CxtI->getParent()) { 467 // The context comes first, but they're both in the same block. Make sure 468 // there is nothing in between that might interrupt the control flow. 469 for (BasicBlock::const_iterator I = 470 std::next(BasicBlock::const_iterator(CxtI)), 471 IE(Inv); I != IE; ++I) 472 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 473 return false; 474 475 return !isEphemeralValueOf(Inv, CxtI); 476 } 477 478 return false; 479 } 480 481 // When we don't have a DT, we do a limited search... 482 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 483 return true; 484 } else if (Inv->getParent() == CxtI->getParent()) { 485 // Search forward from the assume until we reach the context (or the end 486 // of the block); the common case is that the assume will come first. 487 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 488 IE = Inv->getParent()->end(); I != IE; ++I) 489 if (&*I == CxtI) 490 return true; 491 492 // The context must come first... 493 for (BasicBlock::const_iterator I = 494 std::next(BasicBlock::const_iterator(CxtI)), 495 IE(Inv); I != IE; ++I) 496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 497 return false; 498 499 return !isEphemeralValueOf(Inv, CxtI); 500 } 501 502 return false; 503 } 504 505 bool llvm::isValidAssumeForContext(const Instruction *I, 506 const Instruction *CxtI, 507 const DominatorTree *DT) { 508 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 509 } 510 511 template<typename LHS, typename RHS> 512 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 513 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 514 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 515 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 516 } 517 518 template<typename LHS, typename RHS> 519 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 520 BinaryOp_match<RHS, LHS, Instruction::And>> 521 m_c_And(const LHS &L, const RHS &R) { 522 return m_CombineOr(m_And(L, R), m_And(R, L)); 523 } 524 525 template<typename LHS, typename RHS> 526 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 527 BinaryOp_match<RHS, LHS, Instruction::Or>> 528 m_c_Or(const LHS &L, const RHS &R) { 529 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 530 } 531 532 template<typename LHS, typename RHS> 533 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 534 BinaryOp_match<RHS, LHS, Instruction::Xor>> 535 m_c_Xor(const LHS &L, const RHS &R) { 536 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 537 } 538 539 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 540 APInt &KnownOne, unsigned Depth, 541 const Query &Q) { 542 // Use of assumptions is context-sensitive. If we don't have a context, we 543 // cannot use them! 544 if (!Q.AC || !Q.CxtI) 545 return; 546 547 unsigned BitWidth = KnownZero.getBitWidth(); 548 549 for (auto &AssumeVH : Q.AC->assumptions()) { 550 if (!AssumeVH) 551 continue; 552 CallInst *I = cast<CallInst>(AssumeVH); 553 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 554 "Got assumption for the wrong function!"); 555 if (Q.isExcluded(I)) 556 continue; 557 558 // Warning: This loop can end up being somewhat performance sensetive. 559 // We're running this loop for once for each value queried resulting in a 560 // runtime of ~O(#assumes * #values). 561 562 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 563 "must be an assume intrinsic"); 564 565 Value *Arg = I->getArgOperand(0); 566 567 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 568 assert(BitWidth == 1 && "assume operand is not i1?"); 569 KnownZero.clearAllBits(); 570 KnownOne.setAllBits(); 571 return; 572 } 573 574 // The remaining tests are all recursive, so bail out if we hit the limit. 575 if (Depth == MaxDepth) 576 continue; 577 578 Value *A, *B; 579 auto m_V = m_CombineOr(m_Specific(V), 580 m_CombineOr(m_PtrToInt(m_Specific(V)), 581 m_BitCast(m_Specific(V)))); 582 583 CmpInst::Predicate Pred; 584 ConstantInt *C; 585 // assume(v = a) 586 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 587 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 588 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 589 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 590 KnownZero |= RHSKnownZero; 591 KnownOne |= RHSKnownOne; 592 // assume(v & b = a) 593 } else if (match(Arg, 594 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 595 Pred == ICmpInst::ICMP_EQ && 596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 597 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 598 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 599 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 600 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 601 602 // For those bits in the mask that are known to be one, we can propagate 603 // known bits from the RHS to V. 604 KnownZero |= RHSKnownZero & MaskKnownOne; 605 KnownOne |= RHSKnownOne & MaskKnownOne; 606 // assume(~(v & b) = a) 607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 608 m_Value(A))) && 609 Pred == ICmpInst::ICMP_EQ && 610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 611 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 612 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 613 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 614 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 615 616 // For those bits in the mask that are known to be one, we can propagate 617 // inverted known bits from the RHS to V. 618 KnownZero |= RHSKnownOne & MaskKnownOne; 619 KnownOne |= RHSKnownZero & MaskKnownOne; 620 // assume(v | b = a) 621 } else if (match(Arg, 622 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 623 Pred == ICmpInst::ICMP_EQ && 624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 625 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 626 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 627 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 628 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 629 630 // For those bits in B that are known to be zero, we can propagate known 631 // bits from the RHS to V. 632 KnownZero |= RHSKnownZero & BKnownZero; 633 KnownOne |= RHSKnownOne & BKnownZero; 634 // assume(~(v | b) = a) 635 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 636 m_Value(A))) && 637 Pred == ICmpInst::ICMP_EQ && 638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 639 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 640 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 641 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 642 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 643 644 // For those bits in B that are known to be zero, we can propagate 645 // inverted known bits from the RHS to V. 646 KnownZero |= RHSKnownOne & BKnownZero; 647 KnownOne |= RHSKnownZero & BKnownZero; 648 // assume(v ^ b = a) 649 } else if (match(Arg, 650 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 651 Pred == ICmpInst::ICMP_EQ && 652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 653 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 654 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 655 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 656 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 657 658 // For those bits in B that are known to be zero, we can propagate known 659 // bits from the RHS to V. For those bits in B that are known to be one, 660 // we can propagate inverted known bits from the RHS to V. 661 KnownZero |= RHSKnownZero & BKnownZero; 662 KnownOne |= RHSKnownOne & BKnownZero; 663 KnownZero |= RHSKnownOne & BKnownOne; 664 KnownOne |= RHSKnownZero & BKnownOne; 665 // assume(~(v ^ b) = a) 666 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 667 m_Value(A))) && 668 Pred == ICmpInst::ICMP_EQ && 669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 672 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 673 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 674 675 // For those bits in B that are known to be zero, we can propagate 676 // inverted known bits from the RHS to V. For those bits in B that are 677 // known to be one, we can propagate known bits from the RHS to V. 678 KnownZero |= RHSKnownOne & BKnownZero; 679 KnownOne |= RHSKnownZero & BKnownZero; 680 KnownZero |= RHSKnownZero & BKnownOne; 681 KnownOne |= RHSKnownOne & BKnownOne; 682 // assume(v << c = a) 683 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 684 m_Value(A))) && 685 Pred == ICmpInst::ICMP_EQ && 686 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 687 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 688 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 689 // For those bits in RHS that are known, we can propagate them to known 690 // bits in V shifted to the right by C. 691 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 692 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 693 // assume(~(v << c) = a) 694 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 703 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 704 // assume(v >> c = a) 705 } else if (match(Arg, 706 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 707 m_AShr(m_V, m_ConstantInt(C))), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 713 // For those bits in RHS that are known, we can propagate them to known 714 // bits in V shifted to the right by C. 715 KnownZero |= RHSKnownZero << C->getZExtValue(); 716 KnownOne |= RHSKnownOne << C->getZExtValue(); 717 // assume(~(v >> c) = a) 718 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 719 m_LShr(m_V, m_ConstantInt(C)), 720 m_AShr(m_V, m_ConstantInt(C)))), 721 m_Value(A))) && 722 Pred == ICmpInst::ICMP_EQ && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 726 // For those bits in RHS that are known, we can propagate them inverted 727 // to known bits in V shifted to the right by C. 728 KnownZero |= RHSKnownOne << C->getZExtValue(); 729 KnownOne |= RHSKnownZero << C->getZExtValue(); 730 // assume(v >=_s c) where c is non-negative 731 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 732 Pred == ICmpInst::ICMP_SGE && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 734 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 735 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 736 737 if (RHSKnownZero.isNegative()) { 738 // We know that the sign bit is zero. 739 KnownZero |= APInt::getSignBit(BitWidth); 740 } 741 // assume(v >_s c) where c is at least -1. 742 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 743 Pred == ICmpInst::ICMP_SGT && 744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 747 748 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 749 // We know that the sign bit is zero. 750 KnownZero |= APInt::getSignBit(BitWidth); 751 } 752 // assume(v <=_s c) where c is negative 753 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 754 Pred == ICmpInst::ICMP_SLE && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 757 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 758 759 if (RHSKnownOne.isNegative()) { 760 // We know that the sign bit is one. 761 KnownOne |= APInt::getSignBit(BitWidth); 762 } 763 // assume(v <_s c) where c is non-positive 764 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 765 Pred == ICmpInst::ICMP_SLT && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 768 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 769 770 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 771 // We know that the sign bit is one. 772 KnownOne |= APInt::getSignBit(BitWidth); 773 } 774 // assume(v <=_u c) 775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 776 Pred == ICmpInst::ICMP_ULE && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 780 781 // Whatever high bits in c are zero are known to be zero. 782 KnownZero |= 783 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 784 // assume(v <_u c) 785 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 786 Pred == ICmpInst::ICMP_ULT && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 789 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 790 791 // Whatever high bits in c are zero are known to be zero (if c is a power 792 // of 2, then one more). 793 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 794 KnownZero |= 795 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 796 else 797 KnownZero |= 798 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 799 } 800 } 801 } 802 803 // Compute known bits from a shift operator, including those with a 804 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 805 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 806 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 807 // functors that, given the known-zero or known-one bits respectively, and a 808 // shift amount, compute the implied known-zero or known-one bits of the shift 809 // operator's result respectively for that shift amount. The results from calling 810 // KZF and KOF are conservatively combined for all permitted shift amounts. 811 template <typename KZFunctor, typename KOFunctor> 812 static void computeKnownBitsFromShiftOperator(Operator *I, 813 APInt &KnownZero, APInt &KnownOne, 814 APInt &KnownZero2, APInt &KnownOne2, 815 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 816 unsigned BitWidth = KnownZero.getBitWidth(); 817 818 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 819 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 820 821 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 822 KnownZero = KZF(KnownZero, ShiftAmt); 823 KnownOne = KOF(KnownOne, ShiftAmt); 824 return; 825 } 826 827 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 828 829 // Note: We cannot use KnownZero.getLimitedValue() here, because if 830 // BitWidth > 64 and any upper bits are known, we'll end up returning the 831 // limit value (which implies all bits are known). 832 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 833 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 834 835 // It would be more-clearly correct to use the two temporaries for this 836 // calculation. Reusing the APInts here to prevent unnecessary allocations. 837 KnownZero.clearAllBits(); 838 KnownOne.clearAllBits(); 839 840 // If we know the shifter operand is nonzero, we can sometimes infer more 841 // known bits. However this is expensive to compute, so be lazy about it and 842 // only compute it when absolutely necessary. 843 Optional<bool> ShifterOperandIsNonZero; 844 845 // Early exit if we can't constrain any well-defined shift amount. 846 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 847 ShifterOperandIsNonZero = 848 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 849 if (!*ShifterOperandIsNonZero) 850 return; 851 } 852 853 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 854 855 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 856 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 857 // Combine the shifted known input bits only for those shift amounts 858 // compatible with its known constraints. 