1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// If true, it is safe to use metadata during simplification.
111   InstrInfoQuery IIQ;
112 
113   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
114         const DominatorTree *DT, bool UseInstrInfo,
115         OptimizationRemarkEmitter *ORE = nullptr)
116       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
117 };
118 
119 } // end anonymous namespace
120 
121 // Given the provided Value and, potentially, a context instruction, return
122 // the preferred context instruction (if any).
123 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
124   // If we've been provided with a context instruction, then use that (provided
125   // it has been inserted).
126   if (CxtI && CxtI->getParent())
127     return CxtI;
128 
129   // If the value is really an already-inserted instruction, then use that.
130   CxtI = dyn_cast<Instruction>(V);
131   if (CxtI && CxtI->getParent())
132     return CxtI;
133 
134   return nullptr;
135 }
136 
137 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
138   // If we've been provided with a context instruction, then use that (provided
139   // it has been inserted).
140   if (CxtI && CxtI->getParent())
141     return CxtI;
142 
143   // If the value is really an already-inserted instruction, then use that.
144   CxtI = dyn_cast<Instruction>(V1);
145   if (CxtI && CxtI->getParent())
146     return CxtI;
147 
148   CxtI = dyn_cast<Instruction>(V2);
149   if (CxtI && CxtI->getParent())
150     return CxtI;
151 
152   return nullptr;
153 }
154 
155 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
156                                    const APInt &DemandedElts,
157                                    APInt &DemandedLHS, APInt &DemandedRHS) {
158   // The length of scalable vectors is unknown at compile time, thus we
159   // cannot check their values
160   if (isa<ScalableVectorType>(Shuf->getType()))
161     return false;
162 
163   int NumElts =
164       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
165   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
166   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
167   if (DemandedElts.isNullValue())
168     return true;
169   // Simple case of a shuffle with zeroinitializer.
170   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
171     DemandedLHS.setBit(0);
172     return true;
173   }
174   for (int i = 0; i != NumMaskElts; ++i) {
175     if (!DemandedElts[i])
176       continue;
177     int M = Shuf->getMaskValue(i);
178     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
179 
180     // For undef elements, we don't know anything about the common state of
181     // the shuffle result.
182     if (M == -1)
183       return false;
184     if (M < NumElts)
185       DemandedLHS.setBit(M % NumElts);
186     else
187       DemandedRHS.setBit(M % NumElts);
188   }
189 
190   return true;
191 }
192 
193 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
194                              KnownBits &Known, unsigned Depth, const Query &Q);
195 
196 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
197                              const Query &Q) {
198   // FIXME: We currently have no way to represent the DemandedElts of a scalable
199   // vector
200   if (isa<ScalableVectorType>(V->getType())) {
201     Known.resetAll();
202     return;
203   }
204 
205   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
206   APInt DemandedElts =
207       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
208   computeKnownBits(V, DemandedElts, Known, Depth, Q);
209 }
210 
211 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
212                             const DataLayout &DL, unsigned Depth,
213                             AssumptionCache *AC, const Instruction *CxtI,
214                             const DominatorTree *DT,
215                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
216   ::computeKnownBits(V, Known, Depth,
217                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
218 }
219 
220 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
221                             KnownBits &Known, const DataLayout &DL,
222                             unsigned Depth, AssumptionCache *AC,
223                             const Instruction *CxtI, const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, DemandedElts, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
230                                   unsigned Depth, const Query &Q);
231 
232 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
233                                   const Query &Q);
234 
235 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
236                                  unsigned Depth, AssumptionCache *AC,
237                                  const Instruction *CxtI,
238                                  const DominatorTree *DT,
239                                  OptimizationRemarkEmitter *ORE,
240                                  bool UseInstrInfo) {
241   return ::computeKnownBits(
242       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
243 }
244 
245 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
246                                  const DataLayout &DL, unsigned Depth,
247                                  AssumptionCache *AC, const Instruction *CxtI,
248                                  const DominatorTree *DT,
249                                  OptimizationRemarkEmitter *ORE,
250                                  bool UseInstrInfo) {
251   return ::computeKnownBits(
252       V, DemandedElts, Depth,
253       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
257                                const DataLayout &DL, AssumptionCache *AC,
258                                const Instruction *CxtI, const DominatorTree *DT,
259                                bool UseInstrInfo) {
260   assert(LHS->getType() == RHS->getType() &&
261          "LHS and RHS should have the same type");
262   assert(LHS->getType()->isIntOrIntVectorTy() &&
263          "LHS and RHS should be integers");
264   // Look for an inverted mask: (X & ~M) op (Y & M).
265   Value *M;
266   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
267       match(RHS, m_c_And(m_Specific(M), m_Value())))
268     return true;
269   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
270       match(LHS, m_c_And(m_Specific(M), m_Value())))
271     return true;
272   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
273   KnownBits LHSKnown(IT->getBitWidth());
274   KnownBits RHSKnown(IT->getBitWidth());
275   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
276   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
277   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
278 }
279 
280 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
281   for (const User *U : CxtI->users()) {
282     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
283       if (IC->isEquality())
284         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
285           if (C->isNullValue())
286             continue;
287     return false;
288   }
289   return true;
290 }
291 
292 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
293                                    const Query &Q);
294 
295 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
296                                   bool OrZero, unsigned Depth,
297                                   AssumptionCache *AC, const Instruction *CxtI,
298                                   const DominatorTree *DT, bool UseInstrInfo) {
299   return ::isKnownToBeAPowerOfTwo(
300       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
301 }
302 
303 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
304                            unsigned Depth, const Query &Q);
305 
306 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
307 
308 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
309                           AssumptionCache *AC, const Instruction *CxtI,
310                           const DominatorTree *DT, bool UseInstrInfo) {
311   return ::isKnownNonZero(V, Depth,
312                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
313 }
314 
315 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
316                               unsigned Depth, AssumptionCache *AC,
317                               const Instruction *CxtI, const DominatorTree *DT,
318                               bool UseInstrInfo) {
319   KnownBits Known =
320       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
321   return Known.isNonNegative();
322 }
323 
324 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
325                            AssumptionCache *AC, const Instruction *CxtI,
326                            const DominatorTree *DT, bool UseInstrInfo) {
327   if (auto *CI = dyn_cast<ConstantInt>(V))
328     return CI->getValue().isStrictlyPositive();
329 
330   // TODO: We'd doing two recursive queries here.  We should factor this such
331   // that only a single query is needed.
332   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
333          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
334 }
335 
336 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
337                            AssumptionCache *AC, const Instruction *CxtI,
338                            const DominatorTree *DT, bool UseInstrInfo) {
339   KnownBits Known =
340       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
341   return Known.isNegative();
342 }
343 
344 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
345                             const Query &Q);
346 
347 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
348                            const DataLayout &DL, AssumptionCache *AC,
349                            const Instruction *CxtI, const DominatorTree *DT,
350                            bool UseInstrInfo) {
351   return ::isKnownNonEqual(V1, V2, 0,
352                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
353                                  UseInstrInfo, /*ORE=*/nullptr));
354 }
355 
356 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
357                               const Query &Q);
358 
359 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
360                              const DataLayout &DL, unsigned Depth,
361                              AssumptionCache *AC, const Instruction *CxtI,
362                              const DominatorTree *DT, bool UseInstrInfo) {
363   return ::MaskedValueIsZero(
364       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
365 }
366 
367 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
368                                    unsigned Depth, const Query &Q);
369 
370 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
371                                    const Query &Q) {
372   // FIXME: We currently have no way to represent the DemandedElts of a scalable
373   // vector
374   if (isa<ScalableVectorType>(V->getType()))
375     return 1;
376 
377   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
378   APInt DemandedElts =
379       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
380   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
381 }
382 
383 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
384                                   unsigned Depth, AssumptionCache *AC,
385                                   const Instruction *CxtI,
386                                   const DominatorTree *DT, bool UseInstrInfo) {
387   return ::ComputeNumSignBits(
388       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
389 }
390 
391 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
392                                    bool NSW, const APInt &DemandedElts,
393                                    KnownBits &KnownOut, KnownBits &Known2,
394                                    unsigned Depth, const Query &Q) {
395   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
396 
397   // If one operand is unknown and we have no nowrap information,
398   // the result will be unknown independently of the second operand.
399   if (KnownOut.isUnknown() && !NSW)
400     return;
401 
402   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
403   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
404 }
405 
406 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
407                                 const APInt &DemandedElts, KnownBits &Known,
408                                 KnownBits &Known2, unsigned Depth,
409                                 const Query &Q) {
410   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
411   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
412 
413   bool isKnownNegative = false;
414   bool isKnownNonNegative = false;
415   // If the multiplication is known not to overflow, compute the sign bit.
416   if (NSW) {
417     if (Op0 == Op1) {
418       // The product of a number with itself is non-negative.
419       isKnownNonNegative = true;
420     } else {
421       bool isKnownNonNegativeOp1 = Known.isNonNegative();
422       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
423       bool isKnownNegativeOp1 = Known.isNegative();
424       bool isKnownNegativeOp0 = Known2.isNegative();
425       // The product of two numbers with the same sign is non-negative.
426       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
427                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
428       // The product of a negative number and a non-negative number is either
429       // negative or zero.
430       if (!isKnownNonNegative)
431         isKnownNegative =
432             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
433              Known2.isNonZero()) ||
434             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
435     }
436   }
437 
438   Known = KnownBits::mul(Known, Known2);
439 
440   // Only make use of no-wrap flags if we failed to compute the sign bit
441   // directly.  This matters if the multiplication always overflows, in
442   // which case we prefer to follow the result of the direct computation,
443   // though as the program is invoking undefined behaviour we can choose
444   // whatever we like here.
445   if (isKnownNonNegative && !Known.isNegative())
446     Known.makeNonNegative();
447   else if (isKnownNegative && !Known.isNonNegative())
448     Known.makeNegative();
449 }
450 
451 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
452                                              KnownBits &Known) {
453   unsigned BitWidth = Known.getBitWidth();
454   unsigned NumRanges = Ranges.getNumOperands() / 2;
455   assert(NumRanges >= 1);
456 
457   Known.Zero.setAllBits();
458   Known.One.setAllBits();
459 
460   for (unsigned i = 0; i < NumRanges; ++i) {
461     ConstantInt *Lower =
462         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
463     ConstantInt *Upper =
464         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
465     ConstantRange Range(Lower->getValue(), Upper->getValue());
466 
467     // The first CommonPrefixBits of all values in Range are equal.
468     unsigned CommonPrefixBits =
469         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
470     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
471     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
472     Known.One &= UnsignedMax & Mask;
473     Known.Zero &= ~UnsignedMax & Mask;
474   }
475 }
476 
477 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
478   SmallVector<const Value *, 16> WorkSet(1, I);
479   SmallPtrSet<const Value *, 32> Visited;
480   SmallPtrSet<const Value *, 16> EphValues;
481 
482   // The instruction defining an assumption's condition itself is always
483   // considered ephemeral to that assumption (even if it has other
484   // non-ephemeral users). See r246696's test case for an example.
485   if (is_contained(I->operands(), E))
486     return true;
487 
488   while (!WorkSet.empty()) {
489     const Value *V = WorkSet.pop_back_val();
490     if (!Visited.insert(V).second)
491       continue;
492 
493     // If all uses of this value are ephemeral, then so is this value.
494     if (llvm::all_of(V->users(), [&](const User *U) {
495                                    return EphValues.count(U);
496                                  })) {
497       if (V == E)
498         return true;
499 
500       if (V == I || isSafeToSpeculativelyExecute(V)) {
501        EphValues.insert(V);
502        if (const User *U = dyn_cast<User>(V))
503          append_range(WorkSet, U->operands());
504       }
505     }
506   }
507 
508   return false;
509 }
510 
511 // Is this an intrinsic that cannot be speculated but also cannot trap?
512 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
513   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
514     return CI->isAssumeLikeIntrinsic();
515 
516   return false;
517 }
518 
519 bool llvm::isValidAssumeForContext(const Instruction *Inv,
520                                    const Instruction *CxtI,
521                                    const DominatorTree *DT) {
522   // There are two restrictions on the use of an assume:
523   //  1. The assume must dominate the context (or the control flow must
524   //     reach the assume whenever it reaches the context).
525   //  2. The context must not be in the assume's set of ephemeral values
526   //     (otherwise we will use the assume to prove that the condition
527   //     feeding the assume is trivially true, thus causing the removal of
528   //     the assume).
529 
530   if (Inv->getParent() == CxtI->getParent()) {
531     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
532     // in the BB.
533     if (Inv->comesBefore(CxtI))
534       return true;
535 
536     // Don't let an assume affect itself - this would cause the problems
537     // `isEphemeralValueOf` is trying to prevent, and it would also make
538     // the loop below go out of bounds.
539     if (Inv == CxtI)
540       return false;
541 
542     // The context comes first, but they're both in the same block.
543     // Make sure there is nothing in between that might interrupt
544     // the control flow, not even CxtI itself.
545     // We limit the scan distance between the assume and its context instruction
546     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
547     // it can be adjusted if needed (could be turned into a cl::opt).
548     unsigned ScanLimit = 15;
549     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
550       if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
551         return false;
552 
553     return !isEphemeralValueOf(Inv, CxtI);
554   }
555 
556   // Inv and CxtI are in different blocks.
557   if (DT) {
558     if (DT->dominates(Inv, CxtI))
559       return true;
560   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
561     // We don't have a DT, but this trivially dominates.
562     return true;
563   }
564 
565   return false;
566 }
567 
568 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
569   // v u> y implies v != 0.
570   if (Pred == ICmpInst::ICMP_UGT)
571     return true;
572 
573   // Special-case v != 0 to also handle v != null.
574   if (Pred == ICmpInst::ICMP_NE)
575     return match(RHS, m_Zero());
576 
577   // All other predicates - rely on generic ConstantRange handling.
578   const APInt *C;
579   if (!match(RHS, m_APInt(C)))
580     return false;
581 
582   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
583   return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
584 }
585 
586 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
587   // Use of assumptions is context-sensitive. If we don't have a context, we
588   // cannot use them!
589   if (!Q.AC || !Q.CxtI)
590     return false;
591 
592   if (Q.CxtI && V->getType()->isPointerTy()) {
593     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
594     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
595                               V->getType()->getPointerAddressSpace()))
596       AttrKinds.push_back(Attribute::Dereferenceable);
597 
598     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
599       return true;
600   }
601 
602   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
603     if (!AssumeVH)
604       continue;
605     CallInst *I = cast<CallInst>(AssumeVH);
606     assert(I->getFunction() == Q.CxtI->getFunction() &&
607            "Got assumption for the wrong function!");
608 
609     // Warning: This loop can end up being somewhat performance sensitive.
610     // We're running this loop for once for each value queried resulting in a
611     // runtime of ~O(#assumes * #values).
612 
613     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
614            "must be an assume intrinsic");
615 
616     Value *RHS;
617     CmpInst::Predicate Pred;
618     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
619     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
620       return false;
621 
622     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
623       return true;
624   }
625 
626   return false;
627 }
628 
629 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
630                                        unsigned Depth, const Query &Q) {
631   // Use of assumptions is context-sensitive. If we don't have a context, we
632   // cannot use them!
633   if (!Q.AC || !Q.CxtI)
634     return;
635 
636   unsigned BitWidth = Known.getBitWidth();
637 
638   // Refine Known set if the pointer alignment is set by assume bundles.
639   if (V->getType()->isPointerTy()) {
640     if (RetainedKnowledge RK = getKnowledgeValidInContext(
641             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
642       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
643     }
644   }
645 
646   // Note that the patterns below need to be kept in sync with the code
647   // in AssumptionCache::updateAffectedValues.
648 
649   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
650     if (!AssumeVH)
651       continue;
652     CallInst *I = cast<CallInst>(AssumeVH);
653     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
654            "Got assumption for the wrong function!");
655 
656     // Warning: This loop can end up being somewhat performance sensitive.
657     // We're running this loop for once for each value queried resulting in a
658     // runtime of ~O(#assumes * #values).
659 
660     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
661            "must be an assume intrinsic");
662 
663     Value *Arg = I->getArgOperand(0);
664 
665     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
666       assert(BitWidth == 1 && "assume operand is not i1?");
667       Known.setAllOnes();
668       return;
669     }
670     if (match(Arg, m_Not(m_Specific(V))) &&
671         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
672       assert(BitWidth == 1 && "assume operand is not i1?");
673       Known.setAllZero();
674       return;
675     }
676 
677     // The remaining tests are all recursive, so bail out if we hit the limit.
678     if (Depth == MaxAnalysisRecursionDepth)
679       continue;
680 
681     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
682     if (!Cmp)
683       continue;
684 
685     // We are attempting to compute known bits for the operands of an assume.
686     // Do not try to use other assumptions for those recursive calls because
687     // that can lead to mutual recursion and a compile-time explosion.
688     // An example of the mutual recursion: computeKnownBits can call
689     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
690     // and so on.
691     Query QueryNoAC = Q;
692     QueryNoAC.AC = nullptr;
693 
694     // Note that ptrtoint may change the bitwidth.
695     Value *A, *B;
696     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
697 
698     CmpInst::Predicate Pred;
699     uint64_t C;
700     switch (Cmp->getPredicate()) {
701     default:
702       break;
703     case ICmpInst::ICMP_EQ:
704       // assume(v = a)
705       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
706           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
707         KnownBits RHSKnown =
708             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
709         Known.Zero |= RHSKnown.Zero;
710         Known.One  |= RHSKnown.One;
711       // assume(v & b = a)
712       } else if (match(Cmp,
713                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
714                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
715         KnownBits RHSKnown =
716             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
717         KnownBits MaskKnown =
718             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
719 
720         // For those bits in the mask that are known to be one, we can propagate
721         // known bits from the RHS to V.
722         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
723         Known.One  |= RHSKnown.One  & MaskKnown.One;
724       // assume(~(v & b) = a)
725       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
726                                      m_Value(A))) &&
727                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
728         KnownBits RHSKnown =
729             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
730         KnownBits MaskKnown =
731             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
732 
733         // For those bits in the mask that are known to be one, we can propagate
734         // inverted known bits from the RHS to V.
735         Known.Zero |= RHSKnown.One  & MaskKnown.One;
736         Known.One  |= RHSKnown.Zero & MaskKnown.One;
737       // assume(v | b = a)
738       } else if (match(Cmp,
739                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
740                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741         KnownBits RHSKnown =
742             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
743         KnownBits BKnown =
744             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
745 
746         // For those bits in B that are known to be zero, we can propagate known
747         // bits from the RHS to V.
748         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
749         Known.One  |= RHSKnown.One  & BKnown.Zero;
750       // assume(~(v | b) = a)
751       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
752                                      m_Value(A))) &&
753                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
754         KnownBits RHSKnown =
755             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
756         KnownBits BKnown =
757             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
758 
759         // For those bits in B that are known to be zero, we can propagate
760         // inverted known bits from the RHS to V.
761         Known.Zero |= RHSKnown.One  & BKnown.Zero;
762         Known.One  |= RHSKnown.Zero & BKnown.Zero;
763       // assume(v ^ b = a)
764       } else if (match(Cmp,
765                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
766                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767         KnownBits RHSKnown =
768             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
769         KnownBits BKnown =
770             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
771 
772         // For those bits in B that are known to be zero, we can propagate known
773         // bits from the RHS to V. For those bits in B that are known to be one,
774         // we can propagate inverted known bits from the RHS to V.
775         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
776         Known.One  |= RHSKnown.One  & BKnown.Zero;
777         Known.Zero |= RHSKnown.One  & BKnown.One;
778         Known.One  |= RHSKnown.Zero & BKnown.One;
779       // assume(~(v ^ b) = a)
780       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
781                                      m_Value(A))) &&
782                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
783         KnownBits RHSKnown =
784             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
785         KnownBits BKnown =
786             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
787 
788         // For those bits in B that are known to be zero, we can propagate
789         // inverted known bits from the RHS to V. For those bits in B that are
790         // known to be one, we can propagate known bits from the RHS to V.
791         Known.Zero |= RHSKnown.One  & BKnown.Zero;
792         Known.One  |= RHSKnown.Zero & BKnown.Zero;
793         Known.Zero |= RHSKnown.Zero & BKnown.One;
794         Known.One  |= RHSKnown.One  & BKnown.One;
795       // assume(v << c = a)
796       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
797                                      m_Value(A))) &&
798                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
801 
802         // For those bits in RHS that are known, we can propagate them to known
803         // bits in V shifted to the right by C.
804         RHSKnown.Zero.lshrInPlace(C);
805         Known.Zero |= RHSKnown.Zero;
806         RHSKnown.One.lshrInPlace(C);
807         Known.One  |= RHSKnown.One;
808       // assume(~(v << c) = a)
809       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
810                                      m_Value(A))) &&
811                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
812         KnownBits RHSKnown =
813             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
814         // For those bits in RHS that are known, we can propagate them inverted
815         // to known bits in V shifted to the right by C.
816         RHSKnown.One.lshrInPlace(C);
817         Known.Zero |= RHSKnown.One;
818         RHSKnown.Zero.lshrInPlace(C);
819         Known.One  |= RHSKnown.Zero;
820       // assume(v >> c = a)
821       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
822                                      m_Value(A))) &&
823                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
824         KnownBits RHSKnown =
825             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
826         // For those bits in RHS that are known, we can propagate them to known
827         // bits in V shifted to the right by C.
828         Known.Zero |= RHSKnown.Zero << C;
829         Known.One  |= RHSKnown.One  << C;
830       // assume(~(v >> c) = a)
831       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
832                                      m_Value(A))) &&
833                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
834         KnownBits RHSKnown =
835             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
836         // For those bits in RHS that are known, we can propagate them inverted
837         // to known bits in V shifted to the right by C.
838         Known.Zero |= RHSKnown.One  << C;
839         Known.One  |= RHSKnown.Zero << C;
840       }
841       break;
842     case ICmpInst::ICMP_SGE:
843       // assume(v >=_s c) where c is non-negative
844       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
845           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
848 
849         if (RHSKnown.isNonNegative()) {
850           // We know that the sign bit is zero.
851           Known.makeNonNegative();
852         }
853       }
854       break;
855     case ICmpInst::ICMP_SGT:
856       // assume(v >_s c) where c is at least -1.
857       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
858           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
861 
862         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
863           // We know that the sign bit is zero.
864           Known.makeNonNegative();
865         }
866       }
867       break;
868     case ICmpInst::ICMP_SLE:
869       // assume(v <=_s c) where c is negative
870       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
871           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
872         KnownBits RHSKnown =
873             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
874 
875         if (RHSKnown.isNegative()) {
876           // We know that the sign bit is one.
877           Known.makeNegative();
878         }
879       }
880       break;
881     case ICmpInst::ICMP_SLT:
882       // assume(v <_s c) where c is non-positive
883       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
884           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
885         KnownBits RHSKnown =
886             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
887 
888         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
889           // We know that the sign bit is one.
890           Known.makeNegative();
891         }
892       }
893       break;
894     case ICmpInst::ICMP_ULE:
895       // assume(v <=_u c)
896       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
897           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
898         KnownBits RHSKnown =
899             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
900 
901         // Whatever high bits in c are zero are known to be zero.
902         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
903       }
904       break;
905     case ICmpInst::ICMP_ULT:
906       // assume(v <_u c)
907       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
908           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
909         KnownBits RHSKnown =
910             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
911 
912         // If the RHS is known zero, then this assumption must be wrong (nothing
913         // is unsigned less than zero). Signal a conflict and get out of here.
914         if (RHSKnown.isZero()) {
915           Known.Zero.setAllBits();
916           Known.One.setAllBits();
917           break;
918         }
919 
920         // Whatever high bits in c are zero are known to be zero (if c is a power
921         // of 2, then one more).
922         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
923           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
924         else
925           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
926       }
927       break;
928     }
929   }
930 
931   // If assumptions conflict with each other or previous known bits, then we
932   // have a logical fallacy. It's possible that the assumption is not reachable,
933   // so this isn't a real bug. On the other hand, the program may have undefined
934   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
935   // clear out the known bits, try to warn the user, and hope for the best.
936   if (Known.Zero.intersects(Known.One)) {
937     Known.resetAll();
938 
939     if (Q.ORE)
940       Q.ORE->emit([&]() {
941         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
942         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
943                                           CxtI)
944                << "Detected conflicting code assumptions. Program may "
945                   "have undefined behavior, or compiler may have "
946                   "internal error.";
947       });
948   }
949 }
950 
951 /// Compute known bits from a shift operator, including those with a
952 /// non-constant shift amount. Known is the output of this function. Known2 is a
953 /// pre-allocated temporary with the same bit width as Known and on return
954 /// contains the known bit of the shift value source. KF is an
955 /// operator-specific function that, given the known-bits and a shift amount,
956 /// compute the implied known-bits of the shift operator's result respectively
957 /// for that shift amount. The results from calling KF are conservatively
958 /// combined for all permitted shift amounts.
959 static void computeKnownBitsFromShiftOperator(
960     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
961     KnownBits &Known2, unsigned Depth, const Query &Q,
962     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
963   unsigned BitWidth = Known.getBitWidth();
964   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
965   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
966 
967   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
968   // BitWidth > 64 and any upper bits are known, we'll end up returning the
969   // limit value (which implies all bits are known).
970   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
971   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
972   bool ShiftAmtIsConstant = Known.isConstant();
973   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
974 
975   if (ShiftAmtIsConstant) {
976     Known = KF(Known2, Known);
977 
978     // If the known bits conflict, this must be an overflowing left shift, so
979     // the shift result is poison. We can return anything we want. Choose 0 for
980     // the best folding opportunity.
981     if (Known.hasConflict())
982       Known.setAllZero();
983 
984     return;
985   }
986 
987   // If the shift amount could be greater than or equal to the bit-width of the
988   // LHS, the value could be poison, but bail out because the check below is
989   // expensive.
990   // TODO: Should we just carry on?
991   if (MaxShiftAmtIsOutOfRange) {
992     Known.resetAll();
993     return;
994   }
995 
996   // It would be more-clearly correct to use the two temporaries for this
997   // calculation. Reusing the APInts here to prevent unnecessary allocations.
998   Known.resetAll();
999 
1000   // If we know the shifter operand is nonzero, we can sometimes infer more
1001   // known bits. However this is expensive to compute, so be lazy about it and
1002   // only compute it when absolutely necessary.
