1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 if (DemandedElts.isNullValue()) 178 return true; 179 // Simple case of a shuffle with zeroinitializer. 180 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 181 DemandedLHS.setBit(0); 182 return true; 183 } 184 for (int i = 0; i != NumMaskElts; ++i) { 185 if (!DemandedElts[i]) 186 continue; 187 int M = Shuf->getMaskValue(i); 188 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 189 190 // For undef elements, we don't know anything about the common state of 191 // the shuffle result. 192 if (M == -1) 193 return false; 194 if (M < NumElts) 195 DemandedLHS.setBit(M % NumElts); 196 else 197 DemandedRHS.setBit(M % NumElts); 198 } 199 200 return true; 201 } 202 203 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 204 KnownBits &Known, unsigned Depth, const Query &Q); 205 206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 207 const Query &Q) { 208 Type *Ty = V->getType(); 209 APInt DemandedElts = Ty->isVectorTy() 210 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 211 : APInt(1, 1); 212 computeKnownBits(V, DemandedElts, Known, Depth, Q); 213 } 214 215 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 216 const DataLayout &DL, unsigned Depth, 217 AssumptionCache *AC, const Instruction *CxtI, 218 const DominatorTree *DT, 219 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 220 ::computeKnownBits(V, Known, Depth, 221 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 222 } 223 224 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 225 KnownBits &Known, const DataLayout &DL, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, DemandedElts, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 234 unsigned Depth, const Query &Q); 235 236 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 237 const Query &Q); 238 239 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 240 unsigned Depth, AssumptionCache *AC, 241 const Instruction *CxtI, 242 const DominatorTree *DT, 243 OptimizationRemarkEmitter *ORE, 244 bool UseInstrInfo) { 245 return ::computeKnownBits( 246 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 247 } 248 249 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 250 const DataLayout &DL, unsigned Depth, 251 AssumptionCache *AC, const Instruction *CxtI, 252 const DominatorTree *DT, 253 OptimizationRemarkEmitter *ORE, 254 bool UseInstrInfo) { 255 return ::computeKnownBits( 256 V, DemandedElts, Depth, 257 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 258 } 259 260 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 261 const DataLayout &DL, AssumptionCache *AC, 262 const Instruction *CxtI, const DominatorTree *DT, 263 bool UseInstrInfo) { 264 assert(LHS->getType() == RHS->getType() && 265 "LHS and RHS should have the same type"); 266 assert(LHS->getType()->isIntOrIntVectorTy() && 267 "LHS and RHS should be integers"); 268 // Look for an inverted mask: (X & ~M) op (Y & M). 269 Value *M; 270 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 271 match(RHS, m_c_And(m_Specific(M), m_Value()))) 272 return true; 273 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 274 match(LHS, m_c_And(m_Specific(M), m_Value()))) 275 return true; 276 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 277 KnownBits LHSKnown(IT->getBitWidth()); 278 KnownBits RHSKnown(IT->getBitWidth()); 279 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 280 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 281 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 282 } 283 284 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 285 for (const User *U : CxtI->users()) { 286 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 287 if (IC->isEquality()) 288 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 289 if (C->isNullValue()) 290 continue; 291 return false; 292 } 293 return true; 294 } 295 296 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 297 const Query &Q); 298 299 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 300 bool OrZero, unsigned Depth, 301 AssumptionCache *AC, const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::isKnownToBeAPowerOfTwo( 304 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 308 unsigned Depth, const Query &Q); 309 310 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 311 312 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 313 AssumptionCache *AC, const Instruction *CxtI, 314 const DominatorTree *DT, bool UseInstrInfo) { 315 return ::isKnownNonZero(V, Depth, 316 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 317 } 318 319 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 320 unsigned Depth, AssumptionCache *AC, 321 const Instruction *CxtI, const DominatorTree *DT, 322 bool UseInstrInfo) { 323 KnownBits Known = 324 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 325 return Known.isNonNegative(); 326 } 327 328 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 if (auto *CI = dyn_cast<ConstantInt>(V)) 332 return CI->getValue().isStrictlyPositive(); 333 334 // TODO: We'd doing two recursive queries here. We should factor this such 335 // that only a single query is needed. 336 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 337 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 338 } 339 340 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 341 AssumptionCache *AC, const Instruction *CxtI, 342 const DominatorTree *DT, bool UseInstrInfo) { 343 KnownBits Known = 344 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 345 return Known.isNegative(); 346 } 347 348 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 349 350 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 351 const DataLayout &DL, AssumptionCache *AC, 352 const Instruction *CxtI, const DominatorTree *DT, 353 bool UseInstrInfo) { 354 return ::isKnownNonEqual(V1, V2, 355 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 356 UseInstrInfo, /*ORE=*/nullptr)); 357 } 358 359 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 360 const Query &Q); 361 362 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 363 const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 return ::MaskedValueIsZero( 367 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 368 } 369 370 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 371 unsigned Depth, const Query &Q); 372 373 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 374 const Query &Q) { 375 Type *Ty = V->getType(); 376 APInt DemandedElts = Ty->isVectorTy() 377 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 378 : APInt(1, 1); 379 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 380 } 381 382 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 383 unsigned Depth, AssumptionCache *AC, 384 const Instruction *CxtI, 385 const DominatorTree *DT, bool UseInstrInfo) { 386 return ::ComputeNumSignBits( 387 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 388 } 389 390 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 391 bool NSW, const APInt &DemandedElts, 392 KnownBits &KnownOut, KnownBits &Known2, 393 unsigned Depth, const Query &Q) { 394 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 395 396 // If one operand is unknown and we have no nowrap information, 397 // the result will be unknown independently of the second operand. 398 if (KnownOut.isUnknown() && !NSW) 399 return; 400 401 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 402 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 403 } 404 405 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 406 const APInt &DemandedElts, KnownBits &Known, 407 KnownBits &Known2, unsigned Depth, 408 const Query &Q) { 409 unsigned BitWidth = Known.getBitWidth(); 410 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 413 bool isKnownNegative = false; 414 bool isKnownNonNegative = false; 415 // If the multiplication is known not to overflow, compute the sign bit. 416 if (NSW) { 417 if (Op0 == Op1) { 418 // The product of a number with itself is non-negative. 419 isKnownNonNegative = true; 420 } else { 421 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 422 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 423 bool isKnownNegativeOp1 = Known.isNegative(); 424 bool isKnownNegativeOp0 = Known2.isNegative(); 425 // The product of two numbers with the same sign is non-negative. 426 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 427 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 428 // The product of a negative number and a non-negative number is either 429 // negative or zero. 430 if (!isKnownNonNegative) 431 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 432 isKnownNonZero(Op0, Depth, Q)) || 433 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 434 isKnownNonZero(Op1, Depth, Q)); 435 } 436 } 437 438 assert(!Known.hasConflict() && !Known2.hasConflict()); 439 // Compute a conservative estimate for high known-0 bits. 440 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 441 Known2.countMinLeadingZeros(), 442 BitWidth) - BitWidth; 443 LeadZ = std::min(LeadZ, BitWidth); 444 445 // The result of the bottom bits of an integer multiply can be 446 // inferred by looking at the bottom bits of both operands and 447 // multiplying them together. 448 // We can infer at least the minimum number of known trailing bits 449 // of both operands. Depending on number of trailing zeros, we can 450 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 451 // a and b are divisible by m and n respectively. 452 // We then calculate how many of those bits are inferrable and set 453 // the output. For example, the i8 mul: 454 // a = XXXX1100 (12) 455 // b = XXXX1110 (14) 456 // We know the bottom 3 bits are zero since the first can be divided by 457 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 458 // Applying the multiplication to the trimmed arguments gets: 459 // XX11 (3) 460 // X111 (7) 461 // ------- 462 // XX11 463 // XX11 464 // XX11 465 // XX11 466 // ------- 467 // XXXXX01 468 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 469 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 470 // The proof for this can be described as: 471 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 472 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 473 // umin(countTrailingZeros(C2), C6) + 474 // umin(C5 - umin(countTrailingZeros(C1), C5), 475 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 476 // %aa = shl i8 %a, C5 477 // %bb = shl i8 %b, C6 478 // %aaa = or i8 %aa, C1 479 // %bbb = or i8 %bb, C2 480 // %mul = mul i8 %aaa, %bbb 481 // %mask = and i8 %mul, C7 482 // => 483 // %mask = i8 ((C1*C2)&C7) 484 // Where C5, C6 describe the known bits of %a, %b 485 // C1, C2 describe the known bottom bits of %a, %b. 486 // C7 describes the mask of the known bits of the result. 487 APInt Bottom0 = Known.One; 488 APInt Bottom1 = Known2.One; 489 490 // How many times we'd be able to divide each argument by 2 (shr by 1). 491 // This gives us the number of trailing zeros on the multiplication result. 492 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 493 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 494 unsigned TrailZero0 = Known.countMinTrailingZeros(); 495 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 496 unsigned TrailZ = TrailZero0 + TrailZero1; 497 498 // Figure out the fewest known-bits operand. 499 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 500 TrailBitsKnown1 - TrailZero1); 501 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 502 503 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 504 Bottom1.getLoBits(TrailBitsKnown1); 505 506 Known.resetAll(); 507 Known.Zero.setHighBits(LeadZ); 508 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 509 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 510 511 // Only make use of no-wrap flags if we failed to compute the sign bit 512 // directly. This matters if the multiplication always overflows, in 513 // which case we prefer to follow the result of the direct computation, 514 // though as the program is invoking undefined behaviour we can choose 515 // whatever we like here. 516 if (isKnownNonNegative && !Known.isNegative()) 517 Known.makeNonNegative(); 518 else if (isKnownNegative && !Known.isNonNegative()) 519 Known.makeNegative(); 520 } 521 522 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 523 KnownBits &Known) { 524 unsigned BitWidth = Known.getBitWidth(); 525 unsigned NumRanges = Ranges.getNumOperands() / 2; 526 assert(NumRanges >= 1); 527 528 Known.Zero.setAllBits(); 529 Known.One.setAllBits(); 530 531 for (unsigned i = 0; i < NumRanges; ++i) { 532 ConstantInt *Lower = 533 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 534 ConstantInt *Upper = 535 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 536 ConstantRange Range(Lower->getValue(), Upper->getValue()); 537 538 // The first CommonPrefixBits of all values in Range are equal. 