859 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 860 continue; 861 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 862 continue; 863 // If we know the shifter is nonzero, we may be able to infer more known 864 // bits. This check is sunk down as far as possible to avoid the expensive 865 // call to isKnownNonZero if the cheaper checks above fail. 866 if (ShiftAmt == 0) { 867 if (!ShifterOperandIsNonZero.hasValue()) 868 ShifterOperandIsNonZero = 869 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 870 if (*ShifterOperandIsNonZero) 871 continue; 872 } 873 874 KnownZero &= KZF(KnownZero2, ShiftAmt); 875 KnownOne &= KOF(KnownOne2, ShiftAmt); 876 } 877 878 // If there are no compatible shift amounts, then we've proven that the shift 879 // amount must be >= the BitWidth, and the result is undefined. We could 880 // return anything we'd like, but we need to make sure the sets of known bits 881 // stay disjoint (it should be better for some other code to actually 882 // propagate the undef than to pick a value here using known bits). 883 if ((KnownZero & KnownOne) != 0) { 884 KnownZero.clearAllBits(); 885 KnownOne.clearAllBits(); 886 } 887 } 888 889 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 890 APInt &KnownOne, unsigned Depth, 891 const Query &Q) { 892 unsigned BitWidth = KnownZero.getBitWidth(); 893 894 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 895 switch (I->getOpcode()) { 896 default: break; 897 case Instruction::Load: 898 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 899 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 900 break; 901 case Instruction::And: { 902 // If either the LHS or the RHS are Zero, the result is zero. 903 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 904 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 905 906 // Output known-1 bits are only known if set in both the LHS & RHS. 907 KnownOne &= KnownOne2; 908 // Output known-0 are known to be clear if zero in either the LHS | RHS. 909 KnownZero |= KnownZero2; 910 911 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 912 // here we handle the more general case of adding any odd number by 913 // matching the form add(x, add(x, y)) where y is odd. 914 // TODO: This could be generalized to clearing any bit set in y where the 915 // following bit is known to be unset in y. 916 Value *Y = nullptr; 917 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 918 m_Value(Y))) || 919 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 920 m_Value(Y)))) { 921 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 922 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 923 if (KnownOne3.countTrailingOnes() > 0) 924 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 925 } 926 break; 927 } 928 case Instruction::Or: { 929 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 930 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 931 932 // Output known-0 bits are only known if clear in both the LHS & RHS. 933 KnownZero &= KnownZero2; 934 // Output known-1 are known to be set if set in either the LHS | RHS. 935 KnownOne |= KnownOne2; 936 break; 937 } 938 case Instruction::Xor: { 939 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 940 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 941 942 // Output known-0 bits are known if clear or set in both the LHS & RHS. 943 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 944 // Output known-1 are known to be set if set in only one of the LHS, RHS. 945 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 946 KnownZero = KnownZeroOut; 947 break; 948 } 949 case Instruction::Mul: { 950 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 951 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 952 KnownOne, KnownZero2, KnownOne2, Depth, Q); 953 break; 954 } 955 case Instruction::UDiv: { 956 // For the purposes of computing leading zeros we can conservatively 957 // treat a udiv as a logical right shift by the power of 2 known to 958 // be less than the denominator. 959 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 960 unsigned LeadZ = KnownZero2.countLeadingOnes(); 961 962 KnownOne2.clearAllBits(); 963 KnownZero2.clearAllBits(); 964 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 965 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 966 if (RHSUnknownLeadingOnes != BitWidth) 967 LeadZ = std::min(BitWidth, 968 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 969 970 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 971 break; 972 } 973 case Instruction::Select: 974 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 975 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 976 977 // Only known if known in both the LHS and RHS. 978 KnownOne &= KnownOne2; 979 KnownZero &= KnownZero2; 980 break; 981 case Instruction::FPTrunc: 982 case Instruction::FPExt: 983 case Instruction::FPToUI: 984 case Instruction::FPToSI: 985 case Instruction::SIToFP: 986 case Instruction::UIToFP: 987 break; // Can't work with floating point. 988 case Instruction::PtrToInt: 989 case Instruction::IntToPtr: 990 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 991 // FALL THROUGH and handle them the same as zext/trunc. 992 case Instruction::ZExt: 993 case Instruction::Trunc: { 994 Type *SrcTy = I->getOperand(0)->getType(); 995 996 unsigned SrcBitWidth; 997 // Note that we handle pointer operands here because of inttoptr/ptrtoint 998 // which fall through here. 999 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1000 1001 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1002 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1003 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1004 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1005 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1006 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1007 // Any top bits are known to be zero. 1008 if (BitWidth > SrcBitWidth) 1009 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1010 break; 1011 } 1012 case Instruction::BitCast: { 1013 Type *SrcTy = I->getOperand(0)->getType(); 1014 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1015 SrcTy->isFloatingPointTy()) && 1016 // TODO: For now, not handling conversions like: 1017 // (bitcast i64 %x to <2 x i32>) 1018 !I->getType()->isVectorTy()) { 1019 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1020 break; 1021 } 1022 break; 1023 } 1024 case Instruction::SExt: { 1025 // Compute the bits in the result that are not present in the input. 1026 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1027 1028 KnownZero = KnownZero.trunc(SrcBitWidth); 1029 KnownOne = KnownOne.trunc(SrcBitWidth); 1030 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1031 KnownZero = KnownZero.zext(BitWidth); 1032 KnownOne = KnownOne.zext(BitWidth); 1033 1034 // If the sign bit of the input is known set or clear, then we know the 1035 // top bits of the result. 1036 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1037 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1038 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1039 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1040 break; 1041 } 1042 case Instruction::Shl: { 1043 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1044 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1045 return (KnownZero << ShiftAmt) | 1046 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1047 }; 1048 1049 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1050 return KnownOne << ShiftAmt; 1051 }; 1052 1053 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1054 KnownZero2, KnownOne2, Depth, Q, KZF, 1055 KOF); 1056 break; 1057 } 1058 case Instruction::LShr: { 1059 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1060 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1061 return APIntOps::lshr(KnownZero, ShiftAmt) | 1062 // High bits known zero. 1063 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1064 }; 1065 1066 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1067 return APIntOps::lshr(KnownOne, ShiftAmt); 1068 }; 1069 1070 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1071 KnownZero2, KnownOne2, Depth, Q, KZF, 1072 KOF); 1073 break; 1074 } 1075 case Instruction::AShr: { 1076 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1077 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1078 return APIntOps::ashr(KnownZero, ShiftAmt); 1079 }; 1080 1081 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1082 return APIntOps::ashr(KnownOne, ShiftAmt); 1083 }; 1084 1085 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1086 KnownZero2, KnownOne2, Depth, Q, KZF, 1087 KOF); 1088 break; 1089 } 1090 case Instruction::Sub: { 1091 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1092 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1093 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1094 Q); 1095 break; 1096 } 1097 case Instruction::Add: { 1098 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1099 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1100 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1101 Q); 1102 break; 1103 } 1104 case Instruction::SRem: 1105 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1106 APInt RA = Rem->getValue().abs(); 1107 if (RA.isPowerOf2()) { 1108 APInt LowBits = RA - 1; 1109 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1110 Q); 1111 1112 // The low bits of the first operand are unchanged by the srem. 1113 KnownZero = KnownZero2 & LowBits; 1114 KnownOne = KnownOne2 & LowBits; 1115 1116 // If the first operand is non-negative or has all low bits zero, then 1117 // the upper bits are all zero. 1118 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1119 KnownZero |= ~LowBits; 1120 1121 // If the first operand is negative and not all low bits are zero, then 1122 // the upper bits are all one. 1123 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1124 KnownOne |= ~LowBits; 1125 1126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1127 } 1128 } 1129 1130 // The sign bit is the LHS's sign bit, except when the result of the 1131 // remainder is zero. 1132 if (KnownZero.isNonNegative()) { 1133 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1134 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1135 Q); 1136 // If it's known zero, our sign bit is also zero. 1137 if (LHSKnownZero.isNegative()) 1138 KnownZero.setBit(BitWidth - 1); 1139 } 1140 1141 break; 1142 case Instruction::URem: { 1143 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1144 APInt RA = Rem->getValue(); 1145 if (RA.isPowerOf2()) { 1146 APInt LowBits = (RA - 1); 1147 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1148 KnownZero |= ~LowBits; 1149 KnownOne &= LowBits; 1150 break; 1151 } 1152 } 1153 1154 // Since the result is less than or equal to either operand, any leading 1155 // zero bits in either operand must also exist in the result. 1156 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1157 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1158 1159 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1160 KnownZero2.countLeadingOnes()); 1161 KnownOne.clearAllBits(); 1162 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1163 break; 1164 } 1165 1166 case Instruction::Alloca: { 1167 AllocaInst *AI = cast<AllocaInst>(I); 1168 unsigned Align = AI->getAlignment(); 1169 if (Align == 0) 1170 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1171 1172 if (Align > 0) 1173 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1174 break; 1175 } 1176 case Instruction::GetElementPtr: { 1177 // Analyze all of the subscripts of this getelementptr instruction 1178 // to determine if we can prove known low zero bits. 1179 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1180 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1181 Q); 1182 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1183 1184 gep_type_iterator GTI = gep_type_begin(I); 1185 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1186 Value *Index = I->getOperand(i); 1187 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1188 // Handle struct member offset arithmetic. 1189 1190 // Handle case when index is vector zeroinitializer 1191 Constant *CIndex = cast<Constant>(Index); 1192 if (CIndex->isZeroValue()) 1193 continue; 1194 1195 if (CIndex->getType()->isVectorTy()) 1196 Index = CIndex->getSplatValue(); 1197 1198 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1199 const StructLayout *SL = Q.DL.getStructLayout(STy); 1200 uint64_t Offset = SL->getElementOffset(Idx); 1201 TrailZ = std::min<unsigned>(TrailZ, 1202 countTrailingZeros(Offset)); 1203 } else { 1204 // Handle array index arithmetic. 1205 Type *IndexedTy = GTI.getIndexedType(); 1206 if (!IndexedTy->isSized()) { 1207 TrailZ = 0; 1208 break; 1209 } 1210 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1211 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1212 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1213 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1214 TrailZ = std::min(TrailZ, 1215 unsigned(countTrailingZeros(TypeSize) + 1216 LocalKnownZero.countTrailingOnes())); 1217 } 1218 } 1219 1220 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1221 break; 1222 } 1223 case Instruction::PHI: { 1224 PHINode *P = cast<PHINode>(I); 1225 // Handle the case of a simple two-predecessor recurrence PHI. 1226 // There's a lot more that could theoretically be done here, but 1227 // this is sufficient to catch some interesting cases. 1228 if (P->getNumIncomingValues() == 2) { 1229 for (unsigned i = 0; i != 2; ++i) { 1230 Value *L = P->getIncomingValue(i); 1231 Value *R = P->getIncomingValue(!i); 1232 Operator *LU = dyn_cast<Operator>(L); 1233 if (!LU) 1234 continue; 1235 unsigned Opcode = LU->getOpcode(); 1236 // Check for operations that have the property that if 1237 // both their operands have low zero bits, the result 1238 // will have low zero bits. 1239 if (Opcode == Instruction::Add || 1240 Opcode == Instruction::Sub || 1241 Opcode == Instruction::And || 1242 Opcode == Instruction::Or || 1243 Opcode == Instruction::Mul) { 1244 Value *LL = LU->getOperand(0); 1245 Value *LR = LU->getOperand(1); 1246 // Find a recurrence. 1247 if (LL == I) 1248 L = LR; 1249 else if (LR == I) 1250 L = LL; 1251 else 1252 break; 1253 // Ok, we have a PHI of the form L op= R. Check for low 1254 // zero bits. 1255 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1256 1257 // We need to take the minimum number of known bits 1258 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1259 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1260 1261 KnownZero = APInt::getLowBitsSet(BitWidth, 1262 std::min(KnownZero2.countTrailingOnes(), 1263 KnownZero3.countTrailingOnes())); 1264 break; 1265 } 1266 } 1267 } 1268 1269 // Unreachable blocks may have zero-operand PHI nodes. 1270 if (P->getNumIncomingValues() == 0) 1271 break; 1272 1273 // Otherwise take the unions of the known bit sets of the operands, 1274 // taking conservative care to avoid excessive recursion. 1275 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1276 // Skip if every incoming value references to ourself. 1277 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1278 break; 1279 1280 KnownZero = APInt::getAllOnesValue(BitWidth); 1281 KnownOne = APInt::getAllOnesValue(BitWidth); 1282 for (Value *IncValue : P->incoming_values()) { 1283 // Skip direct self references. 1284 if (IncValue == P) continue; 1285 1286 KnownZero2 = APInt(BitWidth, 0); 1287 KnownOne2 = APInt(BitWidth, 0); 1288 // Recurse, but cap the recursion to one level, because we don't 1289 // want to waste time spinning around in loops. 