1003   Optional<bool> ShifterOperandIsNonZero;
1004 
1005   // Early exit if we can't constrain any well-defined shift amount.
1006   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1007       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1008     ShifterOperandIsNonZero =
1009         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1010     if (!*ShifterOperandIsNonZero)
1011       return;
1012   }
1013 
1014   Known.Zero.setAllBits();
1015   Known.One.setAllBits();
1016   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1017     // Combine the shifted known input bits only for those shift amounts
1018     // compatible with its known constraints.
1019     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1020       continue;
1021     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1022       continue;
1023     // If we know the shifter is nonzero, we may be able to infer more known
1024     // bits. This check is sunk down as far as possible to avoid the expensive
1025     // call to isKnownNonZero if the cheaper checks above fail.
1026     if (ShiftAmt == 0) {
1027       if (!ShifterOperandIsNonZero.hasValue())
1028         ShifterOperandIsNonZero =
1029             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1030       if (*ShifterOperandIsNonZero)
1031         continue;
1032     }
1033 
1034     Known = KnownBits::commonBits(
1035         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1036   }
1037 
1038   // If the known bits conflict, the result is poison. Return a 0 and hope the
1039   // caller can further optimize that.
1040   if (Known.hasConflict())
1041     Known.setAllZero();
1042 }
1043 
1044 static void computeKnownBitsFromOperator(const Operator *I,
1045                                          const APInt &DemandedElts,
1046                                          KnownBits &Known, unsigned Depth,
1047                                          const Query &Q) {
1048   unsigned BitWidth = Known.getBitWidth();
1049 
1050   KnownBits Known2(BitWidth);
1051   switch (I->getOpcode()) {
1052   default: break;
1053   case Instruction::Load:
1054     if (MDNode *MD =
1055             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1056       computeKnownBitsFromRangeMetadata(*MD, Known);
1057     break;
1058   case Instruction::And: {
1059     // If either the LHS or the RHS are Zero, the result is zero.
1060     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1061     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1062 
1063     Known &= Known2;
1064 
1065     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1066     // here we handle the more general case of adding any odd number by
1067     // matching the form add(x, add(x, y)) where y is odd.
1068     // TODO: This could be generalized to clearing any bit set in y where the
1069     // following bit is known to be unset in y.
1070     Value *X = nullptr, *Y = nullptr;
1071     if (!Known.Zero[0] && !Known.One[0] &&
1072         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1073       Known2.resetAll();
1074       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1075       if (Known2.countMinTrailingOnes() > 0)
1076         Known.Zero.setBit(0);
1077     }
1078     break;
1079   }
1080   case Instruction::Or:
1081     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1082     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1083 
1084     Known |= Known2;
1085     break;
1086   case Instruction::Xor:
1087     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1088     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1089 
1090     Known ^= Known2;
1091     break;
1092   case Instruction::Mul: {
1093     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1094     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1095                         Known, Known2, Depth, Q);
1096     break;
1097   }
1098   case Instruction::UDiv: {
1099     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1100     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1101     Known = KnownBits::udiv(Known, Known2);
1102     break;
1103   }
1104   case Instruction::Select: {
1105     const Value *LHS = nullptr, *RHS = nullptr;
1106     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1107     if (SelectPatternResult::isMinOrMax(SPF)) {
1108       computeKnownBits(RHS, Known, Depth + 1, Q);
1109       computeKnownBits(LHS, Known2, Depth + 1, Q);
1110       switch (SPF) {
1111       default:
1112         llvm_unreachable("Unhandled select pattern flavor!");
1113       case SPF_SMAX:
1114         Known = KnownBits::smax(Known, Known2);
1115         break;
1116       case SPF_SMIN:
1117         Known = KnownBits::smin(Known, Known2);
1118         break;
1119       case SPF_UMAX:
1120         Known = KnownBits::umax(Known, Known2);
1121         break;
1122       case SPF_UMIN:
1123         Known = KnownBits::umin(Known, Known2);
1124         break;
1125       }
1126       break;
1127     }
1128 
1129     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1130     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1131 
1132     // Only known if known in both the LHS and RHS.
1133     Known = KnownBits::commonBits(Known, Known2);
1134 
1135     if (SPF == SPF_ABS) {
1136       // RHS from matchSelectPattern returns the negation part of abs pattern.
1137       // If the negate has an NSW flag we can assume the sign bit of the result
1138       // will be 0 because that makes abs(INT_MIN) undefined.
1139       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1140           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1141         Known.Zero.setSignBit();
1142     }
1143 
1144     break;
1145   }
1146   case Instruction::FPTrunc:
1147   case Instruction::FPExt:
1148   case Instruction::FPToUI:
1149   case Instruction::FPToSI:
1150   case Instruction::SIToFP:
1151   case Instruction::UIToFP:
1152     break; // Can't work with floating point.
1153   case Instruction::PtrToInt:
1154   case Instruction::IntToPtr:
1155     // Fall through and handle them the same as zext/trunc.
1156     LLVM_FALLTHROUGH;
1157   case Instruction::ZExt:
1158   case Instruction::Trunc: {
1159     Type *SrcTy = I->getOperand(0)->getType();
1160 
1161     unsigned SrcBitWidth;
1162     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1163     // which fall through here.
1164     Type *ScalarTy = SrcTy->getScalarType();
1165     SrcBitWidth = ScalarTy->isPointerTy() ?
1166       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1167       Q.DL.getTypeSizeInBits(ScalarTy);
1168 
1169     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1170     Known = Known.anyextOrTrunc(SrcBitWidth);
1171     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1172     Known = Known.zextOrTrunc(BitWidth);
1173     break;
1174   }
1175   case Instruction::BitCast: {
1176     Type *SrcTy = I->getOperand(0)->getType();
1177     if (SrcTy->isIntOrPtrTy() &&
1178         // TODO: For now, not handling conversions like:
1179         // (bitcast i64 %x to <2 x i32>)
1180         !I->getType()->isVectorTy()) {
1181       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1182       break;
1183     }
1184     break;
1185   }
1186   case Instruction::SExt: {
1187     // Compute the bits in the result that are not present in the input.
1188     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1189 
1190     Known = Known.trunc(SrcBitWidth);
1191     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1192     // If the sign bit of the input is known set or clear, then we know the
1193     // top bits of the result.
1194     Known = Known.sext(BitWidth);
1195     break;
1196   }
1197   case Instruction::Shl: {
1198     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1199     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1200       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1201       // If this shift has "nsw" keyword, then the result is either a poison
1202       // value or has the same sign bit as the first operand.
1203       if (NSW) {
1204         if (KnownVal.Zero.isSignBitSet())
1205           Result.Zero.setSignBit();
1206         if (KnownVal.One.isSignBitSet())
1207           Result.One.setSignBit();
1208       }
1209       return Result;
1210     };
1211     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1212                                       KF);
1213     // Trailing zeros of a right-shifted constant never decrease.
1214     const APInt *C;
1215     if (match(I->getOperand(0), m_APInt(C)))
1216       Known.Zero.setLowBits(C->countTrailingZeros());
1217     break;
1218   }
1219   case Instruction::LShr: {
1220     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1221       return KnownBits::lshr(KnownVal, KnownAmt);
1222     };
1223     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1224                                       KF);
1225     // Leading zeros of a left-shifted constant never decrease.
1226     const APInt *C;
1227     if (match(I->getOperand(0), m_APInt(C)))
1228       Known.Zero.setHighBits(C->countLeadingZeros());
1229     break;
1230   }
1231   case Instruction::AShr: {
1232     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1233       return KnownBits::ashr(KnownVal, KnownAmt);
1234     };
1235     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1236                                       KF);
1237     break;
1238   }
1239   case Instruction::Sub: {
1240     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1241     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1242                            DemandedElts, Known, Known2, Depth, Q);
1243     break;
1244   }
1245   case Instruction::Add: {
1246     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1247     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1248                            DemandedElts, Known, Known2, Depth, Q);
1249     break;
1250   }
1251   case Instruction::SRem:
1252     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1253     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1254     Known = KnownBits::srem(Known, Known2);
1255     break;
1256 
1257   case Instruction::URem:
1258     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1259     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1260     Known = KnownBits::urem(Known, Known2);
1261     break;
1262   case Instruction::Alloca:
1263     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1264     break;
1265   case Instruction::GetElementPtr: {
1266     // Analyze all of the subscripts of this getelementptr instruction
1267     // to determine if we can prove known low zero bits.
1268     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1269     // Accumulate the constant indices in a separate variable
1270     // to minimize the number of calls to computeForAddSub.
1271     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1272 
1273     gep_type_iterator GTI = gep_type_begin(I);
1274     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1275       // TrailZ can only become smaller, short-circuit if we hit zero.
1276       if (Known.isUnknown())
1277         break;
1278 
1279       Value *Index = I->getOperand(i);
1280 
1281       // Handle case when index is zero.
1282       Constant *CIndex = dyn_cast<Constant>(Index);
1283       if (CIndex && CIndex->isZeroValue())
1284         continue;
1285 
1286       if (StructType *STy = GTI.getStructTypeOrNull()) {
1287         // Handle struct member offset arithmetic.
1288 
1289         assert(CIndex &&
1290                "Access to structure field must be known at compile time");
1291 
1292         if (CIndex->getType()->isVectorTy())
1293           Index = CIndex->getSplatValue();
1294 
1295         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1296         const StructLayout *SL = Q.DL.getStructLayout(STy);
1297         uint64_t Offset = SL->getElementOffset(Idx);
1298         AccConstIndices += Offset;
1299         continue;
1300       }
1301 
1302       // Handle array index arithmetic.
1303       Type *IndexedTy = GTI.getIndexedType();
1304       if (!IndexedTy->isSized()) {
1305         Known.resetAll();
1306         break;
1307       }
1308 
1309       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1310       KnownBits IndexBits(IndexBitWidth);
1311       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1312       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1313       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1314       KnownBits ScalingFactor(IndexBitWidth);
1315       // Multiply by current sizeof type.
1316       // &A[i] == A + i * sizeof(*A[i]).
1317       if (IndexTypeSize.isScalable()) {
1318         // For scalable types the only thing we know about sizeof is
1319         // that this is a multiple of the minimum size.
1320         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1321       } else if (IndexBits.isConstant()) {
1322         APInt IndexConst = IndexBits.getConstant();
1323         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1324         IndexConst *= ScalingFactor;
1325         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1326         continue;
1327       } else {
1328         ScalingFactor =
1329             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1330       }
1331       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1332 
1333       // If the offsets have a different width from the pointer, according
1334       // to the language reference we need to sign-extend or truncate them
1335       // to the width of the pointer.
1336       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1337 
1338       // Note that inbounds does *not* guarantee nsw for the addition, as only
1339       // the offset is signed, while the base address is unsigned.
1340       Known = KnownBits::computeForAddSub(
1341           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1342     }
1343     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1344       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1345       Known = KnownBits::computeForAddSub(
1346           /*Add=*/true, /*NSW=*/false, Known, Index);
1347     }
1348     break;
1349   }
1350   case Instruction::PHI: {
1351     const PHINode *P = cast<PHINode>(I);
1352     BinaryOperator *BO = nullptr;
1353     Value *R = nullptr, *L = nullptr;
1354     if (matchSimpleRecurrence(P, BO, R, L)) {
1355       // Handle the case of a simple two-predecessor recurrence PHI.
1356       // There's a lot more that could theoretically be done here, but
1357       // this is sufficient to catch some interesting cases.
1358       unsigned Opcode = BO->getOpcode();
1359 
1360       // If this is a shift recurrence, we know the bits being shifted in.
1361       // We can combine that with information about the start value of the
1362       // recurrence to conclude facts about the result.
1363       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1364            Opcode == Instruction::Shl) &&
1365           BO->getOperand(0) == I) {
1366 
1367         // We have matched a recurrence of the form:
1368         // %iv = [R, %entry], [%iv.next, %backedge]
1369         // %iv.next = shift_op %iv, L
1370 
1371         // Recurse with the phi context to avoid concern about whether facts
1372         // inferred hold at original context instruction.  TODO: It may be
1373         // correct to use the original context.  IF warranted, explore and
1374         // add sufficient tests to cover.
1375         Query RecQ = Q;
1376         RecQ.CxtI = P;
1377         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1378         switch (Opcode) {
1379         case Instruction::Shl:
1380           // A shl recurrence will only increase the tailing zeros
1381           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1382           break;
1383         case Instruction::LShr:
1384           // A lshr recurrence will preserve the leading zeros of the
1385           // start value
1386           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1387           break;
1388         case Instruction::AShr:
1389           // An ashr recurrence will extend the initial sign bit
1390           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1391           Known.One.setHighBits(Known2.countMinLeadingOnes());
1392           break;
1393         };
1394       }
1395 
1396       // Check for operations that have the property that if
1397       // both their operands have low zero bits, the result
1398       // will have low zero bits.
1399       if (Opcode == Instruction::Add ||
1400           Opcode == Instruction::Sub ||
1401           Opcode == Instruction::And ||
1402           Opcode == Instruction::Or ||
1403           Opcode == Instruction::Mul) {
1404         // Change the context instruction to the "edge" that flows into the
1405         // phi. This is important because that is where the value is actually
1406         // "evaluated" even though it is used later somewhere else. (see also
1407         // D69571).
1408         Query RecQ = Q;
1409 
1410         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1411         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1412         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1413 
1414         // Ok, we have a PHI of the form L op= R. Check for low
1415         // zero bits.
1416         RecQ.CxtI = RInst;
1417         computeKnownBits(R, Known2, Depth + 1, RecQ);
1418 
1419         // We need to take the minimum number of known bits
1420         KnownBits Known3(BitWidth);
1421         RecQ.CxtI = LInst;
1422         computeKnownBits(L, Known3, Depth + 1, RecQ);
1423 
1424         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1425                                        Known3.countMinTrailingZeros()));
1426 
1427         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1428         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1429           // If initial value of recurrence is nonnegative, and we are adding
1430           // a nonnegative number with nsw, the result can only be nonnegative
1431           // or poison value regardless of the number of times we execute the
1432           // add in phi recurrence. If initial value is negative and we are
1433           // adding a negative number with nsw, the result can only be
1434           // negative or poison value. Similar arguments apply to sub and mul.
1435           //
1436           // (add non-negative, non-negative) --> non-negative
1437           // (add negative, negative) --> negative
1438           if (Opcode == Instruction::Add) {
1439             if (Known2.isNonNegative() && Known3.isNonNegative())
1440               Known.makeNonNegative();
1441             else if (Known2.isNegative() && Known3.isNegative())
1442               Known.makeNegative();
1443           }
1444 
1445           // (sub nsw non-negative, negative) --> non-negative
1446           // (sub nsw negative, non-negative) --> negative
1447           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1448             if (Known2.isNonNegative() && Known3.isNegative())
1449               Known.makeNonNegative();
1450             else if (Known2.isNegative() && Known3.isNonNegative())
1451               Known.makeNegative();
1452           }
1453 
1454           // (mul nsw non-negative, non-negative) --> non-negative
1455           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1456                    Known3.isNonNegative())
1457             Known.makeNonNegative();
1458         }
1459 
1460         break;
1461       }
1462     }
1463 
1464     // Unreachable blocks may have zero-operand PHI nodes.
1465     if (P->getNumIncomingValues() == 0)
1466       break;
1467 
1468     // Otherwise take the unions of the known bit sets of the operands,
1469     // taking conservative care to avoid excessive recursion.
1470     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1471       // Skip if every incoming value references to ourself.
1472       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1473         break;
1474 
1475       Known.Zero.setAllBits();
1476       Known.One.setAllBits();
1477       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1478         Value *IncValue = P->getIncomingValue(u);
1479         // Skip direct self references.
1480         if (IncValue == P) continue;
1481 
1482         // Change the context instruction to the "edge" that flows into the
1483         // phi. This is important because that is where the value is actually
1484         // "evaluated" even though it is used later somewhere else. (see also
1485         // D69571).
1486         Query RecQ = Q;
1487         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1488 
1489         Known2 = KnownBits(BitWidth);
1490         // Recurse, but cap the recursion to one level, because we don't
1491         // want to waste time spinning around in loops.
1492         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1493         Known = KnownBits::commonBits(Known, Known2);
1494         // If all bits have been ruled out, there's no need to check
1495         // more operands.
1496         if (Known.isUnknown())
1497           break;
1498       }
1499     }
1500     break;
1501   }
1502   case Instruction::Call:
1503   case Instruction::Invoke:
1504     // If range metadata is attached to this call, set known bits from that,
1505     // and then intersect with known bits based on other properties of the
1506     // function.
1507     if (MDNode *MD =
1508             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1509       computeKnownBitsFromRangeMetadata(*MD, Known);
1510     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1511       computeKnownBits(RV, Known2, Depth + 1, Q);
1512       Known.Zero |= Known2.Zero;
1513       Known.One |= Known2.One;
1514     }
1515     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1516       switch (II->getIntrinsicID()) {
1517       default: break;
1518       case Intrinsic::abs: {
1519         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1520         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1521         Known = Known2.abs(IntMinIsPoison);
1522         break;
1523       }
1524       case Intrinsic::bitreverse:
1525         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1526         Known.Zero |= Known2.Zero.reverseBits();
1527         Known.One |= Known2.One.reverseBits();
1528         break;
1529       case Intrinsic::bswap:
1530         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1531         Known.Zero |= Known2.Zero.byteSwap();
1532         Known.One |= Known2.One.byteSwap();
1533         break;
1534       case Intrinsic::ctlz: {
1535         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1536         // If we have a known 1, its position is our upper bound.
1537         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1538         // If this call is undefined for 0, the result will be less than 2^n.
1539         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1540           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1541         unsigned LowBits = Log2_32(PossibleLZ)+1;
1542         Known.Zero.setBitsFrom(LowBits);
1543         break;
1544       }
1545       case Intrinsic::cttz: {
1546         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1547         // If we have a known 1, its position is our upper bound.
1548         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1549         // If this call is undefined for 0, the result will be less than 2^n.
1550         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1551           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1552         unsigned LowBits = Log2_32(PossibleTZ)+1;
1553         Known.Zero.setBitsFrom(LowBits);
1554         break;
1555       }
1556       case Intrinsic::ctpop: {
1557         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1558         // We can bound the space the count needs.  Also, bits known to be zero
1559         // can't contribute to the population.
1560         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1561         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1562         Known.Zero.setBitsFrom(LowBits);
1563         // TODO: we could bound KnownOne using the lower bound on the number
1564         // of bits which might be set provided by popcnt KnownOne2.
1565         break;
1566       }
1567       case Intrinsic::fshr:
1568       case Intrinsic::fshl: {
1569         const APInt *SA;
1570         if (!match(I->getOperand(2), m_APInt(SA)))
1571           break;
1572 
1573         // Normalize to funnel shift left.
1574         uint64_t ShiftAmt = SA->urem(BitWidth);
1575         if (II->getIntrinsicID() == Intrinsic::fshr)
1576           ShiftAmt = BitWidth - ShiftAmt;
1577 
1578         KnownBits Known3(BitWidth);
1579         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1580         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1581 
1582         Known.Zero =
1583             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1584         Known.One =
1585             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1586         break;
1587       }
1588       case Intrinsic::uadd_sat:
1589       case Intrinsic::usub_sat: {
1590         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1591         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1592         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1593 
1594         // Add: Leading ones of either operand are preserved.
1595         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1596         // as leading zeros in the result.
1597         unsigned LeadingKnown;
1598         if (IsAdd)
1599           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1600                                   Known2.countMinLeadingOnes());
1601         else
1602           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1603                                   Known2.countMinLeadingOnes());
1604 
1605         Known = KnownBits::computeForAddSub(
1606             IsAdd, /* NSW */ false, Known, Known2);
1607 
1608         // We select between the operation result and all-ones/zero
1609         // respectively, so we can preserve known ones/zeros.
1610         if (IsAdd) {
1611           Known.One.setHighBits(LeadingKnown);
1612           Known.Zero.clearAllBits();
1613         } else {
1614           Known.Zero.setHighBits(LeadingKnown);
1615           Known.One.clearAllBits();
1616         }
1617         break;
1618       }
1619       case Intrinsic::umin:
1620         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1621         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1622         Known = KnownBits::umin(Known, Known2);
1623         break;
1624       case Intrinsic::umax:
1625         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1626         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1627         Known = KnownBits::umax(Known, Known2);
1628         break;
1629       case Intrinsic::smin:
1630         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1631         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1632         Known = KnownBits::smin(Known, Known2);
1633         break;
1634       case Intrinsic::smax:
1635         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1636         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1637         Known = KnownBits::smax(Known, Known2);
1638         break;
1639       case Intrinsic::x86_sse42_crc32_64_64:
1640         Known.Zero.setBitsFrom(32);
1641         break;
1642       }
1643     }
1644     break;
1645   case Instruction::ShuffleVector: {
1646     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1647     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1648     if (!Shuf) {
1649       Known.resetAll();
1650       return;
1651     }
1652     // For undef elements, we don't know anything about the common state of
1653     // the shuffle result.
1654     APInt DemandedLHS, DemandedRHS;
1655     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1656       Known.resetAll();
1657       return;
1658     }
1659     Known.One.setAllBits();
1660     Known.Zero.setAllBits();
1661     if (!!DemandedLHS) {
1662       const Value *LHS = Shuf->getOperand(0);
1663       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1664       // If we don't know any bits, early out.
1665       if (Known.isUnknown())
1666         break;
1667     }
1668     if (!!DemandedRHS) {
1669       const Value *RHS = Shuf->getOperand(1);
1670       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1671       Known = KnownBits::commonBits(Known, Known2);
1672     }
1673     break;
1674   }
1675   case Instruction::InsertElement: {
1676     const Value *Vec = I->getOperand(0);
1677     const Value *Elt = I->getOperand(1);
1678     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1679     // Early out if the index is non-constant or out-of-range.
1680     unsigned NumElts = DemandedElts.getBitWidth();
1681     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1682       Known.resetAll();
1683       return;
1684     }
1685     Known.One.setAllBits();
1686     Known.Zero.setAllBits();
1687     unsigned EltIdx = CIdx->getZExtValue();
1688     // Do we demand the inserted element?
1689     if (DemandedElts[EltIdx]) {
1690       computeKnownBits(Elt, Known, Depth + 1, Q);
1691       // If we don't know any bits, early out.
1692       if (Known.isUnknown())
1693         break;
1694     }
1695     // We don't need the base vector element that has been inserted.
1696     APInt DemandedVecElts = DemandedElts;
1697     DemandedVecElts.clearBit(EltIdx);
1698     if (!!DemandedVecElts) {
1699       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1700       Known = KnownBits::commonBits(Known, Known2);
1701     }
1702     break;
1703   }
1704   case Instruction::ExtractElement: {
1705     // Look through extract element. If the index is non-constant or
1706     // out-of-range demand all elements, otherwise just the extracted element.
1707     const Value *Vec = I->getOperand(0);
1708     const Value *Idx = I->getOperand(1);
1709     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1710     if (isa<ScalableVectorType>(Vec->getType())) {
1711       // FIXME: there's probably *something* we can do with scalable vectors
1712       Known.resetAll();
1713       break;
1714     }
1715     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1716     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1717     if (CIdx && CIdx->getValue().ult(NumElts))
1718       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1719     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1720     break;
1721   }
1722   case Instruction::ExtractValue:
1723     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1724       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1725       if (EVI->getNumIndices() != 1) break;
1726       if (EVI->getIndices()[0] == 0) {
1727         switch (II->getIntrinsicID()) {
1728         default: break;
1729         case Intrinsic::uadd_with_overflow:
1730         case Intrinsic::sadd_with_overflow:
1731           computeKnownBitsAddSub(true, II->getArgOperand(0),
1732                                  II->getArgOperand(1), false, DemandedElts,
1733                                  Known, Known2, Depth, Q);
1734           break;
1735         case Intrinsic::usub_with_overflow:
1736         case Intrinsic::ssub_with_overflow:
1737           computeKnownBitsAddSub(false, II->getArgOperand(0),
1738                                  II->getArgOperand(1), false, DemandedElts,
1739                                  Known, Known2, Depth, Q);
1740           break;
1741         case Intrinsic::umul_with_overflow:
1742         case Intrinsic::smul_with_overflow:
1743           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1744                               DemandedElts, Known, Known2, Depth, Q);
1745           break;
1746         }
1747       }
1748     }
1749     break;
1750   case Instruction::Freeze:
1751     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1752                                   Depth + 1))
1753       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1754     break;
1755   }
1756 }
1757 
1758 /// Determine which bits of V are known to be either zero or one and return
1759 /// them.
1760 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1761                            unsigned Depth, const Query &Q) {
1762   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1763   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1764   return Known;
1765 }
1766 
1767 /// Determine which bits of V are known to be either zero or one and return
1768 /// them.
1769 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1770   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1771   computeKnownBits(V, Known, Depth, Q);
1772   return Known;
1773 }
1774 
1775 /// Determine which bits of V are known to be either zero or one and return
1776 /// them in the Known bit set.
1777 ///
1778 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1779 /// we cannot optimize based on the assumption that it is zero without changing
1780 /// it to be an explicit zero.  If we don't change it to zero, other code could
1781 /// optimized based on the contradictory assumption that it is non-zero.
1782 /// Because instcombine aggressively folds operations with undef args anyway,
1783 /// this won't lose us code quality.
1784 ///
1785 /// This function is defined on values with integer type, values with pointer
1786 /// type, and vectors of integers.  In the case
1787 /// where V is a vector, known zero, and known one values are the
1788 /// same width as the vector element, and the bit is set only if it is true
1789 /// for all of the demanded elements in the vector specified by DemandedElts.
1790 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1791                       KnownBits &Known, unsigned Depth, const Query &Q) {
1792   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1793     // No demanded elts or V is a scalable vector, better to assume we don't
1794     // know anything.
1795     Known.resetAll();
1796     return;
1797   }
1798 
1799   assert(V && "No Value?");
1800   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1801 
1802 #ifndef NDEBUG
1803   Type *Ty = V->getType();
1804   unsigned BitWidth = Known.getBitWidth();
1805 
1806   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1807          "Not integer or pointer type!");
1808 
1809   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1810     assert(
1811         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1812         "DemandedElt width should equal the fixed vector number of elements");
1813   } else {
1814     assert(DemandedElts == APInt(1, 1) &&
1815            "DemandedElt width should be 1 for scalars");
1816   }
1817 
1818   Type *ScalarTy = Ty->getScalarType();
1819   if (ScalarTy->isPointerTy()) {
1820     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1821            "V and Known should have same BitWidth");
1822   } else {
1823     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1824            "V and Known should have same BitWidth");
1825   }
1826 #endif
1827 
1828   const APInt *C;
1829   if (match(V, m_APInt(C))) {
1830     // We know all of the bits for a scalar constant or a splat vector constant!