539 unsigned CommonPrefixBits = 540 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 541 542 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 543 Known.One &= Range.getUnsignedMax() & Mask; 544 Known.Zero &= ~Range.getUnsignedMax() & Mask; 545 } 546 } 547 548 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 549 SmallVector<const Value *, 16> WorkSet(1, I); 550 SmallPtrSet<const Value *, 32> Visited; 551 SmallPtrSet<const Value *, 16> EphValues; 552 553 // The instruction defining an assumption's condition itself is always 554 // considered ephemeral to that assumption (even if it has other 555 // non-ephemeral users). See r246696's test case for an example. 556 if (is_contained(I->operands(), E)) 557 return true; 558 559 while (!WorkSet.empty()) { 560 const Value *V = WorkSet.pop_back_val(); 561 if (!Visited.insert(V).second) 562 continue; 563 564 // If all uses of this value are ephemeral, then so is this value. 565 if (llvm::all_of(V->users(), [&](const User *U) { 566 return EphValues.count(U); 567 })) { 568 if (V == E) 569 return true; 570 571 if (V == I || isSafeToSpeculativelyExecute(V)) { 572 EphValues.insert(V); 573 if (const User *U = dyn_cast<User>(V)) 574 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 575 J != JE; ++J) 576 WorkSet.push_back(*J); 577 } 578 } 579 } 580 581 return false; 582 } 583 584 // Is this an intrinsic that cannot be speculated but also cannot trap? 585 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 586 if (const CallInst *CI = dyn_cast<CallInst>(I)) 587 if (Function *F = CI->getCalledFunction()) 588 switch (F->getIntrinsicID()) { 589 default: break; 590 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 591 case Intrinsic::assume: 592 case Intrinsic::sideeffect: 593 case Intrinsic::dbg_declare: 594 case Intrinsic::dbg_value: 595 case Intrinsic::dbg_label: 596 case Intrinsic::invariant_start: 597 case Intrinsic::invariant_end: 598 case Intrinsic::lifetime_start: 599 case Intrinsic::lifetime_end: 600 case Intrinsic::objectsize: 601 case Intrinsic::ptr_annotation: 602 case Intrinsic::var_annotation: 603 return true; 604 } 605 606 return false; 607 } 608 609 bool llvm::isValidAssumeForContext(const Instruction *Inv, 610 const Instruction *CxtI, 611 const DominatorTree *DT) { 612 // There are two restrictions on the use of an assume: 613 // 1. The assume must dominate the context (or the control flow must 614 // reach the assume whenever it reaches the context). 615 // 2. The context must not be in the assume's set of ephemeral values 616 // (otherwise we will use the assume to prove that the condition 617 // feeding the assume is trivially true, thus causing the removal of 618 // the assume). 619 620 if (DT) { 621 if (DT->dominates(Inv, CxtI)) 622 return true; 623 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 624 // We don't have a DT, but this trivially dominates. 625 return true; 626 } 627 628 // With or without a DT, the only remaining case we will check is if the 629 // instructions are in the same BB. Give up if that is not the case. 630 if (Inv->getParent() != CxtI->getParent()) 631 return false; 632 633 // If we have a dom tree, then we now know that the assume doesn't dominate 634 // the other instruction. If we don't have a dom tree then we can check if 635 // the assume is first in the BB. 636 if (!DT) { 637 // Search forward from the assume until we reach the context (or the end 638 // of the block); the common case is that the assume will come first. 639 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 640 IE = Inv->getParent()->end(); I != IE; ++I) 641 if (&*I == CxtI) 642 return true; 643 } 644 645 // Don't let an assume affect itself - this would cause the problems 646 // `isEphemeralValueOf` is trying to prevent, and it would also make 647 // the loop below go out of bounds. 648 if (Inv == CxtI) 649 return false; 650 651 // The context comes first, but they're both in the same block. 652 // Make sure there is nothing in between that might interrupt 653 // the control flow, not even CxtI itself. 654 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 655 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 656 return false; 657 658 return !isEphemeralValueOf(Inv, CxtI); 659 } 660 661 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 662 // Use of assumptions is context-sensitive. If we don't have a context, we 663 // cannot use them! 664 if (!Q.AC || !Q.CxtI) 665 return false; 666 667 // Note that the patterns below need to be kept in sync with the code 668 // in AssumptionCache::updateAffectedValues. 669 670 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 671 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 672 673 Value *RHS; 674 CmpInst::Predicate Pred; 675 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 676 return false; 677 // assume(v u> y) -> assume(v != 0) 678 if (Pred == ICmpInst::ICMP_UGT) 679 return true; 680 681 // assume(v != 0) 682 // We special-case this one to ensure that we handle `assume(v != null)`. 683 if (Pred == ICmpInst::ICMP_NE) 684 return match(RHS, m_Zero()); 685 686 // All other predicates - rely on generic ConstantRange handling. 687 ConstantInt *CI; 688 if (!match(RHS, m_ConstantInt(CI))) 689 return false; 690 ConstantRange RHSRange(CI->getValue()); 691 ConstantRange TrueValues = 692 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 693 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 694 }; 695 696 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 697 if (!AssumeVH) 698 continue; 699 CallInst *I = cast<CallInst>(AssumeVH); 700 assert(I->getFunction() == Q.CxtI->getFunction() && 701 "Got assumption for the wrong function!"); 702 if (Q.isExcluded(I)) 703 continue; 704 705 // Warning: This loop can end up being somewhat performance sensitive. 706 // We're running this loop for once for each value queried resulting in a 707 // runtime of ~O(#assumes * #values). 708 709 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 710 "must be an assume intrinsic"); 711 712 Value *Arg = I->getArgOperand(0); 713 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 714 if (!Cmp) 715 continue; 716 717 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 718 return true; 719 } 720 721 return false; 722 } 723 724 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 725 unsigned Depth, const Query &Q) { 726 // Use of assumptions is context-sensitive. If we don't have a context, we 727 // cannot use them! 728 if (!Q.AC || !Q.CxtI) 729 return; 730 731 unsigned BitWidth = Known.getBitWidth(); 732 733 // Note that the patterns below need to be kept in sync with the code 734 // in AssumptionCache::updateAffectedValues. 735 736 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 737 if (!AssumeVH) 738 continue; 739 CallInst *I = cast<CallInst>(AssumeVH); 740 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 741 "Got assumption for the wrong function!"); 742 if (Q.isExcluded(I)) 743 continue; 744 745 // Warning: This loop can end up being somewhat performance sensitive. 746 // We're running this loop for once for each value queried resulting in a 747 // runtime of ~O(#assumes * #values). 748 749 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 750 "must be an assume intrinsic"); 751 752 Value *Arg = I->getArgOperand(0); 753 754 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 assert(BitWidth == 1 && "assume operand is not i1?"); 756 Known.setAllOnes(); 757 return; 758 } 759 if (match(Arg, m_Not(m_Specific(V))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 assert(BitWidth == 1 && "assume operand is not i1?"); 762 Known.setAllZero(); 763 return; 764 } 765 766 // The remaining tests are all recursive, so bail out if we hit the limit. 767 if (Depth == MaxDepth) 768 continue; 769 770 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 771 if (!Cmp) 772 continue; 773 774 Value *A, *B; 775 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 776 777 CmpInst::Predicate Pred; 778 uint64_t C; 779 switch (Cmp->getPredicate()) { 780 default: 781 break; 782 case ICmpInst::ICMP_EQ: 783 // assume(v = a) 784 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 785 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 786 KnownBits RHSKnown(BitWidth); 787 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 788 Known.Zero |= RHSKnown.Zero; 789 Known.One |= RHSKnown.One; 790 // assume(v & b = a) 791 } else if (match(Cmp, 792 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 794 KnownBits RHSKnown(BitWidth); 795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 796 KnownBits MaskKnown(BitWidth); 797 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 798 799 // For those bits in the mask that are known to be one, we can propagate 800 // known bits from the RHS to V. 801 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 802 Known.One |= RHSKnown.One & MaskKnown.One; 803 // assume(~(v & b) = a) 804 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 805 m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown(BitWidth); 808 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 809 KnownBits MaskKnown(BitWidth); 810 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // inverted known bits from the RHS to V. 814 Known.Zero |= RHSKnown.One & MaskKnown.One; 815 Known.One |= RHSKnown.Zero & MaskKnown.One; 816 // assume(v | b = a) 817 } else if (match(Cmp, 818 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown(BitWidth); 821 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 822 KnownBits BKnown(BitWidth); 823 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 824 825 // For those bits in B that are known to be zero, we can propagate known 826 // bits from the RHS to V. 827 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 828 Known.One |= RHSKnown.One & BKnown.Zero; 829 // assume(~(v | b) = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown(BitWidth); 834 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 835 KnownBits BKnown(BitWidth); 836 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 837 838 // For those bits in B that are known to be zero, we can propagate 839 // inverted known bits from the RHS to V. 840 Known.Zero |= RHSKnown.One & BKnown.Zero; 841 Known.One |= RHSKnown.Zero & BKnown.Zero; 842 // assume(v ^ b = a) 843 } else if (match(Cmp, 844 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown(BitWidth); 847 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 848 KnownBits BKnown(BitWidth); 849 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 850 851 // For those bits in B that are known to be zero, we can propagate known 852 // bits from the RHS to V. For those bits in B that are known to be one, 853 // we can propagate inverted known bits from the RHS to V. 854 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 855 Known.One |= RHSKnown.One & BKnown.Zero; 856 Known.Zero |= RHSKnown.One & BKnown.One; 857 Known.One |= RHSKnown.Zero & BKnown.One; 858 // assume(~(v ^ b) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 862 KnownBits RHSKnown(BitWidth); 863 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 864 KnownBits BKnown(BitWidth); 865 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 866 867 // For those bits in B that are known to be zero, we can propagate 868 // inverted known bits from the RHS to V. For those bits in B that are 869 // known to be one, we can propagate known bits from the RHS to V. 870 Known.Zero |= RHSKnown.One & BKnown.Zero; 871 Known.One |= RHSKnown.Zero & BKnown.Zero; 872 Known.Zero |= RHSKnown.Zero & BKnown.One; 873 Known.One |= RHSKnown.One & BKnown.One; 874 // assume(v << c = a) 875 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 876 m_Value(A))) && 877 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 878 KnownBits RHSKnown(BitWidth); 879 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 880 // For those bits in RHS that are known, we can propagate them to known 881 // bits in V shifted to the right by C. 882 RHSKnown.Zero.lshrInPlace(C); 883 Known.Zero |= RHSKnown.Zero; 884 RHSKnown.One.lshrInPlace(C); 885 Known.One |= RHSKnown.One; 886 // assume(~(v << c) = a) 887 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 888 m_Value(A))) && 889 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 890 KnownBits RHSKnown(BitWidth); 891 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 892 // For those bits in RHS that are known, we can propagate them inverted 893 // to known bits in V shifted to the right by C. 894 RHSKnown.One.lshrInPlace(C); 895 Known.Zero |= RHSKnown.One; 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.One |= RHSKnown.Zero; 898 // assume(v >> c = a) 899 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 900 m_Value(A))) && 901 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 902 KnownBits RHSKnown(BitWidth); 903 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 904 // For those bits in RHS that are known, we can propagate them to known 905 // bits in V shifted to the right by C. 906 Known.Zero |= RHSKnown.Zero << C; 907 Known.One |= RHSKnown.One << C; 908 // assume(~(v >> c) = a) 909 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 910 m_Value(A))) && 911 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 912 KnownBits RHSKnown(BitWidth); 913 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 914 // For those bits in RHS that are known, we can propagate them inverted 915 // to known bits in V shifted to the right by C. 916 Known.Zero |= RHSKnown.One << C; 917 Known.One |= RHSKnown.Zero << C; 918 } 919 break; 920 case ICmpInst::ICMP_SGE: 921 // assume(v >=_s c) where c is non-negative 922 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 923 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 924 KnownBits RHSKnown(BitWidth); 925 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 926 927 if (RHSKnown.isNonNegative()) { 928 // We know that the sign bit is zero. 929 Known.makeNonNegative(); 930 } 931 } 932 break; 933 case ICmpInst::ICMP_SGT: 934 // assume(v >_s c) where c is at least -1. 