1290 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1291 KnownZero &= KnownZero2; 1292 KnownOne &= KnownOne2; 1293 // If all bits have been ruled out, there's no need to check 1294 // more operands. 1295 if (!KnownZero && !KnownOne) 1296 break; 1297 } 1298 } 1299 break; 1300 } 1301 case Instruction::Call: 1302 case Instruction::Invoke: 1303 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1304 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1305 // If a range metadata is attached to this IntrinsicInst, intersect the 1306 // explicit range specified by the metadata and the implicit range of 1307 // the intrinsic. 1308 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1309 switch (II->getIntrinsicID()) { 1310 default: break; 1311 case Intrinsic::bswap: 1312 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1313 KnownZero |= KnownZero2.byteSwap(); 1314 KnownOne |= KnownOne2.byteSwap(); 1315 break; 1316 case Intrinsic::ctlz: 1317 case Intrinsic::cttz: { 1318 unsigned LowBits = Log2_32(BitWidth)+1; 1319 // If this call is undefined for 0, the result will be less than 2^n. 1320 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1321 LowBits -= 1; 1322 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1323 break; 1324 } 1325 case Intrinsic::ctpop: { 1326 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1327 // We can bound the space the count needs. Also, bits known to be zero 1328 // can't contribute to the population. 1329 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1330 unsigned LeadingZeros = 1331 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1332 assert(LeadingZeros <= BitWidth); 1333 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1334 KnownOne &= ~KnownZero; 1335 // TODO: we could bound KnownOne using the lower bound on the number 1336 // of bits which might be set provided by popcnt KnownOne2. 1337 break; 1338 } 1339 case Intrinsic::fabs: { 1340 Type *Ty = II->getType(); 1341 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1342 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1343 break; 1344 } 1345 case Intrinsic::x86_sse42_crc32_64_64: 1346 KnownZero |= APInt::getHighBitsSet(64, 32); 1347 break; 1348 } 1349 } 1350 break; 1351 case Instruction::ExtractValue: 1352 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1353 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1354 if (EVI->getNumIndices() != 1) break; 1355 if (EVI->getIndices()[0] == 0) { 1356 switch (II->getIntrinsicID()) { 1357 default: break; 1358 case Intrinsic::uadd_with_overflow: 1359 case Intrinsic::sadd_with_overflow: 1360 computeKnownBitsAddSub(true, II->getArgOperand(0), 1361 II->getArgOperand(1), false, KnownZero, 1362 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1363 break; 1364 case Intrinsic::usub_with_overflow: 1365 case Intrinsic::ssub_with_overflow: 1366 computeKnownBitsAddSub(false, II->getArgOperand(0), 1367 II->getArgOperand(1), false, KnownZero, 1368 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1369 break; 1370 case Intrinsic::umul_with_overflow: 1371 case Intrinsic::smul_with_overflow: 1372 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1373 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1374 Q); 1375 break; 1376 } 1377 } 1378 } 1379 } 1380 } 1381 1382 /// Determine which bits of V are known to be either zero or one and return 1383 /// them in the KnownZero/KnownOne bit sets. 1384 /// 1385 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1386 /// we cannot optimize based on the assumption that it is zero without changing 1387 /// it to be an explicit zero. If we don't change it to zero, other code could 1388 /// optimized based on the contradictory assumption that it is non-zero. 1389 /// Because instcombine aggressively folds operations with undef args anyway, 1390 /// this won't lose us code quality. 1391 /// 1392 /// This function is defined on values with integer type, values with pointer 1393 /// type, and vectors of integers. In the case 1394 /// where V is a vector, known zero, and known one values are the 1395 /// same width as the vector element, and the bit is set only if it is true 1396 /// for all of the elements in the vector. 1397 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1398 unsigned Depth, const Query &Q) { 1399 assert(V && "No Value?"); 1400 assert(Depth <= MaxDepth && "Limit Search Depth"); 1401 unsigned BitWidth = KnownZero.getBitWidth(); 1402 1403 assert((V->getType()->isIntOrIntVectorTy() || 1404 V->getType()->isFPOrFPVectorTy() || 1405 V->getType()->getScalarType()->isPointerTy()) && 1406 "Not integer, floating point, or pointer type!"); 1407 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1408 (!V->getType()->isIntOrIntVectorTy() || 1409 V->getType()->getScalarSizeInBits() == BitWidth) && 1410 KnownZero.getBitWidth() == BitWidth && 1411 KnownOne.getBitWidth() == BitWidth && 1412 "V, KnownOne and KnownZero should have same BitWidth"); 1413 1414 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1415 // We know all of the bits for a constant! 1416 KnownOne = CI->getValue(); 1417 KnownZero = ~KnownOne; 1418 return; 1419 } 1420 // Null and aggregate-zero are all-zeros. 1421 if (isa<ConstantPointerNull>(V) || 1422 isa<ConstantAggregateZero>(V)) { 1423 KnownOne.clearAllBits(); 1424 KnownZero = APInt::getAllOnesValue(BitWidth); 1425 return; 1426 } 1427 // Handle a constant vector by taking the intersection of the known bits of 1428 // each element. There is no real need to handle ConstantVector here, because 1429 // we don't handle undef in any particularly useful way. 1430 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1431 // We know that CDS must be a vector of integers. Take the intersection of 1432 // each element. 1433 KnownZero.setAllBits(); KnownOne.setAllBits(); 1434 APInt Elt(KnownZero.getBitWidth(), 0); 1435 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1436 Elt = CDS->getElementAsInteger(i); 1437 KnownZero &= ~Elt; 1438 KnownOne &= Elt; 1439 } 1440 return; 1441 } 1442 1443 // Start out not knowing anything. 1444 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1445 1446 // Limit search depth. 1447 // All recursive calls that increase depth must come after this. 1448 if (Depth == MaxDepth) 1449 return; 1450 1451 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1452 // the bits of its aliasee. 1453 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1454 if (!GA->isInterposable()) 1455 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1456 return; 1457 } 1458 1459 if (Operator *I = dyn_cast<Operator>(V)) 1460 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1461 1462 // Aligned pointers have trailing zeros - refine KnownZero set 1463 if (V->getType()->isPointerTy()) { 1464 unsigned Align = V->getPointerAlignment(Q.DL); 1465 if (Align) 1466 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1467 } 1468 1469 // computeKnownBitsFromAssume strictly refines KnownZero and 1470 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1471 1472 // Check whether a nearby assume intrinsic can determine some known bits. 1473 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1474 1475 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1476 } 1477 1478 /// Determine whether the sign bit is known to be zero or one. 1479 /// Convenience wrapper around computeKnownBits. 1480 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1481 unsigned Depth, const Query &Q) { 1482 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1483 if (!BitWidth) { 1484 KnownZero = false; 1485 KnownOne = false; 1486 return; 1487 } 1488 APInt ZeroBits(BitWidth, 0); 1489 APInt OneBits(BitWidth, 0); 1490 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1491 KnownOne = OneBits[BitWidth - 1]; 1492 KnownZero = ZeroBits[BitWidth - 1]; 1493 } 1494 1495 /// Return true if the given value is known to have exactly one 1496 /// bit set when defined. For vectors return true if every element is known to 1497 /// be a power of two when defined. Supports values with integer or pointer 1498 /// types and vectors of integers. 1499 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1500 const Query &Q) { 1501 if (Constant *C = dyn_cast<Constant>(V)) { 1502 if (C->isNullValue()) 1503 return OrZero; 1504 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1505 return CI->getValue().isPowerOf2(); 1506 // TODO: Handle vector constants. 1507 } 1508 1509 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1510 // it is shifted off the end then the result is undefined. 1511 if (match(V, m_Shl(m_One(), m_Value()))) 1512 return true; 1513 1514 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1515 // bottom. If it is shifted off the bottom then the result is undefined. 1516 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1517 return true; 1518 1519 // The remaining tests are all recursive, so bail out if we hit the limit. 1520 if (Depth++ == MaxDepth) 1521 return false; 1522 1523 Value *X = nullptr, *Y = nullptr; 1524 // A shift left or a logical shift right of a power of two is a power of two 1525 // or zero. 1526 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1527 match(V, m_LShr(m_Value(X), m_Value())))) 1528 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1529 1530 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1531 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1532 1533 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1534 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1535 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1536 1537 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1538 // A power of two and'd with anything is a power of two or zero. 1539 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1540 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1541 return true; 1542 // X & (-X) is always a power of two or zero. 1543 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1544 return true; 1545 return false; 1546 } 1547 1548 // Adding a power-of-two or zero to the same power-of-two or zero yields 1549 // either the original power-of-two, a larger power-of-two or zero. 1550 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1551 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1552 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1553 if (match(X, m_And(m_Specific(Y), m_Value())) || 1554 match(X, m_And(m_Value(), m_Specific(Y)))) 1555 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1556 return true; 1557 if (match(Y, m_And(m_Specific(X), m_Value())) || 1558 match(Y, m_And(m_Value(), m_Specific(X)))) 1559 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1560 return true; 1561 1562 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1563 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1564 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1565 1566 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1567 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1568 // If i8 V is a power of two or zero: 1569 // ZeroBits: 1 1 1 0 1 1 1 1 1570 // ~ZeroBits: 0 0 0 1 0 0 0 0 1571 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1572 // If OrZero isn't set, we cannot give back a zero result. 1573 // Make sure either the LHS or RHS has a bit set. 1574 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1575 return true; 1576 } 1577 } 1578 1579 // An exact divide or right shift can only shift off zero bits, so the result 1580 // is a power of two only if the first operand is a power of two and not 1581 // copying a sign bit (sdiv int_min, 2). 1582 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1583 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1584 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1585 Depth, Q); 1586 } 1587 1588 return false; 1589 } 1590 1591 /// \brief Test whether a GEP's result is known to be non-null. 1592 /// 1593 /// Uses properties inherent in a GEP to try to determine whether it is known 1594 /// to be non-null. 1595 /// 1596 /// Currently this routine does not support vector GEPs. 1597 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1598 const Query &Q) { 1599 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1600 return false; 1601 1602 // FIXME: Support vector-GEPs. 1603 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1604 1605 // If the base pointer is non-null, we cannot walk to a null address with an 1606 // inbounds GEP in address space zero. 1607 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1608 return true; 1609 1610 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1611 // If so, then the GEP cannot produce a null pointer, as doing so would 1612 // inherently violate the inbounds contract within address space zero. 1613 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1614 GTI != GTE; ++GTI) { 1615 // Struct types are easy -- they must always be indexed by a constant. 1616 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1617 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1618 unsigned ElementIdx = OpC->getZExtValue(); 1619 const StructLayout *SL = Q.DL.getStructLayout(STy); 1620 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1621 if (ElementOffset > 0) 1622 return true; 1623 continue; 1624 } 1625 1626 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1627 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1628 continue; 1629 1630 // Fast path the constant operand case both for efficiency and so we don't 1631 // increment Depth when just zipping down an all-constant GEP. 1632 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1633 if (!OpC->isZero()) 1634 return true; 1635 continue; 1636 } 1637 1638 // We post-increment Depth here because while isKnownNonZero increments it 1639 // as well, when we pop back up that increment won't persist. We don't want 1640 // to recurse 10k times just because we have 10k GEP operands. We don't 1641 // bail completely out because we want to handle constant GEPs regardless 1642 // of depth. 1643 if (Depth++ >= MaxDepth) 1644 continue; 1645 1646 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1647 return true; 1648 } 1649 1650 return false; 1651 } 1652 1653 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1654 /// ensure that the value it's attached to is never Value? 'RangeType' is 1655 /// is the type of the value described by the range. 1656 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1657 const APInt& Value) { 1658 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1659 assert(NumRanges >= 1); 1660 for (unsigned i = 0; i < NumRanges; ++i) { 1661 ConstantInt *Lower = 1662 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1663 ConstantInt *Upper = 1664 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1665 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1666 if (Range.contains(Value)) 1667 return false; 1668 } 1669 return true; 1670 } 1671 1672 /// Return true if the given value is known to be non-zero when defined. 1673 /// For vectors return true if every element is known to be non-zero when 1674 /// defined. Supports values with integer or pointer type and vectors of 1675 /// integers. 1676 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1677 if (Constant *C = dyn_cast<Constant>(V)) { 1678 if (C->isNullValue()) 1679 return false; 1680 if (isa<ConstantInt>(C)) 1681 // Must be non-zero due to null test above. 