1831     Known = KnownBits::makeConstant(*C);
1832     return;
1833   }
1834   // Null and aggregate-zero are all-zeros.
1835   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1836     Known.setAllZero();
1837     return;
1838   }
1839   // Handle a constant vector by taking the intersection of the known bits of
1840   // each element.
1841   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1842     // We know that CDV must be a vector of integers. Take the intersection of
1843     // each element.
1844     Known.Zero.setAllBits(); Known.One.setAllBits();
1845     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1846       if (!DemandedElts[i])
1847         continue;
1848       APInt Elt = CDV->getElementAsAPInt(i);
1849       Known.Zero &= ~Elt;
1850       Known.One &= Elt;
1851     }
1852     return;
1853   }
1854 
1855   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1856     // We know that CV must be a vector of integers. Take the intersection of
1857     // each element.
1858     Known.Zero.setAllBits(); Known.One.setAllBits();
1859     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1860       if (!DemandedElts[i])
1861         continue;
1862       Constant *Element = CV->getAggregateElement(i);
1863       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1864       if (!ElementCI) {
1865         Known.resetAll();
1866         return;
1867       }
1868       const APInt &Elt = ElementCI->getValue();
1869       Known.Zero &= ~Elt;
1870       Known.One &= Elt;
1871     }
1872     return;
1873   }
1874 
1875   // Start out not knowing anything.
1876   Known.resetAll();
1877 
1878   // We can't imply anything about undefs.
1879   if (isa<UndefValue>(V))
1880     return;
1881 
1882   // There's no point in looking through other users of ConstantData for
1883   // assumptions.  Confirm that we've handled them all.
1884   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1885 
1886   // All recursive calls that increase depth must come after this.
1887   if (Depth == MaxAnalysisRecursionDepth)
1888     return;
1889 
1890   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1891   // the bits of its aliasee.
1892   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1893     if (!GA->isInterposable())
1894       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1895     return;
1896   }
1897 
1898   if (const Operator *I = dyn_cast<Operator>(V))
1899     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1900 
1901   // Aligned pointers have trailing zeros - refine Known.Zero set
1902   if (isa<PointerType>(V->getType())) {
1903     Align Alignment = V->getPointerAlignment(Q.DL);
1904     Known.Zero.setLowBits(Log2(Alignment));
1905   }
1906 
1907   // computeKnownBitsFromAssume strictly refines Known.
1908   // Therefore, we run them after computeKnownBitsFromOperator.
1909 
1910   // Check whether a nearby assume intrinsic can determine some known bits.
1911   computeKnownBitsFromAssume(V, Known, Depth, Q);
1912 
1913   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1914 }
1915 
1916 /// Return true if the given value is known to have exactly one
1917 /// bit set when defined. For vectors return true if every element is known to
1918 /// be a power of two when defined. Supports values with integer or pointer
1919 /// types and vectors of integers.
1920 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1921                             const Query &Q) {
1922   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1923 
1924   // Attempt to match against constants.
1925   if (OrZero && match(V, m_Power2OrZero()))
1926       return true;
1927   if (match(V, m_Power2()))
1928       return true;
1929 
1930   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1931   // it is shifted off the end then the result is undefined.
1932   if (match(V, m_Shl(m_One(), m_Value())))
1933     return true;
1934 
1935   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1936   // the bottom.  If it is shifted off the bottom then the result is undefined.
1937   if (match(V, m_LShr(m_SignMask(), m_Value())))
1938     return true;
1939 
1940   // The remaining tests are all recursive, so bail out if we hit the limit.
1941   if (Depth++ == MaxAnalysisRecursionDepth)
1942     return false;
1943 
1944   Value *X = nullptr, *Y = nullptr;
1945   // A shift left or a logical shift right of a power of two is a power of two
1946   // or zero.
1947   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1948                  match(V, m_LShr(m_Value(X), m_Value()))))
1949     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1950 
1951   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1952     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1953 
1954   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1955     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1956            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1957 
1958   // Peek through min/max.
1959   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
1960     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
1961            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
1962   }
1963 
1964   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1965     // A power of two and'd with anything is a power of two or zero.
1966     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1967         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1968       return true;
1969     // X & (-X) is always a power of two or zero.
1970     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1971       return true;
1972     return false;
1973   }
1974 
1975   // Adding a power-of-two or zero to the same power-of-two or zero yields
1976   // either the original power-of-two, a larger power-of-two or zero.
1977   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1978     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1979     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1980         Q.IIQ.hasNoSignedWrap(VOBO)) {
1981       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1982           match(X, m_And(m_Value(), m_Specific(Y))))
1983         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1984           return true;
1985       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1986           match(Y, m_And(m_Value(), m_Specific(X))))
1987         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1988           return true;
1989 
1990       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1991       KnownBits LHSBits(BitWidth);
1992       computeKnownBits(X, LHSBits, Depth, Q);
1993 
1994       KnownBits RHSBits(BitWidth);
1995       computeKnownBits(Y, RHSBits, Depth, Q);
1996       // If i8 V is a power of two or zero:
1997       //  ZeroBits: 1 1 1 0 1 1 1 1
1998       // ~ZeroBits: 0 0 0 1 0 0 0 0
1999       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2000         // If OrZero isn't set, we cannot give back a zero result.
2001         // Make sure either the LHS or RHS has a bit set.
2002         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2003           return true;
2004     }
2005   }
2006 
2007   // An exact divide or right shift can only shift off zero bits, so the result
2008   // is a power of two only if the first operand is a power of two and not
2009   // copying a sign bit (sdiv int_min, 2).
2010   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2011       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2012     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2013                                   Depth, Q);
2014   }
2015 
2016   return false;
2017 }
2018 
2019 /// Test whether a GEP's result is known to be non-null.
2020 ///
2021 /// Uses properties inherent in a GEP to try to determine whether it is known
2022 /// to be non-null.
2023 ///
2024 /// Currently this routine does not support vector GEPs.
2025 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2026                               const Query &Q) {
2027   const Function *F = nullptr;
2028   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2029     F = I->getFunction();
2030 
2031   if (!GEP->isInBounds() ||
2032       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2033     return false;
2034 
2035   // FIXME: Support vector-GEPs.
2036   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2037 
2038   // If the base pointer is non-null, we cannot walk to a null address with an
2039   // inbounds GEP in address space zero.
2040   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2041     return true;
2042 
2043   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2044   // If so, then the GEP cannot produce a null pointer, as doing so would
2045   // inherently violate the inbounds contract within address space zero.
2046   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2047        GTI != GTE; ++GTI) {
2048     // Struct types are easy -- they must always be indexed by a constant.
2049     if (StructType *STy = GTI.getStructTypeOrNull()) {
2050       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2051       unsigned ElementIdx = OpC->getZExtValue();
2052       const StructLayout *SL = Q.DL.getStructLayout(STy);
2053       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2054       if (ElementOffset > 0)
2055         return true;
2056       continue;
2057     }
2058 
2059     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2060     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2061       continue;
2062 
2063     // Fast path the constant operand case both for efficiency and so we don't
2064     // increment Depth when just zipping down an all-constant GEP.
2065     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2066       if (!OpC->isZero())
2067         return true;
2068       continue;
2069     }
2070 
2071     // We post-increment Depth here because while isKnownNonZero increments it
2072     // as well, when we pop back up that increment won't persist. We don't want
2073     // to recurse 10k times just because we have 10k GEP operands. We don't
2074     // bail completely out because we want to handle constant GEPs regardless
2075     // of depth.
2076     if (Depth++ >= MaxAnalysisRecursionDepth)
2077       continue;
2078 
2079     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2080       return true;
2081   }
2082 
2083   return false;
2084 }
2085 
2086 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2087                                                   const Instruction *CtxI,
2088                                                   const DominatorTree *DT) {
2089   if (isa<Constant>(V))
2090     return false;
2091 
2092   if (!CtxI || !DT)
2093     return false;
2094 
2095   unsigned NumUsesExplored = 0;
2096   for (auto *U : V->users()) {
2097     // Avoid massive lists
2098     if (NumUsesExplored >= DomConditionsMaxUses)
2099       break;
2100     NumUsesExplored++;
2101 
2102     // If the value is used as an argument to a call or invoke, then argument
2103     // attributes may provide an answer about null-ness.
2104     if (const auto *CB = dyn_cast<CallBase>(U))
2105       if (auto *CalledFunc = CB->getCalledFunction())
2106         for (const Argument &Arg : CalledFunc->args())
2107           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2108               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2109               DT->dominates(CB, CtxI))
2110             return true;
2111 
2112     // If the value is used as a load/store, then the pointer must be non null.
2113     if (V == getLoadStorePointerOperand(U)) {
2114       const Instruction *I = cast<Instruction>(U);
2115       if (!NullPointerIsDefined(I->getFunction(),
2116                                 V->getType()->getPointerAddressSpace()) &&
2117           DT->dominates(I, CtxI))
2118         return true;
2119     }
2120 
2121     // Consider only compare instructions uniquely controlling a branch
2122     Value *RHS;
2123     CmpInst::Predicate Pred;
2124     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2125       continue;
2126 
2127     bool NonNullIfTrue;
2128     if (cmpExcludesZero(Pred, RHS))
2129       NonNullIfTrue = true;
2130     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2131       NonNullIfTrue = false;
2132     else
2133       continue;
2134 
2135     SmallVector<const User *, 4> WorkList;
2136     SmallPtrSet<const User *, 4> Visited;
2137     for (auto *CmpU : U->users()) {
2138       assert(WorkList.empty() && "Should be!");
2139       if (Visited.insert(CmpU).second)
2140         WorkList.push_back(CmpU);
2141 
2142       while (!WorkList.empty()) {
2143         auto *Curr = WorkList.pop_back_val();
2144 
2145         // If a user is an AND, add all its users to the work list. We only
2146         // propagate "pred != null" condition through AND because it is only
2147         // correct to assume that all conditions of AND are met in true branch.
2148         // TODO: Support similar logic of OR and EQ predicate?
2149         if (NonNullIfTrue)
2150           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2151             for (auto *CurrU : Curr->users())
2152               if (Visited.insert(CurrU).second)
2153                 WorkList.push_back(CurrU);
2154             continue;
2155           }
2156 
2157         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2158           assert(BI->isConditional() && "uses a comparison!");
2159 
2160           BasicBlock *NonNullSuccessor =
2161               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2162           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2163           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2164             return true;
2165         } else if (NonNullIfTrue && isGuard(Curr) &&
2166                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2167           return true;
2168         }
2169       }
2170     }
2171   }
2172 
2173   return false;
2174 }
2175 
2176 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2177 /// ensure that the value it's attached to is never Value?  'RangeType' is
2178 /// is the type of the value described by the range.
2179 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2180   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2181   assert(NumRanges >= 1);
2182   for (unsigned i = 0; i < NumRanges; ++i) {
2183     ConstantInt *Lower =
2184         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2185     ConstantInt *Upper =
2186         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2187     ConstantRange Range(Lower->getValue(), Upper->getValue());
2188     if (Range.contains(Value))
2189       return false;
2190   }
2191   return true;
2192 }
2193 
2194 /// Try to detect a recurrence that monotonically increases/decreases from a
2195 /// non-zero starting value. These are common as induction variables.
2196 static bool isNonZeroRecurrence(const PHINode *PN) {
2197   BinaryOperator *BO = nullptr;
2198   Value *Start = nullptr, *Step = nullptr;
2199   const APInt *StartC, *StepC;
2200   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2201       !match(Start, m_APInt(StartC)) || StartC->isNullValue())
2202     return false;
2203 
2204   switch (BO->getOpcode()) {
2205   case Instruction::Add:
2206     // Starting from non-zero and stepping away from zero can never wrap back
2207     // to zero.
2208     return BO->hasNoUnsignedWrap() ||
2209            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2210             StartC->isNegative() == StepC->isNegative());
2211   case Instruction::Mul:
2212     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2213            match(Step, m_APInt(StepC)) && !StepC->isNullValue();
2214   case Instruction::Shl:
2215     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2216   case Instruction::AShr:
2217   case Instruction::LShr:
2218     return BO->isExact();
2219   default:
2220     return false;
2221   }
2222 }
2223 
2224 /// Return true if the given value is known to be non-zero when defined. For
2225 /// vectors, return true if every demanded element is known to be non-zero when
2226 /// defined. For pointers, if the context instruction and dominator tree are
2227 /// specified, perform context-sensitive analysis and return true if the
2228 /// pointer couldn't possibly be null at the specified instruction.
2229 /// Supports values with integer or pointer type and vectors of integers.
2230 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2231                     const Query &Q) {
2232   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2233   // vector
2234   if (isa<ScalableVectorType>(V->getType()))
2235     return false;
2236 
2237   if (auto *C = dyn_cast<Constant>(V)) {
2238     if (C->isNullValue())
2239       return false;
2240     if (isa<ConstantInt>(C))
2241       // Must be non-zero due to null test above.
2242       return true;
2243 
2244     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2245       // See the comment for IntToPtr/PtrToInt instructions below.
2246       if (CE->getOpcode() == Instruction::IntToPtr ||
2247           CE->getOpcode() == Instruction::PtrToInt)
2248         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2249                 .getFixedSize() <=
2250             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2251           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2252     }
2253 
2254     // For constant vectors, check that all elements are undefined or known
2255     // non-zero to determine that the whole vector is known non-zero.
2256     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2257       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2258         if (!DemandedElts[i])
2259           continue;
2260         Constant *Elt = C->getAggregateElement(i);
2261         if (!Elt || Elt->isNullValue())
2262           return false;
2263         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2264           return false;
2265       }
2266       return true;
2267     }
2268 
2269     // A global variable in address space 0 is non null unless extern weak
2270     // or an absolute symbol reference. Other address spaces may have null as a
2271     // valid address for a global, so we can't assume anything.
2272     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2273       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2274           GV->getType()->getAddressSpace() == 0)
2275         return true;
2276     } else
2277       return false;
2278   }
2279 
2280   if (auto *I = dyn_cast<Instruction>(V)) {
2281     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2282       // If the possible ranges don't contain zero, then the value is
2283       // definitely non-zero.
2284       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2285         const APInt ZeroValue(Ty->getBitWidth(), 0);
2286         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2287           return true;
2288       }
2289     }
2290   }
2291 
2292   if (isKnownNonZeroFromAssume(V, Q))
2293     return true;
2294 
2295   // Some of the tests below are recursive, so bail out if we hit the limit.
2296   if (Depth++ >= MaxAnalysisRecursionDepth)
2297     return false;
2298 
2299   // Check for pointer simplifications.
2300 
2301   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2302     // Alloca never returns null, malloc might.
2303     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2304       return true;
2305 
2306     // A byval, inalloca may not be null in a non-default addres space. A
2307     // nonnull argument is assumed never 0.
2308     if (const Argument *A = dyn_cast<Argument>(V)) {
2309       if (((A->hasPassPointeeByValueCopyAttr() &&
2310             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2311            A->hasNonNullAttr()))
2312         return true;
2313     }
2314 
2315     // A Load tagged with nonnull metadata is never null.
2316     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2317       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2318         return true;
2319 
2320     if (const auto *Call = dyn_cast<CallBase>(V)) {
2321       if (Call->isReturnNonNull())
2322         return true;
2323       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2324         return isKnownNonZero(RP, Depth, Q);
2325     }
2326   }
2327 
2328   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2329     return true;
2330 
2331   // Check for recursive pointer simplifications.
2332   if (V->getType()->isPointerTy()) {
2333     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2334     // do not alter the value, or at least not the nullness property of the
2335     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2336     //
2337     // Note that we have to take special care to avoid looking through
2338     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2339     // as casts that can alter the value, e.g., AddrSpaceCasts.
2340     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2341       return isGEPKnownNonNull(GEP, Depth, Q);
2342 
2343     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2344       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2345 
2346     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2347       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2348           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2349         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2350   }
2351 
2352   // Similar to int2ptr above, we can look through ptr2int here if the cast
2353   // is a no-op or an extend and not a truncate.
2354   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2355     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2356         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2357       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2358 
2359   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2360 
2361   // X | Y != 0 if X != 0 or Y != 0.
2362   Value *X = nullptr, *Y = nullptr;
2363   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2364     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2365            isKnownNonZero(Y, DemandedElts, Depth, Q);
2366 
2367   // ext X != 0 if X != 0.
2368   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2369     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2370 
2371   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2372   // if the lowest bit is shifted off the end.
2373   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2374     // shl nuw can't remove any non-zero bits.
2375     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2376     if (Q.IIQ.hasNoUnsignedWrap(BO))
2377       return isKnownNonZero(X, Depth, Q);
2378 
2379     KnownBits Known(BitWidth);
2380     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2381     if (Known.One[0])
2382       return true;
2383   }
2384   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2385   // defined if the sign bit is shifted off the end.
2386   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2387     // shr exact can only shift out zero bits.
2388     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2389     if (BO->isExact())
2390       return isKnownNonZero(X, Depth, Q);
2391 
2392     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2393     if (Known.isNegative())
2394       return true;
2395 
2396     // If the shifter operand is a constant, and all of the bits shifted
2397     // out are known to be zero, and X is known non-zero then at least one
2398     // non-zero bit must remain.
2399     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2400       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2401       // Is there a known one in the portion not shifted out?
2402       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2403         return true;
2404       // Are all the bits to be shifted out known zero?
2405       if (Known.countMinTrailingZeros() >= ShiftVal)
2406         return isKnownNonZero(X, DemandedElts, Depth, Q);
2407     }
2408   }
2409   // div exact can only produce a zero if the dividend is zero.
2410   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2411     return isKnownNonZero(X, DemandedElts, Depth, Q);
2412   }
2413   // X + Y.
2414   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2415     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2416     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2417 
2418     // If X and Y are both non-negative (as signed values) then their sum is not
2419     // zero unless both X and Y are zero.
2420     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2421       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2422           isKnownNonZero(Y, DemandedElts, Depth, Q))
2423         return true;
2424 
2425     // If X and Y are both negative (as signed values) then their sum is not
2426     // zero unless both X and Y equal INT_MIN.
2427     if (XKnown.isNegative() && YKnown.isNegative()) {
2428       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2429       // The sign bit of X is set.  If some other bit is set then X is not equal
2430       // to INT_MIN.
2431       if (XKnown.One.intersects(Mask))
2432         return true;
2433       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2434       // to INT_MIN.
2435       if (YKnown.One.intersects(Mask))
2436         return true;
2437     }
2438 
2439     // The sum of a non-negative number and a power of two is not zero.
2440     if (XKnown.isNonNegative() &&
2441         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2442       return true;
2443     if (YKnown.isNonNegative() &&
2444         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2445       return true;
2446   }
2447   // X * Y.
2448   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2449     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2450     // If X and Y are non-zero then so is X * Y as long as the multiplication
2451     // does not overflow.
2452     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2453         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2454         isKnownNonZero(Y, DemandedElts, Depth, Q))
2455       return true;
2456   }
2457   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2458   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2459     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2460         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2461       return true;
2462   }
2463   // PHI
2464   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2465     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2466       return true;
2467 
2468     // Check if all incoming values are non-zero using recursion.
2469     Query RecQ = Q;
2470     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2471     return llvm::all_of(PN->operands(), [&](const Use &U) {
2472       if (U.get() == PN)
2473         return true;
2474       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2475       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2476     });
2477   }
2478   // ExtractElement
2479   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2480     const Value *Vec = EEI->getVectorOperand();
2481     const Value *Idx = EEI->getIndexOperand();
2482     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2483     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2484       unsigned NumElts = VecTy->getNumElements();
2485       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2486       if (CIdx && CIdx->getValue().ult(NumElts))
2487         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2488       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2489     }
2490   }
2491   // Freeze
2492   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2493     auto *Op = FI->getOperand(0);
2494     if (isKnownNonZero(Op, Depth, Q) &&
2495         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2496       return true;
2497   }
2498 
2499   KnownBits Known(BitWidth);
2500   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2501   return Known.One != 0;
2502 }
2503 
2504 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2505   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2506   // vector
2507   if (isa<ScalableVectorType>(V->getType()))
2508     return false;
2509 
2510   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2511   APInt DemandedElts =
2512       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2513   return isKnownNonZero(V, DemandedElts, Depth, Q);
2514 }
2515 
2516 /// If the pair of operators are the same invertible function of a single
2517 /// operand return the index of that operand.  Otherwise, return None.  An
2518 /// invertible function is one that is 1-to-1 and maps every input value
2519 /// to exactly one output value.  This is equivalent to saying that Op1
2520 /// and Op2 are equal exactly when the specified pair of operands are equal,
2521 /// (except that Op1 and Op2 may be poison more often.)
2522 static Optional<unsigned> getInvertibleOperand(const Operator *Op1,
2523                                                const Operator *Op2) {
2524   if (Op1->getOpcode() != Op2->getOpcode())
2525     return None;
2526 
2527   switch (Op1->getOpcode()) {
2528   default:
2529     break;
2530   case Instruction::Add:
2531   case Instruction::Sub:
2532     if (Op1->getOperand(0) == Op2->getOperand(0))
2533       return 1;
2534     if (Op1->getOperand(1) == Op2->getOperand(1))
2535       return 0;
2536     break;
2537   case Instruction::Mul: {
2538     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2539     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2540     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2541     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2542     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2543     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2544         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2545       break;
2546 
2547     // Assume operand order has been canonicalized
2548     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2549         isa<ConstantInt>(Op1->getOperand(1)) &&
2550         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2551       return 0;
2552     break;
2553   }
2554   case Instruction::Shl: {
2555     // Same as multiplies, with the difference that we don't need to check
2556     // for a non-zero multiply. Shifts always multiply by non-zero.
2557     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2558     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2559     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2560         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2561       break;
2562 
2563     if (Op1->getOperand(1) == Op2->getOperand(1))
2564       return 0;
2565     break;
2566   }
2567   case Instruction::AShr:
2568   case Instruction::LShr: {
2569     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2570     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2571     if (!PEO1->isExact() || !PEO2->isExact())
2572       break;
2573 
2574     if (Op1->getOperand(1) == Op2->getOperand(1))
2575       return 0;
2576     break;
2577   }
2578   case Instruction::SExt:
2579   case Instruction::ZExt:
2580     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2581       return 0;
2582     break;
2583   }
2584   return None;
2585 }
2586 
2587 /// Return true if V2 == V1 + X, where X is known non-zero.
2588 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2589                            const Query &Q) {
2590   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2591   if (!BO || BO->getOpcode() != Instruction::Add)
2592     return false;
2593   Value *Op = nullptr;
2594   if (V2 == BO->getOperand(0))
2595     Op = BO->getOperand(1);
2596   else if (V2 == BO->getOperand(1))
2597     Op = BO->getOperand(0);
2598   else
2599     return false;
2600   return isKnownNonZero(Op, Depth + 1, Q);
2601 }
2602 
2603 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2604 /// the multiplication is nuw or nsw.
2605 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2606                           const Query &Q) {
2607   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2608     const APInt *C;
2609     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2610            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2611            !C->isNullValue() && !C->isOneValue() &&
2612            isKnownNonZero(V1, Depth + 1, Q);
2613   }
2614   return false;
2615 }
2616 
2617 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2618 /// the shift is nuw or nsw.
2619 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2620                           const Query &Q) {
2621   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2622     const APInt *C;
2623     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2624            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2625            !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
2626   }
2627   return false;
2628 }
2629 
2630 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2631                            unsigned Depth, const Query &Q) {
2632   // Check two PHIs are in same block.
2633   if (PN1->getParent() != PN2->getParent())
2634     return false;
2635 
2636   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2637   bool UsedFullRecursion = false;
2638   for (const BasicBlock *IncomBB : PN1->blocks()) {
2639     if (!VisitedBBs.insert(IncomBB).second)
2640       continue; // Don't reprocess blocks that we have dealt with already.
2641     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2642     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2643     const APInt *C1, *C2;
2644     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2645       continue;
2646 
2647     // Only one pair of phi operands is allowed for full recursion.
2648     if (UsedFullRecursion)
2649       return false;
2650 
2651     Query RecQ = Q;
2652     RecQ.CxtI = IncomBB->getTerminator();
2653     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2654       return false;
2655     UsedFullRecursion = true;
2656   }
2657   return true;
2658 }
2659 
2660 /// Return true if it is known that V1 != V2.
2661 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2662                             const Query &Q) {
2663   if (V1 == V2)
2664     return false;
2665   if (V1->getType() != V2->getType())
2666     // We can't look through casts yet.
2667     return false;
2668 
2669   if (Depth >= MaxAnalysisRecursionDepth)
2670     return false;
2671 
2672   // See if we can recurse through (exactly one of) our operands.  This
2673   // requires our operation be 1-to-1 and map every input value to exactly
2674   // one output value.  Such an operation is invertible.
2675   auto *O1 = dyn_cast<Operator>(V1);
2676   auto *O2 = dyn_cast<Operator>(V2);
2677   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2678     if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) {
2679       unsigned Idx = *Opt;
2680       return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx),
2681                              Depth + 1, Q);
2682     }
2683     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2684       const PHINode *PN2 = cast<PHINode>(V2);
2685       // FIXME: This is missing a generalization to handle the case where one is
2686       // a PHI and another one isn't.
2687       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2688         return true;
2689     };
2690   }
2691 
2692   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2693     return true;
2694 
2695   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2696     return true;
2697 
2698   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2699     return true;
2700 
2701   if (V1->getType()->isIntOrIntVectorTy()) {
2702     // Are any known bits in V1 contradictory to known bits in V2? If V1
2703     // has a known zero where V2 has a known one, they must not be equal.
2704     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2705     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2706 
2707     if (Known1.Zero.intersects(Known2.One) ||
2708         Known2.Zero.intersects(Known1.One))
2709       return true;
2710   }
2711   return false;
2712 }
2713 
2714 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2715 /// simplify operations downstream. Mask is known to be zero for bits that V
2716 /// cannot have.