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown(BitWidth); 938 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 939 940 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 941 // We know that the sign bit is zero. 942 Known.makeNonNegative(); 943 } 944 } 945 break; 946 case ICmpInst::ICMP_SLE: 947 // assume(v <=_s c) where c is negative 948 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 949 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 950 KnownBits RHSKnown(BitWidth); 951 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 952 953 if (RHSKnown.isNegative()) { 954 // We know that the sign bit is one. 955 Known.makeNegative(); 956 } 957 } 958 break; 959 case ICmpInst::ICMP_SLT: 960 // assume(v <_s c) where c is non-positive 961 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 962 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 963 KnownBits RHSKnown(BitWidth); 964 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 965 966 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 967 // We know that the sign bit is one. 968 Known.makeNegative(); 969 } 970 } 971 break; 972 case ICmpInst::ICMP_ULE: 973 // assume(v <=_u c) 974 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 975 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 976 KnownBits RHSKnown(BitWidth); 977 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 978 979 // Whatever high bits in c are zero are known to be zero. 980 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 981 } 982 break; 983 case ICmpInst::ICMP_ULT: 984 // assume(v <_u c) 985 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 986 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 987 KnownBits RHSKnown(BitWidth); 988 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 989 990 // If the RHS is known zero, then this assumption must be wrong (nothing 991 // is unsigned less than zero). Signal a conflict and get out of here. 992 if (RHSKnown.isZero()) { 993 Known.Zero.setAllBits(); 994 Known.One.setAllBits(); 995 break; 996 } 997 998 // Whatever high bits in c are zero are known to be zero (if c is a power 999 // of 2, then one more). 1000 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1001 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1002 else 1003 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1004 } 1005 break; 1006 } 1007 } 1008 1009 // If assumptions conflict with each other or previous known bits, then we 1010 // have a logical fallacy. It's possible that the assumption is not reachable, 1011 // so this isn't a real bug. On the other hand, the program may have undefined 1012 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1013 // clear out the known bits, try to warn the user, and hope for the best. 1014 if (Known.Zero.intersects(Known.One)) { 1015 Known.resetAll(); 1016 1017 if (Q.ORE) 1018 Q.ORE->emit([&]() { 1019 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1020 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1021 CxtI) 1022 << "Detected conflicting code assumptions. Program may " 1023 "have undefined behavior, or compiler may have " 1024 "internal error."; 1025 }); 1026 } 1027 } 1028 1029 /// Compute known bits from a shift operator, including those with a 1030 /// non-constant shift amount. Known is the output of this function. Known2 is a 1031 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1032 /// operator-specific functions that, given the known-zero or known-one bits 1033 /// respectively, and a shift amount, compute the implied known-zero or 1034 /// known-one bits of the shift operator's result respectively for that shift 1035 /// amount. The results from calling KZF and KOF are conservatively combined for 1036 /// all permitted shift amounts. 1037 static void computeKnownBitsFromShiftOperator( 1038 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1039 KnownBits &Known2, unsigned Depth, const Query &Q, 1040 function_ref<APInt(const APInt &, unsigned)> KZF, 1041 function_ref<APInt(const APInt &, unsigned)> KOF) { 1042 unsigned BitWidth = Known.getBitWidth(); 1043 1044 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1045 if (Known.isConstant()) { 1046 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1047 1048 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1049 Known.Zero = KZF(Known.Zero, ShiftAmt); 1050 Known.One = KOF(Known.One, ShiftAmt); 1051 // If the known bits conflict, this must be an overflowing left shift, so 1052 // the shift result is poison. We can return anything we want. Choose 0 for 1053 // the best folding opportunity. 1054 if (Known.hasConflict()) 1055 Known.setAllZero(); 1056 1057 return; 1058 } 1059 1060 // If the shift amount could be greater than or equal to the bit-width of the 1061 // LHS, the value could be poison, but bail out because the check below is 1062 // expensive. 1063 // TODO: Should we just carry on? 1064 if (Known.getMaxValue().uge(BitWidth)) { 1065 Known.resetAll(); 1066 return; 1067 } 1068 1069 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1070 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1071 // limit value (which implies all bits are known). 1072 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1073 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1074 1075 // It would be more-clearly correct to use the two temporaries for this 1076 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1077 Known.resetAll(); 1078 1079 // If we know the shifter operand is nonzero, we can sometimes infer more 1080 // known bits. However this is expensive to compute, so be lazy about it and 1081 // only compute it when absolutely necessary. 1082 Optional<bool> ShifterOperandIsNonZero; 1083 1084 // Early exit if we can't constrain any well-defined shift amount. 1085 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1086 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1087 ShifterOperandIsNonZero = 1088 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1089 if (!*ShifterOperandIsNonZero) 1090 return; 1091 } 1092 1093 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1094 1095 Known.Zero.setAllBits(); 1096 Known.One.setAllBits(); 1097 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1098 // Combine the shifted known input bits only for those shift amounts 1099 // compatible with its known constraints. 1100 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1101 continue; 1102 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1103 continue; 1104 // If we know the shifter is nonzero, we may be able to infer more known 1105 // bits. This check is sunk down as far as possible to avoid the expensive 1106 // call to isKnownNonZero if the cheaper checks above fail. 1107 if (ShiftAmt == 0) { 1108 if (!ShifterOperandIsNonZero.hasValue()) 1109 ShifterOperandIsNonZero = 1110 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1111 if (*ShifterOperandIsNonZero) 1112 continue; 1113 } 1114 1115 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1116 Known.One &= KOF(Known2.One, ShiftAmt); 1117 } 1118 1119 // If the known bits conflict, the result is poison. Return a 0 and hope the 1120 // caller can further optimize that. 1121 if (Known.hasConflict()) 1122 Known.setAllZero(); 1123 } 1124 1125 static void computeKnownBitsFromOperator(const Operator *I, 1126 const APInt &DemandedElts, 1127 KnownBits &Known, unsigned Depth, 1128 const Query &Q) { 1129 unsigned BitWidth = Known.getBitWidth(); 1130 1131 KnownBits Known2(Known); 1132 switch (I->getOpcode()) { 1133 default: break; 1134 case Instruction::Load: 1135 if (MDNode *MD = 1136 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1137 computeKnownBitsFromRangeMetadata(*MD, Known); 1138 break; 1139 case Instruction::And: { 1140 // If either the LHS or the RHS are Zero, the result is zero. 1141 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1142 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1143 1144 // Output known-1 bits are only known if set in both the LHS & RHS. 1145 Known.One &= Known2.One; 1146 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1147 Known.Zero |= Known2.Zero; 1148 1149 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1150 // here we handle the more general case of adding any odd number by 1151 // matching the form add(x, add(x, y)) where y is odd. 1152 // TODO: This could be generalized to clearing any bit set in y where the 1153 // following bit is known to be unset in y. 1154 Value *X = nullptr, *Y = nullptr; 1155 if (!Known.Zero[0] && !Known.One[0] && 1156 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1157 Known2.resetAll(); 1158 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1159 if (Known2.countMinTrailingOnes() > 0) 1160 Known.Zero.setBit(0); 1161 } 1162 break; 1163 } 1164 case Instruction::Or: 1165 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1166 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1167 1168 // Output known-0 bits are only known if clear in both the LHS & RHS. 1169 Known.Zero &= Known2.Zero; 1170 // Output known-1 are known to be set if set in either the LHS | RHS. 1171 Known.One |= Known2.One; 1172 break; 1173 case Instruction::Xor: { 1174 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1175 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1176 1177 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1178 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1179 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1180 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1181 Known.Zero = std::move(KnownZeroOut); 1182 break; 1183 } 1184 case Instruction::Mul: { 1185 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1186 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1187 Known, Known2, Depth, Q); 1188 break; 1189 } 1190 case Instruction::UDiv: { 1191 // For the purposes of computing leading zeros we can conservatively 1192 // treat a udiv as a logical right shift by the power of 2 known to 1193 // be less than the denominator. 1194 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1195 unsigned LeadZ = Known2.countMinLeadingZeros(); 1196 1197 Known2.resetAll(); 1198 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1199 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1200 if (RHSMaxLeadingZeros != BitWidth) 1201 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1202 1203 Known.Zero.setHighBits(LeadZ); 1204 break; 1205 } 1206 case Instruction::Select: { 1207 const Value *LHS = nullptr, *RHS = nullptr; 1208 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1209 if (SelectPatternResult::isMinOrMax(SPF)) { 1210 computeKnownBits(RHS, Known, Depth + 1, Q); 1211 computeKnownBits(LHS, Known2, Depth + 1, Q); 1212 } else { 1213 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1214 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1215 } 1216 1217 unsigned MaxHighOnes = 0; 1218 unsigned MaxHighZeros = 0; 1219 if (SPF == SPF_SMAX) { 1220 // If both sides are negative, the result is negative. 1221 if (Known.isNegative() && Known2.isNegative()) 1222 // We can derive a lower bound on the result by taking the max of the 1223 // leading one bits. 1224 MaxHighOnes = 1225 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1226 // If either side is non-negative, the result is non-negative. 1227 else if (Known.isNonNegative() || Known2.isNonNegative()) 1228 MaxHighZeros = 1; 1229 } else if (SPF == SPF_SMIN) { 1230 // If both sides are non-negative, the result is non-negative. 1231 if (Known.isNonNegative() && Known2.isNonNegative()) 1232 // We can derive an upper bound on the result by taking the max of the 1233 // leading zero bits. 1234 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1235 Known2.countMinLeadingZeros()); 1236 // If either side is negative, the result is negative. 1237 else if (Known.isNegative() || Known2.isNegative()) 1238 MaxHighOnes = 1; 1239 } else if (SPF == SPF_UMAX) { 1240 // We can derive a lower bound on the result by taking the max of the 1241 // leading one bits. 1242 MaxHighOnes = 1243 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1244 } else if (SPF == SPF_UMIN) { 1245 // We can derive an upper bound on the result by taking the max of the 1246 // leading zero bits. 1247 MaxHighZeros = 1248 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1249 } else if (SPF == SPF_ABS) { 1250 // RHS from matchSelectPattern returns the negation part of abs pattern. 