1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 513 J != JE; ++J) 514 WorkSet.push_back(*J); 515 } 516 } 517 } 518 519 return false; 520 } 521 522 // Is this an intrinsic that cannot be speculated but also cannot trap? 523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 524 if (const CallInst *CI = dyn_cast<CallInst>(I)) 525 if (Function *F = CI->getCalledFunction()) 526 switch (F->getIntrinsicID()) { 527 default: break; 528 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 529 case Intrinsic::assume: 530 case Intrinsic::sideeffect: 531 case Intrinsic::pseudoprobe: 532 case Intrinsic::dbg_declare: 533 case Intrinsic::dbg_value: 534 case Intrinsic::dbg_label: 535 case Intrinsic::invariant_start: 536 case Intrinsic::invariant_end: 537 case Intrinsic::lifetime_start: 538 case Intrinsic::lifetime_end: 539 case Intrinsic::experimental_noalias_scope_decl: 540 case Intrinsic::objectsize: 541 case Intrinsic::ptr_annotation: 542 case Intrinsic::var_annotation: 543 return true; 544 } 545 546 return false; 547 } 548 549 bool llvm::isValidAssumeForContext(const Instruction *Inv, 550 const Instruction *CxtI, 551 const DominatorTree *DT) { 552 // There are two restrictions on the use of an assume: 553 // 1. The assume must dominate the context (or the control flow must 554 // reach the assume whenever it reaches the context). 555 // 2. The context must not be in the assume's set of ephemeral values 556 // (otherwise we will use the assume to prove that the condition 557 // feeding the assume is trivially true, thus causing the removal of 558 // the assume). 559 560 if (Inv->getParent() == CxtI->getParent()) { 561 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 562 // in the BB. 563 if (Inv->comesBefore(CxtI)) 564 return true; 565 566 // Don't let an assume affect itself - this would cause the problems 567 // `isEphemeralValueOf` is trying to prevent, and it would also make 568 // the loop below go out of bounds. 569 if (Inv == CxtI) 570 return false; 571 572 // The context comes first, but they're both in the same block. 573 // Make sure there is nothing in between that might interrupt 574 // the control flow, not even CxtI itself. 575 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 576 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 577 return false; 578 579 return !isEphemeralValueOf(Inv, CxtI); 580 } 581 582 // Inv and CxtI are in different blocks. 583 if (DT) { 584 if (DT->dominates(Inv, CxtI)) 585 return true; 586 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 587 // We don't have a DT, but this trivially dominates. 588 return true; 589 } 590 591 return false; 592 } 593 594 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 595 // v u> y implies v != 0. 596 if (Pred == ICmpInst::ICMP_UGT) 597 return true; 598 599 // Special-case v != 0 to also handle v != null. 600 if (Pred == ICmpInst::ICMP_NE) 601 return match(RHS, m_Zero()); 602 603 // All other predicates - rely on generic ConstantRange handling. 604 const APInt *C; 605 if (!match(RHS, m_APInt(C))) 606 return false; 607 608 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 609 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 610 } 611 612 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 613 // Use of assumptions is context-sensitive. If we don't have a context, we 614 // cannot use them! 615 if (!Q.AC || !Q.CxtI) 616 return false; 617 618 if (Q.CxtI && V->getType()->isPointerTy()) { 619 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 620 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 621 V->getType()->getPointerAddressSpace())) 622 AttrKinds.push_back(Attribute::Dereferenceable); 623 624 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 625 return true; 626 } 627 628 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 629 if (!AssumeVH) 630 continue; 631 CallInst *I = cast<CallInst>(AssumeVH); 632 assert(I->getFunction() == Q.CxtI->getFunction() && 633 "Got assumption for the wrong function!"); 634 if (Q.isExcluded(I)) 635 continue; 636 637 // Warning: This loop can end up being somewhat performance sensitive. 638 // We're running this loop for once for each value queried resulting in a 639 // runtime of ~O(#assumes * #values). 640 641 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 642 "must be an assume intrinsic"); 643 644 Value *RHS; 645 CmpInst::Predicate Pred; 646 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 647 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 648 return false; 649 650 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 651 return true; 652 } 653 654 return false; 655 } 656 657 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 658 unsigned Depth, const Query &Q) { 659 // Use of assumptions is context-sensitive. If we don't have a context, we 660 // cannot use them! 661 if (!Q.AC || !Q.CxtI) 662 return; 663 664 unsigned BitWidth = Known.getBitWidth(); 665 666 // Refine Known set if the pointer alignment is set by assume bundles. 667 if (V->getType()->isPointerTy()) { 668 if (RetainedKnowledge RK = getKnowledgeValidInContext( 669 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 670 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 671 } 672 } 673 674 // Note that the patterns below need to be kept in sync with the code 675 // in AssumptionCache::updateAffectedValues. 676 677 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 678 if (!AssumeVH) 679 continue; 680 CallInst *I = cast<CallInst>(AssumeVH); 681 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 682 "Got assumption for the wrong function!"); 683 if (Q.isExcluded(I)) 684 continue; 685 686 // Warning: This loop can end up being somewhat performance sensitive. 687 // We're running this loop for once for each value queried resulting in a 688 // runtime of ~O(#assumes * #values). 689 690 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 691 "must be an assume intrinsic"); 692 693 Value *Arg = I->getArgOperand(0); 694 695 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 696 assert(BitWidth == 1 && "assume operand is not i1?"); 697 Known.setAllOnes(); 698 return; 699 } 700 if (match(Arg, m_Not(m_Specific(V))) && 701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 702 assert(BitWidth == 1 && "assume operand is not i1?"); 703 Known.setAllZero(); 704 return; 705 } 706 707 // The remaining tests are all recursive, so bail out if we hit the limit. 708 if (Depth == MaxAnalysisRecursionDepth) 709 continue; 710 711 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 712 if (!Cmp) 713 continue; 714 715 // Note that ptrtoint may change the bitwidth. 716 Value *A, *B; 717 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 718 719 CmpInst::Predicate Pred; 720 uint64_t C; 721 switch (Cmp->getPredicate()) { 722 default: 723 break; 724 case ICmpInst::ICMP_EQ: 725 // assume(v = a) 726 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 KnownBits RHSKnown = 729 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 730 Known.Zero |= RHSKnown.Zero; 731 Known.One |= RHSKnown.One; 732 // assume(v & b = a) 733 } else if (match(Cmp, 734 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 KnownBits RHSKnown = 737 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 738 KnownBits MaskKnown = 739 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 740 741 // For those bits in the mask that are known to be one, we can propagate 742 // known bits from the RHS to V. 743 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 744 Known.One |= RHSKnown.One & MaskKnown.One; 745 // assume(~(v & b) = a) 746 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 747 m_Value(A))) && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 KnownBits RHSKnown = 750 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 751 KnownBits MaskKnown = 752 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 753 754 // For those bits in the mask that are known to be one, we can propagate 755 // inverted known bits from the RHS to V. 756 Known.Zero |= RHSKnown.One & MaskKnown.One; 757 Known.One |= RHSKnown.Zero & MaskKnown.One; 758 // assume(v | b = a) 759 } else if (match(Cmp, 760 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 764 KnownBits BKnown = 765 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 766 767 // For those bits in B that are known to be zero, we can propagate known 768 // bits from the RHS to V. 769 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 770 Known.One |= RHSKnown.One & BKnown.Zero; 771 // assume(~(v | b) = a) 772 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 773 m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 777 KnownBits BKnown = 778 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 779 780 // For those bits in B that are known to be zero, we can propagate 781 // inverted known bits from the RHS to V. 782 Known.Zero |= RHSKnown.One & BKnown.Zero; 783 Known.One |= RHSKnown.Zero & BKnown.Zero; 784 // assume(v ^ b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate known 794 // bits from the RHS to V. For those bits in B that are known to be one, 795 // we can propagate inverted known bits from the RHS to V. 796 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 797 Known.One |= RHSKnown.One & BKnown.Zero; 798 Known.Zero |= RHSKnown.One & BKnown.One; 799 Known.One |= RHSKnown.Zero & BKnown.One; 800 // assume(~(v ^ b) = a) 801 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 802 m_Value(A))) && 803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 804 KnownBits RHSKnown = 805 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 806 KnownBits BKnown = 807 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 808 809 // For those bits in B that are known to be zero, we can propagate 810 // inverted known bits from the RHS to V. For those bits in B that are 811 // known to be one, we can propagate known bits from the RHS to V. 812 Known.Zero |= RHSKnown.One & BKnown.Zero; 813 Known.One |= RHSKnown.Zero & BKnown.Zero; 814 Known.Zero |= RHSKnown.Zero & BKnown.One; 815 Known.One |= RHSKnown.One & BKnown.One; 816 // assume(v << c = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 823 // For those bits in RHS that are known, we can propagate them to known 824 // bits in V shifted to the right by C. 825 RHSKnown.Zero.lshrInPlace(C); 826 Known.Zero |= RHSKnown.Zero; 827 RHSKnown.One.lshrInPlace(C); 828 Known.One |= RHSKnown.One; 829 // assume(~(v << c) = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 // For those bits in RHS that are known, we can propagate them inverted 836 // to known bits in V shifted to the right by C. 837 RHSKnown.One.lshrInPlace(C); 838 Known.Zero |= RHSKnown.One; 839 RHSKnown.Zero.lshrInPlace(C); 840 Known.One |= RHSKnown.Zero; 841 // assume(v >> c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 847 // For those bits in RHS that are known, we can propagate them to known 848 // bits in V shifted to the right by C. 849 Known.Zero |= RHSKnown.Zero << C; 850 Known.One |= RHSKnown.One << C; 851 // assume(~(v >> c) = a) 852 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 853 m_Value(A))) && 854 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 855 KnownBits RHSKnown = 856 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 857 // For those bits in RHS that are known, we can propagate them inverted 858 // to known bits in V shifted to the right by C. 859 Known.Zero |= RHSKnown.One << C; 860 Known.One |= RHSKnown.Zero << C; 861 } 862 break; 863 case ICmpInst::ICMP_SGE: 864 // assume(v >=_s c) where c is non-negative 865 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 866 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 867 KnownBits RHSKnown = 868 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 869 870 if (RHSKnown.isNonNegative()) { 871 // We know that the sign bit is zero. 872 Known.makeNonNegative(); 873 } 874 } 875 break; 876 case ICmpInst::ICMP_SGT: 877 // assume(v >_s c) where c is at least -1. 878 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 882 883 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 884 // We know that the sign bit is zero. 885 Known.makeNonNegative(); 886 } 887 } 888 break; 889 case ICmpInst::ICMP_SLE: 890 // assume(v <=_s c) where c is negative 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isNegative()) { 897 // We know that the sign bit is one. 898 Known.makeNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SLT: 903 // assume(v <_s c) where c is non-positive 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 910 // We know that the sign bit is one. 911 Known.makeNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_ULE: 916 // assume(v <=_u c) 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 921 922 // Whatever high bits in c are zero are known to be zero. 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 924 } 925 break; 926 case ICmpInst::ICMP_ULT: 927 // assume(v <_u c) 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown = 931 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 932 933 // If the RHS is known zero, then this assumption must be wrong (nothing 934 // is unsigned less than zero). Signal a conflict and get out of here. 935 if (RHSKnown.isZero()) { 936 Known.Zero.setAllBits(); 937 Known.One.setAllBits(); 938 break; 939 } 940 941 // Whatever high bits in c are zero are known to be zero (if c is a power 942 // of 2, then one more). 943 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 944 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 945 else 946 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 947 } 948 break; 949 } 950 } 951 952 // If assumptions conflict with each other or previous known bits, then we 953 // have a logical fallacy. It's possible that the assumption is not reachable, 954 // so this isn't a real bug. On the other hand, the program may have undefined 955 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 956 // clear out the known bits, try to warn the user, and hope for the best. 957 if (Known.Zero.intersects(Known.One)) { 958 Known.resetAll(); 959 960 if (Q.ORE) 961 Q.ORE->emit([&]() { 962 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 963 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 964 CxtI) 965 << "Detected conflicting code assumptions. Program may " 966 "have undefined behavior, or compiler may have " 967 "internal error."; 968 }); 969 } 970 } 971 972 /// Compute known bits from a shift operator, including those with a 973 /// non-constant shift amount. Known is the output of this function. Known2 is a 974 /// pre-allocated temporary with the same bit width as Known and on return 975 /// contains the known bit of the shift value source. KF is an 976 /// operator-specific function that, given the known-bits and a shift amount, 977 /// compute the implied known-bits of the shift operator's result respectively 978 /// for that shift amount. The results from calling KF are conservatively 979 /// combined for all permitted shift amounts. 980 static void computeKnownBitsFromShiftOperator( 981 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 982 KnownBits &Known2, unsigned Depth, const Query &Q, 983 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 988 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 989 // BitWidth > 64 and any upper bits are known, we'll end up returning the 990 // limit value (which implies all bits are known). 991 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 992 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 993 bool ShiftAmtIsConstant = Known.isConstant(); 994 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 995 996 if (ShiftAmtIsConstant) { 997 Known = KF(Known2, Known); 998 999 // If the known bits conflict, this must be an overflowing left shift, so 1000 // the shift result is poison. We can return anything we want. Choose 0 for 1001 // the best folding opportunity. 1002 if (Known.hasConflict()) 1003 Known.setAllZero(); 1004 1005 return; 1006 } 1007 1008 // If the shift amount could be greater than or equal to the bit-width of the 1009 // LHS, the value could be poison, but bail out because the check below is 1010 // expensive. 1011 // TODO: Should we just carry on? 1012 if (MaxShiftAmtIsOutOfRange) { 1013 Known.resetAll(); 1014 return; 1015 } 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 Known.Zero.setAllBits(); 1036 Known.One.setAllBits(); 1037 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1038 // Combine the shifted known input bits only for those shift amounts 1039 // compatible with its known constraints. 1040 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1041 continue; 1042 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1043 continue; 1044 // If we know the shifter is nonzero, we may be able to infer more known 1045 // bits. This check is sunk down as far as possible to avoid the expensive 1046 // call to isKnownNonZero if the cheaper checks above fail. 1047 if (ShiftAmt == 0) { 1048 if (!ShifterOperandIsNonZero.hasValue()) 1049 ShifterOperandIsNonZero = 1050 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1051 if (*ShifterOperandIsNonZero) 1052 continue; 1053 } 1054 1055 Known = KnownBits::commonBits( 1056 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1057 } 1058 1059 // If the known bits conflict, the result is poison. Return a 0 and hope the 1060 // caller can further optimize that. 1061 if (Known.hasConflict()) 1062 Known.setAllZero(); 1063 } 1064 1065 static void computeKnownBitsFromOperator(const Operator *I, 1066 const APInt &DemandedElts, 1067 KnownBits &Known, unsigned Depth, 1068 const Query &Q) { 1069 unsigned BitWidth = Known.getBitWidth(); 1070 1071 KnownBits Known2(BitWidth); 1072 switch (I->getOpcode()) { 1073 default: break; 1074 case Instruction::Load: 1075 if (MDNode *MD = 1076 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1077 computeKnownBitsFromRangeMetadata(*MD, Known); 1078 break; 1079 case Instruction::And: { 1080 // If either the LHS or the RHS are Zero, the result is zero. 1081 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1082 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1083 1084 Known &= Known2; 1085 1086 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1087 // here we handle the more general case of adding any odd number by 1088 // matching the form add(x, add(x, y)) where y is odd. 1089 // TODO: This could be generalized to clearing any bit set in y where the 1090 // following bit is known to be unset in y. 1091 Value *X = nullptr, *Y = nullptr; 1092 if (!Known.Zero[0] && !Known.One[0] && 1093 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1094 Known2.resetAll(); 1095 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1096 if (Known2.countMinTrailingOnes() > 0) 1097 Known.Zero.setBit(0); 1098 } 1099 break; 1100 } 1101 case Instruction::Or: 1102 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1103 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1104 1105 Known |= Known2; 1106 break; 1107 case Instruction::Xor: 1108 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known ^= Known2; 1112 break; 1113 case Instruction::Mul: { 1114 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1115 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1116 Known, Known2, Depth, Q); 1117 break; 1118 } 1119 case Instruction::UDiv: { 1120 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1121 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1122 Known = KnownBits::udiv(Known, Known2); 1123 break; 1124 } 1125 case Instruction::Select: { 1126 const Value *LHS = nullptr, *RHS = nullptr; 1127 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1128 if (SelectPatternResult::isMinOrMax(SPF)) { 1129 computeKnownBits(RHS, Known, Depth + 1, Q); 1130 computeKnownBits(LHS, Known2, Depth + 1, Q); 1131 switch (SPF) { 1132 default: 1133 llvm_unreachable("Unhandled select pattern flavor!"); 1134 case SPF_SMAX: 1135 Known = KnownBits::smax(Known, Known2); 1136 break; 1137 case SPF_SMIN: 1138 Known = KnownBits::smin(Known, Known2); 1139 break; 1140 case SPF_UMAX: 1141 Known = KnownBits::umax(Known, Known2); 1142 break; 1143 case SPF_UMIN: 1144 Known = KnownBits::umin(Known, Known2); 1145 break; 1146 } 1147 break; 1148 } 1149 1150 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1151 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1152 1153 // Only known if known in both the LHS and RHS. 1154 Known = KnownBits::commonBits(Known, Known2); 1155 1156 if (SPF == SPF_ABS) { 1157 // RHS from matchSelectPattern returns the negation part of abs pattern. 1158 // If the negate has an NSW flag we can assume the sign bit of the result 1159 // will be 0 because that makes abs(INT_MIN) undefined. 1160 if (match(RHS, m_Neg(m_Specific(LHS))) && 1161 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1162 Known.Zero.setSignBit(); 1163 } 1164 1165 break; 1166 } 1167 case Instruction::FPTrunc: 1168 case Instruction::FPExt: 1169 case Instruction::FPToUI: 1170 case Instruction::FPToSI: 1171 case Instruction::SIToFP: 1172 case Instruction::UIToFP: 1173 break; // Can't work with floating point. 1174 case Instruction::PtrToInt: 1175 case Instruction::IntToPtr: 1176 // Fall through and handle them the same as zext/trunc. 1177 LLVM_FALLTHROUGH; 1178 case Instruction::ZExt: 1179 case Instruction::Trunc: { 1180 Type *SrcTy = I->getOperand(0)->getType(); 1181 1182 unsigned SrcBitWidth; 1183 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1184 // which fall through here. 1185 Type *ScalarTy = SrcTy->getScalarType(); 1186 SrcBitWidth = ScalarTy->isPointerTy() ? 1187 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1188 Q.DL.getTypeSizeInBits(ScalarTy); 1189 1190 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1191 Known = Known.anyextOrTrunc(SrcBitWidth); 1192 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1193 Known = Known.zextOrTrunc(BitWidth); 1194 break; 1195 } 1196 case Instruction::BitCast: { 1197 Type *SrcTy = I->getOperand(0)->getType(); 1198 if (SrcTy->isIntOrPtrTy() && 1199 // TODO: For now, not handling conversions like: 1200 // (bitcast i64 %x to <2 x i32>) 1201 !I->getType()->isVectorTy()) { 1202 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1203 break; 1204 } 1205 break; 1206 } 1207 case Instruction::SExt: { 1208 // Compute the bits in the result that are not present in the input. 1209 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1210 1211 Known = Known.trunc(SrcBitWidth); 1212 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1213 // If the sign bit of the input is known set or clear, then we know the 1214 // top bits of the result. 1215 Known = Known.sext(BitWidth); 1216 break; 1217 } 1218 case Instruction::Shl: { 1219 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1220 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1221 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1222 // If this shift has "nsw" keyword, then the result is either a poison 1223 // value or has the same sign bit as the first operand. 1224 if (NSW) { 1225 if (KnownVal.Zero.isSignBitSet()) 1226 Result.Zero.setSignBit(); 1227 if (KnownVal.One.isSignBitSet()) 1228 Result.One.setSignBit(); 1229 } 1230 return Result; 1231 }; 1232 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1233 KF); 1234 break; 1235 } 1236 case Instruction::LShr: { 1237 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1238 return KnownBits::lshr(KnownVal, KnownAmt); 1239 }; 1240 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1241 KF); 1242 break; 1243 } 1244 case Instruction::AShr: { 1245 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1246 return KnownBits::ashr(KnownVal, KnownAmt); 1247 }; 1248 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1249 KF); 1250 break; 1251 } 1252 case Instruction::Sub: { 1253 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1254 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1255 DemandedElts, Known, Known2, Depth, Q); 1256 break; 1257 } 1258 case Instruction::Add: { 1259 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1260 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1261 DemandedElts, Known, Known2, Depth, Q); 1262 break; 1263 } 1264 case Instruction::SRem: 1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1266 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1267 Known = KnownBits::srem(Known, Known2); 1268 break; 1269 1270 case Instruction::URem: 1271 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1272 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1273 Known = KnownBits::urem(Known, Known2); 1274 break; 1275 case Instruction::Alloca: 1276 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1277 break; 1278 case Instruction::GetElementPtr: { 1279 // Analyze all of the subscripts of this getelementptr instruction 1280 // to determine if we can prove known low zero bits. 1281 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1282 // Accumulate the constant indices in a separate variable 1283 // to minimize the number of calls to computeForAddSub. 1284 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1285 1286 gep_type_iterator GTI = gep_type_begin(I); 1287 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1288 // TrailZ can only become smaller, short-circuit if we hit zero. 1289 if (Known.isUnknown()) 1290 break; 1291 1292 Value *Index = I->getOperand(i); 1293 1294 // Handle case when index is zero. 1295 Constant *CIndex = dyn_cast<Constant>(Index); 1296 if (CIndex && CIndex->isZeroValue()) 1297 continue; 1298 1299 if (StructType *STy = GTI.getStructTypeOrNull()) { 1300 // Handle struct member offset arithmetic. 1301 1302 assert(CIndex && 1303 "Access to structure field must be known at compile time"); 1304 1305 if (CIndex->getType()->isVectorTy()) 1306 Index = CIndex->getSplatValue(); 1307 1308 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1309 const StructLayout *SL = Q.DL.getStructLayout(STy); 1310 uint64_t Offset = SL->getElementOffset(Idx); 1311 AccConstIndices += Offset; 1312 continue; 1313 } 1314 1315 // Handle array index arithmetic. 1316 Type *IndexedTy = GTI.getIndexedType(); 1317 if (!IndexedTy->isSized()) { 1318 Known.resetAll(); 1319 break; 1320 } 1321 1322 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1323 KnownBits IndexBits(IndexBitWidth); 1324 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1325 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1326 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1327 KnownBits ScalingFactor(IndexBitWidth); 1328 // Multiply by current sizeof type. 1329 // &A[i] == A + i * sizeof(*A[i]). 1330 if (IndexTypeSize.isScalable()) { 1331 // For scalable types the only thing we know about sizeof is 1332 // that this is a multiple of the minimum size. 1333 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1334 } else if (IndexBits.isConstant()) { 1335 APInt IndexConst = IndexBits.getConstant(); 1336 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1337 IndexConst *= ScalingFactor; 1338 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1339 continue; 1340 } else { 1341 ScalingFactor = 1342 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1343 } 1344 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1345 1346 // If the offsets have a different width from the pointer, according 1347 // to the language reference we need to sign-extend or truncate them 1348 // to the width of the pointer. 1349 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1350 1351 // Note that inbounds does *not* guarantee nsw for the addition, as only 1352 // the offset is signed, while the base address is unsigned. 