2717 ///
2718 /// This function is defined on values with integer type, values with pointer
2719 /// type, and vectors of integers.  In the case
2720 /// where V is a vector, the mask, known zero, and known one values are the
2721 /// same width as the vector element, and the bit is set only if it is true
2722 /// for all of the elements in the vector.
2723 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2724                        const Query &Q) {
2725   KnownBits Known(Mask.getBitWidth());
2726   computeKnownBits(V, Known, Depth, Q);
2727   return Mask.isSubsetOf(Known.Zero);
2728 }
2729 
2730 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2731 // Returns the input and lower/upper bounds.
2732 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2733                                 const APInt *&CLow, const APInt *&CHigh) {
2734   assert(isa<Operator>(Select) &&
2735          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2736          "Input should be a Select!");
2737 
2738   const Value *LHS = nullptr, *RHS = nullptr;
2739   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2740   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2741     return false;
2742 
2743   if (!match(RHS, m_APInt(CLow)))
2744     return false;
2745 
2746   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2747   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2748   if (getInverseMinMaxFlavor(SPF) != SPF2)
2749     return false;
2750 
2751   if (!match(RHS2, m_APInt(CHigh)))
2752     return false;
2753 
2754   if (SPF == SPF_SMIN)
2755     std::swap(CLow, CHigh);
2756 
2757   In = LHS2;
2758   return CLow->sle(*CHigh);
2759 }
2760 
2761 /// For vector constants, loop over the elements and find the constant with the
2762 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2763 /// or if any element was not analyzed; otherwise, return the count for the
2764 /// element with the minimum number of sign bits.
2765 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2766                                                  const APInt &DemandedElts,
2767                                                  unsigned TyBits) {
2768   const auto *CV = dyn_cast<Constant>(V);
2769   if (!CV || !isa<FixedVectorType>(CV->getType()))
2770     return 0;
2771 
2772   unsigned MinSignBits = TyBits;
2773   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2774   for (unsigned i = 0; i != NumElts; ++i) {
2775     if (!DemandedElts[i])
2776       continue;
2777     // If we find a non-ConstantInt, bail out.
2778     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2779     if (!Elt)
2780       return 0;
2781 
2782     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2783   }
2784 
2785   return MinSignBits;
2786 }
2787 
2788 static unsigned ComputeNumSignBitsImpl(const Value *V,
2789                                        const APInt &DemandedElts,
2790                                        unsigned Depth, const Query &Q);
2791 
2792 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2793                                    unsigned Depth, const Query &Q) {
2794   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2795   assert(Result > 0 && "At least one sign bit needs to be present!");
2796   return Result;
2797 }
2798 
2799 /// Return the number of times the sign bit of the register is replicated into
2800 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2801 /// (itself), but other cases can give us information. For example, immediately
2802 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2803 /// other, so we return 3. For vectors, return the number of sign bits for the
2804 /// vector element with the minimum number of known sign bits of the demanded
2805 /// elements in the vector specified by DemandedElts.
2806 static unsigned ComputeNumSignBitsImpl(const Value *V,
2807                                        const APInt &DemandedElts,
2808                                        unsigned Depth, const Query &Q) {
2809   Type *Ty = V->getType();
2810 
2811   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2812   // vector
2813   if (isa<ScalableVectorType>(Ty))
2814     return 1;
2815 
2816 #ifndef NDEBUG
2817   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2818 
2819   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2820     assert(
2821         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2822         "DemandedElt width should equal the fixed vector number of elements");
2823   } else {
2824     assert(DemandedElts == APInt(1, 1) &&
2825            "DemandedElt width should be 1 for scalars");
2826   }
2827 #endif
2828 
2829   // We return the minimum number of sign bits that are guaranteed to be present
2830   // in V, so for undef we have to conservatively return 1.  We don't have the
2831   // same behavior for poison though -- that's a FIXME today.
2832 
2833   Type *ScalarTy = Ty->getScalarType();
2834   unsigned TyBits = ScalarTy->isPointerTy() ?
2835     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2836     Q.DL.getTypeSizeInBits(ScalarTy);
2837 
2838   unsigned Tmp, Tmp2;
2839   unsigned FirstAnswer = 1;
2840 
2841   // Note that ConstantInt is handled by the general computeKnownBits case
2842   // below.
2843 
2844   if (Depth == MaxAnalysisRecursionDepth)
2845     return 1;
2846 
2847   if (auto *U = dyn_cast<Operator>(V)) {
2848     switch (Operator::getOpcode(V)) {
2849     default: break;
2850     case Instruction::SExt:
2851       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2852       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2853 
2854     case Instruction::SDiv: {
2855       const APInt *Denominator;
2856       // sdiv X, C -> adds log(C) sign bits.
2857       if (match(U->getOperand(1), m_APInt(Denominator))) {
2858 
2859         // Ignore non-positive denominator.
2860         if (!Denominator->isStrictlyPositive())
2861           break;
2862 
2863         // Calculate the incoming numerator bits.
2864         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2865 
2866         // Add floor(log(C)) bits to the numerator bits.
2867         return std::min(TyBits, NumBits + Denominator->logBase2());
2868       }
2869       break;
2870     }
2871 
2872     case Instruction::SRem: {
2873       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2874 
2875       const APInt *Denominator;
2876       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2877       // positive constant.  This let us put a lower bound on the number of sign
2878       // bits.
2879       if (match(U->getOperand(1), m_APInt(Denominator))) {
2880 
2881         // Ignore non-positive denominator.
2882         if (Denominator->isStrictlyPositive()) {
2883           // Calculate the leading sign bit constraints by examining the
2884           // denominator.  Given that the denominator is positive, there are two
2885           // cases:
2886           //
2887           //  1. The numerator is positive. The result range is [0,C) and
2888           //     [0,C) u< (1 << ceilLogBase2(C)).
2889           //
2890           //  2. The numerator is negative. Then the result range is (-C,0] and
2891           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2892           //
2893           // Thus a lower bound on the number of sign bits is `TyBits -
2894           // ceilLogBase2(C)`.
2895 
2896           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2897           Tmp = std::max(Tmp, ResBits);
2898         }
2899       }
2900       return Tmp;
2901     }
2902 
2903     case Instruction::AShr: {
2904       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2905       // ashr X, C   -> adds C sign bits.  Vectors too.
2906       const APInt *ShAmt;
2907       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2908         if (ShAmt->uge(TyBits))
2909           break; // Bad shift.
2910         unsigned ShAmtLimited = ShAmt->getZExtValue();
2911         Tmp += ShAmtLimited;
2912         if (Tmp > TyBits) Tmp = TyBits;
2913       }
2914       return Tmp;
2915     }
2916     case Instruction::Shl: {
2917       const APInt *ShAmt;
2918       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2919         // shl destroys sign bits.
2920         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2921         if (ShAmt->uge(TyBits) ||   // Bad shift.
2922             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2923         Tmp2 = ShAmt->getZExtValue();
2924         return Tmp - Tmp2;
2925       }
2926       break;
2927     }
2928     case Instruction::And:
2929     case Instruction::Or:
2930     case Instruction::Xor: // NOT is handled here.
2931       // Logical binary ops preserve the number of sign bits at the worst.
2932       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2933       if (Tmp != 1) {
2934         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2935         FirstAnswer = std::min(Tmp, Tmp2);
2936         // We computed what we know about the sign bits as our first
2937         // answer. Now proceed to the generic code that uses
2938         // computeKnownBits, and pick whichever answer is better.
2939       }
2940       break;
2941 
2942     case Instruction::Select: {
2943       // If we have a clamp pattern, we know that the number of sign bits will
2944       // be the minimum of the clamp min/max range.
2945       const Value *X;
2946       const APInt *CLow, *CHigh;
2947       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2948         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2949 
2950       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2951       if (Tmp == 1) break;
2952       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2953       return std::min(Tmp, Tmp2);
2954     }
2955 
2956     case Instruction::Add:
2957       // Add can have at most one carry bit.  Thus we know that the output
2958       // is, at worst, one more bit than the inputs.
2959       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2960       if (Tmp == 1) break;
2961 
2962       // Special case decrementing a value (ADD X, -1):
2963       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2964         if (CRHS->isAllOnesValue()) {
2965           KnownBits Known(TyBits);
2966           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2967 
2968           // If the input is known to be 0 or 1, the output is 0/-1, which is
2969           // all sign bits set.
2970           if ((Known.Zero | 1).isAllOnesValue())
2971             return TyBits;
2972 
2973           // If we are subtracting one from a positive number, there is no carry
2974           // out of the result.
2975           if (Known.isNonNegative())
2976             return Tmp;
2977         }
2978 
2979       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2980       if (Tmp2 == 1) break;
2981       return std::min(Tmp, Tmp2) - 1;
2982 
2983     case Instruction::Sub:
2984       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2985       if (Tmp2 == 1) break;
2986 
2987       // Handle NEG.
2988       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2989         if (CLHS->isNullValue()) {
2990           KnownBits Known(TyBits);
2991           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2992           // If the input is known to be 0 or 1, the output is 0/-1, which is
2993           // all sign bits set.
2994           if ((Known.Zero | 1).isAllOnesValue())
2995             return TyBits;
2996 
2997           // If the input is known to be positive (the sign bit is known clear),
2998           // the output of the NEG has the same number of sign bits as the
2999           // input.
3000           if (Known.isNonNegative())
3001             return Tmp2;
3002 
3003           // Otherwise, we treat this like a SUB.
3004         }
3005 
3006       // Sub can have at most one carry bit.  Thus we know that the output
3007       // is, at worst, one more bit than the inputs.
3008       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3009       if (Tmp == 1) break;
3010       return std::min(Tmp, Tmp2) - 1;
3011 
3012     case Instruction::Mul: {
3013       // The output of the Mul can be at most twice the valid bits in the
3014       // inputs.
3015       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3016       if (SignBitsOp0 == 1) break;
3017       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3018       if (SignBitsOp1 == 1) break;
3019       unsigned OutValidBits =
3020           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3021       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3022     }
3023 
3024     case Instruction::PHI: {
3025       const PHINode *PN = cast<PHINode>(U);
3026       unsigned NumIncomingValues = PN->getNumIncomingValues();
3027       // Don't analyze large in-degree PHIs.
3028       if (NumIncomingValues > 4) break;
3029       // Unreachable blocks may have zero-operand PHI nodes.
3030       if (NumIncomingValues == 0) break;
3031 
3032       // Take the minimum of all incoming values.  This can't infinitely loop
3033       // because of our depth threshold.
3034       Query RecQ = Q;
3035       Tmp = TyBits;
3036       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3037         if (Tmp == 1) return Tmp;
3038         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3039         Tmp = std::min(
3040             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3041       }
3042       return Tmp;
3043     }
3044 
3045     case Instruction::Trunc:
3046       // FIXME: it's tricky to do anything useful for this, but it is an
3047       // important case for targets like X86.
3048       break;
3049 
3050     case Instruction::ExtractElement:
3051       // Look through extract element. At the moment we keep this simple and
3052       // skip tracking the specific element. But at least we might find
3053       // information valid for all elements of the vector (for example if vector
3054       // is sign extended, shifted, etc).
3055       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3056 
3057     case Instruction::ShuffleVector: {
3058       // Collect the minimum number of sign bits that are shared by every vector
3059       // element referenced by the shuffle.
3060       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3061       if (!Shuf) {
3062         // FIXME: Add support for shufflevector constant expressions.
3063         return 1;
3064       }
3065       APInt DemandedLHS, DemandedRHS;
3066       // For undef elements, we don't know anything about the common state of
3067       // the shuffle result.
3068       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3069         return 1;
3070       Tmp = std::numeric_limits<unsigned>::max();
3071       if (!!DemandedLHS) {
3072         const Value *LHS = Shuf->getOperand(0);
3073         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3074       }
3075       // If we don't know anything, early out and try computeKnownBits
3076       // fall-back.
3077       if (Tmp == 1)
3078         break;
3079       if (!!DemandedRHS) {
3080         const Value *RHS = Shuf->getOperand(1);
3081         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3082         Tmp = std::min(Tmp, Tmp2);
3083       }
3084       // If we don't know anything, early out and try computeKnownBits
3085       // fall-back.
3086       if (Tmp == 1)
3087         break;
3088       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3089       return Tmp;
3090     }
3091     case Instruction::Call: {
3092       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3093         switch (II->getIntrinsicID()) {
3094         default: break;
3095         case Intrinsic::abs:
3096           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3097           if (Tmp == 1) break;
3098 
3099           // Absolute value reduces number of sign bits by at most 1.
3100           return Tmp - 1;
3101         }
3102       }
3103     }
3104     }
3105   }
3106 
3107   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3108   // use this information.
3109 
3110   // If we can examine all elements of a vector constant successfully, we're
3111   // done (we can't do any better than that). If not, keep trying.
3112   if (unsigned VecSignBits =
3113           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3114     return VecSignBits;
3115 
3116   KnownBits Known(TyBits);
3117   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3118 
3119   // If we know that the sign bit is either zero or one, determine the number of
3120   // identical bits in the top of the input value.
3121   return std::max(FirstAnswer, Known.countMinSignBits());
3122 }
3123 
3124 /// This function computes the integer multiple of Base that equals V.
3125 /// If successful, it returns true and returns the multiple in
3126 /// Multiple. If unsuccessful, it returns false. It looks
3127 /// through SExt instructions only if LookThroughSExt is true.
3128 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3129                            bool LookThroughSExt, unsigned Depth) {
3130   assert(V && "No Value?");
3131   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3132   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3133 
3134   Type *T = V->getType();
3135 
3136   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3137 
3138   if (Base == 0)
3139     return false;
3140 
3141   if (Base == 1) {
3142     Multiple = V;
3143     return true;
3144   }
3145 
3146   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3147   Constant *BaseVal = ConstantInt::get(T, Base);
3148   if (CO && CO == BaseVal) {
3149     // Multiple is 1.
3150     Multiple = ConstantInt::get(T, 1);
3151     return true;
3152   }
3153 
3154   if (CI && CI->getZExtValue() % Base == 0) {
3155     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3156     return true;
3157   }
3158 
3159   if (Depth == MaxAnalysisRecursionDepth) return false;
3160 
3161   Operator *I = dyn_cast<Operator>(V);
3162   if (!I) return false;
3163 
3164   switch (I->getOpcode()) {
3165   default: break;
3166   case Instruction::SExt:
3167     if (!LookThroughSExt) return false;
3168     // otherwise fall through to ZExt
3169     LLVM_FALLTHROUGH;
3170   case Instruction::ZExt:
3171     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3172                            LookThroughSExt, Depth+1);
3173   case Instruction::Shl:
3174   case Instruction::Mul: {
3175     Value *Op0 = I->getOperand(0);
3176     Value *Op1 = I->getOperand(1);
3177 
3178     if (I->getOpcode() == Instruction::Shl) {
3179       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3180       if (!Op1CI) return false;
3181       // Turn Op0 << Op1 into Op0 * 2^Op1
3182       APInt Op1Int = Op1CI->getValue();
3183       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3184       APInt API(Op1Int.getBitWidth(), 0);
3185       API.setBit(BitToSet);
3186       Op1 = ConstantInt::get(V->getContext(), API);
3187     }
3188 
3189     Value *Mul0 = nullptr;
3190     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3191       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3192         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3193           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3194               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3195             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3196           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3197               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3198             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3199 
3200           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3201           Multiple = ConstantExpr::getMul(MulC, Op1C);
3202           return true;
3203         }
3204 
3205       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3206         if (Mul0CI->getValue() == 1) {
3207           // V == Base * Op1, so return Op1
3208           Multiple = Op1;
3209           return true;
3210         }
3211     }
3212 
3213     Value *Mul1 = nullptr;
3214     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3215       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3216         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3217           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3218               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3219             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3220           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3221               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3222             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3223 
3224           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3225           Multiple = ConstantExpr::getMul(MulC, Op0C);
3226           return true;
3227         }
3228 
3229       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3230         if (Mul1CI->getValue() == 1) {
3231           // V == Base * Op0, so return Op0
3232           Multiple = Op0;
3233           return true;
3234         }
3235     }
3236   }
3237   }
3238 
3239   // We could not determine if V is a multiple of Base.
3240   return false;
3241 }
3242 
3243 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3244                                             const TargetLibraryInfo *TLI) {
3245   const Function *F = CB.getCalledFunction();
3246   if (!F)
3247     return Intrinsic::not_intrinsic;
3248 
3249   if (F->isIntrinsic())
3250     return F->getIntrinsicID();
3251 
3252   // We are going to infer semantics of a library function based on mapping it
3253   // to an LLVM intrinsic. Check that the library function is available from
3254   // this callbase and in this environment.
3255   LibFunc Func;
3256   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3257       !CB.onlyReadsMemory())
3258     return Intrinsic::not_intrinsic;
3259 
3260   switch (Func) {
3261   default:
3262     break;
3263   case LibFunc_sin:
3264   case LibFunc_sinf:
3265   case LibFunc_sinl:
3266     return Intrinsic::sin;
3267   case LibFunc_cos:
3268   case LibFunc_cosf:
3269   case LibFunc_cosl:
3270     return Intrinsic::cos;
3271   case LibFunc_exp:
3272   case LibFunc_expf:
3273   case LibFunc_expl:
3274     return Intrinsic::exp;
3275   case LibFunc_exp2:
3276   case LibFunc_exp2f:
3277   case LibFunc_exp2l:
3278     return Intrinsic::exp2;
3279   case LibFunc_log:
3280   case LibFunc_logf:
3281   case LibFunc_logl:
3282     return Intrinsic::log;
3283   case LibFunc_log10:
3284   case LibFunc_log10f:
3285   case LibFunc_log10l:
3286     return Intrinsic::log10;
3287   case LibFunc_log2:
3288   case LibFunc_log2f:
3289   case LibFunc_log2l:
3290     return Intrinsic::log2;
3291   case LibFunc_fabs:
3292   case LibFunc_fabsf:
3293   case LibFunc_fabsl:
3294     return Intrinsic::fabs;
3295   case LibFunc_fmin:
3296   case LibFunc_fminf:
3297   case LibFunc_fminl:
3298     return Intrinsic::minnum;
3299   case LibFunc_fmax:
3300   case LibFunc_fmaxf:
3301   case LibFunc_fmaxl:
3302     return Intrinsic::maxnum;
3303   case LibFunc_copysign:
3304   case LibFunc_copysignf:
3305   case LibFunc_copysignl:
3306     return Intrinsic::copysign;
3307   case LibFunc_floor:
3308   case LibFunc_floorf:
3309   case LibFunc_floorl:
3310     return Intrinsic::floor;
3311   case LibFunc_ceil:
3312   case LibFunc_ceilf:
3313   case LibFunc_ceill:
3314     return Intrinsic::ceil;
3315   case LibFunc_trunc:
3316   case LibFunc_truncf:
3317   case LibFunc_truncl:
3318     return Intrinsic::trunc;
3319   case LibFunc_rint:
3320   case LibFunc_rintf:
3321   case LibFunc_rintl:
3322     return Intrinsic::rint;
3323   case LibFunc_nearbyint:
3324   case LibFunc_nearbyintf:
3325   case LibFunc_nearbyintl:
3326     return Intrinsic::nearbyint;
3327   case LibFunc_round:
3328   case LibFunc_roundf:
3329   case LibFunc_roundl:
3330     return Intrinsic::round;
3331   case LibFunc_roundeven:
3332   case LibFunc_roundevenf:
3333   case LibFunc_roundevenl:
3334     return Intrinsic::roundeven;
3335   case LibFunc_pow:
3336   case LibFunc_powf:
3337   case LibFunc_powl:
3338     return Intrinsic::pow;
3339   case LibFunc_sqrt:
3340   case LibFunc_sqrtf:
3341   case LibFunc_sqrtl:
3342     return Intrinsic::sqrt;
3343   }
3344 
3345   return Intrinsic::not_intrinsic;
3346 }
3347 
3348 /// Return true if we can prove that the specified FP value is never equal to
3349 /// -0.0.
3350 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3351 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3352 ///       the same as +0.0 in floating-point ops.
3353 ///
3354 /// NOTE: this function will need to be revisited when we support non-default
3355 /// rounding modes!
3356 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3357                                 unsigned Depth) {
3358   if (auto *CFP = dyn_cast<ConstantFP>(V))
3359     return !CFP->getValueAPF().isNegZero();
3360 
3361   if (Depth == MaxAnalysisRecursionDepth)
3362     return false;
3363 
3364   auto *Op = dyn_cast<Operator>(V);
3365   if (!Op)
3366     return false;
3367 
3368   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3369   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3370     return true;
3371 
3372   // sitofp and uitofp turn into +0.0 for zero.
3373   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3374     return true;
3375 
3376   if (auto *Call = dyn_cast<CallInst>(Op)) {
3377     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3378     switch (IID) {
3379     default:
3380       break;
3381     // sqrt(-0.0) = -0.0, no other negative results are possible.
3382     case Intrinsic::sqrt:
3383     case Intrinsic::canonicalize:
3384       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3385     // fabs(x) != -0.0
3386     case Intrinsic::fabs:
3387       return true;
3388     }
3389   }
3390 
3391   return false;
3392 }
3393 
3394 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3395 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3396 /// bit despite comparing equal.
3397 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3398                                             const TargetLibraryInfo *TLI,
3399                                             bool SignBitOnly,
3400                                             unsigned Depth) {
3401   // TODO: This function does not do the right thing when SignBitOnly is true
3402   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3403   // which flips the sign bits of NaNs.  See
3404   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3405 
3406   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3407     return !CFP->getValueAPF().isNegative() ||
3408            (!SignBitOnly && CFP->getValueAPF().isZero());
3409   }
3410 
3411   // Handle vector of constants.
3412   if (auto *CV = dyn_cast<Constant>(V)) {
3413     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3414       unsigned NumElts = CVFVTy->getNumElements();
3415       for (unsigned i = 0; i != NumElts; ++i) {
3416         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3417         if (!CFP)
3418           return false;
3419         if (CFP->getValueAPF().isNegative() &&
3420             (SignBitOnly || !CFP->getValueAPF().isZero()))
3421           return false;
3422       }
3423 
3424       // All non-negative ConstantFPs.
3425       return true;
3426     }
3427   }
3428 
3429   if (Depth == MaxAnalysisRecursionDepth)
3430     return false;
3431 
3432   const Operator *I = dyn_cast<Operator>(V);
3433   if (!I)
3434     return false;
3435 
3436   switch (I->getOpcode()) {
3437   default:
3438     break;
3439   // Unsigned integers are always nonnegative.
3440   case Instruction::UIToFP:
3441     return true;
3442   case Instruction::FMul:
3443   case Instruction::FDiv:
3444     // X * X is always non-negative or a NaN.
3445     // X / X is always exactly 1.0 or a NaN.
3446     if (I->getOperand(0) == I->getOperand(1) &&
3447         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3448       return true;
3449 
3450     LLVM_FALLTHROUGH;
3451   case Instruction::FAdd:
3452   case Instruction::FRem:
3453     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3454                                            Depth + 1) &&
3455            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3456                                            Depth + 1);
3457   case Instruction::Select:
3458     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3459                                            Depth + 1) &&
3460            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3461                                            Depth + 1);
3462   case Instruction::FPExt:
3463   case Instruction::FPTrunc:
3464     // Widening/narrowing never change sign.
3465     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3466                                            Depth + 1);
3467   case Instruction::ExtractElement:
3468     // Look through extract element. At the moment we keep this simple and skip
3469     // tracking the specific element. But at least we might find information
3470     // valid for all elements of the vector.
3471     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3472                                            Depth + 1);
3473   case Instruction::Call:
3474     const auto *CI = cast<CallInst>(I);
3475     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3476     switch (IID) {
3477     default:
3478       break;
3479     case Intrinsic::maxnum: {
3480       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3481       auto isPositiveNum = [&](Value *V) {
3482         if (SignBitOnly) {
3483           // With SignBitOnly, this is tricky because the result of
3484           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3485           // a constant strictly greater than 0.0.
3486           const APFloat *C;
3487           return match(V, m_APFloat(C)) &&
3488                  *C > APFloat::getZero(C->getSemantics());
3489         }
3490 
3491         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3492         // maxnum can't be ordered-less-than-zero.
3493         return isKnownNeverNaN(V, TLI) &&
3494                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3495       };
3496 
3497       // TODO: This could be improved. We could also check that neither operand
3498       //       has its sign bit set (and at least 1 is not-NAN?).
3499       return isPositiveNum(V0) || isPositiveNum(V1);
3500     }
3501 
3502     case Intrinsic::maximum:
3503       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3504                                              Depth + 1) ||
3505              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3506                                              Depth + 1);
3507     case Intrinsic::minnum:
3508     case Intrinsic::minimum:
3509       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3510                                              Depth + 1) &&
3511              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3512                                              Depth + 1);
3513     case Intrinsic::exp:
3514     case Intrinsic::exp2:
3515     case Intrinsic::fabs:
3516       return true;
3517 
3518     case Intrinsic::sqrt:
3519       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3520       if (!SignBitOnly)
3521         return true;
3522       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3523                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3524 
3525     case Intrinsic::powi:
3526       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3527         // powi(x,n) is non-negative if n is even.
3528         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3529           return true;
3530       }
3531       // TODO: This is not correct.  Given that exp is an integer, here are the
3532       // ways that pow can return a negative value:
3533       //
3534       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3535       //   pow(-0, exp)   --> -inf if exp is negative odd.
3536       //   pow(-0, exp)   --> -0 if exp is positive odd.
3537       //   pow(-inf, exp) --> -0 if exp is negative odd.
3538       //   pow(-inf, exp) --> -inf if exp is positive odd.
3539       //
3540       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3541       // but we must return false if x == -0.  Unfortunately we do not currently
3542       // have a way of expressing this constraint.  See details in
3543       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3544       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3545                                              Depth + 1);
3546 
3547     case Intrinsic::fma:
3548     case Intrinsic::fmuladd:
3549       // x*x+y is non-negative if y is non-negative.
3550       return I->getOperand(0) == I->getOperand(1) &&
3551              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3552              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3553                                              Depth + 1);
3554     }
3555     break;
3556   }
3557   return false;
3558 }
3559 
3560 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3561                                        const TargetLibraryInfo *TLI) {
3562   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3563 }
3564 
3565 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3566   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3567 }
3568 
3569 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3570                                 unsigned Depth) {
3571   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3572 
3573   // If we're told that infinities won't happen, assume they won't.