1251 // If the negate has an NSW flag we can assume the sign bit of the result 1252 // will be 0 because that makes abs(INT_MIN) undefined. 1253 if (match(RHS, m_Neg(m_Specific(LHS))) && 1254 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1255 MaxHighZeros = 1; 1256 } 1257 1258 // Only known if known in both the LHS and RHS. 1259 Known.One &= Known2.One; 1260 Known.Zero &= Known2.Zero; 1261 if (MaxHighOnes > 0) 1262 Known.One.setHighBits(MaxHighOnes); 1263 if (MaxHighZeros > 0) 1264 Known.Zero.setHighBits(MaxHighZeros); 1265 break; 1266 } 1267 case Instruction::FPTrunc: 1268 case Instruction::FPExt: 1269 case Instruction::FPToUI: 1270 case Instruction::FPToSI: 1271 case Instruction::SIToFP: 1272 case Instruction::UIToFP: 1273 break; // Can't work with floating point. 1274 case Instruction::PtrToInt: 1275 case Instruction::IntToPtr: 1276 // Fall through and handle them the same as zext/trunc. 1277 LLVM_FALLTHROUGH; 1278 case Instruction::ZExt: 1279 case Instruction::Trunc: { 1280 Type *SrcTy = I->getOperand(0)->getType(); 1281 1282 unsigned SrcBitWidth; 1283 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1284 // which fall through here. 1285 Type *ScalarTy = SrcTy->getScalarType(); 1286 SrcBitWidth = ScalarTy->isPointerTy() ? 1287 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1288 Q.DL.getTypeSizeInBits(ScalarTy); 1289 1290 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1291 Known = Known.anyextOrTrunc(SrcBitWidth); 1292 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1293 Known = Known.zextOrTrunc(BitWidth); 1294 break; 1295 } 1296 case Instruction::BitCast: { 1297 Type *SrcTy = I->getOperand(0)->getType(); 1298 if (SrcTy->isIntOrPtrTy() && 1299 // TODO: For now, not handling conversions like: 1300 // (bitcast i64 %x to <2 x i32>) 1301 !I->getType()->isVectorTy()) { 1302 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1303 break; 1304 } 1305 break; 1306 } 1307 case Instruction::SExt: { 1308 // Compute the bits in the result that are not present in the input. 1309 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1310 1311 Known = Known.trunc(SrcBitWidth); 1312 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1313 // If the sign bit of the input is known set or clear, then we know the 1314 // top bits of the result. 1315 Known = Known.sext(BitWidth); 1316 break; 1317 } 1318 case Instruction::Shl: { 1319 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1320 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1321 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1322 APInt KZResult = KnownZero << ShiftAmt; 1323 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1324 // If this shift has "nsw" keyword, then the result is either a poison 1325 // value or has the same sign bit as the first operand. 1326 if (NSW && KnownZero.isSignBitSet()) 1327 KZResult.setSignBit(); 1328 return KZResult; 1329 }; 1330 1331 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1332 APInt KOResult = KnownOne << ShiftAmt; 1333 if (NSW && KnownOne.isSignBitSet()) 1334 KOResult.setSignBit(); 1335 return KOResult; 1336 }; 1337 1338 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1339 KZF, KOF); 1340 break; 1341 } 1342 case Instruction::LShr: { 1343 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1344 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1345 APInt KZResult = KnownZero.lshr(ShiftAmt); 1346 // High bits known zero. 1347 KZResult.setHighBits(ShiftAmt); 1348 return KZResult; 1349 }; 1350 1351 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1352 return KnownOne.lshr(ShiftAmt); 1353 }; 1354 1355 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1356 KZF, KOF); 1357 break; 1358 } 1359 case Instruction::AShr: { 1360 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1361 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1362 return KnownZero.ashr(ShiftAmt); 1363 }; 1364 1365 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1366 return KnownOne.ashr(ShiftAmt); 1367 }; 1368 1369 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1370 KZF, KOF); 1371 break; 1372 } 1373 case Instruction::Sub: { 1374 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1375 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1376 DemandedElts, Known, Known2, Depth, Q); 1377 break; 1378 } 1379 case Instruction::Add: { 1380 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1381 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1382 DemandedElts, Known, Known2, Depth, Q); 1383 break; 1384 } 1385 case Instruction::SRem: 1386 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1387 APInt RA = Rem->getValue().abs(); 1388 if (RA.isPowerOf2()) { 1389 APInt LowBits = RA - 1; 1390 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1391 1392 // The low bits of the first operand are unchanged by the srem. 1393 Known.Zero = Known2.Zero & LowBits; 1394 Known.One = Known2.One & LowBits; 1395 1396 // If the first operand is non-negative or has all low bits zero, then 1397 // the upper bits are all zero. 1398 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1399 Known.Zero |= ~LowBits; 1400 1401 // If the first operand is negative and not all low bits are zero, then 1402 // the upper bits are all one. 1403 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1404 Known.One |= ~LowBits; 1405 1406 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1407 break; 1408 } 1409 } 1410 1411 // The sign bit is the LHS's sign bit, except when the result of the 1412 // remainder is zero. 1413 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1414 // If it's known zero, our sign bit is also zero. 1415 if (Known2.isNonNegative()) 1416 Known.makeNonNegative(); 1417 1418 break; 1419 case Instruction::URem: { 1420 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1421 const APInt &RA = Rem->getValue(); 1422 if (RA.isPowerOf2()) { 1423 APInt LowBits = (RA - 1); 1424 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1425 Known.Zero |= ~LowBits; 1426 Known.One &= LowBits; 1427 break; 1428 } 1429 } 1430 1431 // Since the result is less than or equal to either operand, any leading 1432 // zero bits in either operand must also exist in the result. 1433 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1434 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1435 1436 unsigned Leaders = 1437 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1438 Known.resetAll(); 1439 Known.Zero.setHighBits(Leaders); 1440 break; 1441 } 1442 1443 case Instruction::Alloca: { 1444 const AllocaInst *AI = cast<AllocaInst>(I); 1445 unsigned Align = AI->getAlignment(); 1446 if (Align == 0) 1447 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1448 1449 if (Align > 0) 1450 Known.Zero.setLowBits(countTrailingZeros(Align)); 1451 break; 1452 } 1453 case Instruction::GetElementPtr: { 1454 // Analyze all of the subscripts of this getelementptr instruction 1455 // to determine if we can prove known low zero bits. 1456 KnownBits LocalKnown(BitWidth); 1457 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1458 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1459 1460 gep_type_iterator GTI = gep_type_begin(I); 1461 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1462 Value *Index = I->getOperand(i); 1463 if (StructType *STy = GTI.getStructTypeOrNull()) { 1464 // Handle struct member offset arithmetic. 1465 1466 // Handle case when index is vector zeroinitializer 1467 Constant *CIndex = cast<Constant>(Index); 1468 if (CIndex->isZeroValue()) 1469 continue; 1470 1471 if (CIndex->getType()->isVectorTy()) 1472 Index = CIndex->getSplatValue(); 1473 1474 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1475 const StructLayout *SL = Q.DL.getStructLayout(STy); 1476 uint64_t Offset = SL->getElementOffset(Idx); 1477 TrailZ = std::min<unsigned>(TrailZ, 1478 countTrailingZeros(Offset)); 1479 } else { 1480 // Handle array index arithmetic. 1481 Type *IndexedTy = GTI.getIndexedType(); 1482 if (!IndexedTy->isSized()) { 1483 TrailZ = 0; 1484 break; 1485 } 1486 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1487 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1488 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1489 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1490 TrailZ = std::min(TrailZ, 1491 unsigned(countTrailingZeros(TypeSize) + 1492 LocalKnown.countMinTrailingZeros())); 1493 } 1494 } 1495 1496 Known.Zero.setLowBits(TrailZ); 1497 break; 1498 } 1499 case Instruction::PHI: { 1500 const PHINode *P = cast<PHINode>(I); 1501 // Handle the case of a simple two-predecessor recurrence PHI. 1502 // There's a lot more that could theoretically be done here, but 1503 // this is sufficient to catch some interesting cases. 1504 if (P->getNumIncomingValues() == 2) { 1505 for (unsigned i = 0; i != 2; ++i) { 1506 Value *L = P->getIncomingValue(i); 1507 Value *R = P->getIncomingValue(!i); 1508 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1509 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1510 Operator *LU = dyn_cast<Operator>(L); 1511 if (!LU) 1512 continue; 1513 unsigned Opcode = LU->getOpcode(); 1514 // Check for operations that have the property that if 1515 // both their operands have low zero bits, the result 1516 // will have low zero bits. 1517 if (Opcode == Instruction::Add || 1518 Opcode == Instruction::Sub || 1519 Opcode == Instruction::And || 1520 Opcode == Instruction::Or || 1521 Opcode == Instruction::Mul) { 1522 Value *LL = LU->getOperand(0); 1523 Value *LR = LU->getOperand(1); 1524 // Find a recurrence. 1525 if (LL == I) 1526 L = LR; 1527 else if (LR == I) 1528 L = LL; 1529 else 1530 continue; // Check for recurrence with L and R flipped. 1531 1532 // Change the context instruction to the "edge" that flows into the 1533 // phi. This is important because that is where the value is actually 1534 // "evaluated" even though it is used later somewhere else. (see also 1535 // D69571). 1536 Query RecQ = Q; 1537 1538 // Ok, we have a PHI of the form L op= R. Check for low 1539 // zero bits. 1540 RecQ.CxtI = RInst; 1541 computeKnownBits(R, Known2, Depth + 1, RecQ); 1542 1543 // We need to take the minimum number of known bits 1544 KnownBits Known3(Known); 1545 RecQ.CxtI = LInst; 1546 computeKnownBits(L, Known3, Depth + 1, RecQ); 1547 1548 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1549 Known3.countMinTrailingZeros())); 1550 1551 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1552 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1553 // If initial value of recurrence is nonnegative, and we are adding 1554 // a nonnegative number with nsw, the result can only be nonnegative 1555 // or poison value regardless of the number of times we execute the 1556 // add in phi recurrence. If initial value is negative and we are 1557 // adding a negative number with nsw, the result can only be 1558 // negative or poison value. Similar arguments apply to sub and mul. 1559 // 1560 // (add non-negative, non-negative) --> non-negative 1561 // (add negative, negative) --> negative 1562 if (Opcode == Instruction::Add) { 1563 if (Known2.isNonNegative() && Known3.isNonNegative()) 1564 Known.makeNonNegative(); 1565 else if (Known2.isNegative() && Known3.isNegative()) 1566 Known.makeNegative(); 1567 } 1568 1569 // (sub nsw non-negative, negative) --> non-negative 1570 // (sub nsw negative, non-negative) --> negative 1571 else if (Opcode == Instruction::Sub && LL == I) { 1572 if (Known2.isNonNegative() && Known3.isNegative()) 1573 Known.makeNonNegative(); 1574 else if (Known2.isNegative() && Known3.isNonNegative()) 1575 Known.makeNegative(); 1576 } 1577 1578 // (mul nsw non-negative, non-negative) --> non-negative 1579 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1580 Known3.isNonNegative()) 1581 Known.makeNonNegative(); 1582 } 1583 1584 break; 1585 } 1586 } 1587 } 1588 1589 // Unreachable blocks may have zero-operand PHI nodes. 1590 if (P->getNumIncomingValues() == 0) 1591 break; 1592 1593 // Otherwise take the unions of the known bit sets of the operands, 1594 // taking conservative care to avoid excessive recursion. 1595 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1596 // Skip if every incoming value references to ourself. 1597 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1598 break; 1599 1600 Known.Zero.setAllBits(); 1601 Known.One.setAllBits(); 1602 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1603 Value *IncValue = P->getIncomingValue(u); 1604 // Skip direct self references. 1605 if (IncValue == P) continue; 1606 1607 // Change the context instruction to the "edge" that flows into the 1608 // phi. This is important because that is where the value is actually 1609 // "evaluated" even though it is used later somewhere else. (see also 1610 // D69571). 1611 Query RecQ = Q; 1612 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1613 1614 Known2 = KnownBits(BitWidth); 1615 // Recurse, but cap the recursion to one level, because we don't 1616 // want to waste time spinning around in loops. 