1353 Known = KnownBits::computeForAddSub( 1354 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1355 } 1356 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1357 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1358 Known = KnownBits::computeForAddSub( 1359 /*Add=*/true, /*NSW=*/false, Known, Index); 1360 } 1361 break; 1362 } 1363 case Instruction::PHI: { 1364 const PHINode *P = cast<PHINode>(I); 1365 // Handle the case of a simple two-predecessor recurrence PHI. 1366 // There's a lot more that could theoretically be done here, but 1367 // this is sufficient to catch some interesting cases. 1368 if (P->getNumIncomingValues() == 2) { 1369 for (unsigned i = 0; i != 2; ++i) { 1370 Value *L = P->getIncomingValue(i); 1371 Value *R = P->getIncomingValue(!i); 1372 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1373 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1374 Operator *LU = dyn_cast<Operator>(L); 1375 if (!LU) 1376 continue; 1377 unsigned Opcode = LU->getOpcode(); 1378 // Check for operations that have the property that if 1379 // both their operands have low zero bits, the result 1380 // will have low zero bits. 1381 if (Opcode == Instruction::Add || 1382 Opcode == Instruction::Sub || 1383 Opcode == Instruction::And || 1384 Opcode == Instruction::Or || 1385 Opcode == Instruction::Mul) { 1386 Value *LL = LU->getOperand(0); 1387 Value *LR = LU->getOperand(1); 1388 // Find a recurrence. 1389 if (LL == I) 1390 L = LR; 1391 else if (LR == I) 1392 L = LL; 1393 else 1394 continue; // Check for recurrence with L and R flipped. 1395 1396 // Change the context instruction to the "edge" that flows into the 1397 // phi. This is important because that is where the value is actually 1398 // "evaluated" even though it is used later somewhere else. (see also 1399 // D69571). 1400 Query RecQ = Q; 1401 1402 // Ok, we have a PHI of the form L op= R. Check for low 1403 // zero bits. 1404 RecQ.CxtI = RInst; 1405 computeKnownBits(R, Known2, Depth + 1, RecQ); 1406 1407 // We need to take the minimum number of known bits 1408 KnownBits Known3(BitWidth); 1409 RecQ.CxtI = LInst; 1410 computeKnownBits(L, Known3, Depth + 1, RecQ); 1411 1412 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1413 Known3.countMinTrailingZeros())); 1414 1415 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1416 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1417 // If initial value of recurrence is nonnegative, and we are adding 1418 // a nonnegative number with nsw, the result can only be nonnegative 1419 // or poison value regardless of the number of times we execute the 1420 // add in phi recurrence. If initial value is negative and we are 1421 // adding a negative number with nsw, the result can only be 1422 // negative or poison value. Similar arguments apply to sub and mul. 1423 // 1424 // (add non-negative, non-negative) --> non-negative 1425 // (add negative, negative) --> negative 1426 if (Opcode == Instruction::Add) { 1427 if (Known2.isNonNegative() && Known3.isNonNegative()) 1428 Known.makeNonNegative(); 1429 else if (Known2.isNegative() && Known3.isNegative()) 1430 Known.makeNegative(); 1431 } 1432 1433 // (sub nsw non-negative, negative) --> non-negative 1434 // (sub nsw negative, non-negative) --> negative 1435 else if (Opcode == Instruction::Sub && LL == I) { 1436 if (Known2.isNonNegative() && Known3.isNegative()) 1437 Known.makeNonNegative(); 1438 else if (Known2.isNegative() && Known3.isNonNegative()) 1439 Known.makeNegative(); 1440 } 1441 1442 // (mul nsw non-negative, non-negative) --> non-negative 1443 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1444 Known3.isNonNegative()) 1445 Known.makeNonNegative(); 1446 } 1447 1448 break; 1449 } 1450 } 1451 } 1452 1453 // Unreachable blocks may have zero-operand PHI nodes. 1454 if (P->getNumIncomingValues() == 0) 1455 break; 1456 1457 // Otherwise take the unions of the known bit sets of the operands, 1458 // taking conservative care to avoid excessive recursion. 1459 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1460 // Skip if every incoming value references to ourself. 1461 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1462 break; 1463 1464 Known.Zero.setAllBits(); 1465 Known.One.setAllBits(); 1466 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1467 Value *IncValue = P->getIncomingValue(u); 1468 // Skip direct self references. 1469 if (IncValue == P) continue; 1470 1471 // Change the context instruction to the "edge" that flows into the 1472 // phi. This is important because that is where the value is actually 1473 // "evaluated" even though it is used later somewhere else. (see also 1474 // D69571). 1475 Query RecQ = Q; 1476 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1477 1478 Known2 = KnownBits(BitWidth); 1479 // Recurse, but cap the recursion to one level, because we don't 1480 // want to waste time spinning around in loops. 1481 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1482 Known = KnownBits::commonBits(Known, Known2); 1483 // If all bits have been ruled out, there's no need to check 1484 // more operands. 1485 if (Known.isUnknown()) 1486 break; 1487 } 1488 } 1489 break; 1490 } 1491 case Instruction::Call: 1492 case Instruction::Invoke: 1493 // If range metadata is attached to this call, set known bits from that, 1494 // and then intersect with known bits based on other properties of the 1495 // function. 1496 if (MDNode *MD = 1497 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1498 computeKnownBitsFromRangeMetadata(*MD, Known); 1499 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1500 computeKnownBits(RV, Known2, Depth + 1, Q); 1501 Known.Zero |= Known2.Zero; 1502 Known.One |= Known2.One; 1503 } 1504 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1505 switch (II->getIntrinsicID()) { 1506 default: break; 1507 case Intrinsic::abs: { 1508 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1509 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1510 Known = Known2.abs(IntMinIsPoison); 1511 break; 1512 } 1513 case Intrinsic::bitreverse: 1514 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1515 Known.Zero |= Known2.Zero.reverseBits(); 1516 Known.One |= Known2.One.reverseBits(); 1517 break; 1518 case Intrinsic::bswap: 1519 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1520 Known.Zero |= Known2.Zero.byteSwap(); 1521 Known.One |= Known2.One.byteSwap(); 1522 break; 1523 case Intrinsic::ctlz: { 1524 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1525 // If we have a known 1, its position is our upper bound. 1526 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1527 // If this call is undefined for 0, the result will be less than 2^n. 1528 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1529 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1530 unsigned LowBits = Log2_32(PossibleLZ)+1; 1531 Known.Zero.setBitsFrom(LowBits); 1532 break; 1533 } 1534 case Intrinsic::cttz: { 1535 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1536 // If we have a known 1, its position is our upper bound. 1537 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1538 // If this call is undefined for 0, the result will be less than 2^n. 1539 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1540 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1541 unsigned LowBits = Log2_32(PossibleTZ)+1; 1542 Known.Zero.setBitsFrom(LowBits); 1543 break; 1544 } 1545 case Intrinsic::ctpop: { 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 // We can bound the space the count needs. Also, bits known to be zero 1548 // can't contribute to the population. 1549 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1550 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1551 Known.Zero.setBitsFrom(LowBits); 1552 // TODO: we could bound KnownOne using the lower bound on the number 1553 // of bits which might be set provided by popcnt KnownOne2. 1554 break; 1555 } 1556 case Intrinsic::fshr: 1557 case Intrinsic::fshl: { 1558 const APInt *SA; 1559 if (!match(I->getOperand(2), m_APInt(SA))) 1560 break; 1561 1562 // Normalize to funnel shift left. 1563 uint64_t ShiftAmt = SA->urem(BitWidth); 1564 if (II->getIntrinsicID() == Intrinsic::fshr) 1565 ShiftAmt = BitWidth - ShiftAmt; 1566 1567 KnownBits Known3(BitWidth); 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1570 1571 Known.Zero = 1572 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1573 Known.One = 1574 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1575 break; 1576 } 1577 case Intrinsic::uadd_sat: 1578 case Intrinsic::usub_sat: { 1579 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1580 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1581 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1582 1583 // Add: Leading ones of either operand are preserved. 1584 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1585 // as leading zeros in the result. 1586 unsigned LeadingKnown; 1587 if (IsAdd) 1588 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1589 Known2.countMinLeadingOnes()); 1590 else 1591 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1592 Known2.countMinLeadingOnes()); 1593 1594 Known = KnownBits::computeForAddSub( 1595 IsAdd, /* NSW */ false, Known, Known2); 1596 1597 // We select between the operation result and all-ones/zero 1598 // respectively, so we can preserve known ones/zeros. 1599 if (IsAdd) { 1600 Known.One.setHighBits(LeadingKnown); 1601 Known.Zero.clearAllBits(); 1602 } else { 1603 Known.Zero.setHighBits(LeadingKnown); 1604 Known.One.clearAllBits(); 1605 } 1606 break; 1607 } 1608 case Intrinsic::umin: 1609 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1610 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1611 Known = KnownBits::umin(Known, Known2); 1612 break; 1613 case Intrinsic::umax: 1614 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1615 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1616 Known = KnownBits::umax(Known, Known2); 1617 break; 1618 case Intrinsic::smin: 1619 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1620 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1621 Known = KnownBits::smin(Known, Known2); 1622 break; 1623 case Intrinsic::smax: 1624 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1625 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1626 Known = KnownBits::smax(Known, Known2); 1627 break; 1628 case Intrinsic::x86_sse42_crc32_64_64: 1629 Known.Zero.setBitsFrom(32); 1630 break; 1631 } 1632 } 1633 break; 1634 case Instruction::ShuffleVector: { 1635 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1636 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1637 if (!Shuf) { 1638 Known.resetAll(); 1639 return; 1640 } 1641 // For undef elements, we don't know anything about the common state of 1642 // the shuffle result. 1643 APInt DemandedLHS, DemandedRHS; 1644 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1645 Known.resetAll(); 1646 return; 1647 } 1648 Known.One.setAllBits(); 1649 Known.Zero.setAllBits(); 1650 if (!!DemandedLHS) { 1651 const Value *LHS = Shuf->getOperand(0); 1652 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1653 // If we don't know any bits, early out. 1654 if (Known.isUnknown()) 1655 break; 1656 } 1657 if (!!DemandedRHS) { 1658 const Value *RHS = Shuf->getOperand(1); 1659 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1660 Known = KnownBits::commonBits(Known, Known2); 1661 } 1662 break; 1663 } 1664 case Instruction::InsertElement: { 1665 const Value *Vec = I->getOperand(0); 1666 const Value *Elt = I->getOperand(1); 1667 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1668 // Early out if the index is non-constant or out-of-range. 1669 unsigned NumElts = DemandedElts.getBitWidth(); 1670 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 Known.One.setAllBits(); 1675 Known.Zero.setAllBits(); 1676 unsigned EltIdx = CIdx->getZExtValue(); 1677 // Do we demand the inserted element? 1678 if (DemandedElts[EltIdx]) { 1679 computeKnownBits(Elt, Known, Depth + 1, Q); 1680 // If we don't know any bits, early out. 1681 if (Known.isUnknown()) 1682 break; 1683 } 1684 // We don't need the base vector element that has been inserted. 1685 APInt DemandedVecElts = DemandedElts; 1686 DemandedVecElts.clearBit(EltIdx); 1687 if (!!DemandedVecElts) { 1688 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1689 Known = KnownBits::commonBits(Known, Known2); 1690 } 1691 break; 1692 } 1693 case Instruction::ExtractElement: { 1694 // Look through extract element. If the index is non-constant or 1695 // out-of-range demand all elements, otherwise just the extracted element. 1696 const Value *Vec = I->getOperand(0); 1697 const Value *Idx = I->getOperand(1); 1698 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1699 if (isa<ScalableVectorType>(Vec->getType())) { 1700 // FIXME: there's probably *something* we can do with scalable vectors 1701 Known.resetAll(); 1702 break; 1703 } 1704 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1705 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1706 if (CIdx && CIdx->getValue().ult(NumElts)) 1707 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1708 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1709 break; 1710 } 1711 case Instruction::ExtractValue: 1712 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1713 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1714 if (EVI->getNumIndices() != 1) break; 1715 if (EVI->getIndices()[0] == 0) { 1716 switch (II->getIntrinsicID()) { 1717 default: break; 1718 case Intrinsic::uadd_with_overflow: 1719 case Intrinsic::sadd_with_overflow: 1720 computeKnownBitsAddSub(true, II->getArgOperand(0), 1721 II->getArgOperand(1), false, DemandedElts, 1722 Known, Known2, Depth, Q); 1723 break; 1724 case Intrinsic::usub_with_overflow: 1725 case Intrinsic::ssub_with_overflow: 1726 computeKnownBitsAddSub(false, II->getArgOperand(0), 1727 II->getArgOperand(1), false, DemandedElts, 1728 Known, Known2, Depth, Q); 1729 break; 1730 case Intrinsic::umul_with_overflow: 1731 case Intrinsic::smul_with_overflow: 1732 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1733 DemandedElts, Known, Known2, Depth, Q); 1734 break; 1735 } 1736 } 1737 } 1738 break; 1739 case Instruction::Freeze: 1740 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1741 Depth + 1)) 1742 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1743 break; 1744 } 1745 } 1746 1747 /// Determine which bits of V are known to be either zero or one and return 1748 /// them. 1749 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1750 unsigned Depth, const Query &Q) { 1751 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1752 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1753 return Known; 1754 } 1755 1756 /// Determine which bits of V are known to be either zero or one and return 1757 /// them. 1758 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1759 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1760 computeKnownBits(V, Known, Depth, Q); 1761 return Known; 1762 } 1763 1764 /// Determine which bits of V are known to be either zero or one and return 1765 /// them in the Known bit set. 1766 /// 1767 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1768 /// we cannot optimize based on the assumption that it is zero without changing 1769 /// it to be an explicit zero. If we don't change it to zero, other code could 1770 /// optimized based on the contradictory assumption that it is non-zero. 1771 /// Because instcombine aggressively folds operations with undef args anyway, 1772 /// this won't lose us code quality. 1773 /// 1774 /// This function is defined on values with integer type, values with pointer 1775 /// type, and vectors of integers. In the case 1776 /// where V is a vector, known zero, and known one values are the 1777 /// same width as the vector element, and the bit is set only if it is true 1778 /// for all of the demanded elements in the vector specified by DemandedElts. 1779 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1780 KnownBits &Known, unsigned Depth, const Query &Q) { 1781 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1782 // No demanded elts or V is a scalable vector, better to assume we don't 1783 // know anything. 1784 Known.resetAll(); 1785 return; 1786 } 1787 1788 assert(V && "No Value?"); 1789 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1790 1791 #ifndef NDEBUG 1792 Type *Ty = V->getType(); 1793 unsigned BitWidth = Known.getBitWidth(); 1794 1795 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1796 "Not integer or pointer type!"); 1797 1798 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1799 assert( 1800 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1801 "DemandedElt width should equal the fixed vector number of elements"); 1802 } else { 1803 assert(DemandedElts == APInt(1, 1) && 1804 "DemandedElt width should be 1 for scalars"); 1805 } 1806 1807 Type *ScalarTy = Ty->getScalarType(); 1808 if (ScalarTy->isPointerTy()) { 1809 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1810 "V and Known should have same BitWidth"); 1811 } else { 1812 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1813 "V and Known should have same BitWidth"); 1814 } 1815 #endif 1816 1817 const APInt *C; 1818 if (match(V, m_APInt(C))) { 1819 // We know all of the bits for a scalar constant or a splat vector constant! 1820 Known = KnownBits::makeConstant(*C); 1821 return; 1822 } 1823 // Null and aggregate-zero are all-zeros. 1824 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1825 Known.setAllZero(); 1826 return; 1827 } 1828 // Handle a constant vector by taking the intersection of the known bits of 1829 // each element. 1830 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1831 // We know that CDV must be a vector of integers. Take the intersection of 1832 // each element. 1833 Known.Zero.setAllBits(); Known.One.setAllBits(); 1834 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1835 if (!DemandedElts[i]) 1836 continue; 1837 APInt Elt = CDV->getElementAsAPInt(i); 1838 Known.Zero &= ~Elt; 1839 Known.One &= Elt; 1840 } 1841 return; 1842 } 1843 1844 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1845 // We know that CV must be a vector of integers. Take the intersection of 1846 // each element. 1847 Known.Zero.setAllBits(); Known.One.setAllBits(); 1848 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1849 if (!DemandedElts[i]) 1850 continue; 1851 Constant *Element = CV->getAggregateElement(i); 1852 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1853 if (!ElementCI) { 1854 Known.resetAll(); 1855 return; 1856 } 1857 const APInt &Elt = ElementCI->getValue(); 1858 Known.Zero &= ~Elt; 1859 Known.One &= Elt; 1860 } 1861 return; 1862 } 1863 1864 // Start out not knowing anything. 1865 Known.resetAll(); 1866 1867 // We can't imply anything about undefs. 1868 if (isa<UndefValue>(V)) 1869 return; 1870 1871 // There's no point in looking through other users of ConstantData for 1872 // assumptions. Confirm that we've handled them all. 1873 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1874 1875 // All recursive calls that increase depth must come after this. 1876 if (Depth == MaxAnalysisRecursionDepth) 1877 return; 1878 1879 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1880 // the bits of its aliasee. 1881 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1882 if (!GA->isInterposable()) 1883 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1884 return; 1885 } 1886 1887 if (const Operator *I = dyn_cast<Operator>(V)) 1888 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1889 1890 // Aligned pointers have trailing zeros - refine Known.Zero set 1891 if (isa<PointerType>(V->getType())) { 1892 Align Alignment = V->getPointerAlignment(Q.DL); 1893 Known.Zero.setLowBits(Log2(Alignment)); 1894 } 1895 1896 // computeKnownBitsFromAssume strictly refines Known. 1897 // Therefore, we run them after computeKnownBitsFromOperator. 1898 1899 // Check whether a nearby assume intrinsic can determine some known bits. 1900 computeKnownBitsFromAssume(V, Known, Depth, Q); 1901 1902 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1903 } 1904 1905 /// Return true if the given value is known to have exactly one 1906 /// bit set when defined. For vectors return true if every element is known to 1907 /// be a power of two when defined. Supports values with integer or pointer 1908 /// types and vectors of integers. 1909 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1910 const Query &Q) { 1911 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1912 1913 // Attempt to match against constants. 1914 if (OrZero && match(V, m_Power2OrZero())) 1915 return true; 1916 if (match(V, m_Power2())) 1917 return true; 1918 1919 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1920 // it is shifted off the end then the result is undefined. 1921 if (match(V, m_Shl(m_One(), m_Value()))) 1922 return true; 1923 1924 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1925 // the bottom. If it is shifted off the bottom then the result is undefined. 1926 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1927 return true; 1928 1929 // The remaining tests are all recursive, so bail out if we hit the limit. 1930 if (Depth++ == MaxAnalysisRecursionDepth) 1931 return false; 1932 1933 Value *X = nullptr, *Y = nullptr; 1934 // A shift left or a logical shift right of a power of two is a power of two 1935 // or zero. 1936 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1937 match(V, m_LShr(m_Value(X), m_Value())))) 1938 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1939 1940 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1941 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1942 1943 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1944 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1945 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1946 1947 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1948 // A power of two and'd with anything is a power of two or zero. 1949 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1950 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1951 return true; 1952 // X & (-X) is always a power of two or zero. 1953 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1954 return true; 1955 return false; 1956 } 1957 1958 // Adding a power-of-two or zero to the same power-of-two or zero yields 1959 // either the original power-of-two, a larger power-of-two or zero. 1960 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1961 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1962 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1963 Q.IIQ.hasNoSignedWrap(VOBO)) { 1964 if (match(X, m_And(m_Specific(Y), m_Value())) || 1965 match(X, m_And(m_Value(), m_Specific(Y)))) 1966 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1967 return true; 1968 if (match(Y, m_And(m_Specific(X), m_Value())) || 1969 match(Y, m_And(m_Value(), m_Specific(X)))) 1970 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1971 return true; 1972 1973 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1974 KnownBits LHSBits(BitWidth); 1975 computeKnownBits(X, LHSBits, Depth, Q); 1976 1977 KnownBits RHSBits(BitWidth); 1978 computeKnownBits(Y, RHSBits, Depth, Q); 1979 // If i8 V is a power of two or zero: 1980 // ZeroBits: 1 1 1 0 1 1 1 1 1981 // ~ZeroBits: 0 0 0 1 0 0 0 0 1982 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1983 // If OrZero isn't set, we cannot give back a zero result. 1984 // Make sure either the LHS or RHS has a bit set. 1985 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1986 return true; 1987 } 1988 } 1989 1990 // An exact divide or right shift can only shift off zero bits, so the result 1991 // is a power of two only if the first operand is a power of two and not 1992 // copying a sign bit (sdiv int_min, 2). 1993 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1994 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1995 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1996 Depth, Q); 1997 } 1998 1999 return false; 2000 } 2001 2002 /// Test whether a GEP's result is known to be non-null. 2003 /// 2004 /// Uses properties inherent in a GEP to try to determine whether it is known 2005 /// to be non-null. 2006 /// 2007 /// Currently this routine does not support vector GEPs. 2008 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2009 const Query &Q) { 2010 const Function *F = nullptr; 2011 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2012 F = I->getFunction(); 2013 2014 if (!GEP->isInBounds() || 2015 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2016 return false; 2017 2018 // FIXME: Support vector-GEPs. 2019 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2020 2021 // If the base pointer is non-null, we cannot walk to a null address with an 2022 // inbounds GEP in address space zero. 2023 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2024 return true; 2025 2026 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2027 // If so, then the GEP cannot produce a null pointer, as doing so would 2028 // inherently violate the inbounds contract within address space zero. 2029 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2030 GTI != GTE; ++GTI) { 2031 // Struct types are easy -- they must always be indexed by a constant. 2032 if (StructType *STy = GTI.getStructTypeOrNull()) { 2033 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2034 unsigned ElementIdx = OpC->getZExtValue(); 2035 const StructLayout *SL = Q.DL.getStructLayout(STy); 2036 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2037 if (ElementOffset > 0) 2038 return true; 2039 continue; 2040 } 2041 2042 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2043 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2044 continue; 2045 2046 // Fast path the constant operand case both for efficiency and so we don't 2047 // increment Depth when just zipping down an all-constant GEP. 2048 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2049 if (!OpC->isZero()) 2050 return true; 2051 continue; 2052 } 2053 2054 // We post-increment Depth here because while isKnownNonZero increments it 2055 // as well, when we pop back up that increment won't persist. We don't want 2056 // to recurse 10k times just because we have 10k GEP operands. We don't 2057 // bail completely out because we want to handle constant GEPs regardless 2058 // of depth. 