1682 return true; 1683 // TODO: Handle vectors 1684 return false; 1685 } 1686 1687 if (Instruction* I = dyn_cast<Instruction>(V)) { 1688 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1689 // If the possible ranges don't contain zero, then the value is 1690 // definitely non-zero. 1691 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1692 const APInt ZeroValue(Ty->getBitWidth(), 0); 1693 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1694 return true; 1695 } 1696 } 1697 } 1698 1699 // The remaining tests are all recursive, so bail out if we hit the limit. 1700 if (Depth++ >= MaxDepth) 1701 return false; 1702 1703 // Check for pointer simplifications. 1704 if (V->getType()->isPointerTy()) { 1705 if (isKnownNonNull(V)) 1706 return true; 1707 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1708 if (isGEPKnownNonNull(GEP, Depth, Q)) 1709 return true; 1710 } 1711 1712 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1713 1714 // X | Y != 0 if X != 0 or Y != 0. 1715 Value *X = nullptr, *Y = nullptr; 1716 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1717 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1718 1719 // ext X != 0 if X != 0. 1720 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1721 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1722 1723 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1724 // if the lowest bit is shifted off the end. 1725 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1726 // shl nuw can't remove any non-zero bits. 1727 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1728 if (BO->hasNoUnsignedWrap()) 1729 return isKnownNonZero(X, Depth, Q); 1730 1731 APInt KnownZero(BitWidth, 0); 1732 APInt KnownOne(BitWidth, 0); 1733 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1734 if (KnownOne[0]) 1735 return true; 1736 } 1737 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1738 // defined if the sign bit is shifted off the end. 1739 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1740 // shr exact can only shift out zero bits. 1741 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1742 if (BO->isExact()) 1743 return isKnownNonZero(X, Depth, Q); 1744 1745 bool XKnownNonNegative, XKnownNegative; 1746 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1747 if (XKnownNegative) 1748 return true; 1749 1750 // If the shifter operand is a constant, and all of the bits shifted 1751 // out are known to be zero, and X is known non-zero then at least one 1752 // non-zero bit must remain. 1753 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1754 APInt KnownZero(BitWidth, 0); 1755 APInt KnownOne(BitWidth, 0); 1756 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1757 1758 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1759 // Is there a known one in the portion not shifted out? 1760 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1761 return true; 1762 // Are all the bits to be shifted out known zero? 1763 if (KnownZero.countTrailingOnes() >= ShiftVal) 1764 return isKnownNonZero(X, Depth, Q); 1765 } 1766 } 1767 // div exact can only produce a zero if the dividend is zero. 1768 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1769 return isKnownNonZero(X, Depth, Q); 1770 } 1771 // X + Y. 1772 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1773 bool XKnownNonNegative, XKnownNegative; 1774 bool YKnownNonNegative, YKnownNegative; 1775 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1776 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1777 1778 // If X and Y are both non-negative (as signed values) then their sum is not 1779 // zero unless both X and Y are zero. 1780 if (XKnownNonNegative && YKnownNonNegative) 1781 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1782 return true; 1783 1784 // If X and Y are both negative (as signed values) then their sum is not 1785 // zero unless both X and Y equal INT_MIN. 1786 if (BitWidth && XKnownNegative && YKnownNegative) { 1787 APInt KnownZero(BitWidth, 0); 1788 APInt KnownOne(BitWidth, 0); 1789 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1790 // The sign bit of X is set. If some other bit is set then X is not equal 1791 // to INT_MIN. 1792 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1793 if ((KnownOne & Mask) != 0) 1794 return true; 1795 // The sign bit of Y is set. If some other bit is set then Y is not equal 1796 // to INT_MIN. 1797 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1798 if ((KnownOne & Mask) != 0) 1799 return true; 1800 } 1801 1802 // The sum of a non-negative number and a power of two is not zero. 1803 if (XKnownNonNegative && 1804 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1805 return true; 1806 if (YKnownNonNegative && 1807 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1808 return true; 1809 } 1810 // X * Y. 1811 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1812 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1813 // If X and Y are non-zero then so is X * Y as long as the multiplication 1814 // does not overflow. 1815 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1816 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1817 return true; 1818 } 1819 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1820 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1821 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1822 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1823 return true; 1824 } 1825 // PHI 1826 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1827 // Try and detect a recurrence that monotonically increases from a 1828 // starting value, as these are common as induction variables. 1829 if (PN->getNumIncomingValues() == 2) { 1830 Value *Start = PN->getIncomingValue(0); 1831 Value *Induction = PN->getIncomingValue(1); 1832 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1833 std::swap(Start, Induction); 1834 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1835 if (!C->isZero() && !C->isNegative()) { 1836 ConstantInt *X; 1837 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1838 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1839 !X->isNegative()) 1840 return true; 1841 } 1842 } 1843 } 1844 // Check if all incoming values are non-zero constant. 1845 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1846 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1847 }); 1848 if (AllNonZeroConstants) 1849 return true; 1850 } 1851 1852 if (!BitWidth) return false; 1853 APInt KnownZero(BitWidth, 0); 1854 APInt KnownOne(BitWidth, 0); 1855 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1856 return KnownOne != 0; 1857 } 1858 1859 /// Return true if V2 == V1 + X, where X is known non-zero. 1860 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 1861 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1862 if (!BO || BO->getOpcode() != Instruction::Add) 1863 return false; 1864 Value *Op = nullptr; 1865 if (V2 == BO->getOperand(0)) 1866 Op = BO->getOperand(1); 1867 else if (V2 == BO->getOperand(1)) 1868 Op = BO->getOperand(0); 1869 else 1870 return false; 1871 return isKnownNonZero(Op, 0, Q); 1872 } 1873 1874 /// Return true if it is known that V1 != V2. 1875 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 1876 if (V1->getType()->isVectorTy() || V1 == V2) 1877 return false; 1878 if (V1->getType() != V2->getType()) 1879 // We can't look through casts yet. 1880 return false; 1881 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1882 return true; 1883 1884 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1885 // Are any known bits in V1 contradictory to known bits in V2? If V1 1886 // has a known zero where V2 has a known one, they must not be equal. 1887 auto BitWidth = Ty->getBitWidth(); 1888 APInt KnownZero1(BitWidth, 0); 1889 APInt KnownOne1(BitWidth, 0); 1890 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1891 APInt KnownZero2(BitWidth, 0); 1892 APInt KnownOne2(BitWidth, 0); 1893 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1894 1895 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1896 if (OppositeBits.getBoolValue()) 1897 return true; 1898 } 1899 return false; 1900 } 1901 1902 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1903 /// simplify operations downstream. Mask is known to be zero for bits that V 1904 /// cannot have. 1905 /// 1906 /// This function is defined on values with integer type, values with pointer 1907 /// type, and vectors of integers. In the case 1908 /// where V is a vector, the mask, known zero, and known one values are the 1909 /// same width as the vector element, and the bit is set only if it is true 1910 /// for all of the elements in the vector. 1911 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 1912 const Query &Q) { 1913 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1914 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1915 return (KnownZero & Mask) == Mask; 1916 } 1917 1918 1919 1920 /// Return the number of times the sign bit of the register is replicated into 1921 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1922 /// (itself), but other cases can give us information. For example, immediately 1923 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1924 /// other, so we return 3. 1925 /// 1926 /// 'Op' must have a scalar integer type. 1927 /// 1928 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 1929 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 1930 unsigned Tmp, Tmp2; 1931 unsigned FirstAnswer = 1; 1932 1933 // Note that ConstantInt is handled by the general computeKnownBits case 1934 // below. 1935 1936 if (Depth == 6) 1937 return 1; // Limit search depth. 1938 1939 Operator *U = dyn_cast<Operator>(V); 1940 switch (Operator::getOpcode(V)) { 1941 default: break; 1942 case Instruction::SExt: 1943 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1944 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 1945 1946 case Instruction::SDiv: { 1947 const APInt *Denominator; 1948 // sdiv X, C -> adds log(C) sign bits. 1949 if (match(U->getOperand(1), m_APInt(Denominator))) { 1950 1951 // Ignore non-positive denominator. 1952 if (!Denominator->isStrictlyPositive()) 1953 break; 1954 1955 // Calculate the incoming numerator bits. 1956 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1957 1958 // Add floor(log(C)) bits to the numerator bits. 1959 return std::min(TyBits, NumBits + Denominator->logBase2()); 1960 } 1961 break; 1962 } 1963 1964 case Instruction::SRem: { 1965 const APInt *Denominator; 1966 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1967 // positive constant. This let us put a lower bound on the number of sign 1968 // bits. 1969 if (match(U->getOperand(1), m_APInt(Denominator))) { 1970 1971 // Ignore non-positive denominator. 1972 if (!Denominator->isStrictlyPositive()) 1973 break; 1974 1975 // Calculate the incoming numerator bits. SRem by a positive constant 1976 // can't lower the number of sign bits. 1977 unsigned NumrBits = 1978 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1979 1980 // Calculate the leading sign bit constraints by examining the 1981 // denominator. Given that the denominator is positive, there are two 1982 // cases: 1983 // 1984 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1985 // (1 << ceilLogBase2(C)). 1986 // 1987 // 2. the numerator is negative. Then the result range is (-C,0] and 1988 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1989 // 1990 // Thus a lower bound on the number of sign bits is `TyBits - 1991 // ceilLogBase2(C)`. 1992 1993 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1994 return std::max(NumrBits, ResBits); 1995 } 1996 break; 1997 } 1998 1999 case Instruction::AShr: { 2000 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2001 // ashr X, C -> adds C sign bits. Vectors too. 2002 const APInt *ShAmt; 2003 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2004 Tmp += ShAmt->getZExtValue(); 2005 if (Tmp > TyBits) Tmp = TyBits; 2006 } 2007 return Tmp; 2008 } 2009 case Instruction::Shl: { 2010 const APInt *ShAmt; 2011 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2012 // shl destroys sign bits. 2013 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2014 Tmp2 = ShAmt->getZExtValue(); 2015 if (Tmp2 >= TyBits || // Bad shift. 2016 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2017 return Tmp - Tmp2; 2018 } 2019 break; 2020 } 2021 case Instruction::And: 2022 case Instruction::Or: 2023 case Instruction::Xor: // NOT is handled here. 2024 // Logical binary ops preserve the number of sign bits at the worst. 2025 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2026 if (Tmp != 1) { 2027 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2028 FirstAnswer = std::min(Tmp, Tmp2); 2029 // We computed what we know about the sign bits as our first 2030 // answer. Now proceed to the generic code that uses 2031 // computeKnownBits, and pick whichever answer is better. 2032 } 2033 break; 2034 2035 case Instruction::Select: 2036 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2037 if (Tmp == 1) return 1; // Early out. 2038 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2039 return std::min(Tmp, Tmp2); 2040 2041 case Instruction::Add: 2042 // Add can have at most one carry bit. Thus we know that the output 2043 // is, at worst, one more bit than the inputs. 2044 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2045 if (Tmp == 1) return 1; // Early out. 2046 2047 // Special case decrementing a value (ADD X, -1): 2048 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2049 if (CRHS->isAllOnesValue()) { 2050 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2051 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2052 2053 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2054 // sign bits set. 2055 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2056 return TyBits; 2057 2058 // If we are subtracting one from a positive number, there is no carry 2059 // out of the result. 2060 if (KnownZero.isNegative()) 2061 return Tmp; 2062 } 2063 2064 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2065 if (Tmp2 == 1) return 1; 2066 return std::min(Tmp, Tmp2)-1; 2067 2068 case Instruction::Sub: 2069 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2070 if (Tmp2 == 1) return 1; 2071 2072 // Handle NEG. 2073 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2074 if (CLHS->isNullValue()) { 2075 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2076 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2077 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2078 // sign bits set. 2079 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2080 return TyBits; 2081 2082 // If the input is known to be positive (the sign bit is known clear), 2083 // the output of the NEG has the same number of sign bits as the input. 2084 if (KnownZero.isNegative()) 2085 return Tmp2; 2086 2087 // Otherwise, we treat this like a SUB. 2088 } 2089 2090 // Sub can have at most one carry bit. Thus we know that the output 2091 // is, at worst, one more bit than the inputs. 2092 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2093 if (Tmp == 1) return 1; // Early out. 2094 return std::min(Tmp, Tmp2)-1; 2095 2096 case Instruction::PHI: { 2097 PHINode *PN = cast<PHINode>(U); 2098 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2099 // Don't analyze large in-degree PHIs. 2100 if (NumIncomingValues > 4) break; 2101 // Unreachable blocks may have zero-operand PHI nodes. 