3574   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3575     if (FPMathOp->hasNoInfs())
3576       return true;
3577 
3578   // Handle scalar constants.
3579   if (auto *CFP = dyn_cast<ConstantFP>(V))
3580     return !CFP->isInfinity();
3581 
3582   if (Depth == MaxAnalysisRecursionDepth)
3583     return false;
3584 
3585   if (auto *Inst = dyn_cast<Instruction>(V)) {
3586     switch (Inst->getOpcode()) {
3587     case Instruction::Select: {
3588       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3589              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3590     }
3591     case Instruction::SIToFP:
3592     case Instruction::UIToFP: {
3593       // Get width of largest magnitude integer (remove a bit if signed).
3594       // This still works for a signed minimum value because the largest FP
3595       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3596       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3597       if (Inst->getOpcode() == Instruction::SIToFP)
3598         --IntSize;
3599 
3600       // If the exponent of the largest finite FP value can hold the largest
3601       // integer, the result of the cast must be finite.
3602       Type *FPTy = Inst->getType()->getScalarType();
3603       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3604     }
3605     default:
3606       break;
3607     }
3608   }
3609 
3610   // try to handle fixed width vector constants
3611   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3612   if (VFVTy && isa<Constant>(V)) {
3613     // For vectors, verify that each element is not infinity.
3614     unsigned NumElts = VFVTy->getNumElements();
3615     for (unsigned i = 0; i != NumElts; ++i) {
3616       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3617       if (!Elt)
3618         return false;
3619       if (isa<UndefValue>(Elt))
3620         continue;
3621       auto *CElt = dyn_cast<ConstantFP>(Elt);
3622       if (!CElt || CElt->isInfinity())
3623         return false;
3624     }
3625     // All elements were confirmed non-infinity or undefined.
3626     return true;
3627   }
3628 
3629   // was not able to prove that V never contains infinity
3630   return false;
3631 }
3632 
3633 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3634                            unsigned Depth) {
3635   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3636 
3637   // If we're told that NaNs won't happen, assume they won't.
3638   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3639     if (FPMathOp->hasNoNaNs())
3640       return true;
3641 
3642   // Handle scalar constants.
3643   if (auto *CFP = dyn_cast<ConstantFP>(V))
3644     return !CFP->isNaN();
3645 
3646   if (Depth == MaxAnalysisRecursionDepth)
3647     return false;
3648 
3649   if (auto *Inst = dyn_cast<Instruction>(V)) {
3650     switch (Inst->getOpcode()) {
3651     case Instruction::FAdd:
3652     case Instruction::FSub:
3653       // Adding positive and negative infinity produces NaN.
3654       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3655              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3656              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3657               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3658 
3659     case Instruction::FMul:
3660       // Zero multiplied with infinity produces NaN.
3661       // FIXME: If neither side can be zero fmul never produces NaN.
3662       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3663              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3664              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3665              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3666 
3667     case Instruction::FDiv:
3668     case Instruction::FRem:
3669       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3670       return false;
3671 
3672     case Instruction::Select: {
3673       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3674              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3675     }
3676     case Instruction::SIToFP:
3677     case Instruction::UIToFP:
3678       return true;
3679     case Instruction::FPTrunc:
3680     case Instruction::FPExt:
3681       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3682     default:
3683       break;
3684     }
3685   }
3686 
3687   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3688     switch (II->getIntrinsicID()) {
3689     case Intrinsic::canonicalize:
3690     case Intrinsic::fabs:
3691     case Intrinsic::copysign:
3692     case Intrinsic::exp:
3693     case Intrinsic::exp2:
3694     case Intrinsic::floor:
3695     case Intrinsic::ceil:
3696     case Intrinsic::trunc:
3697     case Intrinsic::rint:
3698     case Intrinsic::nearbyint:
3699     case Intrinsic::round:
3700     case Intrinsic::roundeven:
3701       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3702     case Intrinsic::sqrt:
3703       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3704              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3705     case Intrinsic::minnum:
3706     case Intrinsic::maxnum:
3707       // If either operand is not NaN, the result is not NaN.
3708       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3709              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3710     default:
3711       return false;
3712     }
3713   }
3714 
3715   // Try to handle fixed width vector constants
3716   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3717   if (VFVTy && isa<Constant>(V)) {
3718     // For vectors, verify that each element is not NaN.
3719     unsigned NumElts = VFVTy->getNumElements();
3720     for (unsigned i = 0; i != NumElts; ++i) {
3721       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3722       if (!Elt)
3723         return false;
3724       if (isa<UndefValue>(Elt))
3725         continue;
3726       auto *CElt = dyn_cast<ConstantFP>(Elt);
3727       if (!CElt || CElt->isNaN())
3728         return false;
3729     }
3730     // All elements were confirmed not-NaN or undefined.
3731     return true;
3732   }
3733 
3734   // Was not able to prove that V never contains NaN
3735   return false;
3736 }
3737 
3738 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3739 
3740   // All byte-wide stores are splatable, even of arbitrary variables.
3741   if (V->getType()->isIntegerTy(8))
3742     return V;
3743 
3744   LLVMContext &Ctx = V->getContext();
3745 
3746   // Undef don't care.
3747   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3748   if (isa<UndefValue>(V))
3749     return UndefInt8;
3750 
3751   // Return Undef for zero-sized type.
3752   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3753     return UndefInt8;
3754 
3755   Constant *C = dyn_cast<Constant>(V);
3756   if (!C) {
3757     // Conceptually, we could handle things like:
3758     //   %a = zext i8 %X to i16
3759     //   %b = shl i16 %a, 8
3760     //   %c = or i16 %a, %b
3761     // but until there is an example that actually needs this, it doesn't seem
3762     // worth worrying about.
3763     return nullptr;
3764   }
3765 
3766   // Handle 'null' ConstantArrayZero etc.
3767   if (C->isNullValue())
3768     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3769 
3770   // Constant floating-point values can be handled as integer values if the
3771   // corresponding integer value is "byteable".  An important case is 0.0.
3772   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3773     Type *Ty = nullptr;
3774     if (CFP->getType()->isHalfTy())
3775       Ty = Type::getInt16Ty(Ctx);
3776     else if (CFP->getType()->isFloatTy())
3777       Ty = Type::getInt32Ty(Ctx);
3778     else if (CFP->getType()->isDoubleTy())
3779       Ty = Type::getInt64Ty(Ctx);
3780     // Don't handle long double formats, which have strange constraints.
3781     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3782               : nullptr;
3783   }
3784 
3785   // We can handle constant integers that are multiple of 8 bits.
3786   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3787     if (CI->getBitWidth() % 8 == 0) {
3788       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3789       if (!CI->getValue().isSplat(8))
3790         return nullptr;
3791       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3792     }
3793   }
3794 
3795   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3796     if (CE->getOpcode() == Instruction::IntToPtr) {
3797       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3798         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3799         return isBytewiseValue(
3800             ConstantExpr::getIntegerCast(CE->getOperand(0),
3801                                          Type::getIntNTy(Ctx, BitWidth), false),
3802             DL);
3803       }
3804     }
3805   }
3806 
3807   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3808     if (LHS == RHS)
3809       return LHS;
3810     if (!LHS || !RHS)
3811       return nullptr;
3812     if (LHS == UndefInt8)
3813       return RHS;
3814     if (RHS == UndefInt8)
3815       return LHS;
3816     return nullptr;
3817   };
3818 
3819   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3820     Value *Val = UndefInt8;
3821     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3822       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3823         return nullptr;
3824     return Val;
3825   }
3826 
3827   if (isa<ConstantAggregate>(C)) {
3828     Value *Val = UndefInt8;
3829     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3830       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3831         return nullptr;
3832     return Val;
3833   }
3834 
3835   // Don't try to handle the handful of other constants.
3836   return nullptr;
3837 }
3838 
3839 // This is the recursive version of BuildSubAggregate. It takes a few different
3840 // arguments. Idxs is the index within the nested struct From that we are
3841 // looking at now (which is of type IndexedType). IdxSkip is the number of
3842 // indices from Idxs that should be left out when inserting into the resulting
3843 // struct. To is the result struct built so far, new insertvalue instructions
3844 // build on that.
3845 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3846                                 SmallVectorImpl<unsigned> &Idxs,
3847                                 unsigned IdxSkip,
3848                                 Instruction *InsertBefore) {
3849   StructType *STy = dyn_cast<StructType>(IndexedType);
3850   if (STy) {
3851     // Save the original To argument so we can modify it
3852     Value *OrigTo = To;
3853     // General case, the type indexed by Idxs is a struct
3854     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3855       // Process each struct element recursively
3856       Idxs.push_back(i);
3857       Value *PrevTo = To;
3858       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3859                              InsertBefore);
3860       Idxs.pop_back();
3861       if (!To) {
3862         // Couldn't find any inserted value for this index? Cleanup
3863         while (PrevTo != OrigTo) {
3864           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3865           PrevTo = Del->getAggregateOperand();
3866           Del->eraseFromParent();
3867         }
3868         // Stop processing elements
3869         break;
3870       }
3871     }
3872     // If we successfully found a value for each of our subaggregates
3873     if (To)
3874       return To;
3875   }
3876   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3877   // the struct's elements had a value that was inserted directly. In the latter
3878   // case, perhaps we can't determine each of the subelements individually, but
3879   // we might be able to find the complete struct somewhere.
3880 
3881   // Find the value that is at that particular spot
3882   Value *V = FindInsertedValue(From, Idxs);
3883 
3884   if (!V)
3885     return nullptr;
3886 
3887   // Insert the value in the new (sub) aggregate
3888   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3889                                  "tmp", InsertBefore);
3890 }
3891 
3892 // This helper takes a nested struct and extracts a part of it (which is again a
3893 // struct) into a new value. For example, given the struct:
3894 // { a, { b, { c, d }, e } }
3895 // and the indices "1, 1" this returns
3896 // { c, d }.
3897 //
3898 // It does this by inserting an insertvalue for each element in the resulting
3899 // struct, as opposed to just inserting a single struct. This will only work if
3900 // each of the elements of the substruct are known (ie, inserted into From by an
3901 // insertvalue instruction somewhere).
3902 //
3903 // All inserted insertvalue instructions are inserted before InsertBefore
3904 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3905                                 Instruction *InsertBefore) {
3906   assert(InsertBefore && "Must have someplace to insert!");
3907   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3908                                                              idx_range);
3909   Value *To = UndefValue::get(IndexedType);
3910   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3911   unsigned IdxSkip = Idxs.size();
3912 
3913   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3914 }
3915 
3916 /// Given an aggregate and a sequence of indices, see if the scalar value
3917 /// indexed is already around as a register, for example if it was inserted
3918 /// directly into the aggregate.
3919 ///
3920 /// If InsertBefore is not null, this function will duplicate (modified)
3921 /// insertvalues when a part of a nested struct is extracted.
3922 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3923                                Instruction *InsertBefore) {
3924   // Nothing to index? Just return V then (this is useful at the end of our
3925   // recursion).
3926   if (idx_range.empty())
3927     return V;
3928   // We have indices, so V should have an indexable type.
3929   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3930          "Not looking at a struct or array?");
3931   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3932          "Invalid indices for type?");
3933 
3934   if (Constant *C = dyn_cast<Constant>(V)) {
3935     C = C->getAggregateElement(idx_range[0]);
3936     if (!C) return nullptr;
3937     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3938   }
3939 
3940   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3941     // Loop the indices for the insertvalue instruction in parallel with the
3942     // requested indices
3943     const unsigned *req_idx = idx_range.begin();
3944     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3945          i != e; ++i, ++req_idx) {
3946       if (req_idx == idx_range.end()) {
3947         // We can't handle this without inserting insertvalues
3948         if (!InsertBefore)
3949           return nullptr;
3950 
3951         // The requested index identifies a part of a nested aggregate. Handle
3952         // this specially. For example,
3953         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3954         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3955         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3956         // This can be changed into
3957         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3958         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3959         // which allows the unused 0,0 element from the nested struct to be
3960         // removed.
3961         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3962                                  InsertBefore);
3963       }
3964 
3965       // This insert value inserts something else than what we are looking for.
3966       // See if the (aggregate) value inserted into has the value we are
3967       // looking for, then.
3968       if (*req_idx != *i)
3969         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3970                                  InsertBefore);
3971     }
3972     // If we end up here, the indices of the insertvalue match with those
3973     // requested (though possibly only partially). Now we recursively look at
3974     // the inserted value, passing any remaining indices.
3975     return FindInsertedValue(I->getInsertedValueOperand(),
3976                              makeArrayRef(req_idx, idx_range.end()),
3977                              InsertBefore);
3978   }
3979 
3980   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3981     // If we're extracting a value from an aggregate that was extracted from
3982     // something else, we can extract from that something else directly instead.
3983     // However, we will need to chain I's indices with the requested indices.
3984 
3985     // Calculate the number of indices required
3986     unsigned size = I->getNumIndices() + idx_range.size();
3987     // Allocate some space to put the new indices in
3988     SmallVector<unsigned, 5> Idxs;
3989     Idxs.reserve(size);
3990     // Add indices from the extract value instruction
3991     Idxs.append(I->idx_begin(), I->idx_end());
3992 
3993     // Add requested indices
3994     Idxs.append(idx_range.begin(), idx_range.end());
3995 
3996     assert(Idxs.size() == size
3997            && "Number of indices added not correct?");
3998 
3999     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4000   }
4001   // Otherwise, we don't know (such as, extracting from a function return value
4002   // or load instruction)
4003   return nullptr;
4004 }
4005 
4006 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4007                                        unsigned CharSize) {
4008   // Make sure the GEP has exactly three arguments.
4009   if (GEP->getNumOperands() != 3)
4010     return false;
4011 
4012   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4013   // CharSize.
4014   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4015   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4016     return false;
4017 
4018   // Check to make sure that the first operand of the GEP is an integer and
4019   // has value 0 so that we are sure we're indexing into the initializer.
4020   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4021   if (!FirstIdx || !FirstIdx->isZero())
4022     return false;
4023 
4024   return true;
4025 }
4026 
4027 bool llvm::getConstantDataArrayInfo(const Value *V,
4028                                     ConstantDataArraySlice &Slice,
4029                                     unsigned ElementSize, uint64_t Offset) {
4030   assert(V);
4031 
4032   // Look through bitcast instructions and geps.
4033   V = V->stripPointerCasts();
4034 
4035   // If the value is a GEP instruction or constant expression, treat it as an
4036   // offset.
4037   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4038     // The GEP operator should be based on a pointer to string constant, and is
4039     // indexing into the string constant.
4040     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4041       return false;
4042 
4043     // If the second index isn't a ConstantInt, then this is a variable index
4044     // into the array.  If this occurs, we can't say anything meaningful about
4045     // the string.
4046     uint64_t StartIdx = 0;
4047     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4048       StartIdx = CI->getZExtValue();
4049     else
4050       return false;
4051     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4052                                     StartIdx + Offset);
4053   }
4054 
4055   // The GEP instruction, constant or instruction, must reference a global
4056   // variable that is a constant and is initialized. The referenced constant
4057   // initializer is the array that we'll use for optimization.
4058   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4059   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4060     return false;
4061 
4062   const ConstantDataArray *Array;
4063   ArrayType *ArrayTy;
4064   if (GV->getInitializer()->isNullValue()) {
4065     Type *GVTy = GV->getValueType();
4066     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4067       // A zeroinitializer for the array; there is no ConstantDataArray.
4068       Array = nullptr;
4069     } else {
4070       const DataLayout &DL = GV->getParent()->getDataLayout();
4071       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4072       uint64_t Length = SizeInBytes / (ElementSize / 8);
4073       if (Length <= Offset)
4074         return false;
4075 
4076       Slice.Array = nullptr;
4077       Slice.Offset = 0;
4078       Slice.Length = Length - Offset;
4079       return true;
4080     }
4081   } else {
4082     // This must be a ConstantDataArray.
4083     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4084     if (!Array)
4085       return false;
4086     ArrayTy = Array->getType();
4087   }
4088   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4089     return false;
4090 
4091   uint64_t NumElts = ArrayTy->getArrayNumElements();
4092   if (Offset > NumElts)
4093     return false;
4094 
4095   Slice.Array = Array;
4096   Slice.Offset = Offset;
4097   Slice.Length = NumElts - Offset;
4098   return true;
4099 }
4100 
4101 /// This function computes the length of a null-terminated C string pointed to
4102 /// by V. If successful, it returns true and returns the string in Str.
4103 /// If unsuccessful, it returns false.
4104 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4105                                  uint64_t Offset, bool TrimAtNul) {
4106   ConstantDataArraySlice Slice;
4107   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4108     return false;
4109 
4110   if (Slice.Array == nullptr) {
4111     if (TrimAtNul) {
4112       Str = StringRef();
4113       return true;
4114     }
4115     if (Slice.Length == 1) {
4116       Str = StringRef("", 1);
4117       return true;
4118     }
4119     // We cannot instantiate a StringRef as we do not have an appropriate string
4120     // of 0s at hand.
4121     return false;
4122   }
4123 
4124   // Start out with the entire array in the StringRef.
4125   Str = Slice.Array->getAsString();
4126   // Skip over 'offset' bytes.
4127   Str = Str.substr(Slice.Offset);
4128 
4129   if (TrimAtNul) {
4130     // Trim off the \0 and anything after it.  If the array is not nul
4131     // terminated, we just return the whole end of string.  The client may know
4132     // some other way that the string is length-bound.
4133     Str = Str.substr(0, Str.find('\0'));
4134   }
4135   return true;
4136 }
4137 
4138 // These next two are very similar to the above, but also look through PHI
4139 // nodes.
4140 // TODO: See if we can integrate these two together.
4141 
4142 /// If we can compute the length of the string pointed to by
4143 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4144 static uint64_t GetStringLengthH(const Value *V,
4145                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4146                                  unsigned CharSize) {
4147   // Look through noop bitcast instructions.
4148   V = V->stripPointerCasts();
4149 
4150   // If this is a PHI node, there are two cases: either we have already seen it
4151   // or we haven't.
4152   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4153     if (!PHIs.insert(PN).second)
4154       return ~0ULL;  // already in the set.
4155 
4156     // If it was new, see if all the input strings are the same length.
4157     uint64_t LenSoFar = ~0ULL;
4158     for (Value *IncValue : PN->incoming_values()) {
4159       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4160       if (Len == 0) return 0; // Unknown length -> unknown.
4161 
4162       if (Len == ~0ULL) continue;
4163 
4164       if (Len != LenSoFar && LenSoFar != ~0ULL)
4165         return 0;    // Disagree -> unknown.
4166       LenSoFar = Len;
4167     }
4168 
4169     // Success, all agree.
4170     return LenSoFar;
4171   }
4172 
4173   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4174   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4175     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4176     if (Len1 == 0) return 0;
4177     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4178     if (Len2 == 0) return 0;
4179     if (Len1 == ~0ULL) return Len2;
4180     if (Len2 == ~0ULL) return Len1;
4181     if (Len1 != Len2) return 0;
4182     return Len1;
4183   }
4184 
4185   // Otherwise, see if we can read the string.
4186   ConstantDataArraySlice Slice;
4187   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4188     return 0;
4189 
4190   if (Slice.Array == nullptr)
4191     return 1;
4192 
4193   // Search for nul characters
4194   unsigned NullIndex = 0;
4195   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4196     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4197       break;
4198   }
4199 
4200   return NullIndex + 1;
4201 }
4202 
4203 /// If we can compute the length of the string pointed to by
4204 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4205 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4206   if (!V->getType()->isPointerTy())
4207     return 0;
4208 
4209   SmallPtrSet<const PHINode*, 32> PHIs;
4210   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4211   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4212   // an empty string as a length.
4213   return Len == ~0ULL ? 1 : Len;
4214 }
4215 
4216 const Value *
4217 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4218                                            bool MustPreserveNullness) {
4219   assert(Call &&
4220          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4221   if (const Value *RV = Call->getReturnedArgOperand())
4222     return RV;
4223   // This can be used only as a aliasing property.
4224   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4225           Call, MustPreserveNullness))
4226     return Call->getArgOperand(0);
4227   return nullptr;
4228 }
4229 
4230 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4231     const CallBase *Call, bool MustPreserveNullness) {
4232   switch (Call->getIntrinsicID()) {
4233   case Intrinsic::launder_invariant_group:
4234   case Intrinsic::strip_invariant_group:
4235   case Intrinsic::aarch64_irg:
4236   case Intrinsic::aarch64_tagp:
4237     return true;
4238   case Intrinsic::ptrmask:
4239     return !MustPreserveNullness;
4240   default:
4241     return false;
4242   }
4243 }
4244 
4245 /// \p PN defines a loop-variant pointer to an object.  Check if the
4246 /// previous iteration of the loop was referring to the same object as \p PN.
4247 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4248                                          const LoopInfo *LI) {
4249   // Find the loop-defined value.
4250   Loop *L = LI->getLoopFor(PN->getParent());
4251   if (PN->getNumIncomingValues() != 2)
4252     return true;
4253 
4254   // Find the value from previous iteration.
4255   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4256   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4257     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4258   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4259     return true;
4260 
4261   // If a new pointer is loaded in the loop, the pointer references a different
4262   // object in every iteration.  E.g.:
4263   //    for (i)
4264   //       int *p = a[i];
4265   //       ...
4266   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4267     if (!L->isLoopInvariant(Load->getPointerOperand()))
4268       return false;
4269   return true;
4270 }
4271 
4272 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4273   if (!V->getType()->isPointerTy())
4274     return V;
4275   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4276     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4277       V = GEP->getPointerOperand();
4278     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4279                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4280       V = cast<Operator>(V)->getOperand(0);
4281       if (!V->getType()->isPointerTy())
4282         return V;
4283     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4284       if (GA->isInterposable())
4285         return V;
4286       V = GA->getAliasee();
4287     } else {
4288       if (auto *PHI = dyn_cast<PHINode>(V)) {
4289         // Look through single-arg phi nodes created by LCSSA.
4290         if (PHI->getNumIncomingValues() == 1) {
4291           V = PHI->getIncomingValue(0);
4292           continue;
4293         }
4294       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4295         // CaptureTracking can know about special capturing properties of some
4296         // intrinsics like launder.invariant.group, that can't be expressed with
4297         // the attributes, but have properties like returning aliasing pointer.
4298         // Because some analysis may assume that nocaptured pointer is not
4299         // returned from some special intrinsic (because function would have to
4300         // be marked with returns attribute), it is crucial to use this function
4301         // because it should be in sync with CaptureTracking. Not using it may
4302         // cause weird miscompilations where 2 aliasing pointers are assumed to
4303         // noalias.
4304         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4305           V = RP;
4306           continue;
4307         }
4308       }
4309 
4310       return V;
4311     }
4312     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4313   }
4314   return V;
4315 }
4316 
4317 void llvm::getUnderlyingObjects(const Value *V,
4318                                 SmallVectorImpl<const Value *> &Objects,
4319                                 LoopInfo *LI, unsigned MaxLookup) {
4320   SmallPtrSet<const Value *, 4> Visited;
4321   SmallVector<const Value *, 4> Worklist;
4322   Worklist.push_back(V);
4323   do {
4324     const Value *P = Worklist.pop_back_val();
4325     P = getUnderlyingObject(P, MaxLookup);
4326 
4327     if (!Visited.insert(P).second)
4328       continue;
4329 
4330     if (auto *SI = dyn_cast<SelectInst>(P)) {
4331       Worklist.push_back(SI->getTrueValue());
4332       Worklist.push_back(SI->getFalseValue());
4333       continue;
4334     }
4335 
4336     if (auto *PN = dyn_cast<PHINode>(P)) {
4337       // If this PHI changes the underlying object in every iteration of the
4338       // loop, don't look through it.  Consider:
4339       //   int **A;
4340       //   for (i) {
4341       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4342       //     Curr = A[i];
4343       //     *Prev, *Curr;
4344       //
4345       // Prev is tracking Curr one iteration behind so they refer to different
4346       // underlying objects.
4347       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4348           isSameUnderlyingObjectInLoop(PN, LI))
4349         append_range(Worklist, PN->incoming_values());
4350       continue;
4351     }
4352 
4353     Objects.push_back(P);
4354   } while (!Worklist.empty());
4355 }
4356 
4357 /// This is the function that does the work of looking through basic
4358 /// ptrtoint+arithmetic+inttoptr sequences.
4359 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4360   do {
4361     if (const Operator *U = dyn_cast<Operator>(V)) {
4362       // If we find a ptrtoint, we can transfer control back to the
4363       // regular getUnderlyingObjectFromInt.
4364       if (U->getOpcode() == Instruction::PtrToInt)
4365         return U->getOperand(0);
4366       // If we find an add of a constant, a multiplied value, or a phi, it's
4367       // likely that the other operand will lead us to the base
4368       // object. We don't have to worry about the case where the
4369       // object address is somehow being computed by the multiply,
4370       // because our callers only care when the result is an
4371       // identifiable object.
4372       if (U->getOpcode() != Instruction::Add ||
4373           (!isa<ConstantInt>(U->getOperand(1)) &&
4374            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4375            !isa<PHINode>(U->getOperand(1))))
4376         return V;
4377       V = U->getOperand(0);
4378     } else {
4379       return V;
4380     }
4381     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4382   } while (true);
4383 }
4384 
4385 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4386 /// ptrtoint+arithmetic+inttoptr sequences.
4387 /// It returns false if unidentified object is found in getUnderlyingObjects.
4388 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4389                                           SmallVectorImpl<Value *> &Objects) {
4390   SmallPtrSet<const Value *, 16> Visited;
4391   SmallVector<const Value *, 4> Working(1, V);
4392   do {
4393     V = Working.pop_back_val();
4394 
4395     SmallVector<const Value *, 4> Objs;
4396     getUnderlyingObjects(V, Objs);
4397 
4398     for (const Value *V : Objs) {
4399       if (!Visited.insert(V).second)
4400         continue;
4401       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4402         const Value *O =
4403           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4404         if (O->getType()->isPointerTy()) {
4405           Working.push_back(O);
4406           continue;
4407         }
4408       }
4409       // If getUnderlyingObjects fails to find an identifiable object,
4410       // getUnderlyingObjectsForCodeGen also fails for safety.