1617 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1618 Known.Zero &= Known2.Zero; 1619 Known.One &= Known2.One; 1620 // If all bits have been ruled out, there's no need to check 1621 // more operands. 1622 if (!Known.Zero && !Known.One) 1623 break; 1624 } 1625 } 1626 break; 1627 } 1628 case Instruction::Call: 1629 case Instruction::Invoke: 1630 // If range metadata is attached to this call, set known bits from that, 1631 // and then intersect with known bits based on other properties of the 1632 // function. 1633 if (MDNode *MD = 1634 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1635 computeKnownBitsFromRangeMetadata(*MD, Known); 1636 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1637 computeKnownBits(RV, Known2, Depth + 1, Q); 1638 Known.Zero |= Known2.Zero; 1639 Known.One |= Known2.One; 1640 } 1641 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1642 switch (II->getIntrinsicID()) { 1643 default: break; 1644 case Intrinsic::bitreverse: 1645 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1646 Known.Zero |= Known2.Zero.reverseBits(); 1647 Known.One |= Known2.One.reverseBits(); 1648 break; 1649 case Intrinsic::bswap: 1650 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1651 Known.Zero |= Known2.Zero.byteSwap(); 1652 Known.One |= Known2.One.byteSwap(); 1653 break; 1654 case Intrinsic::ctlz: { 1655 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1656 // If we have a known 1, its position is our upper bound. 1657 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1658 // If this call is undefined for 0, the result will be less than 2^n. 1659 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1660 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1661 unsigned LowBits = Log2_32(PossibleLZ)+1; 1662 Known.Zero.setBitsFrom(LowBits); 1663 break; 1664 } 1665 case Intrinsic::cttz: { 1666 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1667 // If we have a known 1, its position is our upper bound. 1668 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1669 // If this call is undefined for 0, the result will be less than 2^n. 1670 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1671 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1672 unsigned LowBits = Log2_32(PossibleTZ)+1; 1673 Known.Zero.setBitsFrom(LowBits); 1674 break; 1675 } 1676 case Intrinsic::ctpop: { 1677 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1678 // We can bound the space the count needs. Also, bits known to be zero 1679 // can't contribute to the population. 1680 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1681 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1682 Known.Zero.setBitsFrom(LowBits); 1683 // TODO: we could bound KnownOne using the lower bound on the number 1684 // of bits which might be set provided by popcnt KnownOne2. 1685 break; 1686 } 1687 case Intrinsic::fshr: 1688 case Intrinsic::fshl: { 1689 const APInt *SA; 1690 if (!match(I->getOperand(2), m_APInt(SA))) 1691 break; 1692 1693 // Normalize to funnel shift left. 1694 uint64_t ShiftAmt = SA->urem(BitWidth); 1695 if (II->getIntrinsicID() == Intrinsic::fshr) 1696 ShiftAmt = BitWidth - ShiftAmt; 1697 1698 KnownBits Known3(Known); 1699 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1700 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1701 1702 Known.Zero = 1703 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1704 Known.One = 1705 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1706 break; 1707 } 1708 case Intrinsic::uadd_sat: 1709 case Intrinsic::usub_sat: { 1710 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1711 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1712 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1713 1714 // Add: Leading ones of either operand are preserved. 1715 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1716 // as leading zeros in the result. 1717 unsigned LeadingKnown; 1718 if (IsAdd) 1719 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1720 Known2.countMinLeadingOnes()); 1721 else 1722 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1723 Known2.countMinLeadingOnes()); 1724 1725 Known = KnownBits::computeForAddSub( 1726 IsAdd, /* NSW */ false, Known, Known2); 1727 1728 // We select between the operation result and all-ones/zero 1729 // respectively, so we can preserve known ones/zeros. 1730 if (IsAdd) { 1731 Known.One.setHighBits(LeadingKnown); 1732 Known.Zero.clearAllBits(); 1733 } else { 1734 Known.Zero.setHighBits(LeadingKnown); 1735 Known.One.clearAllBits(); 1736 } 1737 break; 1738 } 1739 case Intrinsic::x86_sse42_crc32_64_64: 1740 Known.Zero.setBitsFrom(32); 1741 break; 1742 } 1743 } 1744 break; 1745 case Instruction::ShuffleVector: { 1746 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1747 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1748 if (!Shuf) { 1749 Known.resetAll(); 1750 return; 1751 } 1752 // For undef elements, we don't know anything about the common state of 1753 // the shuffle result. 1754 APInt DemandedLHS, DemandedRHS; 1755 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1756 Known.resetAll(); 1757 return; 1758 } 1759 Known.One.setAllBits(); 1760 Known.Zero.setAllBits(); 1761 if (!!DemandedLHS) { 1762 const Value *LHS = Shuf->getOperand(0); 1763 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1764 // If we don't know any bits, early out. 1765 if (Known.isUnknown()) 1766 break; 1767 } 1768 if (!!DemandedRHS) { 1769 const Value *RHS = Shuf->getOperand(1); 1770 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1771 Known.One &= Known2.One; 1772 Known.Zero &= Known2.Zero; 1773 } 1774 break; 1775 } 1776 case Instruction::InsertElement: { 1777 const Value *Vec = I->getOperand(0); 1778 const Value *Elt = I->getOperand(1); 1779 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1780 // Early out if the index is non-constant or out-of-range. 1781 unsigned NumElts = DemandedElts.getBitWidth(); 1782 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1783 Known.resetAll(); 1784 return; 1785 } 1786 Known.One.setAllBits(); 1787 Known.Zero.setAllBits(); 1788 unsigned EltIdx = CIdx->getZExtValue(); 1789 // Do we demand the inserted element? 1790 if (DemandedElts[EltIdx]) { 1791 computeKnownBits(Elt, Known, Depth + 1, Q); 1792 // If we don't know any bits, early out. 1793 if (Known.isUnknown()) 1794 break; 1795 } 1796 // We don't need the base vector element that has been inserted. 1797 APInt DemandedVecElts = DemandedElts; 1798 DemandedVecElts.clearBit(EltIdx); 1799 if (!!DemandedVecElts) { 1800 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1801 Known.One &= Known2.One; 1802 Known.Zero &= Known2.Zero; 1803 } 1804 break; 1805 } 1806 case Instruction::ExtractElement: { 1807 // Look through extract element. If the index is non-constant or 1808 // out-of-range demand all elements, otherwise just the extracted element. 1809 const Value *Vec = I->getOperand(0); 1810 const Value *Idx = I->getOperand(1); 1811 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1812 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1813 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1814 if (CIdx && CIdx->getValue().ult(NumElts)) 1815 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1816 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1817 break; 1818 } 1819 case Instruction::ExtractValue: 1820 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1821 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1822 if (EVI->getNumIndices() != 1) break; 1823 if (EVI->getIndices()[0] == 0) { 1824 switch (II->getIntrinsicID()) { 1825 default: break; 1826 case Intrinsic::uadd_with_overflow: 1827 case Intrinsic::sadd_with_overflow: 1828 computeKnownBitsAddSub(true, II->getArgOperand(0), 1829 II->getArgOperand(1), false, DemandedElts, 1830 Known, Known2, Depth, Q); 1831 break; 1832 case Intrinsic::usub_with_overflow: 1833 case Intrinsic::ssub_with_overflow: 1834 computeKnownBitsAddSub(false, II->getArgOperand(0), 1835 II->getArgOperand(1), false, DemandedElts, 1836 Known, Known2, Depth, Q); 1837 break; 1838 case Intrinsic::umul_with_overflow: 1839 case Intrinsic::smul_with_overflow: 1840 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1841 DemandedElts, Known, Known2, Depth, Q); 1842 break; 1843 } 1844 } 1845 } 1846 break; 1847 } 1848 } 1849 1850 /// Determine which bits of V are known to be either zero or one and return 1851 /// them. 1852 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1853 unsigned Depth, const Query &Q) { 1854 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1855 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1856 return Known; 1857 } 1858 1859 /// Determine which bits of V are known to be either zero or one and return 1860 /// them. 1861 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1862 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1863 computeKnownBits(V, Known, Depth, Q); 1864 return Known; 1865 } 1866 1867 /// Determine which bits of V are known to be either zero or one and return 1868 /// them in the Known bit set. 1869 /// 1870 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1871 /// we cannot optimize based on the assumption that it is zero without changing 1872 /// it to be an explicit zero. If we don't change it to zero, other code could 1873 /// optimized based on the contradictory assumption that it is non-zero. 1874 /// Because instcombine aggressively folds operations with undef args anyway, 1875 /// this won't lose us code quality. 1876 /// 1877 /// This function is defined on values with integer type, values with pointer 1878 /// type, and vectors of integers. In the case 1879 /// where V is a vector, known zero, and known one values are the 1880 /// same width as the vector element, and the bit is set only if it is true 1881 /// for all of the demanded elements in the vector specified by DemandedElts. 1882 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1883 KnownBits &Known, unsigned Depth, const Query &Q) { 1884 assert(V && "No Value?"); 1885 assert(Depth <= MaxDepth && "Limit Search Depth"); 1886 unsigned BitWidth = Known.getBitWidth(); 1887 1888 Type *Ty = V->getType(); 1889 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1890 "Not integer or pointer type!"); 1891 assert(((Ty->isVectorTy() && 1892 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1893 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1894 "Unexpected vector size"); 1895 1896 Type *ScalarTy = Ty->getScalarType(); 1897 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1898 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1899 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1900 (void)BitWidth; 1901 (void)ExpectedWidth; 1902 1903 if (!DemandedElts) { 1904 // No demanded elts, better to assume we don't know anything. 1905 Known.resetAll(); 1906 return; 1907 } 1908 1909 const APInt *C; 1910 if (match(V, m_APInt(C))) { 1911 // We know all of the bits for a scalar constant or a splat vector constant! 1912 Known.One = *C; 1913 Known.Zero = ~Known.One; 1914 return; 1915 } 1916 // Null and aggregate-zero are all-zeros. 1917 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1918 Known.setAllZero(); 1919 return; 1920 } 1921 // Handle a constant vector by taking the intersection of the known bits of 1922 // each element. 1923 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1924 assert((!Ty->isVectorTy() || 1925 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1926 "Unexpected vector size"); 1927 // We know that CDS must be a vector of integers. Take the intersection of 1928 // each element. 1929 Known.Zero.setAllBits(); Known.One.setAllBits(); 1930 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1931 if (Ty->isVectorTy() && !DemandedElts[i]) 1932 continue; 1933 APInt Elt = CDS->getElementAsAPInt(i); 1934 Known.Zero &= ~Elt; 1935 Known.One &= Elt; 1936 } 1937 return; 1938 } 1939 1940 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1941 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1942 "Unexpected vector size"); 1943 // We know that CV must be a vector of integers. Take the intersection of 1944 // each element. 1945 Known.Zero.setAllBits(); Known.One.setAllBits(); 1946 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1947 if (!DemandedElts[i]) 1948 continue; 1949 Constant *Element = CV->getAggregateElement(i); 1950 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1951 if (!ElementCI) { 1952 Known.resetAll(); 1953 return; 1954 } 1955 const APInt &Elt = ElementCI->getValue(); 1956 Known.Zero &= ~Elt; 1957 Known.One &= Elt; 1958 } 1959 return; 1960 } 1961 1962 // Start out not knowing anything. 1963 Known.resetAll(); 1964 1965 // We can't imply anything about undefs. 1966 if (isa<UndefValue>(V)) 1967 return; 1968 1969 // There's no point in looking through other users of ConstantData for 1970 // assumptions. Confirm that we've handled them all. 1971 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1972 1973 // Limit search depth. 