2059 if (Depth++ >= MaxAnalysisRecursionDepth) 2060 continue; 2061 2062 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2063 return true; 2064 } 2065 2066 return false; 2067 } 2068 2069 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2070 const Instruction *CtxI, 2071 const DominatorTree *DT) { 2072 if (isa<Constant>(V)) 2073 return false; 2074 2075 if (!CtxI || !DT) 2076 return false; 2077 2078 unsigned NumUsesExplored = 0; 2079 for (auto *U : V->users()) { 2080 // Avoid massive lists 2081 if (NumUsesExplored >= DomConditionsMaxUses) 2082 break; 2083 NumUsesExplored++; 2084 2085 // If the value is used as an argument to a call or invoke, then argument 2086 // attributes may provide an answer about null-ness. 2087 if (const auto *CB = dyn_cast<CallBase>(U)) 2088 if (auto *CalledFunc = CB->getCalledFunction()) 2089 for (const Argument &Arg : CalledFunc->args()) 2090 if (CB->getArgOperand(Arg.getArgNo()) == V && 2091 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2092 DT->dominates(CB, CtxI)) 2093 return true; 2094 2095 // If the value is used as a load/store, then the pointer must be non null. 2096 if (V == getLoadStorePointerOperand(U)) { 2097 const Instruction *I = cast<Instruction>(U); 2098 if (!NullPointerIsDefined(I->getFunction(), 2099 V->getType()->getPointerAddressSpace()) && 2100 DT->dominates(I, CtxI)) 2101 return true; 2102 } 2103 2104 // Consider only compare instructions uniquely controlling a branch 2105 Value *RHS; 2106 CmpInst::Predicate Pred; 2107 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2108 continue; 2109 2110 bool NonNullIfTrue; 2111 if (cmpExcludesZero(Pred, RHS)) 2112 NonNullIfTrue = true; 2113 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2114 NonNullIfTrue = false; 2115 else 2116 continue; 2117 2118 SmallVector<const User *, 4> WorkList; 2119 SmallPtrSet<const User *, 4> Visited; 2120 for (auto *CmpU : U->users()) { 2121 assert(WorkList.empty() && "Should be!"); 2122 if (Visited.insert(CmpU).second) 2123 WorkList.push_back(CmpU); 2124 2125 while (!WorkList.empty()) { 2126 auto *Curr = WorkList.pop_back_val(); 2127 2128 // If a user is an AND, add all its users to the work list. We only 2129 // propagate "pred != null" condition through AND because it is only 2130 // correct to assume that all conditions of AND are met in true branch. 2131 // TODO: Support similar logic of OR and EQ predicate? 2132 if (NonNullIfTrue) 2133 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2134 for (auto *CurrU : Curr->users()) 2135 if (Visited.insert(CurrU).second) 2136 WorkList.push_back(CurrU); 2137 continue; 2138 } 2139 2140 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2141 assert(BI->isConditional() && "uses a comparison!"); 2142 2143 BasicBlock *NonNullSuccessor = 2144 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2145 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2146 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2147 return true; 2148 } else if (NonNullIfTrue && isGuard(Curr) && 2149 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2150 return true; 2151 } 2152 } 2153 } 2154 } 2155 2156 return false; 2157 } 2158 2159 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2160 /// ensure that the value it's attached to is never Value? 'RangeType' is 2161 /// is the type of the value described by the range. 2162 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2163 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2164 assert(NumRanges >= 1); 2165 for (unsigned i = 0; i < NumRanges; ++i) { 2166 ConstantInt *Lower = 2167 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2168 ConstantInt *Upper = 2169 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2170 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2171 if (Range.contains(Value)) 2172 return false; 2173 } 2174 return true; 2175 } 2176 2177 /// Return true if the given value is known to be non-zero when defined. For 2178 /// vectors, return true if every demanded element is known to be non-zero when 2179 /// defined. For pointers, if the context instruction and dominator tree are 2180 /// specified, perform context-sensitive analysis and return true if the 2181 /// pointer couldn't possibly be null at the specified instruction. 2182 /// Supports values with integer or pointer type and vectors of integers. 2183 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2184 const Query &Q) { 2185 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2186 // vector 2187 if (isa<ScalableVectorType>(V->getType())) 2188 return false; 2189 2190 if (auto *C = dyn_cast<Constant>(V)) { 2191 if (C->isNullValue()) 2192 return false; 2193 if (isa<ConstantInt>(C)) 2194 // Must be non-zero due to null test above. 2195 return true; 2196 2197 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2198 // See the comment for IntToPtr/PtrToInt instructions below. 2199 if (CE->getOpcode() == Instruction::IntToPtr || 2200 CE->getOpcode() == Instruction::PtrToInt) 2201 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2202 .getFixedSize() <= 2203 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2204 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2205 } 2206 2207 // For constant vectors, check that all elements are undefined or known 2208 // non-zero to determine that the whole vector is known non-zero. 2209 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2210 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2211 if (!DemandedElts[i]) 2212 continue; 2213 Constant *Elt = C->getAggregateElement(i); 2214 if (!Elt || Elt->isNullValue()) 2215 return false; 2216 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2217 return false; 2218 } 2219 return true; 2220 } 2221 2222 // A global variable in address space 0 is non null unless extern weak 2223 // or an absolute symbol reference. Other address spaces may have null as a 2224 // valid address for a global, so we can't assume anything. 2225 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2226 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2227 GV->getType()->getAddressSpace() == 0) 2228 return true; 2229 } else 2230 return false; 2231 } 2232 2233 if (auto *I = dyn_cast<Instruction>(V)) { 2234 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2235 // If the possible ranges don't contain zero, then the value is 2236 // definitely non-zero. 2237 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2238 const APInt ZeroValue(Ty->getBitWidth(), 0); 2239 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2240 return true; 2241 } 2242 } 2243 } 2244 2245 if (isKnownNonZeroFromAssume(V, Q)) 2246 return true; 2247 2248 // Some of the tests below are recursive, so bail out if we hit the limit. 2249 if (Depth++ >= MaxAnalysisRecursionDepth) 2250 return false; 2251 2252 // Check for pointer simplifications. 2253 2254 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2255 // Alloca never returns null, malloc might. 2256 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2257 return true; 2258 2259 // A byval, inalloca may not be null in a non-default addres space. A 2260 // nonnull argument is assumed never 0. 2261 if (const Argument *A = dyn_cast<Argument>(V)) { 2262 if (((A->hasPassPointeeByValueCopyAttr() && 2263 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2264 A->hasNonNullAttr())) 2265 return true; 2266 } 2267 2268 // A Load tagged with nonnull metadata is never null. 2269 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2270 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2271 return true; 2272 2273 if (const auto *Call = dyn_cast<CallBase>(V)) { 2274 if (Call->isReturnNonNull()) 2275 return true; 2276 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2277 return isKnownNonZero(RP, Depth, Q); 2278 } 2279 } 2280 2281 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2282 return true; 2283 2284 // Check for recursive pointer simplifications. 2285 if (V->getType()->isPointerTy()) { 2286 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2287 // do not alter the value, or at least not the nullness property of the 2288 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2289 // 2290 // Note that we have to take special care to avoid looking through 2291 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2292 // as casts that can alter the value, e.g., AddrSpaceCasts. 2293 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2294 return isGEPKnownNonNull(GEP, Depth, Q); 2295 2296 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2297 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2298 2299 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2300 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2301 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2302 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2303 } 2304 2305 // Similar to int2ptr above, we can look through ptr2int here if the cast 2306 // is a no-op or an extend and not a truncate. 2307 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2308 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2309 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2310 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2311 2312 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2313 2314 // X | Y != 0 if X != 0 or Y != 0. 2315 Value *X = nullptr, *Y = nullptr; 2316 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2317 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2318 isKnownNonZero(Y, DemandedElts, Depth, Q); 2319 2320 // ext X != 0 if X != 0. 2321 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2322 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2323 2324 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2325 // if the lowest bit is shifted off the end. 2326 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2327 // shl nuw can't remove any non-zero bits. 2328 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2329 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2330 return isKnownNonZero(X, Depth, Q); 2331 2332 KnownBits Known(BitWidth); 2333 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2334 if (Known.One[0]) 2335 return true; 2336 } 2337 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2338 // defined if the sign bit is shifted off the end. 2339 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2340 // shr exact can only shift out zero bits. 2341 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2342 if (BO->isExact()) 2343 return isKnownNonZero(X, Depth, Q); 2344 2345 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2346 if (Known.isNegative()) 2347 return true; 2348 2349 // If the shifter operand is a constant, and all of the bits shifted 2350 // out are known to be zero, and X is known non-zero then at least one 2351 // non-zero bit must remain. 2352 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2353 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2354 // Is there a known one in the portion not shifted out? 2355 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2356 return true; 2357 // Are all the bits to be shifted out known zero? 2358 if (Known.countMinTrailingZeros() >= ShiftVal) 2359 return isKnownNonZero(X, DemandedElts, Depth, Q); 2360 } 2361 } 2362 // div exact can only produce a zero if the dividend is zero. 2363 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2364 return isKnownNonZero(X, DemandedElts, Depth, Q); 2365 } 2366 // X + Y. 2367 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2368 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2369 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2370 2371 // If X and Y are both non-negative (as signed values) then their sum is not 2372 // zero unless both X and Y are zero. 2373 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2374 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2375 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2376 return true; 2377 2378 // If X and Y are both negative (as signed values) then their sum is not 2379 // zero unless both X and Y equal INT_MIN. 2380 if (XKnown.isNegative() && YKnown.isNegative()) { 2381 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2382 // The sign bit of X is set. If some other bit is set then X is not equal 2383 // to INT_MIN. 2384 if (XKnown.One.intersects(Mask)) 2385 return true; 2386 // The sign bit of Y is set. If some other bit is set then Y is not equal 2387 // to INT_MIN. 2388 if (YKnown.One.intersects(Mask)) 2389 return true; 2390 } 2391 2392 // The sum of a non-negative number and a power of two is not zero. 2393 if (XKnown.isNonNegative() && 2394 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2395 return true; 2396 if (YKnown.isNonNegative() && 2397 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2398 return true; 2399 } 2400 // X * Y. 2401 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2402 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2403 // If X and Y are non-zero then so is X * Y as long as the multiplication 2404 // does not overflow. 2405 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2406 isKnownNonZero(X, DemandedElts, Depth, Q) && 2407 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2408 return true; 2409 } 2410 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2411 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2412 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2413 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2414 return true; 2415 } 2416 // PHI 2417 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2418 // Try and detect a recurrence that monotonically increases from a 2419 // starting value, as these are common as induction variables. 2420 if (PN->getNumIncomingValues() == 2) { 2421 Value *Start = PN->getIncomingValue(0); 2422 Value *Induction = PN->getIncomingValue(1); 2423 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2424 std::swap(Start, Induction); 2425 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2426 if (!C->isZero() && !C->isNegative()) { 2427 ConstantInt *X; 2428 if (Q.IIQ.UseInstrInfo && 2429 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2430 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2431 !X->isNegative()) 2432 return true; 2433 } 2434 } 2435 } 2436 // Check if all incoming values are non-zero using recursion. 2437 Query RecQ = Q; 2438 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2439 return llvm::all_of(PN->operands(), [&](const Use &U) { 2440 if (U.get() == PN) 2441 return true; 2442 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2443 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2444 }); 2445 } 2446 // ExtractElement 2447 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2448 const Value *Vec = EEI->getVectorOperand(); 2449 const Value *Idx = EEI->getIndexOperand(); 2450 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2451 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2452 unsigned NumElts = VecTy->getNumElements(); 2453 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2454 if (CIdx && CIdx->getValue().ult(NumElts)) 2455 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2456 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2457 } 2458 } 2459 // Freeze 2460 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2461 auto *Op = FI->getOperand(0); 2462 if (isKnownNonZero(Op, Depth, Q) && 2463 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2464 return true; 2465 } 2466 2467 KnownBits Known(BitWidth); 2468 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2469 return Known.One != 0; 2470 } 2471 2472 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2473 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2474 // vector 2475 if (isa<ScalableVectorType>(V->getType())) 2476 return false; 2477 2478 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2479 APInt DemandedElts = 2480 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2481 return isKnownNonZero(V, DemandedElts, Depth, Q); 2482 } 2483 2484 /// Return true if V2 == V1 + X, where X is known non-zero. 2485 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2486 const Query &Q) { 2487 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2488 if (!BO || BO->getOpcode() != Instruction::Add) 2489 return false; 2490 Value *Op = nullptr; 2491 if (V2 == BO->getOperand(0)) 2492 Op = BO->getOperand(1); 2493 else if (V2 == BO->getOperand(1)) 2494 Op = BO->getOperand(0); 2495 else 2496 return false; 2497 return isKnownNonZero(Op, Depth + 1, Q); 2498 } 2499 2500 2501 /// Return true if it is known that V1 != V2. 2502 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2503 const Query &Q) { 2504 if (V1 == V2) 2505 return false; 2506 if (V1->getType() != V2->getType()) 2507 // We can't look through casts yet. 2508 return false; 2509 2510 if (Depth >= MaxAnalysisRecursionDepth) 2511 return false; 2512 2513 // See if we can recurse through (exactly one of) our operands. This 2514 // requires our operation be 1-to-1 and map every input value to exactly 2515 // one output value. Such an operation is invertible. 2516 auto *O1 = dyn_cast<Operator>(V1); 2517 auto *O2 = dyn_cast<Operator>(V2); 2518 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2519 switch (O1->getOpcode()) { 2520 default: break; 2521 case Instruction::Add: 2522 case Instruction::Sub: 2523 // Assume operand order has been canonicalized 2524 if (O1->getOperand(0) == O2->getOperand(0)) 2525 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2526 Depth + 1, Q); 2527 if (O1->getOperand(1) == O2->getOperand(1)) 2528 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2529 Depth + 1, Q); 2530 break; 2531 case Instruction::Mul: { 2532 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2533 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2534 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2535 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2536 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2537 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2538 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2539 break; 2540 2541 // Assume operand order has been canonicalized 2542 if (O1->getOperand(1) == O2->getOperand(1) && 2543 isa<ConstantInt>(O1->getOperand(1)) && 2544 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2545 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2546 Depth + 1, Q); 2547 break; 2548 } 2549 case Instruction::SExt: 2550 case Instruction::ZExt: 2551 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2552 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2553 Depth + 1, Q); 2554 break; 2555 }; 2556 } 2557 2558 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2559 return true; 2560 2561 if (V1->getType()->isIntOrIntVectorTy()) { 2562 // Are any known bits in V1 contradictory to known bits in V2? If V1 2563 // has a known zero where V2 has a known one, they must not be equal. 2564 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2565 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2566 2567 if (Known1.Zero.intersects(Known2.One) || 2568 Known2.Zero.intersects(Known1.One)) 2569 return true; 2570 } 2571 return false; 2572 } 2573 2574 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2575 /// simplify operations downstream. Mask is known to be zero for bits that V 2576 /// cannot have. 2577 /// 2578 /// This function is defined on values with integer type, values with pointer 2579 /// type, and vectors of integers. In the case 2580 /// where V is a vector, the mask, known zero, and known one values are the 2581 /// same width as the vector element, and the bit is set only if it is true 2582 /// for all of the elements in the vector. 2583 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2584 const Query &Q) { 2585 KnownBits Known(Mask.getBitWidth()); 2586 computeKnownBits(V, Known, Depth, Q); 2587 return Mask.isSubsetOf(Known.Zero); 2588 } 2589 2590 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2591 // Returns the input and lower/upper bounds. 2592 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2593 const APInt *&CLow, const APInt *&CHigh) { 2594 assert(isa<Operator>(Select) && 2595 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2596 "Input should be a Select!"); 2597 2598 const Value *LHS = nullptr, *RHS = nullptr; 2599 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2600 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2601 return false; 2602 2603 if (!match(RHS, m_APInt(CLow))) 2604 return false; 2605 2606 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2607 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2608 if (getInverseMinMaxFlavor(SPF) != SPF2) 2609 return false; 2610 2611 if (!match(RHS2, m_APInt(CHigh))) 2612 return false; 2613 2614 if (SPF == SPF_SMIN) 2615 std::swap(CLow, CHigh); 2616 2617 In = LHS2; 2618 return CLow->sle(*CHigh); 2619 } 2620 2621 /// For vector constants, loop over the elements and find the constant with the 2622 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2623 /// or if any element was not analyzed; otherwise, return the count for the 2624 /// element with the minimum number of sign bits. 2625 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2626 const APInt &DemandedElts, 2627 unsigned TyBits) { 2628 const auto *CV = dyn_cast<Constant>(V); 2629 if (!CV || !isa<FixedVectorType>(CV->getType())) 2630 return 0; 2631 2632 unsigned MinSignBits = TyBits; 2633 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2634 for (unsigned i = 0; i != NumElts; ++i) { 2635 if (!DemandedElts[i]) 2636 continue; 2637 // If we find a non-ConstantInt, bail out. 2638 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2639 if (!Elt) 2640 return 0; 2641 2642 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2643 } 2644 2645 return MinSignBits; 2646 } 2647 2648 static unsigned ComputeNumSignBitsImpl(const Value *V, 2649 const APInt &DemandedElts, 2650 unsigned Depth, const Query &Q); 2651 2652 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2653 unsigned Depth, const Query &Q) { 2654 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2655 assert(Result > 0 && "At least one sign bit needs to be present!"); 2656 return Result; 2657 } 2658 2659 /// Return the number of times the sign bit of the register is replicated into 2660 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2661 /// (itself), but other cases can give us information. For example, immediately 2662 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2663 /// other, so we return 3. For vectors, return the number of sign bits for the 2664 /// vector element with the minimum number of known sign bits of the demanded 2665 /// elements in the vector specified by DemandedElts. 2666 static unsigned ComputeNumSignBitsImpl(const Value *V, 2667 const APInt &DemandedElts, 2668 unsigned Depth, const Query &Q) { 2669 Type *Ty = V->getType(); 2670 2671 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2672 // vector 2673 if (isa<ScalableVectorType>(Ty)) 2674 return 1; 2675 2676 #ifndef NDEBUG 2677 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2678 2679 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2680 assert( 2681 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2682 "DemandedElt width should equal the fixed vector number of elements"); 2683 } else { 2684 assert(DemandedElts == APInt(1, 1) && 2685 "DemandedElt width should be 1 for scalars"); 2686 } 2687 #endif 2688 2689 // We return the minimum number of sign bits that are guaranteed to be present 2690 // in V, so for undef we have to conservatively return 1. We don't have the 2691 // same behavior for poison though -- that's a FIXME today. 2692 2693 Type *ScalarTy = Ty->getScalarType(); 2694 unsigned TyBits = ScalarTy->isPointerTy() ? 2695 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2696 Q.DL.getTypeSizeInBits(ScalarTy); 2697 2698 unsigned Tmp, Tmp2; 2699 unsigned FirstAnswer = 1; 2700 2701 // Note that ConstantInt is handled by the general computeKnownBits case 2702 // below. 2703 2704 if (Depth == MaxAnalysisRecursionDepth) 2705 return 1; 2706 2707 if (auto *U = dyn_cast<Operator>(V)) { 2708 switch (Operator::getOpcode(V)) { 2709 default: break; 2710 case Instruction::SExt: 2711 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2712 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2713 2714 case Instruction::SDiv: { 2715 const APInt *Denominator; 2716 // sdiv X, C -> adds log(C) sign bits. 2717 if (match(U->getOperand(1), m_APInt(Denominator))) { 2718 2719 // Ignore non-positive denominator. 2720 if (!Denominator->isStrictlyPositive()) 2721 break; 2722 2723 // Calculate the incoming numerator bits. 2724 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2725 2726 // Add floor(log(C)) bits to the numerator bits. 2727 return std::min(TyBits, NumBits + Denominator->logBase2()); 2728 } 2729 break; 2730 } 2731 2732 case Instruction::SRem: { 2733 const APInt *Denominator; 2734 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2735 // positive constant. This let us put a lower bound on the number of sign 2736 // bits. 2737 if (match(U->getOperand(1), m_APInt(Denominator))) { 2738 2739 // Ignore non-positive denominator. 2740 if (!Denominator->isStrictlyPositive()) 2741 break; 2742 2743 // Calculate the incoming numerator bits. SRem by a positive constant 2744 // can't lower the number of sign bits. 2745 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2746 2747 // Calculate the leading sign bit constraints by examining the 2748 // denominator. Given that the denominator is positive, there are two 2749 // cases: 2750 // 2751 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2752 // (1 << ceilLogBase2(C)). 2753 // 2754 // 2. the numerator is negative. Then the result range is (-C,0] and 2755 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2756 // 2757 // Thus a lower bound on the number of sign bits is `TyBits - 2758 // ceilLogBase2(C)`. 2759 2760 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2761 return std::max(NumrBits, ResBits); 2762 } 2763 break; 2764 } 2765 2766 case Instruction::AShr: { 2767 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2768 // ashr X, C -> adds C sign bits. Vectors too. 2769 const APInt *ShAmt; 2770 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2771 if (ShAmt->uge(TyBits)) 2772 break; // Bad shift. 2773 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2774 Tmp += ShAmtLimited; 2775 if (Tmp > TyBits) Tmp = TyBits; 2776 } 2777 return Tmp; 2778 } 2779 case Instruction::Shl: { 2780 const APInt *ShAmt; 2781 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2782 // shl destroys sign bits. 2783 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2784 if (ShAmt->uge(TyBits) || // Bad shift. 2785 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2786 Tmp2 = ShAmt->getZExtValue(); 2787 return Tmp - Tmp2; 2788 } 2789 break; 2790 } 2791 case Instruction::And: 2792 case Instruction::Or: 2793 case Instruction::Xor: // NOT is handled here. 2794 // Logical binary ops preserve the number of sign bits at the worst. 2795 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2796 if (Tmp != 1) { 2797 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2798 FirstAnswer = std::min(Tmp, Tmp2); 2799 // We computed what we know about the sign bits as our first 2800 // answer. Now proceed to the generic code that uses 2801 // computeKnownBits, and pick whichever answer is better. 2802 } 2803 break; 2804 2805 case Instruction::Select: { 2806 // If we have a clamp pattern, we know that the number of sign bits will 2807 // be the minimum of the clamp min/max range. 2808 const Value *X; 2809 const APInt *CLow, *CHigh; 2810 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2811 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2812 2813 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2814 if (Tmp == 1) break; 2815 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2816 return std::min(Tmp, Tmp2); 2817 } 2818 2819 case Instruction::Add: 2820 // Add can have at most one carry bit. Thus we know that the output 2821 // is, at worst, one more bit than the inputs. 2822 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2823 if (Tmp == 1) break; 2824 2825 // Special case decrementing a value (ADD X, -1): 2826 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2827 if (CRHS->isAllOnesValue()) { 2828 KnownBits Known(TyBits); 2829 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2830 2831 // If the input is known to be 0 or 1, the output is 0/-1, which is 2832 // all sign bits set. 2833 if ((Known.Zero | 1).isAllOnesValue()) 2834 return TyBits; 2835 2836 // If we are subtracting one from a positive number, there is no carry 2837 // out of the result. 