2102 if (NumIncomingValues == 0) break; 2103 2104 // Take the minimum of all incoming values. This can't infinitely loop 2105 // because of our depth threshold. 2106 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2107 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2108 if (Tmp == 1) return Tmp; 2109 Tmp = std::min( 2110 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2111 } 2112 return Tmp; 2113 } 2114 2115 case Instruction::Trunc: 2116 // FIXME: it's tricky to do anything useful for this, but it is an important 2117 // case for targets like X86. 2118 break; 2119 } 2120 2121 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2122 // use this information. 2123 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2124 APInt Mask; 2125 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2126 2127 if (KnownZero.isNegative()) { // sign bit is 0 2128 Mask = KnownZero; 2129 } else if (KnownOne.isNegative()) { // sign bit is 1; 2130 Mask = KnownOne; 2131 } else { 2132 // Nothing known. 2133 return FirstAnswer; 2134 } 2135 2136 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2137 // the number of identical bits in the top of the input value. 2138 Mask = ~Mask; 2139 Mask <<= Mask.getBitWidth()-TyBits; 2140 // Return # leading zeros. We use 'min' here in case Val was zero before 2141 // shifting. We don't want to return '64' as for an i32 "0". 2142 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2143 } 2144 2145 /// This function computes the integer multiple of Base that equals V. 2146 /// If successful, it returns true and returns the multiple in 2147 /// Multiple. If unsuccessful, it returns false. It looks 2148 /// through SExt instructions only if LookThroughSExt is true. 2149 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2150 bool LookThroughSExt, unsigned Depth) { 2151 const unsigned MaxDepth = 6; 2152 2153 assert(V && "No Value?"); 2154 assert(Depth <= MaxDepth && "Limit Search Depth"); 2155 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2156 2157 Type *T = V->getType(); 2158 2159 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2160 2161 if (Base == 0) 2162 return false; 2163 2164 if (Base == 1) { 2165 Multiple = V; 2166 return true; 2167 } 2168 2169 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2170 Constant *BaseVal = ConstantInt::get(T, Base); 2171 if (CO && CO == BaseVal) { 2172 // Multiple is 1. 2173 Multiple = ConstantInt::get(T, 1); 2174 return true; 2175 } 2176 2177 if (CI && CI->getZExtValue() % Base == 0) { 2178 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2179 return true; 2180 } 2181 2182 if (Depth == MaxDepth) return false; // Limit search depth. 2183 2184 Operator *I = dyn_cast<Operator>(V); 2185 if (!I) return false; 2186 2187 switch (I->getOpcode()) { 2188 default: break; 2189 case Instruction::SExt: 2190 if (!LookThroughSExt) return false; 2191 // otherwise fall through to ZExt 2192 case Instruction::ZExt: 2193 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2194 LookThroughSExt, Depth+1); 2195 case Instruction::Shl: 2196 case Instruction::Mul: { 2197 Value *Op0 = I->getOperand(0); 2198 Value *Op1 = I->getOperand(1); 2199 2200 if (I->getOpcode() == Instruction::Shl) { 2201 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2202 if (!Op1CI) return false; 2203 // Turn Op0 << Op1 into Op0 * 2^Op1 2204 APInt Op1Int = Op1CI->getValue(); 2205 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2206 APInt API(Op1Int.getBitWidth(), 0); 2207 API.setBit(BitToSet); 2208 Op1 = ConstantInt::get(V->getContext(), API); 2209 } 2210 2211 Value *Mul0 = nullptr; 2212 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2213 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2214 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2215 if (Op1C->getType()->getPrimitiveSizeInBits() < 2216 MulC->getType()->getPrimitiveSizeInBits()) 2217 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2218 if (Op1C->getType()->getPrimitiveSizeInBits() > 2219 MulC->getType()->getPrimitiveSizeInBits()) 2220 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2221 2222 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2223 Multiple = ConstantExpr::getMul(MulC, Op1C); 2224 return true; 2225 } 2226 2227 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2228 if (Mul0CI->getValue() == 1) { 2229 // V == Base * Op1, so return Op1 2230 Multiple = Op1; 2231 return true; 2232 } 2233 } 2234 2235 Value *Mul1 = nullptr; 2236 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2237 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2238 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2239 if (Op0C->getType()->getPrimitiveSizeInBits() < 2240 MulC->getType()->getPrimitiveSizeInBits()) 2241 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2242 if (Op0C->getType()->getPrimitiveSizeInBits() > 2243 MulC->getType()->getPrimitiveSizeInBits()) 2244 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2245 2246 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2247 Multiple = ConstantExpr::getMul(MulC, Op0C); 2248 return true; 2249 } 2250 2251 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2252 if (Mul1CI->getValue() == 1) { 2253 // V == Base * Op0, so return Op0 2254 Multiple = Op0; 2255 return true; 2256 } 2257 } 2258 } 2259 } 2260 2261 // We could not determine if V is a multiple of Base. 2262 return false; 2263 } 2264 2265 /// Return true if we can prove that the specified FP value is never equal to 2266 /// -0.0. 2267 /// 2268 /// NOTE: this function will need to be revisited when we support non-default 2269 /// rounding modes! 2270 /// 2271 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2272 unsigned Depth) { 2273 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2274 return !CFP->getValueAPF().isNegZero(); 2275 2276 // FIXME: Magic number! At the least, this should be given a name because it's 2277 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2278 // expose it as a parameter, so it can be used for testing / experimenting. 2279 if (Depth == 6) 2280 return false; // Limit search depth. 2281 2282 const Operator *I = dyn_cast<Operator>(V); 2283 if (!I) return false; 2284 2285 // Check if the nsz fast-math flag is set 2286 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2287 if (FPO->hasNoSignedZeros()) 2288 return true; 2289 2290 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2291 if (I->getOpcode() == Instruction::FAdd) 2292 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2293 if (CFP->isNullValue()) 2294 return true; 2295 2296 // sitofp and uitofp turn into +0.0 for zero. 2297 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2298 return true; 2299 2300 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2301 Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI); 2302 switch (IID) { 2303 default: 2304 break; 2305 // sqrt(-0.0) = -0.0, no other negative results are possible. 2306 case Intrinsic::sqrt: 2307 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2308 // fabs(x) != -0.0 2309 case Intrinsic::fabs: 2310 return true; 2311 } 2312 } 2313 2314 return false; 2315 } 2316 2317 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2318 const TargetLibraryInfo *TLI, 2319 unsigned Depth) { 2320 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2321 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2322 2323 // FIXME: Magic number! At the least, this should be given a name because it's 2324 // used similarly in CannotBeNegativeZero(). A better fix may be to 2325 // expose it as a parameter, so it can be used for testing / experimenting. 2326 if (Depth == 6) 2327 return false; // Limit search depth. 2328 2329 const Operator *I = dyn_cast<Operator>(V); 2330 if (!I) return false; 2331 2332 switch (I->getOpcode()) { 2333 default: break; 2334 // Unsigned integers are always nonnegative. 2335 case Instruction::UIToFP: 2336 return true; 2337 case Instruction::FMul: 2338 // x*x is always non-negative or a NaN. 2339 if (I->getOperand(0) == I->getOperand(1)) 2340 return true; 2341 // Fall through 2342 case Instruction::FAdd: 2343 case Instruction::FDiv: 2344 case Instruction::FRem: 2345 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2346 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2347 case Instruction::Select: 2348 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2349 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2350 case Instruction::FPExt: 2351 case Instruction::FPTrunc: 2352 // Widening/narrowing never change sign. 2353 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2354 case Instruction::Call: 2355 Intrinsic::ID IID = getIntrinsicIDForCall(cast<CallInst>(I), TLI); 2356 switch (IID) { 2357 default: 2358 break; 2359 case Intrinsic::maxnum: 2360 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2361 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2362 case Intrinsic::minnum: 2363 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2364 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2365 case Intrinsic::exp: 2366 case Intrinsic::exp2: 2367 case Intrinsic::fabs: 2368 case Intrinsic::sqrt: 2369 return true; 2370 case Intrinsic::powi: 2371 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2372 // powi(x,n) is non-negative if n is even. 2373 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2374 return true; 2375 } 2376 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2377 case Intrinsic::fma: 2378 case Intrinsic::fmuladd: 2379 // x*x+y is non-negative if y is non-negative. 2380 return I->getOperand(0) == I->getOperand(1) && 2381 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2382 } 2383 break; 2384 } 2385 return false; 2386 } 2387 2388 /// If the specified value can be set by repeating the same byte in memory, 2389 /// return the i8 value that it is represented with. This is 2390 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2391 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2392 /// byte store (e.g. i16 0x1234), return null. 2393 Value *llvm::isBytewiseValue(Value *V) { 2394 // All byte-wide stores are splatable, even of arbitrary variables. 2395 if (V->getType()->isIntegerTy(8)) return V; 2396 2397 // Handle 'null' ConstantArrayZero etc. 2398 if (Constant *C = dyn_cast<Constant>(V)) 2399 if (C->isNullValue()) 2400 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2401 2402 // Constant float and double values can be handled as integer values if the 2403 // corresponding integer value is "byteable". An important case is 0.0. 2404 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2405 if (CFP->getType()->isFloatTy()) 2406 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2407 if (CFP->getType()->isDoubleTy()) 2408 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2409 // Don't handle long double formats, which have strange constraints. 2410 } 2411 2412 // We can handle constant integers that are multiple of 8 bits. 2413 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2414 if (CI->getBitWidth() % 8 == 0) { 2415 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2416 2417 if (!CI->getValue().isSplat(8)) 2418 return nullptr; 2419 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2420 } 2421 } 2422 2423 // A ConstantDataArray/Vector is splatable if all its members are equal and 2424 // also splatable. 2425 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2426 Value *Elt = CA->getElementAsConstant(0); 2427 Value *Val = isBytewiseValue(Elt); 2428 if (!Val) 2429 return nullptr; 2430 2431 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2432 if (CA->getElementAsConstant(I) != Elt) 2433 return nullptr; 2434 2435 return Val; 2436 } 2437 2438 // Conceptually, we could handle things like: 2439 // %a = zext i8 %X to i16 2440 // %b = shl i16 %a, 8 2441 // %c = or i16 %a, %b 2442 // but until there is an example that actually needs this, it doesn't seem 2443 // worth worrying about. 2444 return nullptr; 2445 } 2446 2447 2448 // This is the recursive version of BuildSubAggregate. It takes a few different 2449 // arguments. Idxs is the index within the nested struct From that we are 2450 // looking at now (which is of type IndexedType). IdxSkip is the number of 2451 // indices from Idxs that should be left out when inserting into the resulting 2452 // struct. To is the result struct built so far, new insertvalue instructions 2453 // build on that. 2454 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2455 SmallVectorImpl<unsigned> &Idxs, 2456 unsigned IdxSkip, 2457 Instruction *InsertBefore) { 2458 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2459 if (STy) { 2460 // Save the original To argument so we can modify it 2461 Value *OrigTo = To; 2462 // General case, the type indexed by Idxs is a struct 2463 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2464 // Process each struct element recursively 2465 Idxs.push_back(i); 2466 Value *PrevTo = To; 2467 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2468 InsertBefore); 2469 Idxs.pop_back(); 2470 if (!To) { 2471 // Couldn't find any inserted value for this index? Cleanup 2472 while (PrevTo != OrigTo) { 2473 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2474 PrevTo = Del->getAggregateOperand(); 2475 Del->eraseFromParent(); 2476 } 2477 // Stop processing elements 2478 break; 2479 } 2480 } 2481 // If we successfully found a value for each of our subaggregates 2482 if (To) 2483 return To; 2484 } 2485 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2486 // the struct's elements had a value that was inserted directly. In the latter 2487 // case, perhaps we can't determine each of the subelements individually, but 2488 // we might be able to find the complete struct somewhere. 2489 2490 // Find the value that is at that particular spot 2491 Value *V = FindInsertedValue(From, Idxs); 2492 2493 if (!V) 2494 return nullptr; 2495 2496 // Insert the value in the new (sub) aggregrate 2497 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2498 "tmp", InsertBefore); 2499 } 2500 2501 // This helper takes a nested struct and extracts a part of it (which is again a 2502 // struct) into a new value. For example, given the struct: 2503 // { a, { b, { c, d }, e } } 2504 // and the indices "1, 1" this returns 2505 // { c, d }. 2506 // 2507 // It does this by inserting an insertvalue for each element in the resulting 2508 // struct, as opposed to just inserting a single struct. This will only work if 2509 // each of the elements of the substruct are known (ie, inserted into From by an 2510 // insertvalue instruction somewhere). 2511 // 2512 // All inserted insertvalue instructions are inserted before InsertBefore 2513 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2514 Instruction *InsertBefore) { 2515 assert(InsertBefore && "Must have someplace to insert!"); 2516 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2517 idx_range); 2518 Value *To = UndefValue::get(IndexedType); 2519 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2520 unsigned IdxSkip = Idxs.size(); 2521 2522 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2523 } 2524 2525 /// Given an aggregrate and an sequence of indices, see if 2526 /// the scalar value indexed is already around as a register, for example if it 2527 /// were inserted directly into the aggregrate. 