4411       if (!isIdentifiedObject(V)) {
4412         Objects.clear();
4413         return false;
4414       }
4415       Objects.push_back(const_cast<Value *>(V));
4416     }
4417   } while (!Working.empty());
4418   return true;
4419 }
4420 
4421 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4422   AllocaInst *Result = nullptr;
4423   SmallPtrSet<Value *, 4> Visited;
4424   SmallVector<Value *, 4> Worklist;
4425 
4426   auto AddWork = [&](Value *V) {
4427     if (Visited.insert(V).second)
4428       Worklist.push_back(V);
4429   };
4430 
4431   AddWork(V);
4432   do {
4433     V = Worklist.pop_back_val();
4434     assert(Visited.count(V));
4435 
4436     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4437       if (Result && Result != AI)
4438         return nullptr;
4439       Result = AI;
4440     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4441       AddWork(CI->getOperand(0));
4442     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4443       for (Value *IncValue : PN->incoming_values())
4444         AddWork(IncValue);
4445     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4446       AddWork(SI->getTrueValue());
4447       AddWork(SI->getFalseValue());
4448     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4449       if (OffsetZero && !GEP->hasAllZeroIndices())
4450         return nullptr;
4451       AddWork(GEP->getPointerOperand());
4452     } else {
4453       return nullptr;
4454     }
4455   } while (!Worklist.empty());
4456 
4457   return Result;
4458 }
4459 
4460 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4461     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4462   for (const User *U : V->users()) {
4463     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4464     if (!II)
4465       return false;
4466 
4467     if (AllowLifetime && II->isLifetimeStartOrEnd())
4468       continue;
4469 
4470     if (AllowDroppable && II->isDroppable())
4471       continue;
4472 
4473     return false;
4474   }
4475   return true;
4476 }
4477 
4478 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4479   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4480       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4481 }
4482 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4483   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4484       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4485 }
4486 
4487 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4488   if (!LI.isUnordered())
4489     return true;
4490   const Function &F = *LI.getFunction();
4491   // Speculative load may create a race that did not exist in the source.
4492   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4493     // Speculative load may load data from dirty regions.
4494     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4495     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4496 }
4497 
4498 
4499 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4500                                         const Instruction *CtxI,
4501                                         const DominatorTree *DT,
4502                                         const TargetLibraryInfo *TLI) {
4503   const Operator *Inst = dyn_cast<Operator>(V);
4504   if (!Inst)
4505     return false;
4506 
4507   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4508     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4509       if (C->canTrap())
4510         return false;
4511 
4512   switch (Inst->getOpcode()) {
4513   default:
4514     return true;
4515   case Instruction::UDiv:
4516   case Instruction::URem: {
4517     // x / y is undefined if y == 0.
4518     const APInt *V;
4519     if (match(Inst->getOperand(1), m_APInt(V)))
4520       return *V != 0;
4521     return false;
4522   }
4523   case Instruction::SDiv:
4524   case Instruction::SRem: {
4525     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4526     const APInt *Numerator, *Denominator;
4527     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4528       return false;
4529     // We cannot hoist this division if the denominator is 0.
4530     if (*Denominator == 0)
4531       return false;
4532     // It's safe to hoist if the denominator is not 0 or -1.
4533     if (!Denominator->isAllOnesValue())
4534       return true;
4535     // At this point we know that the denominator is -1.  It is safe to hoist as
4536     // long we know that the numerator is not INT_MIN.
4537     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4538       return !Numerator->isMinSignedValue();
4539     // The numerator *might* be MinSignedValue.
4540     return false;
4541   }
4542   case Instruction::Load: {
4543     const LoadInst *LI = cast<LoadInst>(Inst);
4544     if (mustSuppressSpeculation(*LI))
4545       return false;
4546     const DataLayout &DL = LI->getModule()->getDataLayout();
4547     return isDereferenceableAndAlignedPointer(
4548         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4549         DL, CtxI, DT, TLI);
4550   }
4551   case Instruction::Call: {
4552     auto *CI = cast<const CallInst>(Inst);
4553     const Function *Callee = CI->getCalledFunction();
4554 
4555     // The called function could have undefined behavior or side-effects, even
4556     // if marked readnone nounwind.
4557     return Callee && Callee->isSpeculatable();
4558   }
4559   case Instruction::VAArg:
4560   case Instruction::Alloca:
4561   case Instruction::Invoke:
4562   case Instruction::CallBr:
4563   case Instruction::PHI:
4564   case Instruction::Store:
4565   case Instruction::Ret:
4566   case Instruction::Br:
4567   case Instruction::IndirectBr:
4568   case Instruction::Switch:
4569   case Instruction::Unreachable:
4570   case Instruction::Fence:
4571   case Instruction::AtomicRMW:
4572   case Instruction::AtomicCmpXchg:
4573   case Instruction::LandingPad:
4574   case Instruction::Resume:
4575   case Instruction::CatchSwitch:
4576   case Instruction::CatchPad:
4577   case Instruction::CatchRet:
4578   case Instruction::CleanupPad:
4579   case Instruction::CleanupRet:
4580     return false; // Misc instructions which have effects
4581   }
4582 }
4583 
4584 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4585   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4586 }
4587 
4588 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4589 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4590   switch (OR) {
4591     case ConstantRange::OverflowResult::MayOverflow:
4592       return OverflowResult::MayOverflow;
4593     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4594       return OverflowResult::AlwaysOverflowsLow;
4595     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4596       return OverflowResult::AlwaysOverflowsHigh;
4597     case ConstantRange::OverflowResult::NeverOverflows:
4598       return OverflowResult::NeverOverflows;
4599   }
4600   llvm_unreachable("Unknown OverflowResult");
4601 }
4602 
4603 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4604 static ConstantRange computeConstantRangeIncludingKnownBits(
4605     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4606     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4607     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4608   KnownBits Known = computeKnownBits(
4609       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4610   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4611   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4612   ConstantRange::PreferredRangeType RangeType =
4613       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4614   return CR1.intersectWith(CR2, RangeType);
4615 }
4616 
4617 OverflowResult llvm::computeOverflowForUnsignedMul(
4618     const Value *LHS, const Value *RHS, const DataLayout &DL,
4619     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4620     bool UseInstrInfo) {
4621   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4622                                         nullptr, UseInstrInfo);
4623   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4624                                         nullptr, UseInstrInfo);
4625   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4626   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4627   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4628 }
4629 
4630 OverflowResult
4631 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4632                                   const DataLayout &DL, AssumptionCache *AC,
4633                                   const Instruction *CxtI,
4634                                   const DominatorTree *DT, bool UseInstrInfo) {
4635   // Multiplying n * m significant bits yields a result of n + m significant
4636   // bits. If the total number of significant bits does not exceed the
4637   // result bit width (minus 1), there is no overflow.
4638   // This means if we have enough leading sign bits in the operands
4639   // we can guarantee that the result does not overflow.
4640   // Ref: "Hacker's Delight" by Henry Warren
4641   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4642 
4643   // Note that underestimating the number of sign bits gives a more
4644   // conservative answer.
4645   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4646                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4647 
4648   // First handle the easy case: if we have enough sign bits there's
4649   // definitely no overflow.
4650   if (SignBits > BitWidth + 1)
4651     return OverflowResult::NeverOverflows;
4652 
4653   // There are two ambiguous cases where there can be no overflow:
4654   //   SignBits == BitWidth + 1    and
4655   //   SignBits == BitWidth
4656   // The second case is difficult to check, therefore we only handle the
4657   // first case.
4658   if (SignBits == BitWidth + 1) {
4659     // It overflows only when both arguments are negative and the true
4660     // product is exactly the minimum negative number.
4661     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4662     // For simplicity we just check if at least one side is not negative.
4663     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4664                                           nullptr, UseInstrInfo);
4665     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4666                                           nullptr, UseInstrInfo);
4667     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4668       return OverflowResult::NeverOverflows;
4669   }
4670   return OverflowResult::MayOverflow;
4671 }
4672 
4673 OverflowResult llvm::computeOverflowForUnsignedAdd(
4674     const Value *LHS, const Value *RHS, const DataLayout &DL,
4675     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4676     bool UseInstrInfo) {
4677   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4678       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4679       nullptr, UseInstrInfo);
4680   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4681       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4682       nullptr, UseInstrInfo);
4683   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4684 }
4685 
4686 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4687                                                   const Value *RHS,
4688                                                   const AddOperator *Add,
4689                                                   const DataLayout &DL,
4690                                                   AssumptionCache *AC,
4691                                                   const Instruction *CxtI,
4692                                                   const DominatorTree *DT) {
4693   if (Add && Add->hasNoSignedWrap()) {
4694     return OverflowResult::NeverOverflows;
4695   }
4696 
4697   // If LHS and RHS each have at least two sign bits, the addition will look
4698   // like
4699   //
4700   // XX..... +
4701   // YY.....
4702   //
4703   // If the carry into the most significant position is 0, X and Y can't both
4704   // be 1 and therefore the carry out of the addition is also 0.
4705   //
4706   // If the carry into the most significant position is 1, X and Y can't both
4707   // be 0 and therefore the carry out of the addition is also 1.
4708   //
4709   // Since the carry into the most significant position is always equal to
4710   // the carry out of the addition, there is no signed overflow.
4711   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4712       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4713     return OverflowResult::NeverOverflows;
4714 
4715   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4716       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4717   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4718       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4719   OverflowResult OR =
4720       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4721   if (OR != OverflowResult::MayOverflow)
4722     return OR;
4723 
4724   // The remaining code needs Add to be available. Early returns if not so.
4725   if (!Add)
4726     return OverflowResult::MayOverflow;
4727 
4728   // If the sign of Add is the same as at least one of the operands, this add
4729   // CANNOT overflow. If this can be determined from the known bits of the
4730   // operands the above signedAddMayOverflow() check will have already done so.
4731   // The only other way to improve on the known bits is from an assumption, so
4732   // call computeKnownBitsFromAssume() directly.
4733   bool LHSOrRHSKnownNonNegative =
4734       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4735   bool LHSOrRHSKnownNegative =
4736       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4737   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4738     KnownBits AddKnown(LHSRange.getBitWidth());
4739     computeKnownBitsFromAssume(
4740         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4741     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4742         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4743       return OverflowResult::NeverOverflows;
4744   }
4745 
4746   return OverflowResult::MayOverflow;
4747 }
4748 
4749 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4750                                                    const Value *RHS,
4751                                                    const DataLayout &DL,
4752                                                    AssumptionCache *AC,
4753                                                    const Instruction *CxtI,
4754                                                    const DominatorTree *DT) {
4755   // Checking for conditions implied by dominating conditions may be expensive.
4756   // Limit it to usub_with_overflow calls for now.
4757   if (match(CxtI,
4758             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4759     if (auto C =
4760             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4761       if (*C)
4762         return OverflowResult::NeverOverflows;
4763       return OverflowResult::AlwaysOverflowsLow;
4764     }
4765   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4766       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4767   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4768       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4769   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4770 }
4771 
4772 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4773                                                  const Value *RHS,
4774                                                  const DataLayout &DL,
4775                                                  AssumptionCache *AC,
4776                                                  const Instruction *CxtI,
4777                                                  const DominatorTree *DT) {
4778   // If LHS and RHS each have at least two sign bits, the subtraction
4779   // cannot overflow.
4780   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4781       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4782     return OverflowResult::NeverOverflows;
4783 
4784   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4785       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4786   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4787       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4788   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4789 }
4790 
4791 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4792                                      const DominatorTree &DT) {
4793   SmallVector<const BranchInst *, 2> GuardingBranches;
4794   SmallVector<const ExtractValueInst *, 2> Results;
4795 
4796   for (const User *U : WO->users()) {
4797     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4798       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4799 
4800       if (EVI->getIndices()[0] == 0)
4801         Results.push_back(EVI);
4802       else {
4803         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4804 
4805         for (const auto *U : EVI->users())
4806           if (const auto *B = dyn_cast<BranchInst>(U)) {
4807             assert(B->isConditional() && "How else is it using an i1?");
4808             GuardingBranches.push_back(B);
4809           }
4810       }
4811     } else {
4812       // We are using the aggregate directly in a way we don't want to analyze
4813       // here (storing it to a global, say).
4814       return false;
4815     }
4816   }
4817 
4818   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4819     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4820     if (!NoWrapEdge.isSingleEdge())
4821       return false;
4822 
4823     // Check if all users of the add are provably no-wrap.
4824     for (const auto *Result : Results) {
4825       // If the extractvalue itself is not executed on overflow, the we don't
4826       // need to check each use separately, since domination is transitive.
4827       if (DT.dominates(NoWrapEdge, Result->getParent()))
4828         continue;
4829 
4830       for (auto &RU : Result->uses())
4831         if (!DT.dominates(NoWrapEdge, RU))
4832           return false;
4833     }
4834 
4835     return true;
4836   };
4837 
4838   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4839 }
4840 
4841 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4842   // See whether I has flags that may create poison
4843   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4844     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4845       return true;
4846   }
4847   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4848     if (ExactOp->isExact())
4849       return true;
4850   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4851     auto FMF = FP->getFastMathFlags();
4852     if (FMF.noNaNs() || FMF.noInfs())
4853       return true;
4854   }
4855 
4856   unsigned Opcode = Op->getOpcode();
4857 
4858   // Check whether opcode is a poison/undef-generating operation
4859   switch (Opcode) {
4860   case Instruction::Shl:
4861   case Instruction::AShr:
4862   case Instruction::LShr: {
4863     // Shifts return poison if shiftwidth is larger than the bitwidth.
4864     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4865       SmallVector<Constant *, 4> ShiftAmounts;
4866       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4867         unsigned NumElts = FVTy->getNumElements();
4868         for (unsigned i = 0; i < NumElts; ++i)
4869           ShiftAmounts.push_back(C->getAggregateElement(i));
4870       } else if (isa<ScalableVectorType>(C->getType()))
4871         return true; // Can't tell, just return true to be safe
4872       else
4873         ShiftAmounts.push_back(C);
4874 
4875       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4876         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4877         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4878       });
4879       return !Safe;
4880     }
4881     return true;
4882   }
4883   case Instruction::FPToSI:
4884   case Instruction::FPToUI:
4885     // fptosi/ui yields poison if the resulting value does not fit in the
4886     // destination type.
4887     return true;
4888   case Instruction::Call:
4889     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4890       switch (II->getIntrinsicID()) {
4891       // TODO: Add more intrinsics.
4892       case Intrinsic::ctpop:
4893       case Intrinsic::sadd_with_overflow:
4894       case Intrinsic::ssub_with_overflow:
4895       case Intrinsic::smul_with_overflow:
4896       case Intrinsic::uadd_with_overflow:
4897       case Intrinsic::usub_with_overflow:
4898       case Intrinsic::umul_with_overflow:
4899         return false;
4900       }
4901     }
4902     LLVM_FALLTHROUGH;
4903   case Instruction::CallBr:
4904   case Instruction::Invoke: {
4905     const auto *CB = cast<CallBase>(Op);
4906     return !CB->hasRetAttr(Attribute::NoUndef);
4907   }
4908   case Instruction::InsertElement:
4909   case Instruction::ExtractElement: {
4910     // If index exceeds the length of the vector, it returns poison
4911     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4912     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4913     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4914     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4915       return true;
4916     return false;
4917   }
4918   case Instruction::ShuffleVector: {
4919     // shufflevector may return undef.
4920     if (PoisonOnly)
4921       return false;
4922     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4923                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4924                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4925     return is_contained(Mask, UndefMaskElem);
4926   }
4927   case Instruction::FNeg:
4928   case Instruction::PHI:
4929   case Instruction::Select:
4930   case Instruction::URem:
4931   case Instruction::SRem:
4932   case Instruction::ExtractValue:
4933   case Instruction::InsertValue:
4934   case Instruction::Freeze:
4935   case Instruction::ICmp:
4936   case Instruction::FCmp:
4937     return false;
4938   case Instruction::GetElementPtr: {
4939     const auto *GEP = cast<GEPOperator>(Op);
4940     return GEP->isInBounds();
4941   }
4942   default: {
4943     const auto *CE = dyn_cast<ConstantExpr>(Op);
4944     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4945       return false;
4946     else if (Instruction::isBinaryOp(Opcode))
4947       return false;
4948     // Be conservative and return true.
4949     return true;
4950   }
4951   }
4952 }
4953 
4954 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4955   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4956 }
4957 
4958 bool llvm::canCreatePoison(const Operator *Op) {
4959   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4960 }
4961 
4962 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
4963                                   const Value *V, unsigned Depth) {
4964   if (ValAssumedPoison == V)
4965     return true;
4966 
4967   const unsigned MaxDepth = 2;
4968   if (Depth >= MaxDepth)
4969     return false;
4970 
4971   if (const auto *I = dyn_cast<Instruction>(V)) {
4972     if (propagatesPoison(cast<Operator>(I)))
4973       return any_of(I->operands(), [=](const Value *Op) {
4974         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
4975       });
4976 
4977     // 'select ValAssumedPoison, _, _' is poison.
4978     if (const auto *SI = dyn_cast<SelectInst>(I))
4979       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
4980                                    Depth + 1);
4981     // V  = extractvalue V0, idx
4982     // V2 = extractvalue V0, idx2
4983     // V0's elements are all poison or not. (e.g., add_with_overflow)
4984     const WithOverflowInst *II;
4985     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
4986         match(ValAssumedPoison, m_ExtractValue(m_Specific(II))))
4987       return true;
4988   }
4989   return false;
4990 }
4991 
4992 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
4993                           unsigned Depth) {
4994   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
4995     return true;
4996 
4997   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
4998     return true;
4999 
5000   const unsigned MaxDepth = 2;
5001   if (Depth >= MaxDepth)
5002     return false;
5003 
5004   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5005   if (I && !canCreatePoison(cast<Operator>(I))) {
5006     return all_of(I->operands(), [=](const Value *Op) {
5007       return impliesPoison(Op, V, Depth + 1);
5008     });
5009   }
5010   return false;
5011 }
5012 
5013 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5014   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5015 }
5016 
5017 static bool programUndefinedIfUndefOrPoison(const Value *V,
5018                                             bool PoisonOnly);
5019 
5020 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5021                                              AssumptionCache *AC,
5022                                              const Instruction *CtxI,
5023                                              const DominatorTree *DT,
5024                                              unsigned Depth, bool PoisonOnly) {
5025   if (Depth >= MaxAnalysisRecursionDepth)
5026     return false;
5027 
5028   if (isa<MetadataAsValue>(V))
5029     return false;
5030 
5031   if (const auto *A = dyn_cast<Argument>(V)) {
5032     if (A->hasAttribute(Attribute::NoUndef))
5033       return true;
5034   }
5035 
5036   if (auto *C = dyn_cast<Constant>(V)) {
5037     if (isa<UndefValue>(C))
5038       return PoisonOnly && !isa<PoisonValue>(C);
5039 
5040     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5041         isa<ConstantPointerNull>(C) || isa<Function>(C))
5042       return true;
5043 
5044     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5045       return (PoisonOnly ? !C->containsPoisonElement()
5046                          : !C->containsUndefOrPoisonElement()) &&
5047              !C->containsConstantExpression();
5048   }
5049 
5050   // Strip cast operations from a pointer value.
5051   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5052   // inbounds with zero offset. To guarantee that the result isn't poison, the
5053   // stripped pointer is checked as it has to be pointing into an allocated
5054   // object or be null `null` to ensure `inbounds` getelement pointers with a
5055   // zero offset could not produce poison.
5056   // It can strip off addrspacecast that do not change bit representation as
5057   // well. We believe that such addrspacecast is equivalent to no-op.
5058   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5059   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5060       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5061     return true;
5062 
5063   auto OpCheck = [&](const Value *V) {
5064     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5065                                             PoisonOnly);
5066   };
5067 
5068   if (auto *Opr = dyn_cast<Operator>(V)) {
5069     // If the value is a freeze instruction, then it can never
5070     // be undef or poison.
5071     if (isa<FreezeInst>(V))
5072       return true;
5073 
5074     if (const auto *CB = dyn_cast<CallBase>(V)) {
5075       if (CB->hasRetAttr(Attribute::NoUndef))
5076         return true;
5077     }
5078 
5079     if (const auto *PN = dyn_cast<PHINode>(V)) {
5080       unsigned Num = PN->getNumIncomingValues();
5081       bool IsWellDefined = true;
5082       for (unsigned i = 0; i < Num; ++i) {
5083         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5084         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5085                                               DT, Depth + 1, PoisonOnly)) {
5086           IsWellDefined = false;
5087           break;
5088         }
5089       }
5090       if (IsWellDefined)
5091         return true;
5092     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5093       return true;
5094   }
5095 
5096   if (auto *I = dyn_cast<LoadInst>(V))
5097     if (I->getMetadata(LLVMContext::MD_noundef))
5098       return true;
5099 
5100   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5101     return true;
5102 
5103   // CxtI may be null or a cloned instruction.
5104   if (!CtxI || !CtxI->getParent() || !DT)
5105     return false;
5106 
5107   auto *DNode = DT->getNode(CtxI->getParent());
5108   if (!DNode)
5109     // Unreachable block
5110     return false;
5111 
5112   // If V is used as a branch condition before reaching CtxI, V cannot be
5113   // undef or poison.
5114   //   br V, BB1, BB2
5115   // BB1:
5116   //   CtxI ; V cannot be undef or poison here
5117   auto *Dominator = DNode->getIDom();
5118   while (Dominator) {
5119     auto *TI = Dominator->getBlock()->getTerminator();
5120 
5121     Value *Cond = nullptr;
5122     if (auto BI = dyn_cast<BranchInst>(TI)) {
5123       if (BI->isConditional())
5124         Cond = BI->getCondition();
5125     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5126       Cond = SI->getCondition();
5127     }
5128 
5129     if (Cond) {
5130       if (Cond == V)
5131         return true;
5132       else if (PoisonOnly && isa<Operator>(Cond)) {
5133         // For poison, we can analyze further
5134         auto *Opr = cast<Operator>(Cond);
5135         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5136           return true;
5137       }
5138     }
5139 
5140     Dominator = Dominator->getIDom();
5141   }
5142 
5143   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5144   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5145     return true;
5146 
5147   return false;
5148 }
5149 
5150 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5151                                             const Instruction *CtxI,
5152                                             const DominatorTree *DT,
5153                                             unsigned Depth) {
5154   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5155 }
5156 
5157 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5158                                      const Instruction *CtxI,
5159                                      const DominatorTree *DT, unsigned Depth) {
5160   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5161 }
5162 
5163 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5164                                                  const DataLayout &DL,
5165                                                  AssumptionCache *AC,
5166                                                  const Instruction *CxtI,
5167                                                  const DominatorTree *DT) {
5168   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5169                                        Add, DL, AC, CxtI, DT);
5170 }
5171 
5172 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5173                                                  const Value *RHS,
5174                                                  const DataLayout &DL,
5175                                                  AssumptionCache *AC,
5176                                                  const Instruction *CxtI,
5177                                                  const DominatorTree *DT) {
5178   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5179 }
5180 
5181 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5182   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5183   // of time because it's possible for another thread to interfere with it for an
5184   // arbitrary length of time, but programs aren't allowed to rely on that.
5185 
5186   // If there is no successor, then execution can't transfer to it.
5187   if (isa<ReturnInst>(I))
5188     return false;
5189   if (isa<UnreachableInst>(I))
5190     return false;
5191 
5192   // An instruction that returns without throwing must transfer control flow
5193   // to a successor.
5194   return !I->mayThrow() && I->willReturn();
5195 }
5196 
5197 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5198   // TODO: This is slightly conservative for invoke instruction since exiting
5199   // via an exception *is* normal control for them.
5200   for (const Instruction &I : *BB)
5201     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5202       return false;
5203   return true;
5204 }
5205 
5206 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5207                                                   const Loop *L) {
5208   // The loop header is guaranteed to be executed for every iteration.
5209   //
5210   // FIXME: Relax this constraint to cover all basic blocks that are
5211   // guaranteed to be executed at every iteration.
5212   if (I->getParent() != L->getHeader()) return false;
5213 
5214   for (const Instruction &LI : *L->getHeader()) {
5215     if (&LI == I) return true;
5216     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5217   }
5218   llvm_unreachable("Instruction not contained in its own parent basic block.");
5219 }
5220 
5221 bool llvm::propagatesPoison(const Operator *I) {
5222   switch (I->getOpcode()) {
5223   case Instruction::Freeze:
5224   case Instruction::Select:
5225   case Instruction::PHI:
5226   case Instruction::Invoke:
5227     return false;
5228   case Instruction::Call:
5229     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5230       switch (II->getIntrinsicID()) {
5231       // TODO: Add more intrinsics.
5232       case Intrinsic::sadd_with_overflow:
5233       case Intrinsic::ssub_with_overflow:
5234       case Intrinsic::smul_with_overflow:
5235       case Intrinsic::uadd_with_overflow:
5236       case Intrinsic::usub_with_overflow:
5237       case Intrinsic::umul_with_overflow:
5238         // If an input is a vector containing a poison element, the
5239         // two output vectors (calculated results, overflow bits)'
5240         // corresponding lanes are poison.
5241         return true;
5242       }
5243     }
5244     return false;
5245   case Instruction::ICmp:
5246   case Instruction::FCmp:
5247   case Instruction::GetElementPtr:
5248     return true;
5249   default:
5250     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5251       return true;
5252 
5253     // Be conservative and return false.
5254     return false;
5255   }
5256 }
5257 
5258 void llvm::getGuaranteedWellDefinedOps(
5259     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5260   switch (I->getOpcode()) {
5261     case Instruction::Store:
5262       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5263       break;
5264 
5265     case Instruction::Load:
5266       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5267       break;
5268 
5269     // Since dereferenceable attribute imply noundef, atomic operations
5270     // also implicitly have noundef pointers too
5271     case Instruction::AtomicCmpXchg:
5272       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5273       break;
5274 
5275     case Instruction::AtomicRMW:
5276       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5277       break;
5278 
5279     case Instruction::Call:
5280     case Instruction::Invoke: {
5281       const CallBase *CB = cast<CallBase>(I);
5282       if (CB->isIndirectCall())
5283         Operands.insert(CB->getCalledOperand());
5284       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5285         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5286             CB->paramHasAttr(i, Attribute::Dereferenceable))
5287           Operands.insert(CB->getArgOperand(i));
5288       }
5289       break;
5290     }
5291 
5292     default:
5293       break;
5294   }
5295 }
5296 
5297 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5298                                      SmallPtrSetImpl<const Value *> &Operands) {
5299   getGuaranteedWellDefinedOps(I, Operands);
5300   switch (I->getOpcode()) {
5301   // Divisors of these operations are allowed to be partially undef.