2838 if (Known.isNonNegative()) 2839 return Tmp; 2840 } 2841 2842 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2843 if (Tmp2 == 1) break; 2844 return std::min(Tmp, Tmp2) - 1; 2845 2846 case Instruction::Sub: 2847 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2848 if (Tmp2 == 1) break; 2849 2850 // Handle NEG. 2851 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2852 if (CLHS->isNullValue()) { 2853 KnownBits Known(TyBits); 2854 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2855 // If the input is known to be 0 or 1, the output is 0/-1, which is 2856 // all sign bits set. 2857 if ((Known.Zero | 1).isAllOnesValue()) 2858 return TyBits; 2859 2860 // If the input is known to be positive (the sign bit is known clear), 2861 // the output of the NEG has the same number of sign bits as the 2862 // input. 2863 if (Known.isNonNegative()) 2864 return Tmp2; 2865 2866 // Otherwise, we treat this like a SUB. 2867 } 2868 2869 // Sub can have at most one carry bit. Thus we know that the output 2870 // is, at worst, one more bit than the inputs. 2871 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2872 if (Tmp == 1) break; 2873 return std::min(Tmp, Tmp2) - 1; 2874 2875 case Instruction::Mul: { 2876 // The output of the Mul can be at most twice the valid bits in the 2877 // inputs. 2878 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2879 if (SignBitsOp0 == 1) break; 2880 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2881 if (SignBitsOp1 == 1) break; 2882 unsigned OutValidBits = 2883 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2884 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2885 } 2886 2887 case Instruction::PHI: { 2888 const PHINode *PN = cast<PHINode>(U); 2889 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2890 // Don't analyze large in-degree PHIs. 2891 if (NumIncomingValues > 4) break; 2892 // Unreachable blocks may have zero-operand PHI nodes. 2893 if (NumIncomingValues == 0) break; 2894 2895 // Take the minimum of all incoming values. This can't infinitely loop 2896 // because of our depth threshold. 2897 Query RecQ = Q; 2898 Tmp = TyBits; 2899 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2900 if (Tmp == 1) return Tmp; 2901 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2902 Tmp = std::min( 2903 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2904 } 2905 return Tmp; 2906 } 2907 2908 case Instruction::Trunc: 2909 // FIXME: it's tricky to do anything useful for this, but it is an 2910 // important case for targets like X86. 2911 break; 2912 2913 case Instruction::ExtractElement: 2914 // Look through extract element. At the moment we keep this simple and 2915 // skip tracking the specific element. But at least we might find 2916 // information valid for all elements of the vector (for example if vector 2917 // is sign extended, shifted, etc). 2918 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2919 2920 case Instruction::ShuffleVector: { 2921 // Collect the minimum number of sign bits that are shared by every vector 2922 // element referenced by the shuffle. 2923 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2924 if (!Shuf) { 2925 // FIXME: Add support for shufflevector constant expressions. 2926 return 1; 2927 } 2928 APInt DemandedLHS, DemandedRHS; 2929 // For undef elements, we don't know anything about the common state of 2930 // the shuffle result. 2931 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2932 return 1; 2933 Tmp = std::numeric_limits<unsigned>::max(); 2934 if (!!DemandedLHS) { 2935 const Value *LHS = Shuf->getOperand(0); 2936 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2937 } 2938 // If we don't know anything, early out and try computeKnownBits 2939 // fall-back. 2940 if (Tmp == 1) 2941 break; 2942 if (!!DemandedRHS) { 2943 const Value *RHS = Shuf->getOperand(1); 2944 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2945 Tmp = std::min(Tmp, Tmp2); 2946 } 2947 // If we don't know anything, early out and try computeKnownBits 2948 // fall-back. 2949 if (Tmp == 1) 2950 break; 2951 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2952 return Tmp; 2953 } 2954 case Instruction::Call: { 2955 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2956 switch (II->getIntrinsicID()) { 2957 default: break; 2958 case Intrinsic::abs: 2959 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2960 if (Tmp == 1) break; 2961 2962 // Absolute value reduces number of sign bits by at most 1. 2963 return Tmp - 1; 2964 } 2965 } 2966 } 2967 } 2968 } 2969 2970 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2971 // use this information. 2972 2973 // If we can examine all elements of a vector constant successfully, we're 2974 // done (we can't do any better than that). If not, keep trying. 2975 if (unsigned VecSignBits = 2976 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2977 return VecSignBits; 2978 2979 KnownBits Known(TyBits); 2980 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2981 2982 // If we know that the sign bit is either zero or one, determine the number of 2983 // identical bits in the top of the input value. 2984 return std::max(FirstAnswer, Known.countMinSignBits()); 2985 } 2986 2987 /// This function computes the integer multiple of Base that equals V. 2988 /// If successful, it returns true and returns the multiple in 2989 /// Multiple. If unsuccessful, it returns false. It looks 2990 /// through SExt instructions only if LookThroughSExt is true. 2991 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2992 bool LookThroughSExt, unsigned Depth) { 2993 assert(V && "No Value?"); 2994 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2995 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2996 2997 Type *T = V->getType(); 2998 2999 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3000 3001 if (Base == 0) 3002 return false; 3003 3004 if (Base == 1) { 3005 Multiple = V; 3006 return true; 3007 } 3008 3009 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3010 Constant *BaseVal = ConstantInt::get(T, Base); 3011 if (CO && CO == BaseVal) { 3012 // Multiple is 1. 3013 Multiple = ConstantInt::get(T, 1); 3014 return true; 3015 } 3016 3017 if (CI && CI->getZExtValue() % Base == 0) { 3018 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3019 return true; 3020 } 3021 3022 if (Depth == MaxAnalysisRecursionDepth) return false; 3023 3024 Operator *I = dyn_cast<Operator>(V); 3025 if (!I) return false; 3026 3027 switch (I->getOpcode()) { 3028 default: break; 3029 case Instruction::SExt: 3030 if (!LookThroughSExt) return false; 3031 // otherwise fall through to ZExt 3032 LLVM_FALLTHROUGH; 3033 case Instruction::ZExt: 3034 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3035 LookThroughSExt, Depth+1); 3036 case Instruction::Shl: 3037 case Instruction::Mul: { 3038 Value *Op0 = I->getOperand(0); 3039 Value *Op1 = I->getOperand(1); 3040 3041 if (I->getOpcode() == Instruction::Shl) { 3042 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3043 if (!Op1CI) return false; 3044 // Turn Op0 << Op1 into Op0 * 2^Op1 3045 APInt Op1Int = Op1CI->getValue(); 3046 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3047 APInt API(Op1Int.getBitWidth(), 0); 3048 API.setBit(BitToSet); 3049 Op1 = ConstantInt::get(V->getContext(), API); 3050 } 3051 3052 Value *Mul0 = nullptr; 3053 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3054 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3055 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3056 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3057 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3058 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3059 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3060 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3061 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3062 3063 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3064 Multiple = ConstantExpr::getMul(MulC, Op1C); 3065 return true; 3066 } 3067 3068 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3069 if (Mul0CI->getValue() == 1) { 3070 // V == Base * Op1, so return Op1 3071 Multiple = Op1; 3072 return true; 3073 } 3074 } 3075 3076 Value *Mul1 = nullptr; 3077 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3078 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3079 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3080 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3081 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3082 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3083 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3084 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3085 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3086 3087 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3088 Multiple = ConstantExpr::getMul(MulC, Op0C); 3089 return true; 3090 } 3091 3092 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3093 if (Mul1CI->getValue() == 1) { 3094 // V == Base * Op0, so return Op0 3095 Multiple = Op0; 3096 return true; 3097 } 3098 } 3099 } 3100 } 3101 3102 // We could not determine if V is a multiple of Base. 3103 return false; 3104 } 3105 3106 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3107 const TargetLibraryInfo *TLI) { 3108 const Function *F = CB.getCalledFunction(); 3109 if (!F) 3110 return Intrinsic::not_intrinsic; 3111 3112 if (F->isIntrinsic()) 3113 return F->getIntrinsicID(); 3114 3115 // We are going to infer semantics of a library function based on mapping it 3116 // to an LLVM intrinsic. Check that the library function is available from 3117 // this callbase and in this environment. 3118 LibFunc Func; 3119 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3120 !CB.onlyReadsMemory()) 3121 return Intrinsic::not_intrinsic; 3122 3123 switch (Func) { 3124 default: 3125 break; 3126 case LibFunc_sin: 3127 case LibFunc_sinf: 3128 case LibFunc_sinl: 3129 return Intrinsic::sin; 3130 case LibFunc_cos: 3131 case LibFunc_cosf: 3132 case LibFunc_cosl: 3133 return Intrinsic::cos; 3134 case LibFunc_exp: 3135 case LibFunc_expf: 3136 case LibFunc_expl: 3137 return Intrinsic::exp; 3138 case LibFunc_exp2: 3139 case LibFunc_exp2f: 3140 case LibFunc_exp2l: 3141 return Intrinsic::exp2; 3142 case LibFunc_log: 3143 case LibFunc_logf: 3144 case LibFunc_logl: 3145 return Intrinsic::log; 3146 case LibFunc_log10: 3147 case LibFunc_log10f: 3148 case LibFunc_log10l: 3149 return Intrinsic::log10; 3150 case LibFunc_log2: 3151 case LibFunc_log2f: 3152 case LibFunc_log2l: 3153 return Intrinsic::log2; 3154 case LibFunc_fabs: 3155 case LibFunc_fabsf: 3156 case LibFunc_fabsl: 3157 return Intrinsic::fabs; 3158 case LibFunc_fmin: 3159 case LibFunc_fminf: 3160 case LibFunc_fminl: 3161 return Intrinsic::minnum; 3162 case LibFunc_fmax: 3163 case LibFunc_fmaxf: 3164 case LibFunc_fmaxl: 3165 return Intrinsic::maxnum; 3166 case LibFunc_copysign: 3167 case LibFunc_copysignf: 3168 case LibFunc_copysignl: 3169 return Intrinsic::copysign; 3170 case LibFunc_floor: 3171 case LibFunc_floorf: 3172 case LibFunc_floorl: 3173 return Intrinsic::floor; 3174 case LibFunc_ceil: 3175 case LibFunc_ceilf: 3176 case LibFunc_ceill: 3177 return Intrinsic::ceil; 3178 case LibFunc_trunc: 3179 case LibFunc_truncf: 3180 case LibFunc_truncl: 3181 return Intrinsic::trunc; 3182 case LibFunc_rint: 3183 case LibFunc_rintf: 3184 case LibFunc_rintl: 3185 return Intrinsic::rint; 3186 case LibFunc_nearbyint: 3187 case LibFunc_nearbyintf: 3188 case LibFunc_nearbyintl: 3189 return Intrinsic::nearbyint; 3190 case LibFunc_round: 3191 case LibFunc_roundf: 3192 case LibFunc_roundl: 3193 return Intrinsic::round; 3194 case LibFunc_roundeven: 3195 case LibFunc_roundevenf: 3196 case LibFunc_roundevenl: 3197 return Intrinsic::roundeven; 3198 case LibFunc_pow: 3199 case LibFunc_powf: 3200 case LibFunc_powl: 3201 return Intrinsic::pow; 3202 case LibFunc_sqrt: 3203 case LibFunc_sqrtf: 3204 case LibFunc_sqrtl: 3205 return Intrinsic::sqrt; 3206 } 3207 3208 return Intrinsic::not_intrinsic; 3209 } 3210 3211 /// Return true if we can prove that the specified FP value is never equal to 3212 /// -0.0. 3213 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3214 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3215 /// the same as +0.0 in floating-point ops. 3216 /// 3217 /// NOTE: this function will need to be revisited when we support non-default 3218 /// rounding modes! 3219 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3220 unsigned Depth) { 3221 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3222 return !CFP->getValueAPF().isNegZero(); 3223 3224 if (Depth == MaxAnalysisRecursionDepth) 3225 return false; 3226 3227 auto *Op = dyn_cast<Operator>(V); 3228 if (!Op) 3229 return false; 3230 3231 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3232 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3233 return true; 3234 3235 // sitofp and uitofp turn into +0.0 for zero. 3236 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3237 return true; 3238 3239 if (auto *Call = dyn_cast<CallInst>(Op)) { 3240 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3241 switch (IID) { 3242 default: 3243 break; 3244 // sqrt(-0.0) = -0.0, no other negative results are possible. 3245 case Intrinsic::sqrt: 3246 case Intrinsic::canonicalize: 3247 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3248 // fabs(x) != -0.0 3249 case Intrinsic::fabs: 3250 return true; 3251 } 3252 } 3253 3254 return false; 3255 } 3256 3257 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3258 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3259 /// bit despite comparing equal. 3260 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3261 const TargetLibraryInfo *TLI, 3262 bool SignBitOnly, 3263 unsigned Depth) { 3264 // TODO: This function does not do the right thing when SignBitOnly is true 3265 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3266 // which flips the sign bits of NaNs. See 3267 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3268 3269 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3270 return !CFP->getValueAPF().isNegative() || 3271 (!SignBitOnly && CFP->getValueAPF().isZero()); 3272 } 3273 3274 // Handle vector of constants. 3275 if (auto *CV = dyn_cast<Constant>(V)) { 3276 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3277 unsigned NumElts = CVFVTy->getNumElements(); 3278 for (unsigned i = 0; i != NumElts; ++i) { 3279 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3280 if (!CFP) 3281 return false; 3282 if (CFP->getValueAPF().isNegative() && 3283 (SignBitOnly || !CFP->getValueAPF().isZero())) 3284 return false; 3285 } 3286 3287 // All non-negative ConstantFPs. 3288 return true; 3289 } 3290 } 3291 3292 if (Depth == MaxAnalysisRecursionDepth) 3293 return false; 3294 3295 const Operator *I = dyn_cast<Operator>(V); 3296 if (!I) 3297 return false; 3298 3299 switch (I->getOpcode()) { 3300 default: 3301 break; 3302 // Unsigned integers are always nonnegative. 3303 case Instruction::UIToFP: 3304 return true; 3305 case Instruction::FMul: 3306 case Instruction::FDiv: 3307 // X * X is always non-negative or a NaN. 3308 // X / X is always exactly 1.0 or a NaN. 3309 if (I->getOperand(0) == I->getOperand(1) && 3310 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3311 return true; 3312 3313 LLVM_FALLTHROUGH; 3314 case Instruction::FAdd: 3315 case Instruction::FRem: 3316 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3317 Depth + 1) && 3318 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::Select: 3321 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3322 Depth + 1) && 3323 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3324 Depth + 1); 3325 case Instruction::FPExt: 3326 case Instruction::FPTrunc: 3327 // Widening/narrowing never change sign. 3328 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3329 Depth + 1); 3330 case Instruction::ExtractElement: 3331 // Look through extract element. At the moment we keep this simple and skip 3332 // tracking the specific element. But at least we might find information 3333 // valid for all elements of the vector. 3334 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3335 Depth + 1); 3336 case Instruction::Call: 3337 const auto *CI = cast<CallInst>(I); 3338 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3339 switch (IID) { 3340 default: 3341 break; 3342 case Intrinsic::maxnum: { 3343 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3344 auto isPositiveNum = [&](Value *V) { 3345 if (SignBitOnly) { 3346 // With SignBitOnly, this is tricky because the result of 3347 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3348 // a constant strictly greater than 0.0. 3349 const APFloat *C; 3350 return match(V, m_APFloat(C)) && 3351 *C > APFloat::getZero(C->getSemantics()); 3352 } 3353 3354 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3355 // maxnum can't be ordered-less-than-zero. 3356 return isKnownNeverNaN(V, TLI) && 3357 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3358 }; 3359 3360 // TODO: This could be improved. We could also check that neither operand 3361 // has its sign bit set (and at least 1 is not-NAN?). 3362 return isPositiveNum(V0) || isPositiveNum(V1); 3363 } 3364 3365 case Intrinsic::maximum: 3366 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3367 Depth + 1) || 3368 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3369 Depth + 1); 3370 case Intrinsic::minnum: 3371 case Intrinsic::minimum: 3372 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3373 Depth + 1) && 3374 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3375 Depth + 1); 3376 case Intrinsic::exp: 3377 case Intrinsic::exp2: 3378 case Intrinsic::fabs: 3379 return true; 3380 3381 case Intrinsic::sqrt: 3382 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3383 if (!SignBitOnly) 3384 return true; 3385 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3386 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3387 3388 case Intrinsic::powi: 3389 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3390 // powi(x,n) is non-negative if n is even. 3391 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3392 return true; 3393 } 3394 // TODO: This is not correct. Given that exp is an integer, here are the 3395 // ways that pow can return a negative value: 3396 // 3397 // pow(x, exp) --> negative if exp is odd and x is negative. 3398 // pow(-0, exp) --> -inf if exp is negative odd. 3399 // pow(-0, exp) --> -0 if exp is positive odd. 3400 // pow(-inf, exp) --> -0 if exp is negative odd. 3401 // pow(-inf, exp) --> -inf if exp is positive odd. 3402 // 3403 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3404 // but we must return false if x == -0. Unfortunately we do not currently 3405 // have a way of expressing this constraint. See details in 3406 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3407 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3408 Depth + 1); 3409 3410 case Intrinsic::fma: 3411 case Intrinsic::fmuladd: 3412 // x*x+y is non-negative if y is non-negative. 3413 return I->getOperand(0) == I->getOperand(1) && 3414 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3415 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3416 Depth + 1); 3417 } 3418 break; 3419 } 3420 return false; 3421 } 3422 3423 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3424 const TargetLibraryInfo *TLI) { 3425 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3426 } 3427 3428 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3429 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3430 } 3431 3432 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3433 unsigned Depth) { 3434 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3435 3436 // If we're told that infinities won't happen, assume they won't. 3437 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3438 if (FPMathOp->hasNoInfs()) 3439 return true; 3440 3441 // Handle scalar constants. 3442 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3443 return !CFP->isInfinity(); 3444 3445 if (Depth == MaxAnalysisRecursionDepth) 3446 return false; 3447 3448 if (auto *Inst = dyn_cast<Instruction>(V)) { 3449 switch (Inst->getOpcode()) { 3450 case Instruction::Select: { 3451 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3452 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3453 } 3454 case Instruction::SIToFP: 3455 case Instruction::UIToFP: { 3456 // Get width of largest magnitude integer (remove a bit if signed). 3457 // This still works for a signed minimum value because the largest FP 3458 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3459 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3460 if (Inst->getOpcode() == Instruction::SIToFP) 3461 --IntSize; 3462 3463 // If the exponent of the largest finite FP value can hold the largest 3464 // integer, the result of the cast must be finite. 3465 Type *FPTy = Inst->getType()->getScalarType(); 3466 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3467 } 3468 default: 3469 break; 3470 } 3471 } 3472 3473 // try to handle fixed width vector constants 3474 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3475 if (VFVTy && isa<Constant>(V)) { 3476 // For vectors, verify that each element is not infinity. 3477 unsigned NumElts = VFVTy->getNumElements(); 3478 for (unsigned i = 0; i != NumElts; ++i) { 3479 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3480 if (!Elt) 3481 return false; 3482 if (isa<UndefValue>(Elt)) 3483 continue; 3484 auto *CElt = dyn_cast<ConstantFP>(Elt); 3485 if (!CElt || CElt->isInfinity()) 3486 return false; 3487 } 3488 // All elements were confirmed non-infinity or undefined. 3489 return true; 3490 } 3491 3492 // was not able to prove that V never contains infinity 3493 return false; 3494 } 3495 3496 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3497 unsigned Depth) { 3498 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3499 3500 // If we're told that NaNs won't happen, assume they won't. 3501 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3502 if (FPMathOp->hasNoNaNs()) 3503 return true; 3504 3505 // Handle scalar constants. 3506 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3507 return !CFP->isNaN(); 3508 3509 if (Depth == MaxAnalysisRecursionDepth) 3510 return false; 3511 3512 if (auto *Inst = dyn_cast<Instruction>(V)) { 3513 switch (Inst->getOpcode()) { 3514 case Instruction::FAdd: 3515 case Instruction::FSub: 3516 // Adding positive and negative infinity produces NaN. 3517 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3518 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3519 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3520 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3521 3522 case Instruction::FMul: 3523 // Zero multiplied with infinity produces NaN. 3524 // FIXME: If neither side can be zero fmul never produces NaN. 3525 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3526 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3527 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3528 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3529 3530 case Instruction::FDiv: 3531 case Instruction::FRem: 3532 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3533 return false; 3534 3535 case Instruction::Select: { 3536 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3537 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3538 } 3539 case Instruction::SIToFP: 3540 case Instruction::UIToFP: 3541 return true; 3542 case Instruction::FPTrunc: 3543 case Instruction::FPExt: 3544 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3545 default: 3546 break; 3547 } 3548 } 3549 3550 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3551 switch (II->getIntrinsicID()) { 3552 case Intrinsic::canonicalize: 3553 case Intrinsic::fabs: 3554 case Intrinsic::copysign: 3555 case Intrinsic::exp: 3556 case Intrinsic::exp2: 3557 case Intrinsic::floor: 3558 case Intrinsic::ceil: 3559 case Intrinsic::trunc: 3560 case Intrinsic::rint: 3561 case Intrinsic::nearbyint: 3562 case Intrinsic::round: 3563 case Intrinsic::roundeven: 3564 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3565 case Intrinsic::sqrt: 3566 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3567 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3568 case Intrinsic::minnum: 3569 case Intrinsic::maxnum: 3570 // If either operand is not NaN, the result is not NaN. 3571 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3572 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3573 default: 3574 return false; 3575 } 3576 } 3577 3578 // Try to handle fixed width vector constants 3579 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3580 if (VFVTy && isa<Constant>(V)) { 3581 // For vectors, verify that each element is not NaN. 3582 unsigned NumElts = VFVTy->getNumElements(); 3583 for (unsigned i = 0; i != NumElts; ++i) { 3584 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3585 if (!Elt) 3586 return false; 3587 if (isa<UndefValue>(Elt)) 3588 continue; 3589 auto *CElt = dyn_cast<ConstantFP>(Elt); 3590 if (!CElt || CElt->isNaN()) 3591 return false; 3592 } 3593 // All elements were confirmed not-NaN or undefined. 3594 return true; 3595 } 3596 3597 // Was not able to prove that V never contains NaN 3598 return false; 3599 } 3600 3601 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3602 3603 // All byte-wide stores are splatable, even of arbitrary variables. 3604 if (V->getType()->isIntegerTy(8)) 3605 return V; 3606 3607 LLVMContext &Ctx = V->getContext(); 3608 3609 // Undef don't care. 3610 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3611 if (isa<UndefValue>(V)) 3612 return UndefInt8; 3613 3614 // Return Undef for zero-sized type. 3615 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3616 return UndefInt8; 3617 3618 Constant *C = dyn_cast<Constant>(V); 3619 if (!C) { 3620 // Conceptually, we could handle things like: 3621 // %a = zext i8 %X to i16 3622 // %b = shl i16 %a, 8 3623 // %c = or i16 %a, %b 3624 // but until there is an example that actually needs this, it doesn't seem 3625 // worth worrying about. 3626 return nullptr; 3627 } 3628 3629 // Handle 'null' ConstantArrayZero etc. 3630 if (C->isNullValue()) 3631 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3632 3633 // Constant floating-point values can be handled as integer values if the 3634 // corresponding integer value is "byteable". An important case is 0.0. 3635 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3636 Type *Ty = nullptr; 3637 if (CFP->getType()->isHalfTy()) 3638 Ty = Type::getInt16Ty(Ctx); 3639 else if (CFP->getType()->isFloatTy()) 3640 Ty = Type::getInt32Ty(Ctx); 3641 else if (CFP->getType()->isDoubleTy()) 3642 Ty = Type::getInt64Ty(Ctx); 3643 // Don't handle long double formats, which have strange constraints. 