1974 // All recursive calls that increase depth must come after this. 1975 if (Depth == MaxDepth) 1976 return; 1977 1978 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1979 // the bits of its aliasee. 1980 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1981 if (!GA->isInterposable()) 1982 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1983 return; 1984 } 1985 1986 if (const Operator *I = dyn_cast<Operator>(V)) 1987 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1988 1989 // Aligned pointers have trailing zeros - refine Known.Zero set 1990 if (Ty->isPointerTy()) { 1991 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1992 if (Align) 1993 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1994 } 1995 1996 // computeKnownBitsFromAssume strictly refines Known. 1997 // Therefore, we run them after computeKnownBitsFromOperator. 1998 1999 // Check whether a nearby assume intrinsic can determine some known bits. 2000 computeKnownBitsFromAssume(V, Known, Depth, Q); 2001 2002 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2003 } 2004 2005 /// Return true if the given value is known to have exactly one 2006 /// bit set when defined. For vectors return true if every element is known to 2007 /// be a power of two when defined. Supports values with integer or pointer 2008 /// types and vectors of integers. 2009 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2010 const Query &Q) { 2011 assert(Depth <= MaxDepth && "Limit Search Depth"); 2012 2013 // Attempt to match against constants. 2014 if (OrZero && match(V, m_Power2OrZero())) 2015 return true; 2016 if (match(V, m_Power2())) 2017 return true; 2018 2019 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2020 // it is shifted off the end then the result is undefined. 2021 if (match(V, m_Shl(m_One(), m_Value()))) 2022 return true; 2023 2024 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2025 // the bottom. If it is shifted off the bottom then the result is undefined. 2026 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2027 return true; 2028 2029 // The remaining tests are all recursive, so bail out if we hit the limit. 2030 if (Depth++ == MaxDepth) 2031 return false; 2032 2033 Value *X = nullptr, *Y = nullptr; 2034 // A shift left or a logical shift right of a power of two is a power of two 2035 // or zero. 2036 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2037 match(V, m_LShr(m_Value(X), m_Value())))) 2038 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2039 2040 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2041 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2042 2043 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2044 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2045 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2046 2047 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2048 // A power of two and'd with anything is a power of two or zero. 2049 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2050 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2051 return true; 2052 // X & (-X) is always a power of two or zero. 2053 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2054 return true; 2055 return false; 2056 } 2057 2058 // Adding a power-of-two or zero to the same power-of-two or zero yields 2059 // either the original power-of-two, a larger power-of-two or zero. 2060 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2061 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2062 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2063 Q.IIQ.hasNoSignedWrap(VOBO)) { 2064 if (match(X, m_And(m_Specific(Y), m_Value())) || 2065 match(X, m_And(m_Value(), m_Specific(Y)))) 2066 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2067 return true; 2068 if (match(Y, m_And(m_Specific(X), m_Value())) || 2069 match(Y, m_And(m_Value(), m_Specific(X)))) 2070 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2071 return true; 2072 2073 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2074 KnownBits LHSBits(BitWidth); 2075 computeKnownBits(X, LHSBits, Depth, Q); 2076 2077 KnownBits RHSBits(BitWidth); 2078 computeKnownBits(Y, RHSBits, Depth, Q); 2079 // If i8 V is a power of two or zero: 2080 // ZeroBits: 1 1 1 0 1 1 1 1 2081 // ~ZeroBits: 0 0 0 1 0 0 0 0 2082 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2083 // If OrZero isn't set, we cannot give back a zero result. 2084 // Make sure either the LHS or RHS has a bit set. 2085 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2086 return true; 2087 } 2088 } 2089 2090 // An exact divide or right shift can only shift off zero bits, so the result 2091 // is a power of two only if the first operand is a power of two and not 2092 // copying a sign bit (sdiv int_min, 2). 2093 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2094 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2095 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2096 Depth, Q); 2097 } 2098 2099 return false; 2100 } 2101 2102 /// Test whether a GEP's result is known to be non-null. 2103 /// 2104 /// Uses properties inherent in a GEP to try to determine whether it is known 2105 /// to be non-null. 2106 /// 2107 /// Currently this routine does not support vector GEPs. 2108 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2109 const Query &Q) { 2110 const Function *F = nullptr; 2111 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2112 F = I->getFunction(); 2113 2114 if (!GEP->isInBounds() || 2115 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2116 return false; 2117 2118 // FIXME: Support vector-GEPs. 2119 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2120 2121 // If the base pointer is non-null, we cannot walk to a null address with an 2122 // inbounds GEP in address space zero. 2123 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2124 return true; 2125 2126 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2127 // If so, then the GEP cannot produce a null pointer, as doing so would 2128 // inherently violate the inbounds contract within address space zero. 2129 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2130 GTI != GTE; ++GTI) { 2131 // Struct types are easy -- they must always be indexed by a constant. 2132 if (StructType *STy = GTI.getStructTypeOrNull()) { 2133 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2134 unsigned ElementIdx = OpC->getZExtValue(); 2135 const StructLayout *SL = Q.DL.getStructLayout(STy); 2136 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2137 if (ElementOffset > 0) 2138 return true; 2139 continue; 2140 } 2141 2142 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2143 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2144 continue; 2145 2146 // Fast path the constant operand case both for efficiency and so we don't 2147 // increment Depth when just zipping down an all-constant GEP. 2148 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2149 if (!OpC->isZero()) 2150 return true; 2151 continue; 2152 } 2153 2154 // We post-increment Depth here because while isKnownNonZero increments it 2155 // as well, when we pop back up that increment won't persist. We don't want 2156 // to recurse 10k times just because we have 10k GEP operands. We don't 2157 // bail completely out because we want to handle constant GEPs regardless 2158 // of depth. 2159 if (Depth++ >= MaxDepth) 2160 continue; 2161 2162 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2163 return true; 2164 } 2165 2166 return false; 2167 } 2168 2169 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2170 const Instruction *CtxI, 2171 const DominatorTree *DT) { 2172 if (isa<Constant>(V)) 2173 return false; 2174 2175 if (!CtxI || !DT) 2176 return false; 2177 2178 unsigned NumUsesExplored = 0; 2179 for (auto *U : V->users()) { 2180 // Avoid massive lists 2181 if (NumUsesExplored >= DomConditionsMaxUses) 2182 break; 2183 NumUsesExplored++; 2184 2185 // If the value is used as an argument to a call or invoke, then argument 2186 // attributes may provide an answer about null-ness. 2187 if (auto CS = ImmutableCallSite(U)) 2188 if (auto *CalledFunc = CS.getCalledFunction()) 2189 for (const Argument &Arg : CalledFunc->args()) 2190 if (CS.getArgOperand(Arg.getArgNo()) == V && 2191 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2192 return true; 2193 2194 // If the value is used as a load/store, then the pointer must be non null. 2195 if (V == getLoadStorePointerOperand(U)) { 2196 const Instruction *I = cast<Instruction>(U); 2197 if (!NullPointerIsDefined(I->getFunction(), 2198 V->getType()->getPointerAddressSpace()) && 2199 DT->dominates(I, CtxI)) 2200 return true; 2201 } 2202 2203 // Consider only compare instructions uniquely controlling a branch 2204 CmpInst::Predicate Pred; 2205 if (!match(const_cast<User *>(U), 2206 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2207 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2208 continue; 2209 2210 SmallVector<const User *, 4> WorkList; 2211 SmallPtrSet<const User *, 4> Visited; 2212 for (auto *CmpU : U->users()) { 2213 assert(WorkList.empty() && "Should be!"); 2214 if (Visited.insert(CmpU).second) 2215 WorkList.push_back(CmpU); 2216 2217 while (!WorkList.empty()) { 2218 auto *Curr = WorkList.pop_back_val(); 2219 2220 // If a user is an AND, add all its users to the work list. We only 2221 // propagate "pred != null" condition through AND because it is only 2222 // correct to assume that all conditions of AND are met in true branch. 2223 // TODO: Support similar logic of OR and EQ predicate? 2224 if (Pred == ICmpInst::ICMP_NE) 2225 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2226 if (BO->getOpcode() == Instruction::And) { 2227 for (auto *BOU : BO->users()) 2228 if (Visited.insert(BOU).second) 2229 WorkList.push_back(BOU); 2230 continue; 2231 } 2232 2233 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2234 assert(BI->isConditional() && "uses a comparison!"); 2235 2236 BasicBlock *NonNullSuccessor = 2237 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2238 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2239 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2240 return true; 2241 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2242 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2243 return true; 2244 } 2245 } 2246 } 2247 } 2248 2249 return false; 2250 } 2251 2252 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2253 /// ensure that the value it's attached to is never Value? 'RangeType' is 2254 /// is the type of the value described by the range. 2255 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2256 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2257 assert(NumRanges >= 1); 2258 for (unsigned i = 0; i < NumRanges; ++i) { 2259 ConstantInt *Lower = 2260 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2261 ConstantInt *Upper = 2262 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2263 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2264 if (Range.contains(Value)) 2265 return false; 2266 } 2267 return true; 2268 } 2269 2270 /// Return true if the given value is known to be non-zero when defined. For 2271 /// vectors, return true if every demanded element is known to be non-zero when 2272 /// defined. For pointers, if the context instruction and dominator tree are 2273 /// specified, perform context-sensitive analysis and return true if the 2274 /// pointer couldn't possibly be null at the specified instruction. 2275 /// Supports values with integer or pointer type and vectors of integers. 2276 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2277 const Query &Q) { 2278 if (auto *C = dyn_cast<Constant>(V)) { 2279 if (C->isNullValue()) 2280 return false; 2281 if (isa<ConstantInt>(C)) 2282 // Must be non-zero due to null test above. 2283 return true; 2284 2285 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2286 // See the comment for IntToPtr/PtrToInt instructions below. 2287 if (CE->getOpcode() == Instruction::IntToPtr || 2288 CE->getOpcode() == Instruction::PtrToInt) 2289 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2290 Q.DL.getTypeSizeInBits(CE->getType())) 2291 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2292 } 2293 2294 // For constant vectors, check that all elements are undefined or known 2295 // non-zero to determine that the whole vector is known non-zero. 2296 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2297 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2298 if (!DemandedElts[i]) 2299 continue; 2300 Constant *Elt = C->getAggregateElement(i); 2301 if (!Elt || Elt->isNullValue()) 2302 return false; 2303 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2304 return false; 2305 } 2306 return true; 2307 } 2308 2309 // A global variable in address space 0 is non null unless extern weak 2310 // or an absolute symbol reference. Other address spaces may have null as a 2311 // valid address for a global, so we can't assume anything. 