5302   case Instruction::UDiv:
5303   case Instruction::SDiv:
5304   case Instruction::URem:
5305   case Instruction::SRem:
5306     Operands.insert(I->getOperand(1));
5307     break;
5308 
5309   default:
5310     break;
5311   }
5312 }
5313 
5314 bool llvm::mustTriggerUB(const Instruction *I,
5315                          const SmallSet<const Value *, 16>& KnownPoison) {
5316   SmallPtrSet<const Value *, 4> NonPoisonOps;
5317   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5318 
5319   for (const auto *V : NonPoisonOps)
5320     if (KnownPoison.count(V))
5321       return true;
5322 
5323   return false;
5324 }
5325 
5326 static bool programUndefinedIfUndefOrPoison(const Value *V,
5327                                             bool PoisonOnly) {
5328   // We currently only look for uses of values within the same basic
5329   // block, as that makes it easier to guarantee that the uses will be
5330   // executed given that Inst is executed.
5331   //
5332   // FIXME: Expand this to consider uses beyond the same basic block. To do
5333   // this, look out for the distinction between post-dominance and strong
5334   // post-dominance.
5335   const BasicBlock *BB = nullptr;
5336   BasicBlock::const_iterator Begin;
5337   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5338     BB = Inst->getParent();
5339     Begin = Inst->getIterator();
5340     Begin++;
5341   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5342     BB = &Arg->getParent()->getEntryBlock();
5343     Begin = BB->begin();
5344   } else {
5345     return false;
5346   }
5347 
5348   BasicBlock::const_iterator End = BB->end();
5349 
5350   if (!PoisonOnly) {
5351     // Since undef does not propagate eagerly, be conservative & just check
5352     // whether a value is directly passed to an instruction that must take
5353     // well-defined operands.
5354 
5355     for (auto &I : make_range(Begin, End)) {
5356       SmallPtrSet<const Value *, 4> WellDefinedOps;
5357       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5358       for (auto *Op : WellDefinedOps) {
5359         if (Op == V)
5360           return true;
5361       }
5362       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5363         break;
5364     }
5365     return false;
5366   }
5367 
5368   // Set of instructions that we have proved will yield poison if Inst
5369   // does.
5370   SmallSet<const Value *, 16> YieldsPoison;
5371   SmallSet<const BasicBlock *, 4> Visited;
5372 
5373   YieldsPoison.insert(V);
5374   auto Propagate = [&](const User *User) {
5375     if (propagatesPoison(cast<Operator>(User)))
5376       YieldsPoison.insert(User);
5377   };
5378   for_each(V->users(), Propagate);
5379   Visited.insert(BB);
5380 
5381   unsigned Iter = 0;
5382   while (Iter++ < MaxAnalysisRecursionDepth) {
5383     for (auto &I : make_range(Begin, End)) {
5384       if (mustTriggerUB(&I, YieldsPoison))
5385         return true;
5386       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5387         return false;
5388 
5389       // Mark poison that propagates from I through uses of I.
5390       if (YieldsPoison.count(&I))
5391         for_each(I.users(), Propagate);
5392     }
5393 
5394     if (auto *NextBB = BB->getSingleSuccessor()) {
5395       if (Visited.insert(NextBB).second) {
5396         BB = NextBB;
5397         Begin = BB->getFirstNonPHI()->getIterator();
5398         End = BB->end();
5399         continue;
5400       }
5401     }
5402 
5403     break;
5404   }
5405   return false;
5406 }
5407 
5408 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5409   return ::programUndefinedIfUndefOrPoison(Inst, false);
5410 }
5411 
5412 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5413   return ::programUndefinedIfUndefOrPoison(Inst, true);
5414 }
5415 
5416 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5417   if (FMF.noNaNs())
5418     return true;
5419 
5420   if (auto *C = dyn_cast<ConstantFP>(V))
5421     return !C->isNaN();
5422 
5423   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5424     if (!C->getElementType()->isFloatingPointTy())
5425       return false;
5426     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5427       if (C->getElementAsAPFloat(I).isNaN())
5428         return false;
5429     }
5430     return true;
5431   }
5432 
5433   if (isa<ConstantAggregateZero>(V))
5434     return true;
5435 
5436   return false;
5437 }
5438 
5439 static bool isKnownNonZero(const Value *V) {
5440   if (auto *C = dyn_cast<ConstantFP>(V))
5441     return !C->isZero();
5442 
5443   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5444     if (!C->getElementType()->isFloatingPointTy())
5445       return false;
5446     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5447       if (C->getElementAsAPFloat(I).isZero())
5448         return false;
5449     }
5450     return true;
5451   }
5452 
5453   return false;
5454 }
5455 
5456 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5457 /// Given non-min/max outer cmp/select from the clamp pattern this
5458 /// function recognizes if it can be substitued by a "canonical" min/max
5459 /// pattern.
5460 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5461                                                Value *CmpLHS, Value *CmpRHS,
5462                                                Value *TrueVal, Value *FalseVal,
5463                                                Value *&LHS, Value *&RHS) {
5464   // Try to match
5465   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5466   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5467   // and return description of the outer Max/Min.
5468 
5469   // First, check if select has inverse order:
5470   if (CmpRHS == FalseVal) {
5471     std::swap(TrueVal, FalseVal);
5472     Pred = CmpInst::getInversePredicate(Pred);
5473   }
5474 
5475   // Assume success now. If there's no match, callers should not use these anyway.
5476   LHS = TrueVal;
5477   RHS = FalseVal;
5478 
5479   const APFloat *FC1;
5480   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5481     return {SPF_UNKNOWN, SPNB_NA, false};
5482 
5483   const APFloat *FC2;
5484   switch (Pred) {
5485   case CmpInst::FCMP_OLT:
5486   case CmpInst::FCMP_OLE:
5487   case CmpInst::FCMP_ULT:
5488   case CmpInst::FCMP_ULE:
5489     if (match(FalseVal,
5490               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5491                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5492         *FC1 < *FC2)
5493       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5494     break;
5495   case CmpInst::FCMP_OGT:
5496   case CmpInst::FCMP_OGE:
5497   case CmpInst::FCMP_UGT:
5498   case CmpInst::FCMP_UGE:
5499     if (match(FalseVal,
5500               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5501                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5502         *FC1 > *FC2)
5503       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5504     break;
5505   default:
5506     break;
5507   }
5508 
5509   return {SPF_UNKNOWN, SPNB_NA, false};
5510 }
5511 
5512 /// Recognize variations of:
5513 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5514 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5515                                       Value *CmpLHS, Value *CmpRHS,
5516                                       Value *TrueVal, Value *FalseVal) {
5517   // Swap the select operands and predicate to match the patterns below.
5518   if (CmpRHS != TrueVal) {
5519     Pred = ICmpInst::getSwappedPredicate(Pred);
5520     std::swap(TrueVal, FalseVal);
5521   }
5522   const APInt *C1;
5523   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5524     const APInt *C2;
5525     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5526     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5527         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5528       return {SPF_SMAX, SPNB_NA, false};
5529 
5530     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5531     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5532         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5533       return {SPF_SMIN, SPNB_NA, false};
5534 
5535     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5536     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5537         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5538       return {SPF_UMAX, SPNB_NA, false};
5539 
5540     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5541     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5542         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5543       return {SPF_UMIN, SPNB_NA, false};
5544   }
5545   return {SPF_UNKNOWN, SPNB_NA, false};
5546 }
5547 
5548 /// Recognize variations of:
5549 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5550 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5551                                                Value *CmpLHS, Value *CmpRHS,
5552                                                Value *TVal, Value *FVal,
5553                                                unsigned Depth) {
5554   // TODO: Allow FP min/max with nnan/nsz.
5555   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5556 
5557   Value *A = nullptr, *B = nullptr;
5558   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5559   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5560     return {SPF_UNKNOWN, SPNB_NA, false};
5561 
5562   Value *C = nullptr, *D = nullptr;
5563   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5564   if (L.Flavor != R.Flavor)
5565     return {SPF_UNKNOWN, SPNB_NA, false};
5566 
5567   // We have something like: x Pred y ? min(a, b) : min(c, d).
5568   // Try to match the compare to the min/max operations of the select operands.
5569   // First, make sure we have the right compare predicate.
5570   switch (L.Flavor) {
5571   case SPF_SMIN:
5572     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5573       Pred = ICmpInst::getSwappedPredicate(Pred);
5574       std::swap(CmpLHS, CmpRHS);
5575     }
5576     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5577       break;
5578     return {SPF_UNKNOWN, SPNB_NA, false};
5579   case SPF_SMAX:
5580     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5581       Pred = ICmpInst::getSwappedPredicate(Pred);
5582       std::swap(CmpLHS, CmpRHS);
5583     }
5584     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5585       break;
5586     return {SPF_UNKNOWN, SPNB_NA, false};
5587   case SPF_UMIN:
5588     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5589       Pred = ICmpInst::getSwappedPredicate(Pred);
5590       std::swap(CmpLHS, CmpRHS);
5591     }
5592     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5593       break;
5594     return {SPF_UNKNOWN, SPNB_NA, false};
5595   case SPF_UMAX:
5596     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5597       Pred = ICmpInst::getSwappedPredicate(Pred);
5598       std::swap(CmpLHS, CmpRHS);
5599     }
5600     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5601       break;
5602     return {SPF_UNKNOWN, SPNB_NA, false};
5603   default:
5604     return {SPF_UNKNOWN, SPNB_NA, false};
5605   }
5606 
5607   // If there is a common operand in the already matched min/max and the other
5608   // min/max operands match the compare operands (either directly or inverted),
5609   // then this is min/max of the same flavor.
5610 
5611   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5612   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5613   if (D == B) {
5614     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5615                                          match(A, m_Not(m_Specific(CmpRHS)))))
5616       return {L.Flavor, SPNB_NA, false};
5617   }
5618   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5619   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5620   if (C == B) {
5621     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5622                                          match(A, m_Not(m_Specific(CmpRHS)))))
5623       return {L.Flavor, SPNB_NA, false};
5624   }
5625   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5626   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5627   if (D == A) {
5628     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5629                                          match(B, m_Not(m_Specific(CmpRHS)))))
5630       return {L.Flavor, SPNB_NA, false};
5631   }
5632   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5633   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5634   if (C == A) {
5635     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5636                                          match(B, m_Not(m_Specific(CmpRHS)))))
5637       return {L.Flavor, SPNB_NA, false};
5638   }
5639 
5640   return {SPF_UNKNOWN, SPNB_NA, false};
5641 }
5642 
5643 /// If the input value is the result of a 'not' op, constant integer, or vector
5644 /// splat of a constant integer, return the bitwise-not source value.
5645 /// TODO: This could be extended to handle non-splat vector integer constants.
5646 static Value *getNotValue(Value *V) {
5647   Value *NotV;
5648   if (match(V, m_Not(m_Value(NotV))))
5649     return NotV;
5650 
5651   const APInt *C;
5652   if (match(V, m_APInt(C)))
5653     return ConstantInt::get(V->getType(), ~(*C));
5654 
5655   return nullptr;
5656 }
5657 
5658 /// Match non-obvious integer minimum and maximum sequences.
5659 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5660                                        Value *CmpLHS, Value *CmpRHS,
5661                                        Value *TrueVal, Value *FalseVal,
5662                                        Value *&LHS, Value *&RHS,
5663                                        unsigned Depth) {
5664   // Assume success. If there's no match, callers should not use these anyway.
5665   LHS = TrueVal;
5666   RHS = FalseVal;
5667 
5668   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5669   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5670     return SPR;
5671 
5672   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5673   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5674     return SPR;
5675 
5676   // Look through 'not' ops to find disguised min/max.
5677   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5678   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5679   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5680     switch (Pred) {
5681     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5682     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5683     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5684     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5685     default: break;
5686     }
5687   }
5688 
5689   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5690   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5691   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5692     switch (Pred) {
5693     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5694     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5695     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5696     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5697     default: break;
5698     }
5699   }
5700 
5701   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5702     return {SPF_UNKNOWN, SPNB_NA, false};
5703 
5704   // Z = X -nsw Y
5705   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5706   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5707   if (match(TrueVal, m_Zero()) &&
5708       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5709     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5710 
5711   // Z = X -nsw Y
5712   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5713   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5714   if (match(FalseVal, m_Zero()) &&
5715       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5716     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5717 
5718   const APInt *C1;
5719   if (!match(CmpRHS, m_APInt(C1)))
5720     return {SPF_UNKNOWN, SPNB_NA, false};
5721 
5722   // An unsigned min/max can be written with a signed compare.
5723   const APInt *C2;
5724   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5725       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5726     // Is the sign bit set?
5727     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5728     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5729     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5730         C2->isMaxSignedValue())
5731       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5732 
5733     // Is the sign bit clear?
5734     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5735     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5736     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5737         C2->isMinSignedValue())
5738       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5739   }
5740 
5741   return {SPF_UNKNOWN, SPNB_NA, false};
5742 }
5743 
5744 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5745   assert(X && Y && "Invalid operand");
5746 
5747   // X = sub (0, Y) || X = sub nsw (0, Y)
5748   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5749       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5750     return true;
5751 
5752   // Y = sub (0, X) || Y = sub nsw (0, X)
5753   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5754       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5755     return true;
5756 
5757   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5758   Value *A, *B;
5759   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5760                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5761          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5762                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5763 }
5764 
5765 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5766                                               FastMathFlags FMF,
5767                                               Value *CmpLHS, Value *CmpRHS,
5768                                               Value *TrueVal, Value *FalseVal,
5769                                               Value *&LHS, Value *&RHS,
5770                                               unsigned Depth) {
5771   if (CmpInst::isFPPredicate(Pred)) {
5772     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5773     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5774     // purpose of identifying min/max. Disregard vector constants with undefined
5775     // elements because those can not be back-propagated for analysis.
5776     Value *OutputZeroVal = nullptr;
5777     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5778         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5779       OutputZeroVal = TrueVal;
5780     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5781              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5782       OutputZeroVal = FalseVal;
5783 
5784     if (OutputZeroVal) {
5785       if (match(CmpLHS, m_AnyZeroFP()))
5786         CmpLHS = OutputZeroVal;
5787       if (match(CmpRHS, m_AnyZeroFP()))
5788         CmpRHS = OutputZeroVal;
5789     }
5790   }
5791 
5792   LHS = CmpLHS;
5793   RHS = CmpRHS;
5794 
5795   // Signed zero may return inconsistent results between implementations.
5796   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5797   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5798   // Therefore, we behave conservatively and only proceed if at least one of the
5799   // operands is known to not be zero or if we don't care about signed zero.
5800   switch (Pred) {
5801   default: break;
5802   // FIXME: Include OGT/OLT/UGT/ULT.
5803   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5804   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5805     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5806         !isKnownNonZero(CmpRHS))
5807       return {SPF_UNKNOWN, SPNB_NA, false};
5808   }
5809 
5810   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5811   bool Ordered = false;
5812 
5813   // When given one NaN and one non-NaN input:
5814   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5815   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5816   //     ordered comparison fails), which could be NaN or non-NaN.
5817   // so here we discover exactly what NaN behavior is required/accepted.
5818   if (CmpInst::isFPPredicate(Pred)) {
5819     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5820     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5821 
5822     if (LHSSafe && RHSSafe) {
5823       // Both operands are known non-NaN.
5824       NaNBehavior = SPNB_RETURNS_ANY;
5825     } else if (CmpInst::isOrdered(Pred)) {
5826       // An ordered comparison will return false when given a NaN, so it
5827       // returns the RHS.
5828       Ordered = true;
5829       if (LHSSafe)
5830         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5831         NaNBehavior = SPNB_RETURNS_NAN;
5832       else if (RHSSafe)
5833         NaNBehavior = SPNB_RETURNS_OTHER;
5834       else
5835         // Completely unsafe.
5836         return {SPF_UNKNOWN, SPNB_NA, false};
5837     } else {
5838       Ordered = false;
5839       // An unordered comparison will return true when given a NaN, so it
5840       // returns the LHS.
5841       if (LHSSafe)
5842         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5843         NaNBehavior = SPNB_RETURNS_OTHER;
5844       else if (RHSSafe)
5845         NaNBehavior = SPNB_RETURNS_NAN;
5846       else
5847         // Completely unsafe.
5848         return {SPF_UNKNOWN, SPNB_NA, false};
5849     }
5850   }
5851 
5852   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5853     std::swap(CmpLHS, CmpRHS);
5854     Pred = CmpInst::getSwappedPredicate(Pred);
5855     if (NaNBehavior == SPNB_RETURNS_NAN)
5856       NaNBehavior = SPNB_RETURNS_OTHER;
5857     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5858       NaNBehavior = SPNB_RETURNS_NAN;
5859     Ordered = !Ordered;
5860   }
5861 
5862   // ([if]cmp X, Y) ? X : Y
5863   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5864     switch (Pred) {
5865     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5866     case ICmpInst::ICMP_UGT:
5867     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5868     case ICmpInst::ICMP_SGT:
5869     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5870     case ICmpInst::ICMP_ULT:
5871     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5872     case ICmpInst::ICMP_SLT:
5873     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5874     case FCmpInst::FCMP_UGT:
5875     case FCmpInst::FCMP_UGE:
5876     case FCmpInst::FCMP_OGT:
5877     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5878     case FCmpInst::FCMP_ULT:
5879     case FCmpInst::FCMP_ULE:
5880     case FCmpInst::FCMP_OLT:
5881     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5882     }
5883   }
5884 
5885   if (isKnownNegation(TrueVal, FalseVal)) {
5886     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5887     // match against either LHS or sext(LHS).
5888     auto MaybeSExtCmpLHS =
5889         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5890     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5891     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5892     if (match(TrueVal, MaybeSExtCmpLHS)) {
5893       // Set the return values. If the compare uses the negated value (-X >s 0),
5894       // swap the return values because the negated value is always 'RHS'.
5895       LHS = TrueVal;
5896       RHS = FalseVal;
5897       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5898         std::swap(LHS, RHS);
5899 
5900       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5901       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5902       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5903         return {SPF_ABS, SPNB_NA, false};
5904 
5905       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5906       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5907         return {SPF_ABS, SPNB_NA, false};
5908 
5909       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5910       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5911       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5912         return {SPF_NABS, SPNB_NA, false};
5913     }
5914     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5915       // Set the return values. If the compare uses the negated value (-X >s 0),
5916       // swap the return values because the negated value is always 'RHS'.
5917       LHS = FalseVal;
5918       RHS = TrueVal;
5919       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5920         std::swap(LHS, RHS);
5921 
5922       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5923       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5924       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5925         return {SPF_NABS, SPNB_NA, false};
5926 
5927       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5928       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5929       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5930         return {SPF_ABS, SPNB_NA, false};
5931     }
5932   }
5933 
5934   if (CmpInst::isIntPredicate(Pred))
5935     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5936 
5937   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5938   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5939   // semantics than minNum. Be conservative in such case.
5940   if (NaNBehavior != SPNB_RETURNS_ANY ||
5941       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5942        !isKnownNonZero(CmpRHS)))
5943     return {SPF_UNKNOWN, SPNB_NA, false};
5944 
5945   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5946 }
5947 
5948 /// Helps to match a select pattern in case of a type mismatch.
5949 ///
5950 /// The function processes the case when type of true and false values of a
5951 /// select instruction differs from type of the cmp instruction operands because
5952 /// of a cast instruction. The function checks if it is legal to move the cast
5953 /// operation after "select". If yes, it returns the new second value of
5954 /// "select" (with the assumption that cast is moved):
5955 /// 1. As operand of cast instruction when both values of "select" are same cast
5956 /// instructions.
5957 /// 2. As restored constant (by applying reverse cast operation) when the first
5958 /// value of the "select" is a cast operation and the second value is a
5959 /// constant.
5960 /// NOTE: We return only the new second value because the first value could be
5961 /// accessed as operand of cast instruction.
5962 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5963                               Instruction::CastOps *CastOp) {
5964   auto *Cast1 = dyn_cast<CastInst>(V1);
5965   if (!Cast1)
5966     return nullptr;
5967 
5968   *CastOp = Cast1->getOpcode();
5969   Type *SrcTy = Cast1->getSrcTy();
5970   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5971     // If V1 and V2 are both the same cast from the same type, look through V1.
5972     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5973       return Cast2->getOperand(0);
5974     return nullptr;
5975   }
5976 
5977   auto *C = dyn_cast<Constant>(V2);
5978   if (!C)
5979     return nullptr;
5980 
5981   Constant *CastedTo = nullptr;
5982   switch (*CastOp) {
5983   case Instruction::ZExt:
5984     if (CmpI->isUnsigned())
5985       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5986     break;
5987   case Instruction::SExt:
5988     if (CmpI->isSigned())
5989       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5990     break;
5991   case Instruction::Trunc:
5992     Constant *CmpConst;
5993     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5994         CmpConst->getType() == SrcTy) {
5995       // Here we have the following case:
5996       //
5997       //   %cond = cmp iN %x, CmpConst
5998       //   %tr = trunc iN %x to iK
5999       //   %narrowsel = select i1 %cond, iK %t, iK C
6000       //
6001       // We can always move trunc after select operation:
6002       //
6003       //   %cond = cmp iN %x, CmpConst
6004       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6005       //   %tr = trunc iN %widesel to iK
6006       //
6007       // Note that C could be extended in any way because we don't care about
6008       // upper bits after truncation. It can't be abs pattern, because it would
6009       // look like:
6010       //
6011       //   select i1 %cond, x, -x.
6012       //
6013       // So only min/max pattern could be matched. Such match requires widened C
6014       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6015       // CmpConst == C is checked below.
6016       CastedTo = CmpConst;
6017     } else {
6018       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6019     }
6020     break;
6021   case Instruction::FPTrunc:
6022     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6023     break;
6024   case Instruction::FPExt:
6025     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6026     break;
6027   case Instruction::FPToUI:
6028     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6029     break;
6030   case Instruction::FPToSI:
6031     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6032     break;
6033   case Instruction::UIToFP:
6034     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6035     break;
6036   case Instruction::SIToFP:
6037     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6038     break;
6039   default:
6040     break;
6041   }
6042 
6043   if (!CastedTo)
6044     return nullptr;
6045 
6046   // Make sure the cast doesn't lose any information.
6047   Constant *CastedBack =
6048       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6049   if (CastedBack != C)
6050     return nullptr;
6051 
6052   return CastedTo;
6053 }
6054 
6055 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6056                                              Instruction::CastOps *CastOp,
6057                                              unsigned Depth) {
6058   if (Depth >= MaxAnalysisRecursionDepth)
6059     return {SPF_UNKNOWN, SPNB_NA, false};
6060 
6061   SelectInst *SI = dyn_cast<SelectInst>(V);
6062   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6063 
6064   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6065   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6066 
6067   Value *TrueVal = SI->getTrueValue();
6068   Value *FalseVal = SI->getFalseValue();
6069 
6070   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6071                                             CastOp, Depth);
6072 }
6073 
6074 SelectPatternResult llvm::matchDecomposedSelectPattern(
6075     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6076     Instruction::CastOps *CastOp, unsigned Depth) {
6077   CmpInst::Predicate Pred = CmpI->getPredicate();
6078   Value *CmpLHS = CmpI->getOperand(0);
6079   Value *CmpRHS = CmpI->getOperand(1);
6080   FastMathFlags FMF;
6081   if (isa<FPMathOperator>(CmpI))
6082     FMF = CmpI->getFastMathFlags();
6083 
6084   // Bail out early.
6085   if (CmpI->isEquality())
6086     return {SPF_UNKNOWN, SPNB_NA, false};
6087 
6088   // Deal with type mismatches.
6089   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6090     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6091       // If this is a potential fmin/fmax with a cast to integer, then ignore
6092       // -0.0 because there is no corresponding integer value.
6093       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6094         FMF.setNoSignedZeros();
6095       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6096                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6097                                   LHS, RHS, Depth);
6098     }
6099     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6100       // If this is a potential fmin/fmax with a cast to integer, then ignore
6101       // -0.0 because there is no corresponding integer value.
6102       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6103         FMF.setNoSignedZeros();
6104       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6105                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6106                                   LHS, RHS, Depth);
6107     }
6108   }
6109   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6110                               LHS, RHS, Depth);
6111 }
6112 
6113 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6114   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6115   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6116   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6117   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6118   if (SPF == SPF_FMINNUM)
6119     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6120   if (SPF == SPF_FMAXNUM)
6121     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6122   llvm_unreachable("unhandled!");
6123 }
6124 
6125 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6126   if (SPF == SPF_SMIN) return SPF_SMAX;
6127   if (SPF == SPF_UMIN) return SPF_UMAX;
6128   if (SPF == SPF_SMAX) return SPF_SMIN;
6129   if (SPF == SPF_UMAX) return SPF_UMIN;
6130   llvm_unreachable("unhandled!");
6131 }
6132 
6133 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6134   switch (MinMaxID) {
6135   case Intrinsic::smax: return Intrinsic::smin;
6136   case Intrinsic::smin: return Intrinsic::smax;
6137   case Intrinsic::umax: return Intrinsic::umin;
6138   case Intrinsic::umin: return Intrinsic::umax;
6139   default: llvm_unreachable("Unexpected intrinsic");
6140   }
6141 }
6142 
6143 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6144   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6145 }
6146 
6147 std::pair<Intrinsic::ID, bool>
6148 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6149   // Check if VL contains select instructions that can be folded into a min/max
6150   // vector intrinsic and return the intrinsic if it is possible.
6151   // TODO: Support floating point min/max.