3644 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3645 : nullptr; 3646 } 3647 3648 // We can handle constant integers that are multiple of 8 bits. 3649 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3650 if (CI->getBitWidth() % 8 == 0) { 3651 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3652 if (!CI->getValue().isSplat(8)) 3653 return nullptr; 3654 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3655 } 3656 } 3657 3658 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3659 if (CE->getOpcode() == Instruction::IntToPtr) { 3660 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3661 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3662 return isBytewiseValue( 3663 ConstantExpr::getIntegerCast(CE->getOperand(0), 3664 Type::getIntNTy(Ctx, BitWidth), false), 3665 DL); 3666 } 3667 } 3668 } 3669 3670 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3671 if (LHS == RHS) 3672 return LHS; 3673 if (!LHS || !RHS) 3674 return nullptr; 3675 if (LHS == UndefInt8) 3676 return RHS; 3677 if (RHS == UndefInt8) 3678 return LHS; 3679 return nullptr; 3680 }; 3681 3682 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3683 Value *Val = UndefInt8; 3684 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3685 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3686 return nullptr; 3687 return Val; 3688 } 3689 3690 if (isa<ConstantAggregate>(C)) { 3691 Value *Val = UndefInt8; 3692 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3693 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3694 return nullptr; 3695 return Val; 3696 } 3697 3698 // Don't try to handle the handful of other constants. 3699 return nullptr; 3700 } 3701 3702 // This is the recursive version of BuildSubAggregate. It takes a few different 3703 // arguments. Idxs is the index within the nested struct From that we are 3704 // looking at now (which is of type IndexedType). IdxSkip is the number of 3705 // indices from Idxs that should be left out when inserting into the resulting 3706 // struct. To is the result struct built so far, new insertvalue instructions 3707 // build on that. 3708 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3709 SmallVectorImpl<unsigned> &Idxs, 3710 unsigned IdxSkip, 3711 Instruction *InsertBefore) { 3712 StructType *STy = dyn_cast<StructType>(IndexedType); 3713 if (STy) { 3714 // Save the original To argument so we can modify it 3715 Value *OrigTo = To; 3716 // General case, the type indexed by Idxs is a struct 3717 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3718 // Process each struct element recursively 3719 Idxs.push_back(i); 3720 Value *PrevTo = To; 3721 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3722 InsertBefore); 3723 Idxs.pop_back(); 3724 if (!To) { 3725 // Couldn't find any inserted value for this index? Cleanup 3726 while (PrevTo != OrigTo) { 3727 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3728 PrevTo = Del->getAggregateOperand(); 3729 Del->eraseFromParent(); 3730 } 3731 // Stop processing elements 3732 break; 3733 } 3734 } 3735 // If we successfully found a value for each of our subaggregates 3736 if (To) 3737 return To; 3738 } 3739 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3740 // the struct's elements had a value that was inserted directly. In the latter 3741 // case, perhaps we can't determine each of the subelements individually, but 3742 // we might be able to find the complete struct somewhere. 3743 3744 // Find the value that is at that particular spot 3745 Value *V = FindInsertedValue(From, Idxs); 3746 3747 if (!V) 3748 return nullptr; 3749 3750 // Insert the value in the new (sub) aggregate 3751 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3752 "tmp", InsertBefore); 3753 } 3754 3755 // This helper takes a nested struct and extracts a part of it (which is again a 3756 // struct) into a new value. For example, given the struct: 3757 // { a, { b, { c, d }, e } } 3758 // and the indices "1, 1" this returns 3759 // { c, d }. 3760 // 3761 // It does this by inserting an insertvalue for each element in the resulting 3762 // struct, as opposed to just inserting a single struct. This will only work if 3763 // each of the elements of the substruct are known (ie, inserted into From by an 3764 // insertvalue instruction somewhere). 3765 // 3766 // All inserted insertvalue instructions are inserted before InsertBefore 3767 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3768 Instruction *InsertBefore) { 3769 assert(InsertBefore && "Must have someplace to insert!"); 3770 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3771 idx_range); 3772 Value *To = UndefValue::get(IndexedType); 3773 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3774 unsigned IdxSkip = Idxs.size(); 3775 3776 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3777 } 3778 3779 /// Given an aggregate and a sequence of indices, see if the scalar value 3780 /// indexed is already around as a register, for example if it was inserted 3781 /// directly into the aggregate. 3782 /// 3783 /// If InsertBefore is not null, this function will duplicate (modified) 3784 /// insertvalues when a part of a nested struct is extracted. 3785 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3786 Instruction *InsertBefore) { 3787 // Nothing to index? Just return V then (this is useful at the end of our 3788 // recursion). 3789 if (idx_range.empty()) 3790 return V; 3791 // We have indices, so V should have an indexable type. 3792 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3793 "Not looking at a struct or array?"); 3794 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3795 "Invalid indices for type?"); 3796 3797 if (Constant *C = dyn_cast<Constant>(V)) { 3798 C = C->getAggregateElement(idx_range[0]); 3799 if (!C) return nullptr; 3800 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3801 } 3802 3803 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3804 // Loop the indices for the insertvalue instruction in parallel with the 3805 // requested indices 3806 const unsigned *req_idx = idx_range.begin(); 3807 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3808 i != e; ++i, ++req_idx) { 3809 if (req_idx == idx_range.end()) { 3810 // We can't handle this without inserting insertvalues 3811 if (!InsertBefore) 3812 return nullptr; 3813 3814 // The requested index identifies a part of a nested aggregate. Handle 3815 // this specially. For example, 3816 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3817 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3818 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3819 // This can be changed into 3820 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3821 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3822 // which allows the unused 0,0 element from the nested struct to be 3823 // removed. 3824 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3825 InsertBefore); 3826 } 3827 3828 // This insert value inserts something else than what we are looking for. 3829 // See if the (aggregate) value inserted into has the value we are 3830 // looking for, then. 3831 if (*req_idx != *i) 3832 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3833 InsertBefore); 3834 } 3835 // If we end up here, the indices of the insertvalue match with those 3836 // requested (though possibly only partially). Now we recursively look at 3837 // the inserted value, passing any remaining indices. 3838 return FindInsertedValue(I->getInsertedValueOperand(), 3839 makeArrayRef(req_idx, idx_range.end()), 3840 InsertBefore); 3841 } 3842 3843 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3844 // If we're extracting a value from an aggregate that was extracted from 3845 // something else, we can extract from that something else directly instead. 3846 // However, we will need to chain I's indices with the requested indices. 3847 3848 // Calculate the number of indices required 3849 unsigned size = I->getNumIndices() + idx_range.size(); 3850 // Allocate some space to put the new indices in 3851 SmallVector<unsigned, 5> Idxs; 3852 Idxs.reserve(size); 3853 // Add indices from the extract value instruction 3854 Idxs.append(I->idx_begin(), I->idx_end()); 3855 3856 // Add requested indices 3857 Idxs.append(idx_range.begin(), idx_range.end()); 3858 3859 assert(Idxs.size() == size 3860 && "Number of indices added not correct?"); 3861 3862 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3863 } 3864 // Otherwise, we don't know (such as, extracting from a function return value 3865 // or load instruction) 3866 return nullptr; 3867 } 3868 3869 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3870 unsigned CharSize) { 3871 // Make sure the GEP has exactly three arguments. 3872 if (GEP->getNumOperands() != 3) 3873 return false; 3874 3875 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3876 // CharSize. 3877 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3878 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3879 return false; 3880 3881 // Check to make sure that the first operand of the GEP is an integer and 3882 // has value 0 so that we are sure we're indexing into the initializer. 3883 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3884 if (!FirstIdx || !FirstIdx->isZero()) 3885 return false; 3886 3887 return true; 3888 } 3889 3890 bool llvm::getConstantDataArrayInfo(const Value *V, 3891 ConstantDataArraySlice &Slice, 3892 unsigned ElementSize, uint64_t Offset) { 3893 assert(V); 3894 3895 // Look through bitcast instructions and geps. 3896 V = V->stripPointerCasts(); 3897 3898 // If the value is a GEP instruction or constant expression, treat it as an 3899 // offset. 3900 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3901 // The GEP operator should be based on a pointer to string constant, and is 3902 // indexing into the string constant. 3903 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3904 return false; 3905 3906 // If the second index isn't a ConstantInt, then this is a variable index 3907 // into the array. If this occurs, we can't say anything meaningful about 3908 // the string. 3909 uint64_t StartIdx = 0; 3910 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3911 StartIdx = CI->getZExtValue(); 3912 else 3913 return false; 3914 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3915 StartIdx + Offset); 3916 } 3917 3918 // The GEP instruction, constant or instruction, must reference a global 3919 // variable that is a constant and is initialized. The referenced constant 3920 // initializer is the array that we'll use for optimization. 3921 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3922 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3923 return false; 3924 3925 const ConstantDataArray *Array; 3926 ArrayType *ArrayTy; 3927 if (GV->getInitializer()->isNullValue()) { 3928 Type *GVTy = GV->getValueType(); 3929 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3930 // A zeroinitializer for the array; there is no ConstantDataArray. 3931 Array = nullptr; 3932 } else { 3933 const DataLayout &DL = GV->getParent()->getDataLayout(); 3934 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3935 uint64_t Length = SizeInBytes / (ElementSize / 8); 3936 if (Length <= Offset) 3937 return false; 3938 3939 Slice.Array = nullptr; 3940 Slice.Offset = 0; 3941 Slice.Length = Length - Offset; 3942 return true; 3943 } 3944 } else { 3945 // This must be a ConstantDataArray. 3946 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3947 if (!Array) 3948 return false; 3949 ArrayTy = Array->getType(); 3950 } 3951 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3952 return false; 3953 3954 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3955 if (Offset > NumElts) 3956 return false; 3957 3958 Slice.Array = Array; 3959 Slice.Offset = Offset; 3960 Slice.Length = NumElts - Offset; 3961 return true; 3962 } 3963 3964 /// This function computes the length of a null-terminated C string pointed to 3965 /// by V. If successful, it returns true and returns the string in Str. 3966 /// If unsuccessful, it returns false. 3967 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3968 uint64_t Offset, bool TrimAtNul) { 3969 ConstantDataArraySlice Slice; 3970 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3971 return false; 3972 3973 if (Slice.Array == nullptr) { 3974 if (TrimAtNul) { 3975 Str = StringRef(); 3976 return true; 3977 } 3978 if (Slice.Length == 1) { 3979 Str = StringRef("", 1); 3980 return true; 3981 } 3982 // We cannot instantiate a StringRef as we do not have an appropriate string 3983 // of 0s at hand. 3984 return false; 3985 } 3986 3987 // Start out with the entire array in the StringRef. 3988 Str = Slice.Array->getAsString(); 3989 // Skip over 'offset' bytes. 3990 Str = Str.substr(Slice.Offset); 3991 3992 if (TrimAtNul) { 3993 // Trim off the \0 and anything after it. If the array is not nul 3994 // terminated, we just return the whole end of string. The client may know 3995 // some other way that the string is length-bound. 3996 Str = Str.substr(0, Str.find('\0')); 3997 } 3998 return true; 3999 } 4000 4001 // These next two are very similar to the above, but also look through PHI 4002 // nodes. 4003 // TODO: See if we can integrate these two together. 4004 4005 /// If we can compute the length of the string pointed to by 4006 /// the specified pointer, return 'len+1'. If we can't, return 0. 4007 static uint64_t GetStringLengthH(const Value *V, 4008 SmallPtrSetImpl<const PHINode*> &PHIs, 4009 unsigned CharSize) { 4010 // Look through noop bitcast instructions. 4011 V = V->stripPointerCasts(); 4012 4013 // If this is a PHI node, there are two cases: either we have already seen it 4014 // or we haven't. 4015 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4016 if (!PHIs.insert(PN).second) 4017 return ~0ULL; // already in the set. 4018 4019 // If it was new, see if all the input strings are the same length. 4020 uint64_t LenSoFar = ~0ULL; 4021 for (Value *IncValue : PN->incoming_values()) { 4022 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4023 if (Len == 0) return 0; // Unknown length -> unknown. 4024 4025 if (Len == ~0ULL) continue; 4026 4027 if (Len != LenSoFar && LenSoFar != ~0ULL) 4028 return 0; // Disagree -> unknown. 4029 LenSoFar = Len; 4030 } 4031 4032 // Success, all agree. 4033 return LenSoFar; 4034 } 4035 4036 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4037 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4038 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4039 if (Len1 == 0) return 0; 4040 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4041 if (Len2 == 0) return 0; 4042 if (Len1 == ~0ULL) return Len2; 4043 if (Len2 == ~0ULL) return Len1; 4044 if (Len1 != Len2) return 0; 4045 return Len1; 4046 } 4047 4048 // Otherwise, see if we can read the string. 4049 ConstantDataArraySlice Slice; 4050 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4051 return 0; 4052 4053 if (Slice.Array == nullptr) 4054 return 1; 4055 4056 // Search for nul characters 4057 unsigned NullIndex = 0; 4058 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4059 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4060 break; 4061 } 4062 4063 return NullIndex + 1; 4064 } 4065 4066 /// If we can compute the length of the string pointed to by 4067 /// the specified pointer, return 'len+1'. If we can't, return 0. 4068 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4069 if (!V->getType()->isPointerTy()) 4070 return 0; 4071 4072 SmallPtrSet<const PHINode*, 32> PHIs; 4073 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4074 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4075 // an empty string as a length. 4076 return Len == ~0ULL ? 1 : Len; 4077 } 4078 4079 const Value * 4080 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4081 bool MustPreserveNullness) { 4082 assert(Call && 4083 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4084 if (const Value *RV = Call->getReturnedArgOperand()) 4085 return RV; 4086 // This can be used only as a aliasing property. 4087 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4088 Call, MustPreserveNullness)) 4089 return Call->getArgOperand(0); 4090 return nullptr; 4091 } 4092 4093 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4094 const CallBase *Call, bool MustPreserveNullness) { 4095 switch (Call->getIntrinsicID()) { 4096 case Intrinsic::launder_invariant_group: 4097 case Intrinsic::strip_invariant_group: 4098 case Intrinsic::aarch64_irg: 4099 case Intrinsic::aarch64_tagp: 4100 return true; 4101 case Intrinsic::ptrmask: 4102 return !MustPreserveNullness; 4103 default: 4104 return false; 4105 } 4106 } 4107 4108 /// \p PN defines a loop-variant pointer to an object. Check if the 4109 /// previous iteration of the loop was referring to the same object as \p PN. 4110 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4111 const LoopInfo *LI) { 4112 // Find the loop-defined value. 4113 Loop *L = LI->getLoopFor(PN->getParent()); 4114 if (PN->getNumIncomingValues() != 2) 4115 return true; 4116 4117 // Find the value from previous iteration. 4118 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4119 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4120 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4121 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4122 return true; 4123 4124 // If a new pointer is loaded in the loop, the pointer references a different 4125 // object in every iteration. E.g.: 4126 // for (i) 4127 // int *p = a[i]; 4128 // ... 4129 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4130 if (!L->isLoopInvariant(Load->getPointerOperand())) 4131 return false; 4132 return true; 4133 } 4134 4135 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4136 if (!V->getType()->isPointerTy()) 4137 return V; 4138 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4139 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4140 V = GEP->getPointerOperand(); 4141 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4142 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4143 V = cast<Operator>(V)->getOperand(0); 4144 if (!V->getType()->isPointerTy()) 4145 return V; 4146 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4147 if (GA->isInterposable()) 4148 return V; 4149 V = GA->getAliasee(); 4150 } else { 4151 if (auto *PHI = dyn_cast<PHINode>(V)) { 4152 // Look through single-arg phi nodes created by LCSSA. 4153 if (PHI->getNumIncomingValues() == 1) { 4154 V = PHI->getIncomingValue(0); 4155 continue; 4156 } 4157 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4158 // CaptureTracking can know about special capturing properties of some 4159 // intrinsics like launder.invariant.group, that can't be expressed with 4160 // the attributes, but have properties like returning aliasing pointer. 4161 // Because some analysis may assume that nocaptured pointer is not 4162 // returned from some special intrinsic (because function would have to 4163 // be marked with returns attribute), it is crucial to use this function 4164 // because it should be in sync with CaptureTracking. Not using it may 4165 // cause weird miscompilations where 2 aliasing pointers are assumed to 4166 // noalias. 4167 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4168 V = RP; 4169 continue; 4170 } 4171 } 4172 4173 return V; 4174 } 4175 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4176 } 4177 return V; 4178 } 4179 4180 void llvm::getUnderlyingObjects(const Value *V, 4181 SmallVectorImpl<const Value *> &Objects, 4182 LoopInfo *LI, unsigned MaxLookup) { 4183 SmallPtrSet<const Value *, 4> Visited; 4184 SmallVector<const Value *, 4> Worklist; 4185 Worklist.push_back(V); 4186 do { 4187 const Value *P = Worklist.pop_back_val(); 4188 P = getUnderlyingObject(P, MaxLookup); 4189 4190 if (!Visited.insert(P).second) 4191 continue; 4192 4193 if (auto *SI = dyn_cast<SelectInst>(P)) { 4194 Worklist.push_back(SI->getTrueValue()); 4195 Worklist.push_back(SI->getFalseValue()); 4196 continue; 4197 } 4198 4199 if (auto *PN = dyn_cast<PHINode>(P)) { 4200 // If this PHI changes the underlying object in every iteration of the 4201 // loop, don't look through it. Consider: 4202 // int **A; 4203 // for (i) { 4204 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4205 // Curr = A[i]; 4206 // *Prev, *Curr; 4207 // 4208 // Prev is tracking Curr one iteration behind so they refer to different 4209 // underlying objects. 4210 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4211 isSameUnderlyingObjectInLoop(PN, LI)) 4212 for (Value *IncValue : PN->incoming_values()) 4213 Worklist.push_back(IncValue); 4214 continue; 4215 } 4216 4217 Objects.push_back(P); 4218 } while (!Worklist.empty()); 4219 } 4220 4221 /// This is the function that does the work of looking through basic 4222 /// ptrtoint+arithmetic+inttoptr sequences. 4223 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4224 do { 4225 if (const Operator *U = dyn_cast<Operator>(V)) { 4226 // If we find a ptrtoint, we can transfer control back to the 4227 // regular getUnderlyingObjectFromInt. 4228 if (U->getOpcode() == Instruction::PtrToInt) 4229 return U->getOperand(0); 4230 // If we find an add of a constant, a multiplied value, or a phi, it's 4231 // likely that the other operand will lead us to the base 4232 // object. We don't have to worry about the case where the 4233 // object address is somehow being computed by the multiply, 4234 // because our callers only care when the result is an 4235 // identifiable object. 4236 if (U->getOpcode() != Instruction::Add || 4237 (!isa<ConstantInt>(U->getOperand(1)) && 4238 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4239 !isa<PHINode>(U->getOperand(1)))) 4240 return V; 4241 V = U->getOperand(0); 4242 } else { 4243 return V; 4244 } 4245 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4246 } while (true); 4247 } 4248 4249 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4250 /// ptrtoint+arithmetic+inttoptr sequences. 4251 /// It returns false if unidentified object is found in getUnderlyingObjects. 4252 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4253 SmallVectorImpl<Value *> &Objects) { 4254 SmallPtrSet<const Value *, 16> Visited; 4255 SmallVector<const Value *, 4> Working(1, V); 4256 do { 4257 V = Working.pop_back_val(); 4258 4259 SmallVector<const Value *, 4> Objs; 4260 getUnderlyingObjects(V, Objs); 4261 4262 for (const Value *V : Objs) { 4263 if (!Visited.insert(V).second) 4264 continue; 4265 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4266 const Value *O = 4267 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4268 if (O->getType()->isPointerTy()) { 4269 Working.push_back(O); 4270 continue; 4271 } 4272 } 4273 // If getUnderlyingObjects fails to find an identifiable object, 4274 // getUnderlyingObjectsForCodeGen also fails for safety. 4275 if (!isIdentifiedObject(V)) { 4276 Objects.clear(); 4277 return false; 4278 } 4279 Objects.push_back(const_cast<Value *>(V)); 4280 } 4281 } while (!Working.empty()); 4282 return true; 4283 } 4284 4285 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4286 AllocaInst *Result = nullptr; 4287 SmallPtrSet<Value *, 4> Visited; 4288 SmallVector<Value *, 4> Worklist; 4289 4290 auto AddWork = [&](Value *V) { 4291 if (Visited.insert(V).second) 4292 Worklist.push_back(V); 4293 }; 4294 4295 AddWork(V); 4296 do { 4297 V = Worklist.pop_back_val(); 4298 assert(Visited.count(V)); 4299 4300 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4301 if (Result && Result != AI) 4302 return nullptr; 4303 Result = AI; 4304 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4305 AddWork(CI->getOperand(0)); 4306 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4307 for (Value *IncValue : PN->incoming_values()) 4308 AddWork(IncValue); 4309 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4310 AddWork(SI->getTrueValue()); 4311 AddWork(SI->getFalseValue()); 4312 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4313 if (OffsetZero && !GEP->hasAllZeroIndices()) 4314 return nullptr; 4315 AddWork(GEP->getPointerOperand()); 4316 } else { 4317 return nullptr; 4318 } 4319 } while (!Worklist.empty()); 4320 4321 return Result; 4322 } 4323 4324 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4325 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4326 for (const User *U : V->users()) { 4327 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4328 if (!II) 4329 return false; 4330 4331 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4332 continue; 4333 4334 if (AllowDroppable && II->isDroppable()) 4335 continue; 4336 4337 return false; 4338 } 4339 return true; 4340 } 4341 4342 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4343 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4344 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4345 } 4346 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4347 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4348 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4349 } 4350 4351 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4352 if (!LI.isUnordered()) 4353 return true; 4354 const Function &F = *LI.getFunction(); 4355 // Speculative load may create a race that did not exist in the source. 4356 return F.hasFnAttribute(Attribute::SanitizeThread) || 4357 // Speculative load may load data from dirty regions. 4358 F.hasFnAttribute(Attribute::SanitizeAddress) || 4359 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4360 } 4361 4362 4363 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4364 const Instruction *CtxI, 4365 const DominatorTree *DT) { 4366 const Operator *Inst = dyn_cast<Operator>(V); 4367 if (!Inst) 4368 return false; 4369 4370 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4371 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4372 if (C->canTrap()) 4373 return false; 4374 4375 switch (Inst->getOpcode()) { 4376 default: 4377 return true; 4378 case Instruction::UDiv: 4379 case Instruction::URem: { 4380 // x / y is undefined if y == 0. 4381 const APInt *V; 4382 if (match(Inst->getOperand(1), m_APInt(V))) 4383 return *V != 0; 4384 return false; 4385 } 4386 case Instruction::SDiv: 4387 case Instruction::SRem: { 4388 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4389 const APInt *Numerator, *Denominator; 4390 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4391 return false; 4392 // We cannot hoist this division if the denominator is 0. 4393 if (*Denominator == 0) 4394 return false; 4395 // It's safe to hoist if the denominator is not 0 or -1. 4396 if (!Denominator->isAllOnesValue()) 4397 return true; 4398 // At this point we know that the denominator is -1. It is safe to hoist as 4399 // long we know that the numerator is not INT_MIN. 4400 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4401 return !Numerator->isMinSignedValue(); 4402 // The numerator *might* be MinSignedValue. 4403 return false; 4404 } 4405 case Instruction::Load: { 4406 const LoadInst *LI = cast<LoadInst>(Inst); 4407 if (mustSuppressSpeculation(*LI)) 4408 return false; 4409 const DataLayout &DL = LI->getModule()->getDataLayout(); 4410 return isDereferenceableAndAlignedPointer( 4411 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4412 DL, CtxI, DT); 4413 } 4414 case Instruction::Call: { 4415 auto *CI = cast<const CallInst>(Inst); 4416 const Function *Callee = CI->getCalledFunction(); 4417 4418 // The called function could have undefined behavior or side-effects, even 4419 // if marked readnone nounwind. 