2312 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2313 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2314 GV->getType()->getAddressSpace() == 0) 2315 return true; 2316 } else 2317 return false; 2318 } 2319 2320 if (auto *I = dyn_cast<Instruction>(V)) { 2321 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2322 // If the possible ranges don't contain zero, then the value is 2323 // definitely non-zero. 2324 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2325 const APInt ZeroValue(Ty->getBitWidth(), 0); 2326 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2327 return true; 2328 } 2329 } 2330 } 2331 2332 if (isKnownNonZeroFromAssume(V, Q)) 2333 return true; 2334 2335 // Some of the tests below are recursive, so bail out if we hit the limit. 2336 if (Depth++ >= MaxDepth) 2337 return false; 2338 2339 // Check for pointer simplifications. 2340 if (V->getType()->isPointerTy()) { 2341 // Alloca never returns null, malloc might. 2342 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2343 return true; 2344 2345 // A byval, inalloca, or nonnull argument is never null. 2346 if (const Argument *A = dyn_cast<Argument>(V)) 2347 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2348 return true; 2349 2350 // A Load tagged with nonnull metadata is never null. 2351 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2352 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2353 return true; 2354 2355 if (const auto *Call = dyn_cast<CallBase>(V)) { 2356 if (Call->isReturnNonNull()) 2357 return true; 2358 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2359 return isKnownNonZero(RP, Depth, Q); 2360 } 2361 } 2362 2363 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2364 return true; 2365 2366 // Check for recursive pointer simplifications. 2367 if (V->getType()->isPointerTy()) { 2368 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2369 // do not alter the value, or at least not the nullness property of the 2370 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2371 // 2372 // Note that we have to take special care to avoid looking through 2373 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2374 // as casts that can alter the value, e.g., AddrSpaceCasts. 2375 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2376 if (isGEPKnownNonNull(GEP, Depth, Q)) 2377 return true; 2378 2379 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2380 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2381 2382 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2383 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2384 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2385 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2386 } 2387 2388 // Similar to int2ptr above, we can look through ptr2int here if the cast 2389 // is a no-op or an extend and not a truncate. 2390 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2391 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2392 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2393 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2394 2395 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2396 2397 // X | Y != 0 if X != 0 or Y != 0. 2398 Value *X = nullptr, *Y = nullptr; 2399 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2400 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2401 isKnownNonZero(Y, DemandedElts, Depth, Q); 2402 2403 // ext X != 0 if X != 0. 2404 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2405 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2406 2407 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2408 // if the lowest bit is shifted off the end. 2409 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2410 // shl nuw can't remove any non-zero bits. 2411 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2412 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2413 return isKnownNonZero(X, Depth, Q); 2414 2415 KnownBits Known(BitWidth); 2416 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2417 if (Known.One[0]) 2418 return true; 2419 } 2420 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2421 // defined if the sign bit is shifted off the end. 2422 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2423 // shr exact can only shift out zero bits. 2424 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2425 if (BO->isExact()) 2426 return isKnownNonZero(X, Depth, Q); 2427 2428 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2429 if (Known.isNegative()) 2430 return true; 2431 2432 // If the shifter operand is a constant, and all of the bits shifted 2433 // out are known to be zero, and X is known non-zero then at least one 2434 // non-zero bit must remain. 2435 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2436 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2437 // Is there a known one in the portion not shifted out? 2438 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2439 return true; 2440 // Are all the bits to be shifted out known zero? 2441 if (Known.countMinTrailingZeros() >= ShiftVal) 2442 return isKnownNonZero(X, DemandedElts, Depth, Q); 2443 } 2444 } 2445 // div exact can only produce a zero if the dividend is zero. 2446 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2447 return isKnownNonZero(X, DemandedElts, Depth, Q); 2448 } 2449 // X + Y. 2450 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2451 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2452 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2453 2454 // If X and Y are both non-negative (as signed values) then their sum is not 2455 // zero unless both X and Y are zero. 2456 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2457 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2458 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2459 return true; 2460 2461 // If X and Y are both negative (as signed values) then their sum is not 2462 // zero unless both X and Y equal INT_MIN. 2463 if (XKnown.isNegative() && YKnown.isNegative()) { 2464 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2465 // The sign bit of X is set. If some other bit is set then X is not equal 2466 // to INT_MIN. 2467 if (XKnown.One.intersects(Mask)) 2468 return true; 2469 // The sign bit of Y is set. If some other bit is set then Y is not equal 2470 // to INT_MIN. 2471 if (YKnown.One.intersects(Mask)) 2472 return true; 2473 } 2474 2475 // The sum of a non-negative number and a power of two is not zero. 2476 if (XKnown.isNonNegative() && 2477 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2478 return true; 2479 if (YKnown.isNonNegative() && 2480 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2481 return true; 2482 } 2483 // X * Y. 2484 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2485 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2486 // If X and Y are non-zero then so is X * Y as long as the multiplication 2487 // does not overflow. 2488 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2489 isKnownNonZero(X, DemandedElts, Depth, Q) && 2490 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2491 return true; 2492 } 2493 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2494 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2495 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2496 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2497 return true; 2498 } 2499 // PHI 2500 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2501 // Try and detect a recurrence that monotonically increases from a 2502 // starting value, as these are common as induction variables. 2503 if (PN->getNumIncomingValues() == 2) { 2504 Value *Start = PN->getIncomingValue(0); 2505 Value *Induction = PN->getIncomingValue(1); 2506 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2507 std::swap(Start, Induction); 2508 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2509 if (!C->isZero() && !C->isNegative()) { 2510 ConstantInt *X; 2511 if (Q.IIQ.UseInstrInfo && 2512 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2513 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2514 !X->isNegative()) 2515 return true; 2516 } 2517 } 2518 } 2519 // Check if all incoming values are non-zero constant. 2520 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2521 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2522 }); 2523 if (AllNonZeroConstants) 2524 return true; 2525 } 2526 // ExtractElement 2527 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2528 const Value *Vec = EEI->getVectorOperand(); 2529 const Value *Idx = EEI->getIndexOperand(); 2530 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2531 unsigned NumElts = Vec->getType()->getVectorNumElements(); 2532 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2533 if (CIdx && CIdx->getValue().ult(NumElts)) 2534 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2535 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2536 } 2537 2538 KnownBits Known(BitWidth); 2539 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2540 return Known.One != 0; 2541 } 2542 2543 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2544 Type *Ty = V->getType(); 2545 APInt DemandedElts = Ty->isVectorTy() 2546 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 2547 : APInt(1, 1); 2548 return isKnownNonZero(V, DemandedElts, Depth, Q); 2549 } 2550 2551 /// Return true if V2 == V1 + X, where X is known non-zero. 2552 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2553 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2554 if (!BO || BO->getOpcode() != Instruction::Add) 2555 return false; 2556 Value *Op = nullptr; 2557 if (V2 == BO->getOperand(0)) 2558 Op = BO->getOperand(1); 2559 else if (V2 == BO->getOperand(1)) 2560 Op = BO->getOperand(0); 2561 else 2562 return false; 2563 return isKnownNonZero(Op, 0, Q); 2564 } 2565 2566 /// Return true if it is known that V1 != V2. 2567 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2568 if (V1 == V2) 2569 return false; 2570 if (V1->getType() != V2->getType()) 2571 // We can't look through casts yet. 2572 return false; 2573 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2574 return true; 2575 2576 if (V1->getType()->isIntOrIntVectorTy()) { 2577 // Are any known bits in V1 contradictory to known bits in V2? If V1 2578 // has a known zero where V2 has a known one, they must not be equal. 2579 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2580 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2581 2582 if (Known1.Zero.intersects(Known2.One) || 2583 Known2.Zero.intersects(Known1.One)) 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2590 /// simplify operations downstream. Mask is known to be zero for bits that V 2591 /// cannot have. 2592 /// 2593 /// This function is defined on values with integer type, values with pointer 2594 /// type, and vectors of integers. In the case 2595 /// where V is a vector, the mask, known zero, and known one values are the 2596 /// same width as the vector element, and the bit is set only if it is true 2597 /// for all of the elements in the vector. 2598 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2599 const Query &Q) { 2600 KnownBits Known(Mask.getBitWidth()); 2601 computeKnownBits(V, Known, Depth, Q); 2602 return Mask.isSubsetOf(Known.Zero); 2603 } 2604 2605 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2606 // Returns the input and lower/upper bounds. 2607 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2608 const APInt *&CLow, const APInt *&CHigh) { 2609 assert(isa<Operator>(Select) && 2610 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2611 "Input should be a Select!"); 2612 2613 const Value *LHS = nullptr, *RHS = nullptr; 2614 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2615 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2616 return false; 2617 2618 if (!match(RHS, m_APInt(CLow))) 2619 return false; 2620 2621 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2622 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2623 if (getInverseMinMaxFlavor(SPF) != SPF2) 2624 return false; 2625 2626 if (!match(RHS2, m_APInt(CHigh))) 2627 return false; 2628 2629 if (SPF == SPF_SMIN) 2630 std::swap(CLow, CHigh); 2631 2632 In = LHS2; 2633 return CLow->sle(*CHigh); 2634 } 2635 2636 /// For vector constants, loop over the elements and find the constant with the 2637 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2638 /// or if any element was not analyzed; otherwise, return the count for the 2639 /// element with the minimum number of sign bits. 2640 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2641 const APInt &DemandedElts, 2642 unsigned TyBits) { 2643 const auto *CV = dyn_cast<Constant>(V); 2644 if (!CV || !CV->getType()->isVectorTy()) 2645 return 0; 2646 2647 unsigned MinSignBits = TyBits; 2648 unsigned NumElts = CV->getType()->getVectorNumElements(); 2649 for (unsigned i = 0; i != NumElts; ++i) { 2650 if (!DemandedElts[i]) 2651 continue; 2652 // If we find a non-ConstantInt, bail out. 2653 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2654 if (!Elt) 2655 return 0; 2656 2657 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2658 } 2659 2660 return MinSignBits; 2661 } 2662 2663 static unsigned ComputeNumSignBitsImpl(const Value *V, 2664 const APInt &DemandedElts, 2665 unsigned Depth, const Query &Q); 2666 2667 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2668 unsigned Depth, const Query &Q) { 2669 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2670 assert(Result > 0 && "At least one sign bit needs to be present!"); 2671 return Result; 2672 } 2673 2674 /// Return the number of times the sign bit of the register is replicated into 2675 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2676 /// (itself), but other cases can give us information. For example, immediately 2677 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2678 /// other, so we return 3. For vectors, return the number of sign bits for the 2679 /// vector element with the minimum number of known sign bits of the demanded 2680 /// elements in the vector specified by DemandedElts. 