2528 /// 2529 /// If InsertBefore is not null, this function will duplicate (modified) 2530 /// insertvalues when a part of a nested struct is extracted. 2531 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2532 Instruction *InsertBefore) { 2533 // Nothing to index? Just return V then (this is useful at the end of our 2534 // recursion). 2535 if (idx_range.empty()) 2536 return V; 2537 // We have indices, so V should have an indexable type. 2538 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2539 "Not looking at a struct or array?"); 2540 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2541 "Invalid indices for type?"); 2542 2543 if (Constant *C = dyn_cast<Constant>(V)) { 2544 C = C->getAggregateElement(idx_range[0]); 2545 if (!C) return nullptr; 2546 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2547 } 2548 2549 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2550 // Loop the indices for the insertvalue instruction in parallel with the 2551 // requested indices 2552 const unsigned *req_idx = idx_range.begin(); 2553 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2554 i != e; ++i, ++req_idx) { 2555 if (req_idx == idx_range.end()) { 2556 // We can't handle this without inserting insertvalues 2557 if (!InsertBefore) 2558 return nullptr; 2559 2560 // The requested index identifies a part of a nested aggregate. Handle 2561 // this specially. For example, 2562 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2563 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2564 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2565 // This can be changed into 2566 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2567 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2568 // which allows the unused 0,0 element from the nested struct to be 2569 // removed. 2570 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2571 InsertBefore); 2572 } 2573 2574 // This insert value inserts something else than what we are looking for. 2575 // See if the (aggregate) value inserted into has the value we are 2576 // looking for, then. 2577 if (*req_idx != *i) 2578 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2579 InsertBefore); 2580 } 2581 // If we end up here, the indices of the insertvalue match with those 2582 // requested (though possibly only partially). Now we recursively look at 2583 // the inserted value, passing any remaining indices. 2584 return FindInsertedValue(I->getInsertedValueOperand(), 2585 makeArrayRef(req_idx, idx_range.end()), 2586 InsertBefore); 2587 } 2588 2589 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2590 // If we're extracting a value from an aggregate that was extracted from 2591 // something else, we can extract from that something else directly instead. 2592 // However, we will need to chain I's indices with the requested indices. 2593 2594 // Calculate the number of indices required 2595 unsigned size = I->getNumIndices() + idx_range.size(); 2596 // Allocate some space to put the new indices in 2597 SmallVector<unsigned, 5> Idxs; 2598 Idxs.reserve(size); 2599 // Add indices from the extract value instruction 2600 Idxs.append(I->idx_begin(), I->idx_end()); 2601 2602 // Add requested indices 2603 Idxs.append(idx_range.begin(), idx_range.end()); 2604 2605 assert(Idxs.size() == size 2606 && "Number of indices added not correct?"); 2607 2608 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2609 } 2610 // Otherwise, we don't know (such as, extracting from a function return value 2611 // or load instruction) 2612 return nullptr; 2613 } 2614 2615 /// Analyze the specified pointer to see if it can be expressed as a base 2616 /// pointer plus a constant offset. Return the base and offset to the caller. 2617 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2618 const DataLayout &DL) { 2619 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2620 APInt ByteOffset(BitWidth, 0); 2621 2622 // We walk up the defs but use a visited set to handle unreachable code. In 2623 // that case, we stop after accumulating the cycle once (not that it 2624 // matters). 2625 SmallPtrSet<Value *, 16> Visited; 2626 while (Visited.insert(Ptr).second) { 2627 if (Ptr->getType()->isVectorTy()) 2628 break; 2629 2630 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2631 APInt GEPOffset(BitWidth, 0); 2632 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2633 break; 2634 2635 ByteOffset += GEPOffset; 2636 2637 Ptr = GEP->getPointerOperand(); 2638 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2639 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2640 Ptr = cast<Operator>(Ptr)->getOperand(0); 2641 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2642 if (GA->isInterposable()) 2643 break; 2644 Ptr = GA->getAliasee(); 2645 } else { 2646 break; 2647 } 2648 } 2649 Offset = ByteOffset.getSExtValue(); 2650 return Ptr; 2651 } 2652 2653 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2654 // Make sure the GEP has exactly three arguments. 2655 if (GEP->getNumOperands() != 3) 2656 return false; 2657 2658 // Make sure the index-ee is a pointer to array of i8. 2659 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2660 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2661 return false; 2662 2663 // Check to make sure that the first operand of the GEP is an integer and 2664 // has value 0 so that we are sure we're indexing into the initializer. 2665 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2666 if (!FirstIdx || !FirstIdx->isZero()) 2667 return false; 2668 2669 return true; 2670 } 2671 2672 /// This function computes the length of a null-terminated C string pointed to 2673 /// by V. If successful, it returns true and returns the string in Str. 2674 /// If unsuccessful, it returns false. 2675 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2676 uint64_t Offset, bool TrimAtNul) { 2677 assert(V); 2678 2679 // Look through bitcast instructions and geps. 2680 V = V->stripPointerCasts(); 2681 2682 // If the value is a GEP instruction or constant expression, treat it as an 2683 // offset. 2684 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2685 // The GEP operator should be based on a pointer to string constant, and is 2686 // indexing into the string constant. 2687 if (!isGEPBasedOnPointerToString(GEP)) 2688 return false; 2689 2690 // If the second index isn't a ConstantInt, then this is a variable index 2691 // into the array. If this occurs, we can't say anything meaningful about 2692 // the string. 2693 uint64_t StartIdx = 0; 2694 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2695 StartIdx = CI->getZExtValue(); 2696 else 2697 return false; 2698 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2699 TrimAtNul); 2700 } 2701 2702 // The GEP instruction, constant or instruction, must reference a global 2703 // variable that is a constant and is initialized. The referenced constant 2704 // initializer is the array that we'll use for optimization. 2705 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2706 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2707 return false; 2708 2709 // Handle the all-zeros case 2710 if (GV->getInitializer()->isNullValue()) { 2711 // This is a degenerate case. The initializer is constant zero so the 2712 // length of the string must be zero. 2713 Str = ""; 2714 return true; 2715 } 2716 2717 // Must be a Constant Array 2718 const ConstantDataArray *Array = 2719 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2720 if (!Array || !Array->isString()) 2721 return false; 2722 2723 // Get the number of elements in the array 2724 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2725 2726 // Start out with the entire array in the StringRef. 2727 Str = Array->getAsString(); 2728 2729 if (Offset > NumElts) 2730 return false; 2731 2732 // Skip over 'offset' bytes. 2733 Str = Str.substr(Offset); 2734 2735 if (TrimAtNul) { 2736 // Trim off the \0 and anything after it. If the array is not nul 2737 // terminated, we just return the whole end of string. The client may know 2738 // some other way that the string is length-bound. 2739 Str = Str.substr(0, Str.find('\0')); 2740 } 2741 return true; 2742 } 2743 2744 // These next two are very similar to the above, but also look through PHI 2745 // nodes. 2746 // TODO: See if we can integrate these two together. 2747 2748 /// If we can compute the length of the string pointed to by 2749 /// the specified pointer, return 'len+1'. If we can't, return 0. 2750 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2751 // Look through noop bitcast instructions. 2752 V = V->stripPointerCasts(); 2753 2754 // If this is a PHI node, there are two cases: either we have already seen it 2755 // or we haven't. 2756 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2757 if (!PHIs.insert(PN).second) 2758 return ~0ULL; // already in the set. 2759 2760 // If it was new, see if all the input strings are the same length. 2761 uint64_t LenSoFar = ~0ULL; 2762 for (Value *IncValue : PN->incoming_values()) { 2763 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2764 if (Len == 0) return 0; // Unknown length -> unknown. 2765 2766 if (Len == ~0ULL) continue; 2767 2768 if (Len != LenSoFar && LenSoFar != ~0ULL) 2769 return 0; // Disagree -> unknown. 2770 LenSoFar = Len; 2771 } 2772 2773 // Success, all agree. 2774 return LenSoFar; 2775 } 2776 2777 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2778 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2779 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2780 if (Len1 == 0) return 0; 2781 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2782 if (Len2 == 0) return 0; 2783 if (Len1 == ~0ULL) return Len2; 2784 if (Len2 == ~0ULL) return Len1; 2785 if (Len1 != Len2) return 0; 2786 return Len1; 2787 } 2788 2789 // Otherwise, see if we can read the string. 2790 StringRef StrData; 2791 if (!getConstantStringInfo(V, StrData)) 2792 return 0; 2793 2794 return StrData.size()+1; 2795 } 2796 2797 /// If we can compute the length of the string pointed to by 2798 /// the specified pointer, return 'len+1'. If we can't, return 0. 2799 uint64_t llvm::GetStringLength(Value *V) { 2800 if (!V->getType()->isPointerTy()) return 0; 2801 2802 SmallPtrSet<PHINode*, 32> PHIs; 2803 uint64_t Len = GetStringLengthH(V, PHIs); 2804 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2805 // an empty string as a length. 2806 return Len == ~0ULL ? 1 : Len; 2807 } 2808 2809 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2810 /// previous iteration of the loop was referring to the same object as \p PN. 2811 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2812 // Find the loop-defined value. 2813 Loop *L = LI->getLoopFor(PN->getParent()); 2814 if (PN->getNumIncomingValues() != 2) 2815 return true; 2816 2817 // Find the value from previous iteration. 2818 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2819 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2820 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2821 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2822 return true; 2823 2824 // If a new pointer is loaded in the loop, the pointer references a different 2825 // object in every iteration. E.g.: 2826 // for (i) 2827 // int *p = a[i]; 2828 // ... 2829 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2830 if (!L->isLoopInvariant(Load->getPointerOperand())) 2831 return false; 2832 return true; 2833 } 2834 2835 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2836 unsigned MaxLookup) { 2837 if (!V->getType()->isPointerTy()) 2838 return V; 2839 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2840 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2841 V = GEP->getPointerOperand(); 2842 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2843 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2844 V = cast<Operator>(V)->getOperand(0); 2845 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2846 if (GA->isInterposable()) 2847 return V; 2848 V = GA->getAliasee(); 2849 } else { 2850 // See if InstructionSimplify knows any relevant tricks. 2851 if (Instruction *I = dyn_cast<Instruction>(V)) 2852 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2853 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2854 V = Simplified; 2855 continue; 2856 } 2857 2858 return V; 2859 } 2860 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2861 } 2862 return V; 2863 } 2864 2865 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2866 const DataLayout &DL, LoopInfo *LI, 2867 unsigned MaxLookup) { 2868 SmallPtrSet<Value *, 4> Visited; 2869 SmallVector<Value *, 4> Worklist; 2870 Worklist.push_back(V); 2871 do { 2872 Value *P = Worklist.pop_back_val(); 2873 P = GetUnderlyingObject(P, DL, MaxLookup); 2874 2875 if (!Visited.insert(P).second) 2876 continue; 2877 2878 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2879 Worklist.push_back(SI->getTrueValue()); 2880 Worklist.push_back(SI->getFalseValue()); 2881 continue; 2882 } 2883 2884 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2885 // If this PHI changes the underlying object in every iteration of the 2886 // loop, don't look through it. Consider: 2887 // int **A; 2888 // for (i) { 2889 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2890 // Curr = A[i]; 2891 // *Prev, *Curr; 2892 // 2893 // Prev is tracking Curr one iteration behind so they refer to different 2894 // underlying objects. 2895 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2896 isSameUnderlyingObjectInLoop(PN, LI)) 2897 for (Value *IncValue : PN->incoming_values()) 2898 Worklist.push_back(IncValue); 2899 continue; 2900 } 2901 2902 Objects.push_back(P); 2903 } while (!Worklist.empty()); 2904 } 2905 2906 /// Return true if the only users of this pointer are lifetime markers. 2907 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2908 for (const User *U : V->users()) { 2909 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2910 if (!II) return false; 2911 2912 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2913 II->getIntrinsicID() != Intrinsic::lifetime_end) 2914 return false; 2915 } 2916 return true; 2917 } 2918 2919 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2920 const Instruction *CtxI, 2921 const DominatorTree *DT, 2922 const TargetLibraryInfo *TLI) { 2923 const Operator *Inst = dyn_cast<Operator>(V); 2924 if (!Inst) 2925 return false; 2926 2927 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2928 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2929 if (C->canTrap()) 2930 return false; 2931 2932 switch (Inst->getOpcode()) { 2933 default: 2934 return true; 2935 case Instruction::UDiv: 2936 case Instruction::URem: { 2937 // x / y is undefined if y == 0. 2938 const APInt *V; 2939 if (match(Inst->getOperand(1), m_APInt(V))) 2940 return *V != 0; 2941 return false; 2942 } 2943 case Instruction::SDiv: 2944 case Instruction::SRem: { 2945 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2946 const APInt *Numerator, *Denominator; 2947 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 2948 return false; 2949 // We cannot hoist this division if the denominator is 0. 2950 if (*Denominator == 0) 2951 return false; 2952 // It's safe to hoist if the denominator is not 0 or -1. 