4420 return Callee && Callee->isSpeculatable(); 4421 } 4422 case Instruction::VAArg: 4423 case Instruction::Alloca: 4424 case Instruction::Invoke: 4425 case Instruction::CallBr: 4426 case Instruction::PHI: 4427 case Instruction::Store: 4428 case Instruction::Ret: 4429 case Instruction::Br: 4430 case Instruction::IndirectBr: 4431 case Instruction::Switch: 4432 case Instruction::Unreachable: 4433 case Instruction::Fence: 4434 case Instruction::AtomicRMW: 4435 case Instruction::AtomicCmpXchg: 4436 case Instruction::LandingPad: 4437 case Instruction::Resume: 4438 case Instruction::CatchSwitch: 4439 case Instruction::CatchPad: 4440 case Instruction::CatchRet: 4441 case Instruction::CleanupPad: 4442 case Instruction::CleanupRet: 4443 return false; // Misc instructions which have effects 4444 } 4445 } 4446 4447 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4448 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4449 } 4450 4451 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4452 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4453 switch (OR) { 4454 case ConstantRange::OverflowResult::MayOverflow: 4455 return OverflowResult::MayOverflow; 4456 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4457 return OverflowResult::AlwaysOverflowsLow; 4458 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4459 return OverflowResult::AlwaysOverflowsHigh; 4460 case ConstantRange::OverflowResult::NeverOverflows: 4461 return OverflowResult::NeverOverflows; 4462 } 4463 llvm_unreachable("Unknown OverflowResult"); 4464 } 4465 4466 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4467 static ConstantRange computeConstantRangeIncludingKnownBits( 4468 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4469 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4470 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4471 KnownBits Known = computeKnownBits( 4472 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4473 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4474 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4475 ConstantRange::PreferredRangeType RangeType = 4476 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4477 return CR1.intersectWith(CR2, RangeType); 4478 } 4479 4480 OverflowResult llvm::computeOverflowForUnsignedMul( 4481 const Value *LHS, const Value *RHS, const DataLayout &DL, 4482 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4483 bool UseInstrInfo) { 4484 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4485 nullptr, UseInstrInfo); 4486 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4487 nullptr, UseInstrInfo); 4488 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4489 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4490 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4491 } 4492 4493 OverflowResult 4494 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4495 const DataLayout &DL, AssumptionCache *AC, 4496 const Instruction *CxtI, 4497 const DominatorTree *DT, bool UseInstrInfo) { 4498 // Multiplying n * m significant bits yields a result of n + m significant 4499 // bits. If the total number of significant bits does not exceed the 4500 // result bit width (minus 1), there is no overflow. 4501 // This means if we have enough leading sign bits in the operands 4502 // we can guarantee that the result does not overflow. 4503 // Ref: "Hacker's Delight" by Henry Warren 4504 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4505 4506 // Note that underestimating the number of sign bits gives a more 4507 // conservative answer. 4508 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4509 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4510 4511 // First handle the easy case: if we have enough sign bits there's 4512 // definitely no overflow. 4513 if (SignBits > BitWidth + 1) 4514 return OverflowResult::NeverOverflows; 4515 4516 // There are two ambiguous cases where there can be no overflow: 4517 // SignBits == BitWidth + 1 and 4518 // SignBits == BitWidth 4519 // The second case is difficult to check, therefore we only handle the 4520 // first case. 4521 if (SignBits == BitWidth + 1) { 4522 // It overflows only when both arguments are negative and the true 4523 // product is exactly the minimum negative number. 4524 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4525 // For simplicity we just check if at least one side is not negative. 4526 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4527 nullptr, UseInstrInfo); 4528 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4529 nullptr, UseInstrInfo); 4530 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4531 return OverflowResult::NeverOverflows; 4532 } 4533 return OverflowResult::MayOverflow; 4534 } 4535 4536 OverflowResult llvm::computeOverflowForUnsignedAdd( 4537 const Value *LHS, const Value *RHS, const DataLayout &DL, 4538 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4539 bool UseInstrInfo) { 4540 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4541 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4542 nullptr, UseInstrInfo); 4543 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4544 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4545 nullptr, UseInstrInfo); 4546 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4547 } 4548 4549 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4550 const Value *RHS, 4551 const AddOperator *Add, 4552 const DataLayout &DL, 4553 AssumptionCache *AC, 4554 const Instruction *CxtI, 4555 const DominatorTree *DT) { 4556 if (Add && Add->hasNoSignedWrap()) { 4557 return OverflowResult::NeverOverflows; 4558 } 4559 4560 // If LHS and RHS each have at least two sign bits, the addition will look 4561 // like 4562 // 4563 // XX..... + 4564 // YY..... 4565 // 4566 // If the carry into the most significant position is 0, X and Y can't both 4567 // be 1 and therefore the carry out of the addition is also 0. 4568 // 4569 // If the carry into the most significant position is 1, X and Y can't both 4570 // be 0 and therefore the carry out of the addition is also 1. 4571 // 4572 // Since the carry into the most significant position is always equal to 4573 // the carry out of the addition, there is no signed overflow. 4574 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4575 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4576 return OverflowResult::NeverOverflows; 4577 4578 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4579 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4580 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4581 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4582 OverflowResult OR = 4583 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4584 if (OR != OverflowResult::MayOverflow) 4585 return OR; 4586 4587 // The remaining code needs Add to be available. Early returns if not so. 4588 if (!Add) 4589 return OverflowResult::MayOverflow; 4590 4591 // If the sign of Add is the same as at least one of the operands, this add 4592 // CANNOT overflow. If this can be determined from the known bits of the 4593 // operands the above signedAddMayOverflow() check will have already done so. 4594 // The only other way to improve on the known bits is from an assumption, so 4595 // call computeKnownBitsFromAssume() directly. 4596 bool LHSOrRHSKnownNonNegative = 4597 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4598 bool LHSOrRHSKnownNegative = 4599 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4600 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4601 KnownBits AddKnown(LHSRange.getBitWidth()); 4602 computeKnownBitsFromAssume( 4603 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4604 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4605 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4606 return OverflowResult::NeverOverflows; 4607 } 4608 4609 return OverflowResult::MayOverflow; 4610 } 4611 4612 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4613 const Value *RHS, 4614 const DataLayout &DL, 4615 AssumptionCache *AC, 4616 const Instruction *CxtI, 4617 const DominatorTree *DT) { 4618 // Checking for conditions implied by dominating conditions may be expensive. 4619 // Limit it to usub_with_overflow calls for now. 4620 if (match(CxtI, 4621 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4622 if (auto C = 4623 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4624 if (*C) 4625 return OverflowResult::NeverOverflows; 4626 return OverflowResult::AlwaysOverflowsLow; 4627 } 4628 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4629 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4630 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4631 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4632 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4633 } 4634 4635 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4636 const Value *RHS, 4637 const DataLayout &DL, 4638 AssumptionCache *AC, 4639 const Instruction *CxtI, 4640 const DominatorTree *DT) { 4641 // If LHS and RHS each have at least two sign bits, the subtraction 4642 // cannot overflow. 4643 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4644 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4645 return OverflowResult::NeverOverflows; 4646 4647 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4648 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4649 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4650 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4651 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4652 } 4653 4654 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4655 const DominatorTree &DT) { 4656 SmallVector<const BranchInst *, 2> GuardingBranches; 4657 SmallVector<const ExtractValueInst *, 2> Results; 4658 4659 for (const User *U : WO->users()) { 4660 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4661 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4662 4663 if (EVI->getIndices()[0] == 0) 4664 Results.push_back(EVI); 4665 else { 4666 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4667 4668 for (const auto *U : EVI->users()) 4669 if (const auto *B = dyn_cast<BranchInst>(U)) { 4670 assert(B->isConditional() && "How else is it using an i1?"); 4671 GuardingBranches.push_back(B); 4672 } 4673 } 4674 } else { 4675 // We are using the aggregate directly in a way we don't want to analyze 4676 // here (storing it to a global, say). 4677 return false; 4678 } 4679 } 4680 4681 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4682 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4683 if (!NoWrapEdge.isSingleEdge()) 4684 return false; 4685 4686 // Check if all users of the add are provably no-wrap. 4687 for (const auto *Result : Results) { 4688 // If the extractvalue itself is not executed on overflow, the we don't 4689 // need to check each use separately, since domination is transitive. 4690 if (DT.dominates(NoWrapEdge, Result->getParent())) 4691 continue; 4692 4693 for (auto &RU : Result->uses()) 4694 if (!DT.dominates(NoWrapEdge, RU)) 4695 return false; 4696 } 4697 4698 return true; 4699 }; 4700 4701 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4702 } 4703 4704 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4705 // See whether I has flags that may create poison 4706 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4707 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4708 return true; 4709 } 4710 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4711 if (ExactOp->isExact()) 4712 return true; 4713 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4714 auto FMF = FP->getFastMathFlags(); 4715 if (FMF.noNaNs() || FMF.noInfs()) 4716 return true; 4717 } 4718 4719 unsigned Opcode = Op->getOpcode(); 4720 4721 // Check whether opcode is a poison/undef-generating operation 4722 switch (Opcode) { 4723 case Instruction::Shl: 4724 case Instruction::AShr: 4725 case Instruction::LShr: { 4726 // Shifts return poison if shiftwidth is larger than the bitwidth. 4727 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4728 SmallVector<Constant *, 4> ShiftAmounts; 4729 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4730 unsigned NumElts = FVTy->getNumElements(); 4731 for (unsigned i = 0; i < NumElts; ++i) 4732 ShiftAmounts.push_back(C->getAggregateElement(i)); 4733 } else if (isa<ScalableVectorType>(C->getType())) 4734 return true; // Can't tell, just return true to be safe 4735 else 4736 ShiftAmounts.push_back(C); 4737 4738 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4739 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4740 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4741 }); 4742 return !Safe; 4743 } 4744 return true; 4745 } 4746 case Instruction::FPToSI: 4747 case Instruction::FPToUI: 4748 // fptosi/ui yields poison if the resulting value does not fit in the 4749 // destination type. 4750 return true; 4751 case Instruction::Call: 4752 case Instruction::CallBr: 4753 case Instruction::Invoke: { 4754 const auto *CB = cast<CallBase>(Op); 4755 return !CB->hasRetAttr(Attribute::NoUndef); 4756 } 4757 case Instruction::InsertElement: 4758 case Instruction::ExtractElement: { 4759 // If index exceeds the length of the vector, it returns poison 4760 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4761 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4762 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4763 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4764 return true; 4765 return false; 4766 } 4767 case Instruction::ShuffleVector: { 4768 // shufflevector may return undef. 4769 if (PoisonOnly) 4770 return false; 4771 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4772 ? cast<ConstantExpr>(Op)->getShuffleMask() 4773 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4774 return is_contained(Mask, UndefMaskElem); 4775 } 4776 case Instruction::FNeg: 4777 case Instruction::PHI: 4778 case Instruction::Select: 4779 case Instruction::URem: 4780 case Instruction::SRem: 4781 case Instruction::ExtractValue: 4782 case Instruction::InsertValue: 4783 case Instruction::Freeze: 4784 case Instruction::ICmp: 4785 case Instruction::FCmp: 4786 return false; 4787 case Instruction::GetElementPtr: { 4788 const auto *GEP = cast<GEPOperator>(Op); 4789 return GEP->isInBounds(); 4790 } 4791 default: { 4792 const auto *CE = dyn_cast<ConstantExpr>(Op); 4793 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4794 return false; 4795 else if (Instruction::isBinaryOp(Opcode)) 4796 return false; 4797 // Be conservative and return true. 4798 return true; 4799 } 4800 } 4801 } 4802 4803 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4804 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4805 } 4806 4807 bool llvm::canCreatePoison(const Operator *Op) { 4808 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4809 } 4810 4811 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4812 const Value *V, unsigned Depth) { 4813 if (ValAssumedPoison == V) 4814 return true; 4815 4816 const unsigned MaxDepth = 2; 4817 if (Depth >= MaxDepth) 4818 return false; 4819 4820 const auto *I = dyn_cast<Instruction>(V); 4821 if (I && propagatesPoison(cast<Operator>(I))) { 4822 return any_of(I->operands(), [=](const Value *Op) { 4823 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4824 }); 4825 } 4826 return false; 4827 } 4828 4829 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4830 unsigned Depth) { 4831 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4832 return true; 4833 4834 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4835 return true; 4836 4837 const unsigned MaxDepth = 2; 4838 if (Depth >= MaxDepth) 4839 return false; 4840 4841 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4842 if (I && !canCreatePoison(cast<Operator>(I))) { 4843 return all_of(I->operands(), [=](const Value *Op) { 4844 return impliesPoison(Op, V, Depth + 1); 4845 }); 4846 } 4847 return false; 4848 } 4849 4850 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4851 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4852 } 4853 4854 static bool programUndefinedIfUndefOrPoison(const Value *V, 4855 bool PoisonOnly); 4856 4857 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4858 AssumptionCache *AC, 4859 const Instruction *CtxI, 4860 const DominatorTree *DT, 4861 unsigned Depth, bool PoisonOnly) { 4862 if (Depth >= MaxAnalysisRecursionDepth) 4863 return false; 4864 4865 if (isa<MetadataAsValue>(V)) 4866 return false; 4867 4868 if (const auto *A = dyn_cast<Argument>(V)) { 4869 if (A->hasAttribute(Attribute::NoUndef)) 4870 return true; 4871 } 4872 4873 if (auto *C = dyn_cast<Constant>(V)) { 4874 if (isa<UndefValue>(C)) 4875 return PoisonOnly && !isa<PoisonValue>(C); 4876 4877 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4878 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4879 return true; 4880 4881 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4882 return (PoisonOnly ? !C->containsPoisonElement() 4883 : !C->containsUndefOrPoisonElement()) && 4884 !C->containsConstantExpression(); 4885 } 4886 4887 // Strip cast operations from a pointer value. 4888 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4889 // inbounds with zero offset. To guarantee that the result isn't poison, the 4890 // stripped pointer is checked as it has to be pointing into an allocated 4891 // object or be null `null` to ensure `inbounds` getelement pointers with a 4892 // zero offset could not produce poison. 4893 // It can strip off addrspacecast that do not change bit representation as 4894 // well. We believe that such addrspacecast is equivalent to no-op. 4895 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4896 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4897 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4898 return true; 4899 4900 auto OpCheck = [&](const Value *V) { 4901 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4902 PoisonOnly); 4903 }; 4904 4905 if (auto *Opr = dyn_cast<Operator>(V)) { 4906 // If the value is a freeze instruction, then it can never 4907 // be undef or poison. 4908 if (isa<FreezeInst>(V)) 4909 return true; 4910 4911 if (const auto *CB = dyn_cast<CallBase>(V)) { 4912 if (CB->hasRetAttr(Attribute::NoUndef)) 4913 return true; 4914 } 4915 4916 if (const auto *PN = dyn_cast<PHINode>(V)) { 4917 unsigned Num = PN->getNumIncomingValues(); 4918 bool IsWellDefined = true; 4919 for (unsigned i = 0; i < Num; ++i) { 4920 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4921 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4922 DT, Depth + 1, PoisonOnly)) { 4923 IsWellDefined = false; 4924 break; 4925 } 4926 } 4927 if (IsWellDefined) 4928 return true; 4929 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4930 return true; 4931 } 4932 4933 if (auto *I = dyn_cast<LoadInst>(V)) 4934 if (I->getMetadata(LLVMContext::MD_noundef)) 4935 return true; 4936 4937 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4938 return true; 4939 4940 // CxtI may be null or a cloned instruction. 4941 if (!CtxI || !CtxI->getParent() || !DT) 4942 return false; 4943 4944 auto *DNode = DT->getNode(CtxI->getParent()); 4945 if (!DNode) 4946 // Unreachable block 4947 return false; 4948 4949 // If V is used as a branch condition before reaching CtxI, V cannot be 4950 // undef or poison. 4951 // br V, BB1, BB2 4952 // BB1: 4953 // CtxI ; V cannot be undef or poison here 4954 auto *Dominator = DNode->getIDom(); 4955 while (Dominator) { 4956 auto *TI = Dominator->getBlock()->getTerminator(); 4957 4958 Value *Cond = nullptr; 4959 if (auto BI = dyn_cast<BranchInst>(TI)) { 4960 if (BI->isConditional()) 4961 Cond = BI->getCondition(); 4962 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4963 Cond = SI->getCondition(); 4964 } 4965 4966 if (Cond) { 4967 if (Cond == V) 4968 return true; 4969 else if (PoisonOnly && isa<Operator>(Cond)) { 4970 // For poison, we can analyze further 4971 auto *Opr = cast<Operator>(Cond); 4972 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4973 return true; 4974 } 4975 } 4976 4977 Dominator = Dominator->getIDom(); 4978 } 4979 4980 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4981 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4982 return true; 4983 4984 return false; 4985 } 4986 4987 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4988 const Instruction *CtxI, 4989 const DominatorTree *DT, 4990 unsigned Depth) { 4991 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4992 } 4993 4994 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4995 const Instruction *CtxI, 4996 const DominatorTree *DT, unsigned Depth) { 4997 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4998 } 4999 5000 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5001 const DataLayout &DL, 5002 AssumptionCache *AC, 5003 const Instruction *CxtI, 5004 const DominatorTree *DT) { 5005 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5006 Add, DL, AC, CxtI, DT); 5007 } 5008 5009 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5010 const Value *RHS, 5011 const DataLayout &DL, 5012 AssumptionCache *AC, 5013 const Instruction *CxtI, 5014 const DominatorTree *DT) { 5015 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5016 } 5017 5018 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5019 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5020 // of time because it's possible for another thread to interfere with it for an 5021 // arbitrary length of time, but programs aren't allowed to rely on that. 5022 5023 // If there is no successor, then execution can't transfer to it. 5024 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5025 return !CRI->unwindsToCaller(); 5026 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5027 return !CatchSwitch->unwindsToCaller(); 5028 if (isa<ResumeInst>(I)) 5029 return false; 5030 if (isa<ReturnInst>(I)) 5031 return false; 5032 if (isa<UnreachableInst>(I)) 5033 return false; 5034 5035 // Calls can throw, or contain an infinite loop, or kill the process. 5036 if (const auto *CB = dyn_cast<CallBase>(I)) { 5037 // Call sites that throw have implicit non-local control flow. 5038 if (!CB->doesNotThrow()) 5039 return false; 5040 5041 // A function which doens't throw and has "willreturn" attribute will 5042 // always return. 5043 if (CB->hasFnAttr(Attribute::WillReturn)) 5044 return true; 5045 5046 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5047 // etc. and thus not return. However, LLVM already assumes that 5048 // 5049 // - Thread exiting actions are modeled as writes to memory invisible to 5050 // the program. 5051 // 5052 // - Loops that don't have side effects (side effects are volatile/atomic 5053 // stores and IO) always terminate (see http://llvm.org/PR965). 5054 // Furthermore IO itself is also modeled as writes to memory invisible to 5055 // the program. 5056 // 5057 // We rely on those assumptions here, and use the memory effects of the call 5058 // target as a proxy for checking that it always returns. 5059 5060 // FIXME: This isn't aggressive enough; a call which only writes to a global 5061 // is guaranteed to return. 5062 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5063 } 5064 5065 // Other instructions return normally. 5066 return true; 5067 } 5068 5069 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5070 // TODO: This is slightly conservative for invoke instruction since exiting 5071 // via an exception *is* normal control for them. 5072 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5073 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5074 return false; 5075 return true; 5076 } 5077 5078 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5079 const Loop *L) { 5080 // The loop header is guaranteed to be executed for every iteration. 5081 // 5082 // FIXME: Relax this constraint to cover all basic blocks that are 5083 // guaranteed to be executed at every iteration. 5084 if (I->getParent() != L->getHeader()) return false; 5085 5086 for (const Instruction &LI : *L->getHeader()) { 5087 if (&LI == I) return true; 5088 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5089 } 5090 llvm_unreachable("Instruction not contained in its own parent basic block."); 5091 } 5092 5093 bool llvm::propagatesPoison(const Operator *I) { 5094 switch (I->getOpcode()) { 5095 case Instruction::Freeze: 5096 case Instruction::Select: 5097 case Instruction::PHI: 5098 case Instruction::Call: 5099 case Instruction::Invoke: 5100 return false; 5101 case Instruction::ICmp: 5102 case Instruction::FCmp: 5103 case Instruction::GetElementPtr: 5104 return true; 5105 default: 5106 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5107 return true; 5108 5109 // Be conservative and return false. 5110 return false; 5111 } 5112 } 5113 5114 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5115 SmallPtrSetImpl<const Value *> &Operands) { 5116 switch (I->getOpcode()) { 5117 case Instruction::Store: 5118 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5119 break; 5120 5121 case Instruction::Load: 5122 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5123 break; 5124 5125 case Instruction::AtomicCmpXchg: 5126 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5127 break; 5128 5129 case Instruction::AtomicRMW: 5130 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5131 break; 5132 5133 case Instruction::UDiv: 5134 case Instruction::SDiv: 5135 case Instruction::URem: 5136 case Instruction::SRem: 5137 Operands.insert(I->getOperand(1)); 5138 break; 5139 5140 case Instruction::Call: 5141 case Instruction::Invoke: { 5142 const CallBase *CB = cast<CallBase>(I); 5143 if (CB->isIndirectCall()) 5144 Operands.insert(CB->getCalledOperand()); 5145 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5146 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5147 Operands.insert(CB->getArgOperand(i)); 5148 } 5149 break; 5150 } 5151 5152 default: 5153 break; 5154 } 5155 } 5156 5157 bool llvm::mustTriggerUB(const Instruction *I, 5158 const SmallSet<const Value *, 16>& KnownPoison) { 5159 SmallPtrSet<const Value *, 4> NonPoisonOps; 5160 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5161 5162 for (const auto *V : NonPoisonOps) 5163 if (KnownPoison.count(V)) 5164 return true; 5165 5166 return false; 5167 } 5168 5169 static bool programUndefinedIfUndefOrPoison(const Value *V, 5170 bool PoisonOnly) { 5171 // We currently only look for uses of values within the same basic 5172 // block, as that makes it easier to guarantee that the uses will be 5173 // executed given that Inst is executed. 5174 // 5175 // FIXME: Expand this to consider uses beyond the same basic block. To do 5176 // this, look out for the distinction between post-dominance and strong 5177 // post-dominance. 5178 const BasicBlock *BB = nullptr; 5179 BasicBlock::const_iterator Begin; 5180 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5181 BB = Inst->getParent(); 5182 Begin = Inst->getIterator(); 5183 Begin++; 5184 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5185 BB = &Arg->getParent()->getEntryBlock(); 5186 Begin = BB->begin(); 5187 } else { 5188 return false; 5189 } 5190 5191 BasicBlock::const_iterator End = BB->end(); 5192 5193 if (!PoisonOnly) { 5194 // Be conservative & just check whether a value is passed to a noundef 5195 // argument. 5196 // Instructions that raise UB with a poison operand are well-defined 5197 // or have unclear semantics when the input is partially undef. 