6152   bool AllCmpSingleUse = true;
6153   SelectPatternResult SelectPattern;
6154   SelectPattern.Flavor = SPF_UNKNOWN;
6155   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6156         Value *LHS, *RHS;
6157         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6158         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6159             CurrentPattern.Flavor == SPF_FMINNUM ||
6160             CurrentPattern.Flavor == SPF_FMAXNUM ||
6161             !I->getType()->isIntOrIntVectorTy())
6162           return false;
6163         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6164             SelectPattern.Flavor != CurrentPattern.Flavor)
6165           return false;
6166         SelectPattern = CurrentPattern;
6167         AllCmpSingleUse &=
6168             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6169         return true;
6170       })) {
6171     switch (SelectPattern.Flavor) {
6172     case SPF_SMIN:
6173       return {Intrinsic::smin, AllCmpSingleUse};
6174     case SPF_UMIN:
6175       return {Intrinsic::umin, AllCmpSingleUse};
6176     case SPF_SMAX:
6177       return {Intrinsic::smax, AllCmpSingleUse};
6178     case SPF_UMAX:
6179       return {Intrinsic::umax, AllCmpSingleUse};
6180     default:
6181       llvm_unreachable("unexpected select pattern flavor");
6182     }
6183   }
6184   return {Intrinsic::not_intrinsic, false};
6185 }
6186 
6187 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6188                                  Value *&Start, Value *&Step) {
6189   // Handle the case of a simple two-predecessor recurrence PHI.
6190   // There's a lot more that could theoretically be done here, but
6191   // this is sufficient to catch some interesting cases.
6192   if (P->getNumIncomingValues() != 2)
6193     return false;
6194 
6195   for (unsigned i = 0; i != 2; ++i) {
6196     Value *L = P->getIncomingValue(i);
6197     Value *R = P->getIncomingValue(!i);
6198     Operator *LU = dyn_cast<Operator>(L);
6199     if (!LU)
6200       continue;
6201     unsigned Opcode = LU->getOpcode();
6202 
6203     switch (Opcode) {
6204     default:
6205       continue;
6206     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6207     case Instruction::LShr:
6208     case Instruction::AShr:
6209     case Instruction::Shl:
6210     case Instruction::Add:
6211     case Instruction::Sub:
6212     case Instruction::And:
6213     case Instruction::Or:
6214     case Instruction::Mul: {
6215       Value *LL = LU->getOperand(0);
6216       Value *LR = LU->getOperand(1);
6217       // Find a recurrence.
6218       if (LL == P)
6219         L = LR;
6220       else if (LR == P)
6221         L = LL;
6222       else
6223         continue; // Check for recurrence with L and R flipped.
6224 
6225       break; // Match!
6226     }
6227     };
6228 
6229     // We have matched a recurrence of the form:
6230     //   %iv = [R, %entry], [%iv.next, %backedge]
6231     //   %iv.next = binop %iv, L
6232     // OR
6233     //   %iv = [R, %entry], [%iv.next, %backedge]
6234     //   %iv.next = binop L, %iv
6235     BO = cast<BinaryOperator>(LU);
6236     Start = R;
6237     Step = L;
6238     return true;
6239   }
6240   return false;
6241 }
6242 
6243 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6244                                  Value *&Start, Value *&Step) {
6245   BinaryOperator *BO = nullptr;
6246   P = dyn_cast<PHINode>(I->getOperand(0));
6247   if (!P)
6248     P = dyn_cast<PHINode>(I->getOperand(1));
6249   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6250 }
6251 
6252 /// Return true if "icmp Pred LHS RHS" is always true.
6253 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6254                             const Value *RHS, const DataLayout &DL,
6255                             unsigned Depth) {
6256   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6257   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6258     return true;
6259 
6260   switch (Pred) {
6261   default:
6262     return false;
6263 
6264   case CmpInst::ICMP_SLE: {
6265     const APInt *C;
6266 
6267     // LHS s<= LHS +_{nsw} C   if C >= 0
6268     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6269       return !C->isNegative();
6270     return false;
6271   }
6272 
6273   case CmpInst::ICMP_ULE: {
6274     const APInt *C;
6275 
6276     // LHS u<= LHS +_{nuw} C   for any C
6277     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6278       return true;
6279 
6280     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6281     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6282                                        const Value *&X,
6283                                        const APInt *&CA, const APInt *&CB) {
6284       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6285           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6286         return true;
6287 
6288       // If X & C == 0 then (X | C) == X +_{nuw} C
6289       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6290           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6291         KnownBits Known(CA->getBitWidth());
6292         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6293                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6294         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6295           return true;
6296       }
6297 
6298       return false;
6299     };
6300 
6301     const Value *X;
6302     const APInt *CLHS, *CRHS;
6303     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6304       return CLHS->ule(*CRHS);
6305 
6306     return false;
6307   }
6308   }
6309 }
6310 
6311 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6312 /// ALHS ARHS" is true.  Otherwise, return None.
6313 static Optional<bool>
6314 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6315                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6316                       const DataLayout &DL, unsigned Depth) {
6317   switch (Pred) {
6318   default:
6319     return None;
6320 
6321   case CmpInst::ICMP_SLT:
6322   case CmpInst::ICMP_SLE:
6323     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6324         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6325       return true;
6326     return None;
6327 
6328   case CmpInst::ICMP_ULT:
6329   case CmpInst::ICMP_ULE:
6330     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6331         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6332       return true;
6333     return None;
6334   }
6335 }
6336 
6337 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6338 /// when the operands match, but are swapped.
6339 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6340                           const Value *BLHS, const Value *BRHS,
6341                           bool &IsSwappedOps) {
6342 
6343   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6344   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6345   return IsMatchingOps || IsSwappedOps;
6346 }
6347 
6348 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6349 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6350 /// Otherwise, return None if we can't infer anything.
6351 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6352                                                     CmpInst::Predicate BPred,
6353                                                     bool AreSwappedOps) {
6354   // Canonicalize the predicate as if the operands were not commuted.
6355   if (AreSwappedOps)
6356     BPred = ICmpInst::getSwappedPredicate(BPred);
6357 
6358   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6359     return true;
6360   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6361     return false;
6362 
6363   return None;
6364 }
6365 
6366 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6367 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6368 /// Otherwise, return None if we can't infer anything.
6369 static Optional<bool>
6370 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6371                                  const ConstantInt *C1,
6372                                  CmpInst::Predicate BPred,
6373                                  const ConstantInt *C2) {
6374   ConstantRange DomCR =
6375       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6376   ConstantRange CR =
6377       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6378   ConstantRange Intersection = DomCR.intersectWith(CR);
6379   ConstantRange Difference = DomCR.difference(CR);
6380   if (Intersection.isEmptySet())
6381     return false;
6382   if (Difference.isEmptySet())
6383     return true;
6384   return None;
6385 }
6386 
6387 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6388 /// false.  Otherwise, return None if we can't infer anything.
6389 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6390                                          CmpInst::Predicate BPred,
6391                                          const Value *BLHS, const Value *BRHS,
6392                                          const DataLayout &DL, bool LHSIsTrue,
6393                                          unsigned Depth) {
6394   Value *ALHS = LHS->getOperand(0);
6395   Value *ARHS = LHS->getOperand(1);
6396 
6397   // The rest of the logic assumes the LHS condition is true.  If that's not the
6398   // case, invert the predicate to make it so.
6399   CmpInst::Predicate APred =
6400       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6401 
6402   // Can we infer anything when the two compares have matching operands?
6403   bool AreSwappedOps;
6404   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6405     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6406             APred, BPred, AreSwappedOps))
6407       return Implication;
6408     // No amount of additional analysis will infer the second condition, so
6409     // early exit.
6410     return None;
6411   }
6412 
6413   // Can we infer anything when the LHS operands match and the RHS operands are
6414   // constants (not necessarily matching)?
6415   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6416     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6417             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6418       return Implication;
6419     // No amount of additional analysis will infer the second condition, so
6420     // early exit.
6421     return None;
6422   }
6423 
6424   if (APred == BPred)
6425     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6426   return None;
6427 }
6428 
6429 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6430 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6431 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6432 static Optional<bool>
6433 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6434                    const Value *RHSOp0, const Value *RHSOp1,
6435                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6436   // The LHS must be an 'or', 'and', or a 'select' instruction.
6437   assert((LHS->getOpcode() == Instruction::And ||
6438           LHS->getOpcode() == Instruction::Or ||
6439           LHS->getOpcode() == Instruction::Select) &&
6440          "Expected LHS to be 'and', 'or', or 'select'.");
6441 
6442   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6443 
6444   // If the result of an 'or' is false, then we know both legs of the 'or' are
6445   // false.  Similarly, if the result of an 'and' is true, then we know both
6446   // legs of the 'and' are true.
6447   const Value *ALHS, *ARHS;
6448   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6449       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6450     // FIXME: Make this non-recursion.
6451     if (Optional<bool> Implication = isImpliedCondition(
6452             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6453       return Implication;
6454     if (Optional<bool> Implication = isImpliedCondition(
6455             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6456       return Implication;
6457     return None;
6458   }
6459   return None;
6460 }
6461 
6462 Optional<bool>
6463 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6464                          const Value *RHSOp0, const Value *RHSOp1,
6465                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6466   // Bail out when we hit the limit.
6467   if (Depth == MaxAnalysisRecursionDepth)
6468     return None;
6469 
6470   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6471   // example.
6472   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6473     return None;
6474 
6475   Type *OpTy = LHS->getType();
6476   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6477 
6478   // FIXME: Extending the code below to handle vectors.
6479   if (OpTy->isVectorTy())
6480     return None;
6481 
6482   assert(OpTy->isIntegerTy(1) && "implied by above");
6483 
6484   // Both LHS and RHS are icmps.
6485   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6486   if (LHSCmp)
6487     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6488                               Depth);
6489 
6490   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6491   /// the RHS to be an icmp.
6492   /// FIXME: Add support for and/or/select on the RHS.
6493   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6494     if ((LHSI->getOpcode() == Instruction::And ||
6495          LHSI->getOpcode() == Instruction::Or ||
6496          LHSI->getOpcode() == Instruction::Select))
6497       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6498                                 Depth);
6499   }
6500   return None;
6501 }
6502 
6503 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6504                                         const DataLayout &DL, bool LHSIsTrue,
6505                                         unsigned Depth) {
6506   // LHS ==> RHS by definition
6507   if (LHS == RHS)
6508     return LHSIsTrue;
6509 
6510   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6511   if (RHSCmp)
6512     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6513                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6514                               LHSIsTrue, Depth);
6515   return None;
6516 }
6517 
6518 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6519 // condition dominating ContextI or nullptr, if no condition is found.
6520 static std::pair<Value *, bool>
6521 getDomPredecessorCondition(const Instruction *ContextI) {
6522   if (!ContextI || !ContextI->getParent())
6523     return {nullptr, false};
6524 
6525   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6526   // dominator tree (eg, from a SimplifyQuery) instead?
6527   const BasicBlock *ContextBB = ContextI->getParent();
6528   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6529   if (!PredBB)
6530     return {nullptr, false};
6531 
6532   // We need a conditional branch in the predecessor.
6533   Value *PredCond;
6534   BasicBlock *TrueBB, *FalseBB;
6535   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6536     return {nullptr, false};
6537 
6538   // The branch should get simplified. Don't bother simplifying this condition.
6539   if (TrueBB == FalseBB)
6540     return {nullptr, false};
6541 
6542   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6543          "Predecessor block does not point to successor?");
6544 
6545   // Is this condition implied by the predecessor condition?
6546   return {PredCond, TrueBB == ContextBB};
6547 }
6548 
6549 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6550                                              const Instruction *ContextI,
6551                                              const DataLayout &DL) {
6552   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6553   auto PredCond = getDomPredecessorCondition(ContextI);
6554   if (PredCond.first)
6555     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6556   return None;
6557 }
6558 
6559 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6560                                              const Value *LHS, const Value *RHS,
6561                                              const Instruction *ContextI,
6562                                              const DataLayout &DL) {
6563   auto PredCond = getDomPredecessorCondition(ContextI);
6564   if (PredCond.first)
6565     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6566                               PredCond.second);
6567   return None;
6568 }
6569 
6570 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6571                               APInt &Upper, const InstrInfoQuery &IIQ) {
6572   unsigned Width = Lower.getBitWidth();
6573   const APInt *C;
6574   switch (BO.getOpcode()) {
6575   case Instruction::Add:
6576     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6577       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6578       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6579         // 'add nuw x, C' produces [C, UINT_MAX].
6580         Lower = *C;
6581       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6582         if (C->isNegative()) {
6583           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6584           Lower = APInt::getSignedMinValue(Width);
6585           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6586         } else {
6587           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6588           Lower = APInt::getSignedMinValue(Width) + *C;
6589           Upper = APInt::getSignedMaxValue(Width) + 1;
6590         }
6591       }
6592     }
6593     break;
6594 
6595   case Instruction::And:
6596     if (match(BO.getOperand(1), m_APInt(C)))
6597       // 'and x, C' produces [0, C].
6598       Upper = *C + 1;
6599     break;
6600 
6601   case Instruction::Or:
6602     if (match(BO.getOperand(1), m_APInt(C)))
6603       // 'or x, C' produces [C, UINT_MAX].
6604       Lower = *C;
6605     break;
6606 
6607   case Instruction::AShr:
6608     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6609       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6610       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6611       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6612     } else if (match(BO.getOperand(0), m_APInt(C))) {
6613       unsigned ShiftAmount = Width - 1;
6614       if (!C->isNullValue() && IIQ.isExact(&BO))
6615         ShiftAmount = C->countTrailingZeros();
6616       if (C->isNegative()) {
6617         // 'ashr C, x' produces [C, C >> (Width-1)]
6618         Lower = *C;
6619         Upper = C->ashr(ShiftAmount) + 1;
6620       } else {
6621         // 'ashr C, x' produces [C >> (Width-1), C]
6622         Lower = C->ashr(ShiftAmount);
6623         Upper = *C + 1;
6624       }
6625     }
6626     break;
6627 
6628   case Instruction::LShr:
6629     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6630       // 'lshr x, C' produces [0, UINT_MAX >> C].
6631       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6632     } else if (match(BO.getOperand(0), m_APInt(C))) {
6633       // 'lshr C, x' produces [C >> (Width-1), C].
6634       unsigned ShiftAmount = Width - 1;
6635       if (!C->isNullValue() && IIQ.isExact(&BO))
6636         ShiftAmount = C->countTrailingZeros();
6637       Lower = C->lshr(ShiftAmount);
6638       Upper = *C + 1;
6639     }
6640     break;
6641 
6642   case Instruction::Shl:
6643     if (match(BO.getOperand(0), m_APInt(C))) {
6644       if (IIQ.hasNoUnsignedWrap(&BO)) {
6645         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6646         Lower = *C;
6647         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6648       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6649         if (C->isNegative()) {
6650           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6651           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6652           Lower = C->shl(ShiftAmount);
6653           Upper = *C + 1;
6654         } else {
6655           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6656           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6657           Lower = *C;
6658           Upper = C->shl(ShiftAmount) + 1;
6659         }
6660       }
6661     }
6662     break;
6663 
6664   case Instruction::SDiv:
6665     if (match(BO.getOperand(1), m_APInt(C))) {
6666       APInt IntMin = APInt::getSignedMinValue(Width);
6667       APInt IntMax = APInt::getSignedMaxValue(Width);
6668       if (C->isAllOnesValue()) {
6669         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6670         //    where C != -1 and C != 0 and C != 1
6671         Lower = IntMin + 1;
6672         Upper = IntMax + 1;
6673       } else if (C->countLeadingZeros() < Width - 1) {
6674         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6675         //    where C != -1 and C != 0 and C != 1
6676         Lower = IntMin.sdiv(*C);
6677         Upper = IntMax.sdiv(*C);
6678         if (Lower.sgt(Upper))
6679           std::swap(Lower, Upper);
6680         Upper = Upper + 1;
6681         assert(Upper != Lower && "Upper part of range has wrapped!");
6682       }
6683     } else if (match(BO.getOperand(0), m_APInt(C))) {
6684       if (C->isMinSignedValue()) {
6685         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6686         Lower = *C;
6687         Upper = Lower.lshr(1) + 1;
6688       } else {
6689         // 'sdiv C, x' produces [-|C|, |C|].
6690         Upper = C->abs() + 1;
6691         Lower = (-Upper) + 1;
6692       }
6693     }
6694     break;
6695 
6696   case Instruction::UDiv:
6697     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6698       // 'udiv x, C' produces [0, UINT_MAX / C].
6699       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6700     } else if (match(BO.getOperand(0), m_APInt(C))) {
6701       // 'udiv C, x' produces [0, C].
6702       Upper = *C + 1;
6703     }
6704     break;
6705 
6706   case Instruction::SRem:
6707     if (match(BO.getOperand(1), m_APInt(C))) {
6708       // 'srem x, C' produces (-|C|, |C|).
6709       Upper = C->abs();
6710       Lower = (-Upper) + 1;
6711     }
6712     break;
6713 
6714   case Instruction::URem:
6715     if (match(BO.getOperand(1), m_APInt(C)))
6716       // 'urem x, C' produces [0, C).
6717       Upper = *C;
6718     break;
6719 
6720   default:
6721     break;
6722   }
6723 }
6724 
6725 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6726                                   APInt &Upper) {
6727   unsigned Width = Lower.getBitWidth();
6728   const APInt *C;
6729   switch (II.getIntrinsicID()) {
6730   case Intrinsic::ctpop:
6731   case Intrinsic::ctlz:
6732   case Intrinsic::cttz:
6733     // Maximum of set/clear bits is the bit width.
6734     assert(Lower == 0 && "Expected lower bound to be zero");
6735     Upper = Width + 1;
6736     break;
6737   case Intrinsic::uadd_sat:
6738     // uadd.sat(x, C) produces [C, UINT_MAX].
6739     if (match(II.getOperand(0), m_APInt(C)) ||
6740         match(II.getOperand(1), m_APInt(C)))
6741       Lower = *C;
6742     break;
6743   case Intrinsic::sadd_sat:
6744     if (match(II.getOperand(0), m_APInt(C)) ||
6745         match(II.getOperand(1), m_APInt(C))) {
6746       if (C->isNegative()) {
6747         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6748         Lower = APInt::getSignedMinValue(Width);
6749         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6750       } else {
6751         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6752         Lower = APInt::getSignedMinValue(Width) + *C;
6753         Upper = APInt::getSignedMaxValue(Width) + 1;
6754       }
6755     }
6756     break;
6757   case Intrinsic::usub_sat:
6758     // usub.sat(C, x) produces [0, C].
6759     if (match(II.getOperand(0), m_APInt(C)))
6760       Upper = *C + 1;
6761     // usub.sat(x, C) produces [0, UINT_MAX - C].
6762     else if (match(II.getOperand(1), m_APInt(C)))
6763       Upper = APInt::getMaxValue(Width) - *C + 1;
6764     break;
6765   case Intrinsic::ssub_sat:
6766     if (match(II.getOperand(0), m_APInt(C))) {
6767       if (C->isNegative()) {
6768         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6769         Lower = APInt::getSignedMinValue(Width);
6770         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6771       } else {
6772         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6773         Lower = *C - APInt::getSignedMaxValue(Width);
6774         Upper = APInt::getSignedMaxValue(Width) + 1;
6775       }
6776     } else if (match(II.getOperand(1), m_APInt(C))) {
6777       if (C->isNegative()) {
6778         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6779         Lower = APInt::getSignedMinValue(Width) - *C;
6780         Upper = APInt::getSignedMaxValue(Width) + 1;
6781       } else {
6782         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6783         Lower = APInt::getSignedMinValue(Width);
6784         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6785       }
6786     }
6787     break;
6788   case Intrinsic::umin:
6789   case Intrinsic::umax:
6790   case Intrinsic::smin:
6791   case Intrinsic::smax:
6792     if (!match(II.getOperand(0), m_APInt(C)) &&
6793         !match(II.getOperand(1), m_APInt(C)))
6794       break;
6795 
6796     switch (II.getIntrinsicID()) {
6797     case Intrinsic::umin:
6798       Upper = *C + 1;
6799       break;
6800     case Intrinsic::umax:
6801       Lower = *C;
6802       break;
6803     case Intrinsic::smin:
6804       Lower = APInt::getSignedMinValue(Width);
6805       Upper = *C + 1;
6806       break;
6807     case Intrinsic::smax:
6808       Lower = *C;
6809       Upper = APInt::getSignedMaxValue(Width) + 1;
6810       break;
6811     default:
6812       llvm_unreachable("Must be min/max intrinsic");
6813     }
6814     break;
6815   case Intrinsic::abs:
6816     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6817     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6818     if (match(II.getOperand(1), m_One()))
6819       Upper = APInt::getSignedMaxValue(Width) + 1;
6820     else
6821       Upper = APInt::getSignedMinValue(Width) + 1;
6822     break;
6823   default:
6824     break;
6825   }
6826 }
6827 
6828 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6829                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6830   const Value *LHS = nullptr, *RHS = nullptr;
6831   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6832   if (R.Flavor == SPF_UNKNOWN)
6833     return;
6834 
6835   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6836 
6837   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6838     // If the negation part of the abs (in RHS) has the NSW flag,
6839     // then the result of abs(X) is [0..SIGNED_MAX],
6840     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6841     Lower = APInt::getNullValue(BitWidth);
6842     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6843         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6844       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6845     else
6846       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6847     return;
6848   }
6849 
6850   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6851     // The result of -abs(X) is <= 0.
6852     Lower = APInt::getSignedMinValue(BitWidth);
6853     Upper = APInt(BitWidth, 1);
6854     return;
6855   }
6856 
6857   const APInt *C;
6858   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6859     return;
6860 
6861   switch (R.Flavor) {
6862     case SPF_UMIN:
6863       Upper = *C + 1;
6864       break;
6865     case SPF_UMAX:
6866       Lower = *C;
6867       break;
6868     case SPF_SMIN:
6869       Lower = APInt::getSignedMinValue(BitWidth);
6870       Upper = *C + 1;
6871       break;
6872     case SPF_SMAX:
6873       Lower = *C;
6874       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6875       break;
6876     default:
6877       break;
6878   }
6879 }
6880 
6881 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6882                                          AssumptionCache *AC,
6883                                          const Instruction *CtxI,
6884                                          unsigned Depth) {
6885   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6886 
6887   if (Depth == MaxAnalysisRecursionDepth)
6888     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6889 
6890   const APInt *C;
6891   if (match(V, m_APInt(C)))
6892     return ConstantRange(*C);
6893 
6894   InstrInfoQuery IIQ(UseInstrInfo);
6895   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6896   APInt Lower = APInt(BitWidth, 0);
6897   APInt Upper = APInt(BitWidth, 0);
6898   if (auto *BO = dyn_cast<BinaryOperator>(V))
6899     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6900   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6901     setLimitsForIntrinsic(*II, Lower, Upper);
6902   else if (auto *SI = dyn_cast<SelectInst>(V))
6903     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6904 
6905   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6906 
6907   if (auto *I = dyn_cast<Instruction>(V))
6908     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6909       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6910 
6911   if (CtxI && AC) {
6912     // Try to restrict the range based on information from assumptions.
6913     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6914       if (!AssumeVH)
6915         continue;
6916       CallInst *I = cast<CallInst>(AssumeVH);
6917       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6918              "Got assumption for the wrong function!");
6919       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6920              "must be an assume intrinsic");
6921 
6922       if (!isValidAssumeForContext(I, CtxI, nullptr))
6923         continue;
6924       Value *Arg = I->getArgOperand(0);
6925       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6926       // Currently we just use information from comparisons.
6927       if (!Cmp || Cmp->getOperand(0) != V)
6928         continue;
6929       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6930                                                AC, I, Depth + 1);
6931       CR = CR.intersectWith(
6932           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6933     }
6934   }
6935 
6936   return CR;
6937 }
6938 
6939 static Optional<int64_t>
6940 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6941   // Skip over the first indices.
6942   gep_type_iterator GTI = gep_type_begin(GEP);
6943   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6944     /*skip along*/;
6945 
6946   // Compute the offset implied by the rest of the indices.
6947   int64_t Offset = 0;
6948   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6949     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6950     if (!OpC)
6951       return None;
6952     if (OpC->isZero())
6953       continue; // No offset.
6954 
6955     // Handle struct indices, which add their field offset to the pointer.
6956     if (StructType *STy = GTI.getStructTypeOrNull()) {
6957       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6958       continue;
6959     }
6960 
6961     // Otherwise, we have a sequential type like an array or fixed-length
6962     // vector. Multiply the index by the ElementSize.
6963     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6964     if (Size.isScalable())
6965       return None;
6966     Offset += Size.getFixedSize() * OpC->getSExtValue();
6967   }
6968 
6969   return Offset;
6970 }
6971 
6972 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6973                                         const DataLayout &DL) {
6974   Ptr1 = Ptr1->stripPointerCasts();
6975   Ptr2 = Ptr2->stripPointerCasts();
6976 
6977   // Handle the trivial case first.
6978   if (Ptr1 == Ptr2) {
6979     return 0;
6980   }
6981 
6982   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6983   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6984 
6985   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6986   // as in "P" and "gep P, 1".
6987   // Also do this iteratively to handle the the following case:
6988   //   Ptr_t1 = GEP Ptr1, c1
6989   //   Ptr_t2 = GEP Ptr_t1, c2
6990   //   Ptr2 = GEP Ptr_t2, c3
6991   // where we will return c1+c2+c3.
6992   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6993   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6994   // are the same, and return the difference between offsets.
6995   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6996                                  const Value *Ptr) -> Optional<int64_t> {
6997     const GEPOperator *GEP_T = GEP;
6998     int64_t OffsetVal = 0;
6999     bool HasSameBase = false;
7000     while (GEP_T) {
7001       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7002       if (!Offset)
7003         return None;
7004       OffsetVal += *Offset;
7005       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7006       if (Op0 == Ptr) {
7007         HasSameBase = true;
7008         break;
7009       }
7010       GEP_T = dyn_cast<GEPOperator>(Op0);
7011     }
7012     if (!HasSameBase)
7013       return None;
7014     return OffsetVal;
7015   };
7016 
7017   if (GEP1) {
7018     auto Offset = getOffsetFromBase(GEP1, Ptr2);
7019     if (Offset)
7020       return -*Offset;
7021   }
7022   if (GEP2) {
7023     auto Offset = getOffsetFromBase(GEP2, Ptr1);
7024     if (Offset)
7025       return Offset;
7026   }
7027 
7028   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7029   // base.  After that base, they may have some number of common (and
7030   // potentially variable) indices.  After that they handle some constant
7031   // offset, which determines their offset from each other.  At this point, we
7032   // handle no other case.
7033   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7034     return None;
7035 
7036   // Skip any common indices and track the GEP types.
7037   unsigned Idx = 1;
7038   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7039     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7040       break;
7041 
7042   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7043   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7044   if (!Offset1 || !Offset2)
7045     return None;
7046   return *Offset2 - *Offset1;
7047 }
7048