2953 if (*Denominator != -1) 2954 return true; 2955 // At this point we know that the denominator is -1. It is safe to hoist as 2956 // long we know that the numerator is not INT_MIN. 2957 if (match(Inst->getOperand(0), m_APInt(Numerator))) 2958 return !Numerator->isMinSignedValue(); 2959 // The numerator *might* be MinSignedValue. 2960 return false; 2961 } 2962 case Instruction::Load: { 2963 const LoadInst *LI = cast<LoadInst>(Inst); 2964 if (!LI->isUnordered() || 2965 // Speculative load may create a race that did not exist in the source. 2966 LI->getParent()->getParent()->hasFnAttribute( 2967 Attribute::SanitizeThread) || 2968 // Speculative load may load data from dirty regions. 2969 LI->getParent()->getParent()->hasFnAttribute( 2970 Attribute::SanitizeAddress)) 2971 return false; 2972 const DataLayout &DL = LI->getModule()->getDataLayout(); 2973 return isDereferenceableAndAlignedPointer( 2974 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 2975 } 2976 case Instruction::Call: { 2977 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2978 switch (II->getIntrinsicID()) { 2979 // These synthetic intrinsics have no side-effects and just mark 2980 // information about their operands. 2981 // FIXME: There are other no-op synthetic instructions that potentially 2982 // should be considered at least *safe* to speculate... 2983 case Intrinsic::dbg_declare: 2984 case Intrinsic::dbg_value: 2985 return true; 2986 2987 case Intrinsic::bswap: 2988 case Intrinsic::ctlz: 2989 case Intrinsic::ctpop: 2990 case Intrinsic::cttz: 2991 case Intrinsic::objectsize: 2992 case Intrinsic::sadd_with_overflow: 2993 case Intrinsic::smul_with_overflow: 2994 case Intrinsic::ssub_with_overflow: 2995 case Intrinsic::uadd_with_overflow: 2996 case Intrinsic::umul_with_overflow: 2997 case Intrinsic::usub_with_overflow: 2998 return true; 2999 // These intrinsics are defined to have the same behavior as libm 3000 // functions except for setting errno. 3001 case Intrinsic::sqrt: 3002 case Intrinsic::fma: 3003 case Intrinsic::fmuladd: 3004 return true; 3005 // These intrinsics are defined to have the same behavior as libm 3006 // functions, and the corresponding libm functions never set errno. 3007 case Intrinsic::trunc: 3008 case Intrinsic::copysign: 3009 case Intrinsic::fabs: 3010 case Intrinsic::minnum: 3011 case Intrinsic::maxnum: 3012 return true; 3013 // These intrinsics are defined to have the same behavior as libm 3014 // functions, which never overflow when operating on the IEEE754 types 3015 // that we support, and never set errno otherwise. 3016 case Intrinsic::ceil: 3017 case Intrinsic::floor: 3018 case Intrinsic::nearbyint: 3019 case Intrinsic::rint: 3020 case Intrinsic::round: 3021 return true; 3022 // TODO: are convert_{from,to}_fp16 safe? 3023 // TODO: can we list target-specific intrinsics here? 3024 default: break; 3025 } 3026 } 3027 return false; // The called function could have undefined behavior or 3028 // side-effects, even if marked readnone nounwind. 3029 } 3030 case Instruction::VAArg: 3031 case Instruction::Alloca: 3032 case Instruction::Invoke: 3033 case Instruction::PHI: 3034 case Instruction::Store: 3035 case Instruction::Ret: 3036 case Instruction::Br: 3037 case Instruction::IndirectBr: 3038 case Instruction::Switch: 3039 case Instruction::Unreachable: 3040 case Instruction::Fence: 3041 case Instruction::AtomicRMW: 3042 case Instruction::AtomicCmpXchg: 3043 case Instruction::LandingPad: 3044 case Instruction::Resume: 3045 case Instruction::CatchSwitch: 3046 case Instruction::CatchPad: 3047 case Instruction::CatchRet: 3048 case Instruction::CleanupPad: 3049 case Instruction::CleanupRet: 3050 return false; // Misc instructions which have effects 3051 } 3052 } 3053 3054 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3055 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3056 } 3057 3058 /// Return true if we know that the specified value is never null. 3059 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3060 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3061 3062 // Alloca never returns null, malloc might. 3063 if (isa<AllocaInst>(V)) return true; 3064 3065 // A byval, inalloca, or nonnull argument is never null. 3066 if (const Argument *A = dyn_cast<Argument>(V)) 3067 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3068 3069 // A global variable in address space 0 is non null unless extern weak. 3070 // Other address spaces may have null as a valid address for a global, 3071 // so we can't assume anything. 3072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3073 return !GV->hasExternalWeakLinkage() && 3074 GV->getType()->getAddressSpace() == 0; 3075 3076 // A Load tagged w/nonnull metadata is never null. 3077 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3078 return LI->getMetadata(LLVMContext::MD_nonnull); 3079 3080 if (auto CS = ImmutableCallSite(V)) 3081 if (CS.isReturnNonNull()) 3082 return true; 3083 3084 return false; 3085 } 3086 3087 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3088 const Instruction *CtxI, 3089 const DominatorTree *DT) { 3090 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3091 3092 unsigned NumUsesExplored = 0; 3093 for (auto U : V->users()) { 3094 // Avoid massive lists 3095 if (NumUsesExplored >= DomConditionsMaxUses) 3096 break; 3097 NumUsesExplored++; 3098 // Consider only compare instructions uniquely controlling a branch 3099 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3100 if (!Cmp) 3101 continue; 3102 3103 for (auto *CmpU : Cmp->users()) { 3104 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3105 if (!BI) 3106 continue; 3107 3108 assert(BI->isConditional() && "uses a comparison!"); 3109 3110 BasicBlock *NonNullSuccessor = nullptr; 3111 CmpInst::Predicate Pred; 3112 3113 if (match(const_cast<ICmpInst*>(Cmp), 3114 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3115 if (Pred == ICmpInst::ICMP_EQ) 3116 NonNullSuccessor = BI->getSuccessor(1); 3117 else if (Pred == ICmpInst::ICMP_NE) 3118 NonNullSuccessor = BI->getSuccessor(0); 3119 } 3120 3121 if (NonNullSuccessor) { 3122 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3123 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3124 return true; 3125 } 3126 } 3127 } 3128 3129 return false; 3130 } 3131 3132 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3133 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3134 if (isKnownNonNull(V, TLI)) 3135 return true; 3136 3137 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3138 } 3139 3140 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3141 const DataLayout &DL, 3142 AssumptionCache *AC, 3143 const Instruction *CxtI, 3144 const DominatorTree *DT) { 3145 // Multiplying n * m significant bits yields a result of n + m significant 3146 // bits. If the total number of significant bits does not exceed the 3147 // result bit width (minus 1), there is no overflow. 3148 // This means if we have enough leading zero bits in the operands 3149 // we can guarantee that the result does not overflow. 3150 // Ref: "Hacker's Delight" by Henry Warren 3151 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3152 APInt LHSKnownZero(BitWidth, 0); 3153 APInt LHSKnownOne(BitWidth, 0); 3154 APInt RHSKnownZero(BitWidth, 0); 3155 APInt RHSKnownOne(BitWidth, 0); 3156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3157 DT); 3158 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3159 DT); 3160 // Note that underestimating the number of zero bits gives a more 3161 // conservative answer. 3162 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3163 RHSKnownZero.countLeadingOnes(); 3164 // First handle the easy case: if we have enough zero bits there's 3165 // definitely no overflow. 3166 if (ZeroBits >= BitWidth) 3167 return OverflowResult::NeverOverflows; 3168 3169 // Get the largest possible values for each operand. 3170 APInt LHSMax = ~LHSKnownZero; 3171 APInt RHSMax = ~RHSKnownZero; 3172 3173 // We know the multiply operation doesn't overflow if the maximum values for 3174 // each operand will not overflow after we multiply them together. 3175 bool MaxOverflow; 3176 LHSMax.umul_ov(RHSMax, MaxOverflow); 3177 if (!MaxOverflow) 3178 return OverflowResult::NeverOverflows; 3179 3180 // We know it always overflows if multiplying the smallest possible values for 3181 // the operands also results in overflow. 3182 bool MinOverflow; 3183 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3184 if (MinOverflow) 3185 return OverflowResult::AlwaysOverflows; 3186 3187 return OverflowResult::MayOverflow; 3188 } 3189 3190 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3191 const DataLayout &DL, 3192 AssumptionCache *AC, 3193 const Instruction *CxtI, 3194 const DominatorTree *DT) { 3195 bool LHSKnownNonNegative, LHSKnownNegative; 3196 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3197 AC, CxtI, DT); 3198 if (LHSKnownNonNegative || LHSKnownNegative) { 3199 bool RHSKnownNonNegative, RHSKnownNegative; 3200 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3201 AC, CxtI, DT); 3202 3203 if (LHSKnownNegative && RHSKnownNegative) { 3204 // The sign bit is set in both cases: this MUST overflow. 3205 // Create a simple add instruction, and insert it into the struct. 3206 return OverflowResult::AlwaysOverflows; 3207 } 3208 3209 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3210 // The sign bit is clear in both cases: this CANNOT overflow. 3211 // Create a simple add instruction, and insert it into the struct. 3212 return OverflowResult::NeverOverflows; 3213 } 3214 } 3215 3216 return OverflowResult::MayOverflow; 3217 } 3218 3219 static OverflowResult computeOverflowForSignedAdd( 3220 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3221 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3222 if (Add && Add->hasNoSignedWrap()) { 3223 return OverflowResult::NeverOverflows; 3224 } 3225 3226 bool LHSKnownNonNegative, LHSKnownNegative; 3227 bool RHSKnownNonNegative, RHSKnownNegative; 3228 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3229 AC, CxtI, DT); 3230 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3231 AC, CxtI, DT); 3232 3233 if ((LHSKnownNonNegative && RHSKnownNegative) || 3234 (LHSKnownNegative && RHSKnownNonNegative)) { 3235 // The sign bits are opposite: this CANNOT overflow. 3236 return OverflowResult::NeverOverflows; 3237 } 3238 3239 // The remaining code needs Add to be available. Early returns if not so. 3240 if (!Add) 3241 return OverflowResult::MayOverflow; 3242 3243 // If the sign of Add is the same as at least one of the operands, this add 3244 // CANNOT overflow. This is particularly useful when the sum is 3245 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3246 // operands. 3247 bool LHSOrRHSKnownNonNegative = 3248 (LHSKnownNonNegative || RHSKnownNonNegative); 3249 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3250 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3251 bool AddKnownNonNegative, AddKnownNegative; 3252 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3253 /*Depth=*/0, AC, CxtI, DT); 3254 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3255 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3256 return OverflowResult::NeverOverflows; 3257 } 3258 } 3259 3260 return OverflowResult::MayOverflow; 3261 } 3262 3263 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3264 const DataLayout &DL, 3265 AssumptionCache *AC, 3266 const Instruction *CxtI, 3267 const DominatorTree *DT) { 3268 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3269 Add, DL, AC, CxtI, DT); 3270 } 3271 3272 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3273 const DataLayout &DL, 3274 AssumptionCache *AC, 3275 const Instruction *CxtI, 3276 const DominatorTree *DT) { 3277 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3278 } 3279 3280 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3281 // FIXME: This conservative implementation can be relaxed. E.g. most 3282 // atomic operations are guaranteed to terminate on most platforms 3283 // and most functions terminate. 3284 3285 return !I->isAtomic() && // atomics may never succeed on some platforms 3286 !isa<CallInst>(I) && // could throw and might not terminate 3287 !isa<InvokeInst>(I) && // might not terminate and could throw to 3288 // non-successor (see bug 24185 for details). 3289 !isa<ResumeInst>(I) && // has no successors 3290 !isa<ReturnInst>(I); // has no successors 3291 } 3292 3293 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3294 const Loop *L) { 3295 // The loop header is guaranteed to be executed for every iteration. 3296 // 3297 // FIXME: Relax this constraint to cover all basic blocks that are 3298 // guaranteed to be executed at every iteration. 3299 if (I->getParent() != L->getHeader()) return false; 3300 3301 for (const Instruction &LI : *L->getHeader()) { 3302 if (&LI == I) return true; 3303 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3304 } 3305 llvm_unreachable("Instruction not contained in its own parent basic block."); 3306 } 3307 3308 bool llvm::propagatesFullPoison(const Instruction *I) { 3309 switch (I->getOpcode()) { 3310 case Instruction::Add: 3311 case Instruction::Sub: 3312 case Instruction::Xor: 3313 case Instruction::Trunc: 3314 case Instruction::BitCast: 3315 case Instruction::AddrSpaceCast: 3316 // These operations all propagate poison unconditionally. Note that poison 3317 // is not any particular value, so xor or subtraction of poison with 3318 // itself still yields poison, not zero. 3319 return true; 3320 3321 case Instruction::AShr: 3322 case Instruction::SExt: 3323 // For these operations, one bit of the input is replicated across 3324 // multiple output bits. A replicated poison bit is still poison. 3325 return true; 3326 3327 case Instruction::Shl: { 3328 // Left shift *by* a poison value is poison. The number of 3329 // positions to shift is unsigned, so no negative values are 3330 // possible there. Left shift by zero places preserves poison. So 3331 // it only remains to consider left shift of poison by a positive 3332 // number of places. 3333 // 3334 // A left shift by a positive number of places leaves the lowest order bit 3335 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3336 // make the poison operand violate that flag, yielding a fresh full-poison 3337 // value. 3338 auto *OBO = cast<OverflowingBinaryOperator>(I); 3339 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3340 } 3341 3342 case Instruction::Mul: { 3343 // A multiplication by zero yields a non-poison zero result, so we need to 3344 // rule out zero as an operand. Conservatively, multiplication by a 3345 // non-zero constant is not multiplication by zero. 3346 // 3347 // Multiplication by a non-zero constant can leave some bits 3348 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3349 // order bit unpoisoned. So we need to consider that. 3350 // 3351 // Multiplication by 1 preserves poison. If the multiplication has a 3352 // no-wrap flag, then we can make the poison operand violate that flag 3353 // when multiplied by any integer other than 0 and 1. 3354 auto *OBO = cast<OverflowingBinaryOperator>(I); 3355 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3356 for (Value *V : OBO->operands()) { 3357 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3358 // A ConstantInt cannot yield poison, so we can assume that it is 3359 // the other operand that is poison. 