5198 // For example, 'udiv x, (undef | 1)' isn't UB. 5199 5200 for (auto &I : make_range(Begin, End)) { 5201 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5202 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5203 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5204 CB->getArgOperand(i) == V) 5205 return true; 5206 } 5207 } 5208 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5209 break; 5210 } 5211 return false; 5212 } 5213 5214 // Set of instructions that we have proved will yield poison if Inst 5215 // does. 5216 SmallSet<const Value *, 16> YieldsPoison; 5217 SmallSet<const BasicBlock *, 4> Visited; 5218 5219 YieldsPoison.insert(V); 5220 auto Propagate = [&](const User *User) { 5221 if (propagatesPoison(cast<Operator>(User))) 5222 YieldsPoison.insert(User); 5223 }; 5224 for_each(V->users(), Propagate); 5225 Visited.insert(BB); 5226 5227 unsigned Iter = 0; 5228 while (Iter++ < MaxAnalysisRecursionDepth) { 5229 for (auto &I : make_range(Begin, End)) { 5230 if (mustTriggerUB(&I, YieldsPoison)) 5231 return true; 5232 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5233 return false; 5234 5235 // Mark poison that propagates from I through uses of I. 5236 if (YieldsPoison.count(&I)) 5237 for_each(I.users(), Propagate); 5238 } 5239 5240 if (auto *NextBB = BB->getSingleSuccessor()) { 5241 if (Visited.insert(NextBB).second) { 5242 BB = NextBB; 5243 Begin = BB->getFirstNonPHI()->getIterator(); 5244 End = BB->end(); 5245 continue; 5246 } 5247 } 5248 5249 break; 5250 } 5251 return false; 5252 } 5253 5254 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5255 return ::programUndefinedIfUndefOrPoison(Inst, false); 5256 } 5257 5258 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5259 return ::programUndefinedIfUndefOrPoison(Inst, true); 5260 } 5261 5262 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5263 if (FMF.noNaNs()) 5264 return true; 5265 5266 if (auto *C = dyn_cast<ConstantFP>(V)) 5267 return !C->isNaN(); 5268 5269 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5270 if (!C->getElementType()->isFloatingPointTy()) 5271 return false; 5272 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5273 if (C->getElementAsAPFloat(I).isNaN()) 5274 return false; 5275 } 5276 return true; 5277 } 5278 5279 if (isa<ConstantAggregateZero>(V)) 5280 return true; 5281 5282 return false; 5283 } 5284 5285 static bool isKnownNonZero(const Value *V) { 5286 if (auto *C = dyn_cast<ConstantFP>(V)) 5287 return !C->isZero(); 5288 5289 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5290 if (!C->getElementType()->isFloatingPointTy()) 5291 return false; 5292 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5293 if (C->getElementAsAPFloat(I).isZero()) 5294 return false; 5295 } 5296 return true; 5297 } 5298 5299 return false; 5300 } 5301 5302 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5303 /// Given non-min/max outer cmp/select from the clamp pattern this 5304 /// function recognizes if it can be substitued by a "canonical" min/max 5305 /// pattern. 5306 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5307 Value *CmpLHS, Value *CmpRHS, 5308 Value *TrueVal, Value *FalseVal, 5309 Value *&LHS, Value *&RHS) { 5310 // Try to match 5311 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5312 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5313 // and return description of the outer Max/Min. 5314 5315 // First, check if select has inverse order: 5316 if (CmpRHS == FalseVal) { 5317 std::swap(TrueVal, FalseVal); 5318 Pred = CmpInst::getInversePredicate(Pred); 5319 } 5320 5321 // Assume success now. If there's no match, callers should not use these anyway. 5322 LHS = TrueVal; 5323 RHS = FalseVal; 5324 5325 const APFloat *FC1; 5326 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5327 return {SPF_UNKNOWN, SPNB_NA, false}; 5328 5329 const APFloat *FC2; 5330 switch (Pred) { 5331 case CmpInst::FCMP_OLT: 5332 case CmpInst::FCMP_OLE: 5333 case CmpInst::FCMP_ULT: 5334 case CmpInst::FCMP_ULE: 5335 if (match(FalseVal, 5336 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5337 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5338 *FC1 < *FC2) 5339 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5340 break; 5341 case CmpInst::FCMP_OGT: 5342 case CmpInst::FCMP_OGE: 5343 case CmpInst::FCMP_UGT: 5344 case CmpInst::FCMP_UGE: 5345 if (match(FalseVal, 5346 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5347 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5348 *FC1 > *FC2) 5349 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5350 break; 5351 default: 5352 break; 5353 } 5354 5355 return {SPF_UNKNOWN, SPNB_NA, false}; 5356 } 5357 5358 /// Recognize variations of: 5359 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5360 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5361 Value *CmpLHS, Value *CmpRHS, 5362 Value *TrueVal, Value *FalseVal) { 5363 // Swap the select operands and predicate to match the patterns below. 5364 if (CmpRHS != TrueVal) { 5365 Pred = ICmpInst::getSwappedPredicate(Pred); 5366 std::swap(TrueVal, FalseVal); 5367 } 5368 const APInt *C1; 5369 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5370 const APInt *C2; 5371 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5372 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5373 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5374 return {SPF_SMAX, SPNB_NA, false}; 5375 5376 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5377 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5378 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5379 return {SPF_SMIN, SPNB_NA, false}; 5380 5381 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5382 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5383 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5384 return {SPF_UMAX, SPNB_NA, false}; 5385 5386 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5387 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5388 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5389 return {SPF_UMIN, SPNB_NA, false}; 5390 } 5391 return {SPF_UNKNOWN, SPNB_NA, false}; 5392 } 5393 5394 /// Recognize variations of: 5395 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5396 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5397 Value *CmpLHS, Value *CmpRHS, 5398 Value *TVal, Value *FVal, 5399 unsigned Depth) { 5400 // TODO: Allow FP min/max with nnan/nsz. 5401 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5402 5403 Value *A = nullptr, *B = nullptr; 5404 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5405 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5406 return {SPF_UNKNOWN, SPNB_NA, false}; 5407 5408 Value *C = nullptr, *D = nullptr; 5409 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5410 if (L.Flavor != R.Flavor) 5411 return {SPF_UNKNOWN, SPNB_NA, false}; 5412 5413 // We have something like: x Pred y ? min(a, b) : min(c, d). 5414 // Try to match the compare to the min/max operations of the select operands. 5415 // First, make sure we have the right compare predicate. 5416 switch (L.Flavor) { 5417 case SPF_SMIN: 5418 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5419 Pred = ICmpInst::getSwappedPredicate(Pred); 5420 std::swap(CmpLHS, CmpRHS); 5421 } 5422 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5423 break; 5424 return {SPF_UNKNOWN, SPNB_NA, false}; 5425 case SPF_SMAX: 5426 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5427 Pred = ICmpInst::getSwappedPredicate(Pred); 5428 std::swap(CmpLHS, CmpRHS); 5429 } 5430 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5431 break; 5432 return {SPF_UNKNOWN, SPNB_NA, false}; 5433 case SPF_UMIN: 5434 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5435 Pred = ICmpInst::getSwappedPredicate(Pred); 5436 std::swap(CmpLHS, CmpRHS); 5437 } 5438 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5439 break; 5440 return {SPF_UNKNOWN, SPNB_NA, false}; 5441 case SPF_UMAX: 5442 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5443 Pred = ICmpInst::getSwappedPredicate(Pred); 5444 std::swap(CmpLHS, CmpRHS); 5445 } 5446 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5447 break; 5448 return {SPF_UNKNOWN, SPNB_NA, false}; 5449 default: 5450 return {SPF_UNKNOWN, SPNB_NA, false}; 5451 } 5452 5453 // If there is a common operand in the already matched min/max and the other 5454 // min/max operands match the compare operands (either directly or inverted), 5455 // then this is min/max of the same flavor. 5456 5457 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5458 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5459 if (D == B) { 5460 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5461 match(A, m_Not(m_Specific(CmpRHS))))) 5462 return {L.Flavor, SPNB_NA, false}; 5463 } 5464 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5465 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5466 if (C == B) { 5467 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5468 match(A, m_Not(m_Specific(CmpRHS))))) 5469 return {L.Flavor, SPNB_NA, false}; 5470 } 5471 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5472 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5473 if (D == A) { 5474 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5475 match(B, m_Not(m_Specific(CmpRHS))))) 5476 return {L.Flavor, SPNB_NA, false}; 5477 } 5478 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5479 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5480 if (C == A) { 5481 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5482 match(B, m_Not(m_Specific(CmpRHS))))) 5483 return {L.Flavor, SPNB_NA, false}; 5484 } 5485 5486 return {SPF_UNKNOWN, SPNB_NA, false}; 5487 } 5488 5489 /// If the input value is the result of a 'not' op, constant integer, or vector 5490 /// splat of a constant integer, return the bitwise-not source value. 5491 /// TODO: This could be extended to handle non-splat vector integer constants. 5492 static Value *getNotValue(Value *V) { 5493 Value *NotV; 5494 if (match(V, m_Not(m_Value(NotV)))) 5495 return NotV; 5496 5497 const APInt *C; 5498 if (match(V, m_APInt(C))) 5499 return ConstantInt::get(V->getType(), ~(*C)); 5500 5501 return nullptr; 5502 } 5503 5504 /// Match non-obvious integer minimum and maximum sequences. 5505 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5506 Value *CmpLHS, Value *CmpRHS, 5507 Value *TrueVal, Value *FalseVal, 5508 Value *&LHS, Value *&RHS, 5509 unsigned Depth) { 5510 // Assume success. If there's no match, callers should not use these anyway. 5511 LHS = TrueVal; 5512 RHS = FalseVal; 5513 5514 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5515 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5516 return SPR; 5517 5518 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5519 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5520 return SPR; 5521 5522 // Look through 'not' ops to find disguised min/max. 5523 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5524 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5525 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5526 switch (Pred) { 5527 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5528 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5529 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5530 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5531 default: break; 5532 } 5533 } 5534 5535 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5536 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5537 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5538 switch (Pred) { 5539 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5540 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5541 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5542 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5543 default: break; 5544 } 5545 } 5546 5547 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5548 return {SPF_UNKNOWN, SPNB_NA, false}; 5549 5550 // Z = X -nsw Y 5551 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5552 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5553 if (match(TrueVal, m_Zero()) && 5554 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5555 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5556 5557 // Z = X -nsw Y 5558 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5559 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5560 if (match(FalseVal, m_Zero()) && 5561 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5562 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5563 5564 const APInt *C1; 5565 if (!match(CmpRHS, m_APInt(C1))) 5566 return {SPF_UNKNOWN, SPNB_NA, false}; 5567 5568 // An unsigned min/max can be written with a signed compare. 5569 const APInt *C2; 5570 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5571 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5572 // Is the sign bit set? 5573 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5574 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5575 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5576 C2->isMaxSignedValue()) 5577 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5578 5579 // Is the sign bit clear? 5580 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5581 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5582 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5583 C2->isMinSignedValue()) 5584 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5585 } 5586 5587 return {SPF_UNKNOWN, SPNB_NA, false}; 5588 } 5589 5590 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5591 assert(X && Y && "Invalid operand"); 5592 5593 // X = sub (0, Y) || X = sub nsw (0, Y) 5594 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5595 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5596 return true; 5597 5598 // Y = sub (0, X) || Y = sub nsw (0, X) 5599 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5600 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5601 return true; 5602 5603 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5604 Value *A, *B; 5605 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5606 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5607 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5608 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5609 } 5610 5611 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5612 FastMathFlags FMF, 5613 Value *CmpLHS, Value *CmpRHS, 5614 Value *TrueVal, Value *FalseVal, 5615 Value *&LHS, Value *&RHS, 5616 unsigned Depth) { 5617 if (CmpInst::isFPPredicate(Pred)) { 5618 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5619 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5620 // purpose of identifying min/max. Disregard vector constants with undefined 5621 // elements because those can not be back-propagated for analysis. 5622 Value *OutputZeroVal = nullptr; 5623 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5624 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5625 OutputZeroVal = TrueVal; 5626 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5627 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5628 OutputZeroVal = FalseVal; 5629 5630 if (OutputZeroVal) { 5631 if (match(CmpLHS, m_AnyZeroFP())) 5632 CmpLHS = OutputZeroVal; 5633 if (match(CmpRHS, m_AnyZeroFP())) 5634 CmpRHS = OutputZeroVal; 5635 } 5636 } 5637 5638 LHS = CmpLHS; 5639 RHS = CmpRHS; 5640 5641 // Signed zero may return inconsistent results between implementations. 5642 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5643 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5644 // Therefore, we behave conservatively and only proceed if at least one of the 5645 // operands is known to not be zero or if we don't care about signed zero. 5646 switch (Pred) { 5647 default: break; 5648 // FIXME: Include OGT/OLT/UGT/ULT. 5649 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5650 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5651 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5652 !isKnownNonZero(CmpRHS)) 5653 return {SPF_UNKNOWN, SPNB_NA, false}; 5654 } 5655 5656 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5657 bool Ordered = false; 5658 5659 // When given one NaN and one non-NaN input: 5660 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5661 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5662 // ordered comparison fails), which could be NaN or non-NaN. 5663 // so here we discover exactly what NaN behavior is required/accepted. 5664 if (CmpInst::isFPPredicate(Pred)) { 5665 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5666 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5667 5668 if (LHSSafe && RHSSafe) { 5669 // Both operands are known non-NaN. 5670 NaNBehavior = SPNB_RETURNS_ANY; 5671 } else if (CmpInst::isOrdered(Pred)) { 5672 // An ordered comparison will return false when given a NaN, so it 5673 // returns the RHS. 5674 Ordered = true; 5675 if (LHSSafe) 5676 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5677 NaNBehavior = SPNB_RETURNS_NAN; 5678 else if (RHSSafe) 5679 NaNBehavior = SPNB_RETURNS_OTHER; 5680 else 5681 // Completely unsafe. 5682 return {SPF_UNKNOWN, SPNB_NA, false}; 5683 } else { 5684 Ordered = false; 5685 // An unordered comparison will return true when given a NaN, so it 5686 // returns the LHS. 5687 if (LHSSafe) 5688 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5689 NaNBehavior = SPNB_RETURNS_OTHER; 5690 else if (RHSSafe) 5691 NaNBehavior = SPNB_RETURNS_NAN; 5692 else 5693 // Completely unsafe. 5694 return {SPF_UNKNOWN, SPNB_NA, false}; 5695 } 5696 } 5697 5698 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5699 std::swap(CmpLHS, CmpRHS); 5700 Pred = CmpInst::getSwappedPredicate(Pred); 5701 if (NaNBehavior == SPNB_RETURNS_NAN) 5702 NaNBehavior = SPNB_RETURNS_OTHER; 5703 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5704 NaNBehavior = SPNB_RETURNS_NAN; 5705 Ordered = !Ordered; 5706 } 5707 5708 // ([if]cmp X, Y) ? X : Y 5709 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5710 switch (Pred) { 5711 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5712 case ICmpInst::ICMP_UGT: 5713 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5714 case ICmpInst::ICMP_SGT: 5715 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5716 case ICmpInst::ICMP_ULT: 5717 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5718 case ICmpInst::ICMP_SLT: 5719 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5720 case FCmpInst::FCMP_UGT: 5721 case FCmpInst::FCMP_UGE: 5722 case FCmpInst::FCMP_OGT: 5723 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5724 case FCmpInst::FCMP_ULT: 5725 case FCmpInst::FCMP_ULE: 5726 case FCmpInst::FCMP_OLT: 5727 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5728 } 5729 } 5730 5731 if (isKnownNegation(TrueVal, FalseVal)) { 5732 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5733 // match against either LHS or sext(LHS). 5734 auto MaybeSExtCmpLHS = 5735 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5736 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5737 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5738 if (match(TrueVal, MaybeSExtCmpLHS)) { 5739 // Set the return values. If the compare uses the negated value (-X >s 0), 5740 // swap the return values because the negated value is always 'RHS'. 5741 LHS = TrueVal; 5742 RHS = FalseVal; 5743 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5744 std::swap(LHS, RHS); 5745 5746 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5747 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5748 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5749 return {SPF_ABS, SPNB_NA, false}; 5750 5751 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5752 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5753 return {SPF_ABS, SPNB_NA, false}; 5754 5755 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5756 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5757 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5758 return {SPF_NABS, SPNB_NA, false}; 5759 } 5760 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5761 // Set the return values. If the compare uses the negated value (-X >s 0), 5762 // swap the return values because the negated value is always 'RHS'. 5763 LHS = FalseVal; 5764 RHS = TrueVal; 5765 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5766 std::swap(LHS, RHS); 5767 5768 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5769 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5770 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5771 return {SPF_NABS, SPNB_NA, false}; 5772 5773 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5774 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5775 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5776 return {SPF_ABS, SPNB_NA, false}; 5777 } 5778 } 5779 5780 if (CmpInst::isIntPredicate(Pred)) 5781 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5782 5783 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5784 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5785 // semantics than minNum. Be conservative in such case. 5786 if (NaNBehavior != SPNB_RETURNS_ANY || 5787 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5788 !isKnownNonZero(CmpRHS))) 5789 return {SPF_UNKNOWN, SPNB_NA, false}; 5790 5791 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5792 } 5793 5794 /// Helps to match a select pattern in case of a type mismatch. 5795 /// 5796 /// The function processes the case when type of true and false values of a 5797 /// select instruction differs from type of the cmp instruction operands because 5798 /// of a cast instruction. The function checks if it is legal to move the cast 5799 /// operation after "select". If yes, it returns the new second value of 5800 /// "select" (with the assumption that cast is moved): 5801 /// 1. As operand of cast instruction when both values of "select" are same cast 5802 /// instructions. 5803 /// 2. As restored constant (by applying reverse cast operation) when the first 5804 /// value of the "select" is a cast operation and the second value is a 5805 /// constant. 5806 /// NOTE: We return only the new second value because the first value could be 5807 /// accessed as operand of cast instruction. 5808 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5809 Instruction::CastOps *CastOp) { 5810 auto *Cast1 = dyn_cast<CastInst>(V1); 5811 if (!Cast1) 5812 return nullptr; 5813 5814 *CastOp = Cast1->getOpcode(); 5815 Type *SrcTy = Cast1->getSrcTy(); 5816 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5817 // If V1 and V2 are both the same cast from the same type, look through V1. 5818 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5819 return Cast2->getOperand(0); 5820 return nullptr; 5821 } 5822 5823 auto *C = dyn_cast<Constant>(V2); 5824 if (!C) 5825 return nullptr; 5826 5827 Constant *CastedTo = nullptr; 5828 switch (*CastOp) { 5829 case Instruction::ZExt: 5830 if (CmpI->isUnsigned()) 5831 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5832 break; 5833 case Instruction::SExt: 5834 if (CmpI->isSigned()) 5835 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5836 break; 5837 case Instruction::Trunc: 5838 Constant *CmpConst; 5839 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5840 CmpConst->getType() == SrcTy) { 5841 // Here we have the following case: 5842 // 5843 // %cond = cmp iN %x, CmpConst 5844 // %tr = trunc iN %x to iK 5845 // %narrowsel = select i1 %cond, iK %t, iK C 5846 // 5847 // We can always move trunc after select operation: 5848 // 5849 // %cond = cmp iN %x, CmpConst 5850 // %widesel = select i1 %cond, iN %x, iN CmpConst 5851 // %tr = trunc iN %widesel to iK 5852 // 5853 // Note that C could be extended in any way because we don't care about 5854 // upper bits after truncation. It can't be abs pattern, because it would 5855 // look like: 5856 // 5857 // select i1 %cond, x, -x. 5858 // 5859 // So only min/max pattern could be matched. Such match requires widened C 5860 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5861 // CmpConst == C is checked below. 5862 CastedTo = CmpConst; 5863 } else { 5864 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5865 } 5866 break; 5867 case Instruction::FPTrunc: 5868 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5869 break; 5870 case Instruction::FPExt: 5871 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5872 break; 5873 case Instruction::FPToUI: 5874 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5875 break; 5876 case Instruction::FPToSI: 5877 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5878 break; 5879 case Instruction::UIToFP: 5880 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5881 break; 5882 case Instruction::SIToFP: 5883 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5884 break; 5885 default: 5886 break; 5887 } 5888 5889 if (!CastedTo) 5890 return nullptr; 5891 5892 // Make sure the cast doesn't lose any information. 5893 Constant *CastedBack = 5894 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5895 if (CastedBack != C) 5896 return nullptr; 5897 5898 return CastedTo; 5899 } 5900 5901 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5902 Instruction::CastOps *CastOp, 5903 unsigned Depth) { 5904 if (Depth >= MaxAnalysisRecursionDepth) 5905 return {SPF_UNKNOWN, SPNB_NA, false}; 5906 5907 SelectInst *SI = dyn_cast<SelectInst>(V); 5908 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5909 5910 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5911 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5912 5913 Value *TrueVal = SI->getTrueValue(); 5914 Value *FalseVal = SI->getFalseValue(); 5915 5916 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5917 CastOp, Depth); 5918 } 5919 5920 SelectPatternResult llvm::matchDecomposedSelectPattern( 5921 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5922 Instruction::CastOps *CastOp, unsigned Depth) { 5923 CmpInst::Predicate Pred = CmpI->getPredicate(); 5924 Value *CmpLHS = CmpI->getOperand(0); 5925 Value *CmpRHS = CmpI->getOperand(1); 5926 FastMathFlags FMF; 5927 if (isa<FPMathOperator>(CmpI)) 5928 FMF = CmpI->getFastMathFlags(); 5929 5930 // Bail out early. 5931 if (CmpI->isEquality()) 5932 return {SPF_UNKNOWN, SPNB_NA, false}; 5933 5934 // Deal with type mismatches. 5935 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5936 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5937 // If this is a potential fmin/fmax with a cast to integer, then ignore 5938 // -0.0 because there is no corresponding integer value. 5939 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5940 FMF.setNoSignedZeros(); 5941 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5942 cast<CastInst>(TrueVal)->getOperand(0), C, 5943 LHS, RHS, Depth); 5944 } 5945 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5946 // If this is a potential fmin/fmax with a cast to integer, then ignore 5947 // -0.0 because there is no corresponding integer value. 5948 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5949 FMF.setNoSignedZeros(); 5950 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5951 C, cast<CastInst>(FalseVal)->getOperand(0), 5952 LHS, RHS, Depth); 5953 } 5954 } 5955 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5956 LHS, RHS, Depth); 5957 } 5958 5959 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5960 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5961 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5962 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5963 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5964 if (SPF == SPF_FMINNUM) 5965 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5966 if (SPF == SPF_FMAXNUM) 5967 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5968 llvm_unreachable("unhandled!"); 5969 } 5970 5971 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5972 if (SPF == SPF_SMIN) return SPF_SMAX; 5973 if (SPF == SPF_UMIN) return SPF_UMAX; 5974 if (SPF == SPF_SMAX) return SPF_SMIN; 5975 if (SPF == SPF_UMAX) return SPF_UMIN; 5976 llvm_unreachable("unhandled!"); 5977 } 5978 5979 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5980 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5981 } 5982 5983 std::pair<Intrinsic::ID, bool> 5984 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5985 // Check if VL contains select instructions that can be folded into a min/max 5986 // vector intrinsic and return the intrinsic if it is possible. 