3360 return !CI->isZero(); 3361 } 3362 } 3363 } 3364 return false; 3365 } 3366 3367 case Instruction::GetElementPtr: 3368 // A GEP implicitly represents a sequence of additions, subtractions, 3369 // truncations, sign extensions and multiplications. The multiplications 3370 // are by the non-zero sizes of some set of types, so we do not have to be 3371 // concerned with multiplication by zero. If the GEP is in-bounds, then 3372 // these operations are implicitly no-signed-wrap so poison is propagated 3373 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3374 return cast<GEPOperator>(I)->isInBounds(); 3375 3376 default: 3377 return false; 3378 } 3379 } 3380 3381 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3382 switch (I->getOpcode()) { 3383 case Instruction::Store: 3384 return cast<StoreInst>(I)->getPointerOperand(); 3385 3386 case Instruction::Load: 3387 return cast<LoadInst>(I)->getPointerOperand(); 3388 3389 case Instruction::AtomicCmpXchg: 3390 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3391 3392 case Instruction::AtomicRMW: 3393 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3394 3395 case Instruction::UDiv: 3396 case Instruction::SDiv: 3397 case Instruction::URem: 3398 case Instruction::SRem: 3399 return I->getOperand(1); 3400 3401 default: 3402 return nullptr; 3403 } 3404 } 3405 3406 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3407 // We currently only look for uses of poison values within the same basic 3408 // block, as that makes it easier to guarantee that the uses will be 3409 // executed given that PoisonI is executed. 3410 // 3411 // FIXME: Expand this to consider uses beyond the same basic block. To do 3412 // this, look out for the distinction between post-dominance and strong 3413 // post-dominance. 3414 const BasicBlock *BB = PoisonI->getParent(); 3415 3416 // Set of instructions that we have proved will yield poison if PoisonI 3417 // does. 3418 SmallSet<const Value *, 16> YieldsPoison; 3419 YieldsPoison.insert(PoisonI); 3420 3421 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3422 I != E; ++I) { 3423 if (&*I != PoisonI) { 3424 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3425 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3426 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3427 return false; 3428 } 3429 3430 // Mark poison that propagates from I through uses of I. 3431 if (YieldsPoison.count(&*I)) { 3432 for (const User *User : I->users()) { 3433 const Instruction *UserI = cast<Instruction>(User); 3434 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3435 YieldsPoison.insert(User); 3436 } 3437 } 3438 } 3439 return false; 3440 } 3441 3442 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3443 if (FMF.noNaNs()) 3444 return true; 3445 3446 if (auto *C = dyn_cast<ConstantFP>(V)) 3447 return !C->isNaN(); 3448 return false; 3449 } 3450 3451 static bool isKnownNonZero(Value *V) { 3452 if (auto *C = dyn_cast<ConstantFP>(V)) 3453 return !C->isZero(); 3454 return false; 3455 } 3456 3457 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3458 FastMathFlags FMF, 3459 Value *CmpLHS, Value *CmpRHS, 3460 Value *TrueVal, Value *FalseVal, 3461 Value *&LHS, Value *&RHS) { 3462 LHS = CmpLHS; 3463 RHS = CmpRHS; 3464 3465 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3466 // return inconsistent results between implementations. 3467 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3468 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3469 // Therefore we behave conservatively and only proceed if at least one of the 3470 // operands is known to not be zero, or if we don't care about signed zeroes. 3471 switch (Pred) { 3472 default: break; 3473 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3474 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3475 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3476 !isKnownNonZero(CmpRHS)) 3477 return {SPF_UNKNOWN, SPNB_NA, false}; 3478 } 3479 3480 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3481 bool Ordered = false; 3482 3483 // When given one NaN and one non-NaN input: 3484 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3485 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3486 // ordered comparison fails), which could be NaN or non-NaN. 3487 // so here we discover exactly what NaN behavior is required/accepted. 3488 if (CmpInst::isFPPredicate(Pred)) { 3489 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3490 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3491 3492 if (LHSSafe && RHSSafe) { 3493 // Both operands are known non-NaN. 3494 NaNBehavior = SPNB_RETURNS_ANY; 3495 } else if (CmpInst::isOrdered(Pred)) { 3496 // An ordered comparison will return false when given a NaN, so it 3497 // returns the RHS. 3498 Ordered = true; 3499 if (LHSSafe) 3500 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3501 NaNBehavior = SPNB_RETURNS_NAN; 3502 else if (RHSSafe) 3503 NaNBehavior = SPNB_RETURNS_OTHER; 3504 else 3505 // Completely unsafe. 3506 return {SPF_UNKNOWN, SPNB_NA, false}; 3507 } else { 3508 Ordered = false; 3509 // An unordered comparison will return true when given a NaN, so it 3510 // returns the LHS. 3511 if (LHSSafe) 3512 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3513 NaNBehavior = SPNB_RETURNS_OTHER; 3514 else if (RHSSafe) 3515 NaNBehavior = SPNB_RETURNS_NAN; 3516 else 3517 // Completely unsafe. 3518 return {SPF_UNKNOWN, SPNB_NA, false}; 3519 } 3520 } 3521 3522 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3523 std::swap(CmpLHS, CmpRHS); 3524 Pred = CmpInst::getSwappedPredicate(Pred); 3525 if (NaNBehavior == SPNB_RETURNS_NAN) 3526 NaNBehavior = SPNB_RETURNS_OTHER; 3527 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3528 NaNBehavior = SPNB_RETURNS_NAN; 3529 Ordered = !Ordered; 3530 } 3531 3532 // ([if]cmp X, Y) ? X : Y 3533 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3534 switch (Pred) { 3535 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3536 case ICmpInst::ICMP_UGT: 3537 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3538 case ICmpInst::ICMP_SGT: 3539 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3540 case ICmpInst::ICMP_ULT: 3541 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3542 case ICmpInst::ICMP_SLT: 3543 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3544 case FCmpInst::FCMP_UGT: 3545 case FCmpInst::FCMP_UGE: 3546 case FCmpInst::FCMP_OGT: 3547 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3548 case FCmpInst::FCMP_ULT: 3549 case FCmpInst::FCMP_ULE: 3550 case FCmpInst::FCMP_OLT: 3551 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3552 } 3553 } 3554 3555 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3556 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3557 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3558 3559 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3560 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3561 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3562 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3563 } 3564 3565 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3566 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3567 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3568 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3569 } 3570 } 3571 3572 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3573 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3574 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3575 ~C1->getValue() == C2->getValue() && 3576 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3577 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3578 LHS = TrueVal; 3579 RHS = FalseVal; 3580 return {SPF_SMIN, SPNB_NA, false}; 3581 } 3582 } 3583 } 3584 3585 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3586 3587 return {SPF_UNKNOWN, SPNB_NA, false}; 3588 } 3589 3590 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3591 Instruction::CastOps *CastOp) { 3592 CastInst *CI = dyn_cast<CastInst>(V1); 3593 Constant *C = dyn_cast<Constant>(V2); 3594 CastInst *CI2 = dyn_cast<CastInst>(V2); 3595 if (!CI) 3596 return nullptr; 3597 *CastOp = CI->getOpcode(); 3598 3599 if (CI2) { 3600 // If V1 and V2 are both the same cast from the same type, we can look 3601 // through V1. 3602 if (CI2->getOpcode() == CI->getOpcode() && 3603 CI2->getSrcTy() == CI->getSrcTy()) 3604 return CI2->getOperand(0); 3605 return nullptr; 3606 } else if (!C) { 3607 return nullptr; 3608 } 3609 3610 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3611 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3612 // This is only valid if the truncated value can be sign-extended 3613 // back to the original value. 3614 if (ConstantExpr::getSExt(T, C->getType()) == C) 3615 return T; 3616 return nullptr; 3617 } 3618 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3619 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3620 3621 if (isa<TruncInst>(CI)) 3622 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3623 3624 if (isa<FPToUIInst>(CI)) 3625 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3626 3627 if (isa<FPToSIInst>(CI)) 3628 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3629 3630 if (isa<UIToFPInst>(CI)) 3631 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3632 3633 if (isa<SIToFPInst>(CI)) 3634 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3635 3636 if (isa<FPTruncInst>(CI)) 3637 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3638 3639 if (isa<FPExtInst>(CI)) 3640 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3641 3642 return nullptr; 3643 } 3644 3645 SelectPatternResult llvm::matchSelectPattern(Value *V, 3646 Value *&LHS, Value *&RHS, 3647 Instruction::CastOps *CastOp) { 3648 SelectInst *SI = dyn_cast<SelectInst>(V); 3649 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3650 3651 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3652 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3653 3654 CmpInst::Predicate Pred = CmpI->getPredicate(); 3655 Value *CmpLHS = CmpI->getOperand(0); 3656 Value *CmpRHS = CmpI->getOperand(1); 3657 Value *TrueVal = SI->getTrueValue(); 3658 Value *FalseVal = SI->getFalseValue(); 3659 FastMathFlags FMF; 3660 if (isa<FPMathOperator>(CmpI)) 3661 FMF = CmpI->getFastMathFlags(); 3662 3663 // Bail out early. 3664 if (CmpI->isEquality()) 3665 return {SPF_UNKNOWN, SPNB_NA, false}; 3666 3667 // Deal with type mismatches. 3668 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3669 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3670 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3671 cast<CastInst>(TrueVal)->getOperand(0), C, 3672 LHS, RHS); 3673 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3674 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3675 C, cast<CastInst>(FalseVal)->getOperand(0), 3676 LHS, RHS); 3677 } 3678 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3679 LHS, RHS); 3680 } 3681 3682 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 3683 const unsigned NumRanges = Ranges.getNumOperands() / 2; 3684 assert(NumRanges >= 1 && "Must have at least one range!"); 3685 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 3686 3687 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 3688 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 3689 3690 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 3691 3692 for (unsigned i = 1; i < NumRanges; ++i) { 3693 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 3694 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 3695 3696 // Note: unionWith will potentially create a range that contains values not 3697 // contained in any of the original N ranges. 3698 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 3699 } 3700 3701 return CR; 3702 } 3703 3704 /// Return true if "icmp Pred LHS RHS" is always true. 3705 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 3706 const DataLayout &DL, unsigned Depth, 3707 AssumptionCache *AC, const Instruction *CxtI, 3708 const DominatorTree *DT) { 3709 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 3710 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 3711 return true; 3712 3713 switch (Pred) { 3714 default: 3715 return false; 3716 3717 case CmpInst::ICMP_SLE: { 3718 const APInt *C; 3719 3720 // LHS s<= LHS +_{nsw} C if C >= 0 3721 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 3722 return !C->isNegative(); 3723 return false; 3724 } 3725 3726 case CmpInst::ICMP_ULE: { 3727 const APInt *C; 3728 3729 // LHS u<= LHS +_{nuw} C for any C 3730 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 3731 return true; 3732 3733 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 3734 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 3735 const APInt *&CA, const APInt *&CB) { 3736 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 3737 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 3738 return true; 3739 3740 // If X & C == 0 then (X | C) == X +_{nuw} C 3741 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 3742 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 3743 unsigned BitWidth = CA->getBitWidth(); 3744 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3745 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 3746 3747 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 3748 return true; 3749 } 3750 3751 return false; 3752 }; 3753 3754 Value *X; 3755 const APInt *CLHS, *CRHS; 3756 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 3757 return CLHS->ule(*CRHS); 3758 3759 return false; 3760 } 3761 } 3762 } 3763 3764 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 3765 /// ALHS ARHS" is true. 3766 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 3767 Value *ARHS, Value *BLHS, Value *BRHS, 3768 const DataLayout &DL, unsigned Depth, 3769 AssumptionCache *AC, const Instruction *CxtI, 3770 const DominatorTree *DT) { 3771 switch (Pred) { 3772 default: 3773 return false; 3774 3775 case CmpInst::ICMP_SLT: 3776 case CmpInst::ICMP_SLE: 3777 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 3778 DT) && 3779 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 3780 DT); 3781 3782 case CmpInst::ICMP_ULT: 3783 case CmpInst::ICMP_ULE: 3784 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 3785 DT) && 3786 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 3787 DT); 3788 } 3789 } 3790 3791 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 3792 unsigned Depth, AssumptionCache *AC, 3793 const Instruction *CxtI, 3794 const DominatorTree *DT) { 3795 assert(LHS->getType() == RHS->getType() && "mismatched type"); 3796 Type *OpTy = LHS->getType(); 3797 assert(OpTy->getScalarType()->isIntegerTy(1)); 3798 3799 // LHS ==> RHS by definition 3800 if (LHS == RHS) return true; 3801 3802 if (OpTy->isVectorTy()) 3803 // TODO: extending the code below to handle vectors 3804 return false; 3805 assert(OpTy->isIntegerTy(1) && "implied by above"); 3806 3807 ICmpInst::Predicate APred, BPred; 3808 Value *ALHS, *ARHS; 3809 Value *BLHS, *BRHS; 3810 3811 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 3812 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 3813 return false; 3814 3815 if (APred == BPred) 3816 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 3817 CxtI, DT); 3818 3819 return false; 3820 } 3821