5987 // TODO: Support floating point min/max. 5988 bool AllCmpSingleUse = true; 5989 SelectPatternResult SelectPattern; 5990 SelectPattern.Flavor = SPF_UNKNOWN; 5991 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5992 Value *LHS, *RHS; 5993 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5994 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5995 CurrentPattern.Flavor == SPF_FMINNUM || 5996 CurrentPattern.Flavor == SPF_FMAXNUM || 5997 !I->getType()->isIntOrIntVectorTy()) 5998 return false; 5999 if (SelectPattern.Flavor != SPF_UNKNOWN && 6000 SelectPattern.Flavor != CurrentPattern.Flavor) 6001 return false; 6002 SelectPattern = CurrentPattern; 6003 AllCmpSingleUse &= 6004 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6005 return true; 6006 })) { 6007 switch (SelectPattern.Flavor) { 6008 case SPF_SMIN: 6009 return {Intrinsic::smin, AllCmpSingleUse}; 6010 case SPF_UMIN: 6011 return {Intrinsic::umin, AllCmpSingleUse}; 6012 case SPF_SMAX: 6013 return {Intrinsic::smax, AllCmpSingleUse}; 6014 case SPF_UMAX: 6015 return {Intrinsic::umax, AllCmpSingleUse}; 6016 default: 6017 llvm_unreachable("unexpected select pattern flavor"); 6018 } 6019 } 6020 return {Intrinsic::not_intrinsic, false}; 6021 } 6022 6023 /// Return true if "icmp Pred LHS RHS" is always true. 6024 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6025 const Value *RHS, const DataLayout &DL, 6026 unsigned Depth) { 6027 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6028 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6029 return true; 6030 6031 switch (Pred) { 6032 default: 6033 return false; 6034 6035 case CmpInst::ICMP_SLE: { 6036 const APInt *C; 6037 6038 // LHS s<= LHS +_{nsw} C if C >= 0 6039 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6040 return !C->isNegative(); 6041 return false; 6042 } 6043 6044 case CmpInst::ICMP_ULE: { 6045 const APInt *C; 6046 6047 // LHS u<= LHS +_{nuw} C for any C 6048 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6049 return true; 6050 6051 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6052 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6053 const Value *&X, 6054 const APInt *&CA, const APInt *&CB) { 6055 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6056 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6057 return true; 6058 6059 // If X & C == 0 then (X | C) == X +_{nuw} C 6060 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6061 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6062 KnownBits Known(CA->getBitWidth()); 6063 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6064 /*CxtI*/ nullptr, /*DT*/ nullptr); 6065 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6066 return true; 6067 } 6068 6069 return false; 6070 }; 6071 6072 const Value *X; 6073 const APInt *CLHS, *CRHS; 6074 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6075 return CLHS->ule(*CRHS); 6076 6077 return false; 6078 } 6079 } 6080 } 6081 6082 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6083 /// ALHS ARHS" is true. Otherwise, return None. 6084 static Optional<bool> 6085 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6086 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6087 const DataLayout &DL, unsigned Depth) { 6088 switch (Pred) { 6089 default: 6090 return None; 6091 6092 case CmpInst::ICMP_SLT: 6093 case CmpInst::ICMP_SLE: 6094 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6095 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6096 return true; 6097 return None; 6098 6099 case CmpInst::ICMP_ULT: 6100 case CmpInst::ICMP_ULE: 6101 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6102 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6103 return true; 6104 return None; 6105 } 6106 } 6107 6108 /// Return true if the operands of the two compares match. IsSwappedOps is true 6109 /// when the operands match, but are swapped. 6110 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6111 const Value *BLHS, const Value *BRHS, 6112 bool &IsSwappedOps) { 6113 6114 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6115 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6116 return IsMatchingOps || IsSwappedOps; 6117 } 6118 6119 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6120 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6121 /// Otherwise, return None if we can't infer anything. 6122 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6123 CmpInst::Predicate BPred, 6124 bool AreSwappedOps) { 6125 // Canonicalize the predicate as if the operands were not commuted. 6126 if (AreSwappedOps) 6127 BPred = ICmpInst::getSwappedPredicate(BPred); 6128 6129 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6130 return true; 6131 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6132 return false; 6133 6134 return None; 6135 } 6136 6137 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6138 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6139 /// Otherwise, return None if we can't infer anything. 6140 static Optional<bool> 6141 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6142 const ConstantInt *C1, 6143 CmpInst::Predicate BPred, 6144 const ConstantInt *C2) { 6145 ConstantRange DomCR = 6146 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6147 ConstantRange CR = 6148 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6149 ConstantRange Intersection = DomCR.intersectWith(CR); 6150 ConstantRange Difference = DomCR.difference(CR); 6151 if (Intersection.isEmptySet()) 6152 return false; 6153 if (Difference.isEmptySet()) 6154 return true; 6155 return None; 6156 } 6157 6158 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6159 /// false. Otherwise, return None if we can't infer anything. 6160 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6161 CmpInst::Predicate BPred, 6162 const Value *BLHS, const Value *BRHS, 6163 const DataLayout &DL, bool LHSIsTrue, 6164 unsigned Depth) { 6165 Value *ALHS = LHS->getOperand(0); 6166 Value *ARHS = LHS->getOperand(1); 6167 6168 // The rest of the logic assumes the LHS condition is true. If that's not the 6169 // case, invert the predicate to make it so. 6170 CmpInst::Predicate APred = 6171 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6172 6173 // Can we infer anything when the two compares have matching operands? 6174 bool AreSwappedOps; 6175 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6176 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6177 APred, BPred, AreSwappedOps)) 6178 return Implication; 6179 // No amount of additional analysis will infer the second condition, so 6180 // early exit. 6181 return None; 6182 } 6183 6184 // Can we infer anything when the LHS operands match and the RHS operands are 6185 // constants (not necessarily matching)? 6186 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6187 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6188 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6189 return Implication; 6190 // No amount of additional analysis will infer the second condition, so 6191 // early exit. 6192 return None; 6193 } 6194 6195 if (APred == BPred) 6196 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6197 return None; 6198 } 6199 6200 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6201 /// false. Otherwise, return None if we can't infer anything. We expect the 6202 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6203 static Optional<bool> 6204 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6205 const Value *RHSOp0, const Value *RHSOp1, 6206 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6207 // The LHS must be an 'or', 'and', or a 'select' instruction. 6208 assert((LHS->getOpcode() == Instruction::And || 6209 LHS->getOpcode() == Instruction::Or || 6210 LHS->getOpcode() == Instruction::Select) && 6211 "Expected LHS to be 'and', 'or', or 'select'."); 6212 6213 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6214 6215 // If the result of an 'or' is false, then we know both legs of the 'or' are 6216 // false. Similarly, if the result of an 'and' is true, then we know both 6217 // legs of the 'and' are true. 6218 const Value *ALHS, *ARHS; 6219 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6220 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6221 // FIXME: Make this non-recursion. 6222 if (Optional<bool> Implication = isImpliedCondition( 6223 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6224 return Implication; 6225 if (Optional<bool> Implication = isImpliedCondition( 6226 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6227 return Implication; 6228 return None; 6229 } 6230 return None; 6231 } 6232 6233 Optional<bool> 6234 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6235 const Value *RHSOp0, const Value *RHSOp1, 6236 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6237 // Bail out when we hit the limit. 6238 if (Depth == MaxAnalysisRecursionDepth) 6239 return None; 6240 6241 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6242 // example. 6243 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6244 return None; 6245 6246 Type *OpTy = LHS->getType(); 6247 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6248 6249 // FIXME: Extending the code below to handle vectors. 6250 if (OpTy->isVectorTy()) 6251 return None; 6252 6253 assert(OpTy->isIntegerTy(1) && "implied by above"); 6254 6255 // Both LHS and RHS are icmps. 6256 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6257 if (LHSCmp) 6258 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6259 Depth); 6260 6261 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6262 /// the RHS to be an icmp. 6263 /// FIXME: Add support for and/or/select on the RHS. 6264 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6265 if ((LHSI->getOpcode() == Instruction::And || 6266 LHSI->getOpcode() == Instruction::Or || 6267 LHSI->getOpcode() == Instruction::Select)) 6268 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6269 Depth); 6270 } 6271 return None; 6272 } 6273 6274 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6275 const DataLayout &DL, bool LHSIsTrue, 6276 unsigned Depth) { 6277 // LHS ==> RHS by definition 6278 if (LHS == RHS) 6279 return LHSIsTrue; 6280 6281 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6282 if (RHSCmp) 6283 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6284 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6285 LHSIsTrue, Depth); 6286 return None; 6287 } 6288 6289 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6290 // condition dominating ContextI or nullptr, if no condition is found. 6291 static std::pair<Value *, bool> 6292 getDomPredecessorCondition(const Instruction *ContextI) { 6293 if (!ContextI || !ContextI->getParent()) 6294 return {nullptr, false}; 6295 6296 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6297 // dominator tree (eg, from a SimplifyQuery) instead? 6298 const BasicBlock *ContextBB = ContextI->getParent(); 6299 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6300 if (!PredBB) 6301 return {nullptr, false}; 6302 6303 // We need a conditional branch in the predecessor. 6304 Value *PredCond; 6305 BasicBlock *TrueBB, *FalseBB; 6306 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6307 return {nullptr, false}; 6308 6309 // The branch should get simplified. Don't bother simplifying this condition. 6310 if (TrueBB == FalseBB) 6311 return {nullptr, false}; 6312 6313 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6314 "Predecessor block does not point to successor?"); 6315 6316 // Is this condition implied by the predecessor condition? 6317 return {PredCond, TrueBB == ContextBB}; 6318 } 6319 6320 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6321 const Instruction *ContextI, 6322 const DataLayout &DL) { 6323 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6324 auto PredCond = getDomPredecessorCondition(ContextI); 6325 if (PredCond.first) 6326 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6327 return None; 6328 } 6329 6330 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6331 const Value *LHS, const Value *RHS, 6332 const Instruction *ContextI, 6333 const DataLayout &DL) { 6334 auto PredCond = getDomPredecessorCondition(ContextI); 6335 if (PredCond.first) 6336 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6337 PredCond.second); 6338 return None; 6339 } 6340 6341 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6342 APInt &Upper, const InstrInfoQuery &IIQ) { 6343 unsigned Width = Lower.getBitWidth(); 6344 const APInt *C; 6345 switch (BO.getOpcode()) { 6346 case Instruction::Add: 6347 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6348 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6349 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6350 // 'add nuw x, C' produces [C, UINT_MAX]. 6351 Lower = *C; 6352 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6353 if (C->isNegative()) { 6354 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6355 Lower = APInt::getSignedMinValue(Width); 6356 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6357 } else { 6358 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6359 Lower = APInt::getSignedMinValue(Width) + *C; 6360 Upper = APInt::getSignedMaxValue(Width) + 1; 6361 } 6362 } 6363 } 6364 break; 6365 6366 case Instruction::And: 6367 if (match(BO.getOperand(1), m_APInt(C))) 6368 // 'and x, C' produces [0, C]. 6369 Upper = *C + 1; 6370 break; 6371 6372 case Instruction::Or: 6373 if (match(BO.getOperand(1), m_APInt(C))) 6374 // 'or x, C' produces [C, UINT_MAX]. 6375 Lower = *C; 6376 break; 6377 6378 case Instruction::AShr: 6379 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6380 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6381 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6382 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6383 } else if (match(BO.getOperand(0), m_APInt(C))) { 6384 unsigned ShiftAmount = Width - 1; 6385 if (!C->isNullValue() && IIQ.isExact(&BO)) 6386 ShiftAmount = C->countTrailingZeros(); 6387 if (C->isNegative()) { 6388 // 'ashr C, x' produces [C, C >> (Width-1)] 6389 Lower = *C; 6390 Upper = C->ashr(ShiftAmount) + 1; 6391 } else { 6392 // 'ashr C, x' produces [C >> (Width-1), C] 6393 Lower = C->ashr(ShiftAmount); 6394 Upper = *C + 1; 6395 } 6396 } 6397 break; 6398 6399 case Instruction::LShr: 6400 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6401 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6402 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6403 } else if (match(BO.getOperand(0), m_APInt(C))) { 6404 // 'lshr C, x' produces [C >> (Width-1), C]. 6405 unsigned ShiftAmount = Width - 1; 6406 if (!C->isNullValue() && IIQ.isExact(&BO)) 6407 ShiftAmount = C->countTrailingZeros(); 6408 Lower = C->lshr(ShiftAmount); 6409 Upper = *C + 1; 6410 } 6411 break; 6412 6413 case Instruction::Shl: 6414 if (match(BO.getOperand(0), m_APInt(C))) { 6415 if (IIQ.hasNoUnsignedWrap(&BO)) { 6416 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6417 Lower = *C; 6418 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6419 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6420 if (C->isNegative()) { 6421 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6422 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6423 Lower = C->shl(ShiftAmount); 6424 Upper = *C + 1; 6425 } else { 6426 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6427 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6428 Lower = *C; 6429 Upper = C->shl(ShiftAmount) + 1; 6430 } 6431 } 6432 } 6433 break; 6434 6435 case Instruction::SDiv: 6436 if (match(BO.getOperand(1), m_APInt(C))) { 6437 APInt IntMin = APInt::getSignedMinValue(Width); 6438 APInt IntMax = APInt::getSignedMaxValue(Width); 6439 if (C->isAllOnesValue()) { 6440 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6441 // where C != -1 and C != 0 and C != 1 6442 Lower = IntMin + 1; 6443 Upper = IntMax + 1; 6444 } else if (C->countLeadingZeros() < Width - 1) { 6445 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6446 // where C != -1 and C != 0 and C != 1 6447 Lower = IntMin.sdiv(*C); 6448 Upper = IntMax.sdiv(*C); 6449 if (Lower.sgt(Upper)) 6450 std::swap(Lower, Upper); 6451 Upper = Upper + 1; 6452 assert(Upper != Lower && "Upper part of range has wrapped!"); 6453 } 6454 } else if (match(BO.getOperand(0), m_APInt(C))) { 6455 if (C->isMinSignedValue()) { 6456 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6457 Lower = *C; 6458 Upper = Lower.lshr(1) + 1; 6459 } else { 6460 // 'sdiv C, x' produces [-|C|, |C|]. 6461 Upper = C->abs() + 1; 6462 Lower = (-Upper) + 1; 6463 } 6464 } 6465 break; 6466 6467 case Instruction::UDiv: 6468 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6469 // 'udiv x, C' produces [0, UINT_MAX / C]. 6470 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6471 } else if (match(BO.getOperand(0), m_APInt(C))) { 6472 // 'udiv C, x' produces [0, C]. 6473 Upper = *C + 1; 6474 } 6475 break; 6476 6477 case Instruction::SRem: 6478 if (match(BO.getOperand(1), m_APInt(C))) { 6479 // 'srem x, C' produces (-|C|, |C|). 6480 Upper = C->abs(); 6481 Lower = (-Upper) + 1; 6482 } 6483 break; 6484 6485 case Instruction::URem: 6486 if (match(BO.getOperand(1), m_APInt(C))) 6487 // 'urem x, C' produces [0, C). 6488 Upper = *C; 6489 break; 6490 6491 default: 6492 break; 6493 } 6494 } 6495 6496 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6497 APInt &Upper) { 6498 unsigned Width = Lower.getBitWidth(); 6499 const APInt *C; 6500 switch (II.getIntrinsicID()) { 6501 case Intrinsic::ctpop: 6502 case Intrinsic::ctlz: 6503 case Intrinsic::cttz: 6504 // Maximum of set/clear bits is the bit width. 6505 assert(Lower == 0 && "Expected lower bound to be zero"); 6506 Upper = Width + 1; 6507 break; 6508 case Intrinsic::uadd_sat: 6509 // uadd.sat(x, C) produces [C, UINT_MAX]. 6510 if (match(II.getOperand(0), m_APInt(C)) || 6511 match(II.getOperand(1), m_APInt(C))) 6512 Lower = *C; 6513 break; 6514 case Intrinsic::sadd_sat: 6515 if (match(II.getOperand(0), m_APInt(C)) || 6516 match(II.getOperand(1), m_APInt(C))) { 6517 if (C->isNegative()) { 6518 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6519 Lower = APInt::getSignedMinValue(Width); 6520 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6521 } else { 6522 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6523 Lower = APInt::getSignedMinValue(Width) + *C; 6524 Upper = APInt::getSignedMaxValue(Width) + 1; 6525 } 6526 } 6527 break; 6528 case Intrinsic::usub_sat: 6529 // usub.sat(C, x) produces [0, C]. 6530 if (match(II.getOperand(0), m_APInt(C))) 6531 Upper = *C + 1; 6532 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6533 else if (match(II.getOperand(1), m_APInt(C))) 6534 Upper = APInt::getMaxValue(Width) - *C + 1; 6535 break; 6536 case Intrinsic::ssub_sat: 6537 if (match(II.getOperand(0), m_APInt(C))) { 6538 if (C->isNegative()) { 6539 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6540 Lower = APInt::getSignedMinValue(Width); 6541 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6542 } else { 6543 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6544 Lower = *C - APInt::getSignedMaxValue(Width); 6545 Upper = APInt::getSignedMaxValue(Width) + 1; 6546 } 6547 } else if (match(II.getOperand(1), m_APInt(C))) { 6548 if (C->isNegative()) { 6549 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6550 Lower = APInt::getSignedMinValue(Width) - *C; 6551 Upper = APInt::getSignedMaxValue(Width) + 1; 6552 } else { 6553 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6554 Lower = APInt::getSignedMinValue(Width); 6555 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6556 } 6557 } 6558 break; 6559 case Intrinsic::umin: 6560 case Intrinsic::umax: 6561 case Intrinsic::smin: 6562 case Intrinsic::smax: 6563 if (!match(II.getOperand(0), m_APInt(C)) && 6564 !match(II.getOperand(1), m_APInt(C))) 6565 break; 6566 6567 switch (II.getIntrinsicID()) { 6568 case Intrinsic::umin: 6569 Upper = *C + 1; 6570 break; 6571 case Intrinsic::umax: 6572 Lower = *C; 6573 break; 6574 case Intrinsic::smin: 6575 Lower = APInt::getSignedMinValue(Width); 6576 Upper = *C + 1; 6577 break; 6578 case Intrinsic::smax: 6579 Lower = *C; 6580 Upper = APInt::getSignedMaxValue(Width) + 1; 6581 break; 6582 default: 6583 llvm_unreachable("Must be min/max intrinsic"); 6584 } 6585 break; 6586 case Intrinsic::abs: 6587 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6588 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6589 if (match(II.getOperand(1), m_One())) 6590 Upper = APInt::getSignedMaxValue(Width) + 1; 6591 else 6592 Upper = APInt::getSignedMinValue(Width) + 1; 6593 break; 6594 default: 6595 break; 6596 } 6597 } 6598 6599 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6600 APInt &Upper, const InstrInfoQuery &IIQ) { 6601 const Value *LHS = nullptr, *RHS = nullptr; 6602 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6603 if (R.Flavor == SPF_UNKNOWN) 6604 return; 6605 6606 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6607 6608 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6609 // If the negation part of the abs (in RHS) has the NSW flag, 6610 // then the result of abs(X) is [0..SIGNED_MAX], 6611 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6612 Lower = APInt::getNullValue(BitWidth); 6613 if (match(RHS, m_Neg(m_Specific(LHS))) && 6614 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6615 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6616 else 6617 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6618 return; 6619 } 6620 6621 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6622 // The result of -abs(X) is <= 0. 6623 Lower = APInt::getSignedMinValue(BitWidth); 6624 Upper = APInt(BitWidth, 1); 6625 return; 6626 } 6627 6628 const APInt *C; 6629 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6630 return; 6631 6632 switch (R.Flavor) { 6633 case SPF_UMIN: 6634 Upper = *C + 1; 6635 break; 6636 case SPF_UMAX: 6637 Lower = *C; 6638 break; 6639 case SPF_SMIN: 6640 Lower = APInt::getSignedMinValue(BitWidth); 6641 Upper = *C + 1; 6642 break; 6643 case SPF_SMAX: 6644 Lower = *C; 6645 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6646 break; 6647 default: 6648 break; 6649 } 6650 } 6651 6652 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6653 AssumptionCache *AC, 6654 const Instruction *CtxI, 6655 unsigned Depth) { 6656 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6657 6658 if (Depth == MaxAnalysisRecursionDepth) 6659 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6660 6661 const APInt *C; 6662 if (match(V, m_APInt(C))) 6663 return ConstantRange(*C); 6664 6665 InstrInfoQuery IIQ(UseInstrInfo); 6666 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6667 APInt Lower = APInt(BitWidth, 0); 6668 APInt Upper = APInt(BitWidth, 0); 6669 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6670 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6671 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6672 setLimitsForIntrinsic(*II, Lower, Upper); 6673 else if (auto *SI = dyn_cast<SelectInst>(V)) 6674 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6675 6676 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6677 6678 if (auto *I = dyn_cast<Instruction>(V)) 6679 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6680 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6681 6682 if (CtxI && AC) { 6683 // Try to restrict the range based on information from assumptions. 6684 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6685 if (!AssumeVH) 6686 continue; 6687 CallInst *I = cast<CallInst>(AssumeVH); 6688 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6689 "Got assumption for the wrong function!"); 6690 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6691 "must be an assume intrinsic"); 6692 6693 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6694 continue; 6695 Value *Arg = I->getArgOperand(0); 6696 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6697 // Currently we just use information from comparisons. 6698 if (!Cmp || Cmp->getOperand(0) != V) 6699 continue; 6700 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6701 AC, I, Depth + 1); 6702 CR = CR.intersectWith( 6703 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6704 } 6705 } 6706 6707 return CR; 6708 } 6709 6710 static Optional<int64_t> 6711 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6712 // Skip over the first indices. 6713 gep_type_iterator GTI = gep_type_begin(GEP); 6714 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6715 /*skip along*/; 6716 6717 // Compute the offset implied by the rest of the indices. 6718 int64_t Offset = 0; 6719 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6720 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6721 if (!OpC) 6722 return None; 6723 if (OpC->isZero()) 6724 continue; // No offset. 6725 6726 // Handle struct indices, which add their field offset to the pointer. 6727 if (StructType *STy = GTI.getStructTypeOrNull()) { 6728 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6729 continue; 6730 } 6731 6732 // Otherwise, we have a sequential type like an array or fixed-length 6733 // vector. Multiply the index by the ElementSize. 6734 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6735 if (Size.isScalable()) 6736 return None; 6737 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6738 } 6739 6740 return Offset; 6741 } 6742 6743 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6744 const DataLayout &DL) { 6745 Ptr1 = Ptr1->stripPointerCasts(); 6746 Ptr2 = Ptr2->stripPointerCasts(); 6747 6748 // Handle the trivial case first. 6749 if (Ptr1 == Ptr2) { 6750 return 0; 6751 } 6752 6753 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6754 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6755 6756 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6757 // as in "P" and "gep P, 1". 6758 // Also do this iteratively to handle the the following case: 6759 // Ptr_t1 = GEP Ptr1, c1 6760 // Ptr_t2 = GEP Ptr_t1, c2 6761 // Ptr2 = GEP Ptr_t2, c3 6762 // where we will return c1+c2+c3. 6763 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6764 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6765 // are the same, and return the difference between offsets. 6766 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6767 const Value *Ptr) -> Optional<int64_t> { 6768 const GEPOperator *GEP_T = GEP; 6769 int64_t OffsetVal = 0; 6770 bool HasSameBase = false; 6771 while (GEP_T) { 6772 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6773 if (!Offset) 6774 return None; 6775 OffsetVal += *Offset; 6776 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6777 if (Op0 == Ptr) { 6778 HasSameBase = true; 6779 break; 6780 } 6781 GEP_T = dyn_cast<GEPOperator>(Op0); 6782 } 6783 if (!HasSameBase) 6784 return None; 6785 return OffsetVal; 6786 }; 6787 6788 if (GEP1) { 6789 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6790 if (Offset) 6791 return -*Offset; 6792 } 6793 if (GEP2) { 6794 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6795 if (Offset) 6796 return Offset; 6797 } 6798 6799 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6800 // base. After that base, they may have some number of common (and 6801 // potentially variable) indices. After that they handle some constant 6802 // offset, which determines their offset from each other. At this point, we 6803 // handle no other case. 6804 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6805 return None; 6806 6807 // Skip any common indices and track the GEP types. 6808 unsigned Idx = 1; 6809 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6810 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6811 break; 6812 6813 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6814 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6815 if (!Offset1 || !Offset2) 6816 return None; 6817 return *Offset2 - *Offset1; 6818 } 6819