2681 static unsigned ComputeNumSignBitsImpl(const Value *V, 2682 const APInt &DemandedElts, 2683 unsigned Depth, const Query &Q) { 2684 assert(Depth <= MaxDepth && "Limit Search Depth"); 2685 2686 // We return the minimum number of sign bits that are guaranteed to be present 2687 // in V, so for undef we have to conservatively return 1. We don't have the 2688 // same behavior for poison though -- that's a FIXME today. 2689 2690 Type *Ty = V->getType(); 2691 assert(((Ty->isVectorTy() && 2692 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2693 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2694 "Unexpected vector size"); 2695 2696 Type *ScalarTy = Ty->getScalarType(); 2697 unsigned TyBits = ScalarTy->isPointerTy() ? 2698 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2699 Q.DL.getTypeSizeInBits(ScalarTy); 2700 2701 unsigned Tmp, Tmp2; 2702 unsigned FirstAnswer = 1; 2703 2704 // Note that ConstantInt is handled by the general computeKnownBits case 2705 // below. 2706 2707 if (Depth == MaxDepth) 2708 return 1; // Limit search depth. 2709 2710 if (auto *U = dyn_cast<Operator>(V)) { 2711 switch (Operator::getOpcode(V)) { 2712 default: break; 2713 case Instruction::SExt: 2714 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2715 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2716 2717 case Instruction::SDiv: { 2718 const APInt *Denominator; 2719 // sdiv X, C -> adds log(C) sign bits. 2720 if (match(U->getOperand(1), m_APInt(Denominator))) { 2721 2722 // Ignore non-positive denominator. 2723 if (!Denominator->isStrictlyPositive()) 2724 break; 2725 2726 // Calculate the incoming numerator bits. 2727 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2728 2729 // Add floor(log(C)) bits to the numerator bits. 2730 return std::min(TyBits, NumBits + Denominator->logBase2()); 2731 } 2732 break; 2733 } 2734 2735 case Instruction::SRem: { 2736 const APInt *Denominator; 2737 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2738 // positive constant. This let us put a lower bound on the number of sign 2739 // bits. 2740 if (match(U->getOperand(1), m_APInt(Denominator))) { 2741 2742 // Ignore non-positive denominator. 2743 if (!Denominator->isStrictlyPositive()) 2744 break; 2745 2746 // Calculate the incoming numerator bits. SRem by a positive constant 2747 // can't lower the number of sign bits. 2748 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2749 2750 // Calculate the leading sign bit constraints by examining the 2751 // denominator. Given that the denominator is positive, there are two 2752 // cases: 2753 // 2754 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2755 // (1 << ceilLogBase2(C)). 2756 // 2757 // 2. the numerator is negative. Then the result range is (-C,0] and 2758 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2759 // 2760 // Thus a lower bound on the number of sign bits is `TyBits - 2761 // ceilLogBase2(C)`. 2762 2763 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2764 return std::max(NumrBits, ResBits); 2765 } 2766 break; 2767 } 2768 2769 case Instruction::AShr: { 2770 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2771 // ashr X, C -> adds C sign bits. Vectors too. 2772 const APInt *ShAmt; 2773 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2774 if (ShAmt->uge(TyBits)) 2775 break; // Bad shift. 2776 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2777 Tmp += ShAmtLimited; 2778 if (Tmp > TyBits) Tmp = TyBits; 2779 } 2780 return Tmp; 2781 } 2782 case Instruction::Shl: { 2783 const APInt *ShAmt; 2784 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2785 // shl destroys sign bits. 2786 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2787 if (ShAmt->uge(TyBits) || // Bad shift. 2788 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2789 Tmp2 = ShAmt->getZExtValue(); 2790 return Tmp - Tmp2; 2791 } 2792 break; 2793 } 2794 case Instruction::And: 2795 case Instruction::Or: 2796 case Instruction::Xor: // NOT is handled here. 2797 // Logical binary ops preserve the number of sign bits at the worst. 2798 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2799 if (Tmp != 1) { 2800 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2801 FirstAnswer = std::min(Tmp, Tmp2); 2802 // We computed what we know about the sign bits as our first 2803 // answer. Now proceed to the generic code that uses 2804 // computeKnownBits, and pick whichever answer is better. 2805 } 2806 break; 2807 2808 case Instruction::Select: { 2809 // If we have a clamp pattern, we know that the number of sign bits will 2810 // be the minimum of the clamp min/max range. 2811 const Value *X; 2812 const APInt *CLow, *CHigh; 2813 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2814 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2815 2816 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2817 if (Tmp == 1) break; 2818 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2819 return std::min(Tmp, Tmp2); 2820 } 2821 2822 case Instruction::Add: 2823 // Add can have at most one carry bit. Thus we know that the output 2824 // is, at worst, one more bit than the inputs. 2825 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2826 if (Tmp == 1) break; 2827 2828 // Special case decrementing a value (ADD X, -1): 2829 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2830 if (CRHS->isAllOnesValue()) { 2831 KnownBits Known(TyBits); 2832 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2833 2834 // If the input is known to be 0 or 1, the output is 0/-1, which is 2835 // all sign bits set. 2836 if ((Known.Zero | 1).isAllOnesValue()) 2837 return TyBits; 2838 2839 // If we are subtracting one from a positive number, there is no carry 2840 // out of the result. 2841 if (Known.isNonNegative()) 2842 return Tmp; 2843 } 2844 2845 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2846 if (Tmp2 == 1) break; 2847 return std::min(Tmp, Tmp2) - 1; 2848 2849 case Instruction::Sub: 2850 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2851 if (Tmp2 == 1) break; 2852 2853 // Handle NEG. 2854 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2855 if (CLHS->isNullValue()) { 2856 KnownBits Known(TyBits); 2857 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2858 // If the input is known to be 0 or 1, the output is 0/-1, which is 2859 // all sign bits set. 2860 if ((Known.Zero | 1).isAllOnesValue()) 2861 return TyBits; 2862 2863 // If the input is known to be positive (the sign bit is known clear), 2864 // the output of the NEG has the same number of sign bits as the 2865 // input. 2866 if (Known.isNonNegative()) 2867 return Tmp2; 2868 2869 // Otherwise, we treat this like a SUB. 2870 } 2871 2872 // Sub can have at most one carry bit. Thus we know that the output 2873 // is, at worst, one more bit than the inputs. 2874 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2875 if (Tmp == 1) break; 2876 return std::min(Tmp, Tmp2) - 1; 2877 2878 case Instruction::Mul: { 2879 // The output of the Mul can be at most twice the valid bits in the 2880 // inputs. 2881 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2882 if (SignBitsOp0 == 1) break; 2883 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2884 if (SignBitsOp1 == 1) break; 2885 unsigned OutValidBits = 2886 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2887 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2888 } 2889 2890 case Instruction::PHI: { 2891 const PHINode *PN = cast<PHINode>(U); 2892 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2893 // Don't analyze large in-degree PHIs. 2894 if (NumIncomingValues > 4) break; 2895 // Unreachable blocks may have zero-operand PHI nodes. 2896 if (NumIncomingValues == 0) break; 2897 2898 // Take the minimum of all incoming values. This can't infinitely loop 2899 // because of our depth threshold. 2900 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2901 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2902 if (Tmp == 1) return Tmp; 2903 Tmp = std::min( 2904 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2905 } 2906 return Tmp; 2907 } 2908 2909 case Instruction::Trunc: 2910 // FIXME: it's tricky to do anything useful for this, but it is an 2911 // important case for targets like X86. 2912 break; 2913 2914 case Instruction::ExtractElement: 2915 // Look through extract element. At the moment we keep this simple and 2916 // skip tracking the specific element. But at least we might find 2917 // information valid for all elements of the vector (for example if vector 2918 // is sign extended, shifted, etc). 2919 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2920 2921 case Instruction::ShuffleVector: { 2922 // Collect the minimum number of sign bits that are shared by every vector 2923 // element referenced by the shuffle. 2924 auto *Shuf = cast<ShuffleVectorInst>(U); 2925 APInt DemandedLHS, DemandedRHS; 2926 // For undef elements, we don't know anything about the common state of 2927 // the shuffle result. 2928 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2929 return 1; 2930 Tmp = std::numeric_limits<unsigned>::max(); 2931 if (!!DemandedLHS) { 2932 const Value *LHS = Shuf->getOperand(0); 2933 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2934 } 2935 // If we don't know anything, early out and try computeKnownBits 2936 // fall-back. 2937 if (Tmp == 1) 2938 break; 2939 if (!!DemandedRHS) { 2940 const Value *RHS = Shuf->getOperand(1); 2941 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2942 Tmp = std::min(Tmp, Tmp2); 2943 } 2944 // If we don't know anything, early out and try computeKnownBits 2945 // fall-back. 2946 if (Tmp == 1) 2947 break; 2948 assert(Tmp <= Ty->getScalarSizeInBits() && 2949 "Failed to determine minimum sign bits"); 2950 return Tmp; 2951 } 2952 } 2953 } 2954 2955 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2956 // use this information. 2957 2958 // If we can examine all elements of a vector constant successfully, we're 2959 // done (we can't do any better than that). If not, keep trying. 2960 if (unsigned VecSignBits = 2961 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2962 return VecSignBits; 2963 2964 KnownBits Known(TyBits); 2965 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2966 2967 // If we know that the sign bit is either zero or one, determine the number of 2968 // identical bits in the top of the input value. 2969 return std::max(FirstAnswer, Known.countMinSignBits()); 2970 } 2971 2972 /// This function computes the integer multiple of Base that equals V. 2973 /// If successful, it returns true and returns the multiple in 2974 /// Multiple. If unsuccessful, it returns false. It looks 2975 /// through SExt instructions only if LookThroughSExt is true. 2976 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2977 bool LookThroughSExt, unsigned Depth) { 2978 assert(V && "No Value?"); 2979 assert(Depth <= MaxDepth && "Limit Search Depth"); 2980 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2981 2982 Type *T = V->getType(); 2983 2984 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2985 2986 if (Base == 0) 2987 return false; 2988 2989 if (Base == 1) { 2990 Multiple = V; 2991 return true; 2992 } 2993 2994 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2995 Constant *BaseVal = ConstantInt::get(T, Base); 2996 if (CO && CO == BaseVal) { 2997 // Multiple is 1. 2998 Multiple = ConstantInt::get(T, 1); 2999 return true; 3000 } 3001 3002 if (CI && CI->getZExtValue() % Base == 0) { 3003 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3004 return true; 3005 } 3006 3007 if (Depth == MaxDepth) return false; // Limit search depth. 3008 3009 Operator *I = dyn_cast<Operator>(V); 3010 if (!I) return false; 3011 3012 switch (I->getOpcode()) { 3013 default: break; 3014 case Instruction::SExt: 3015 if (!LookThroughSExt) return false; 3016 // otherwise fall through to ZExt 3017 LLVM_FALLTHROUGH; 3018 case Instruction::ZExt: 3019 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3020 LookThroughSExt, Depth+1); 3021 case Instruction::Shl: 3022 case Instruction::Mul: { 3023 Value *Op0 = I->getOperand(0); 3024 Value *Op1 = I->getOperand(1); 3025 3026 if (I->getOpcode() == Instruction::Shl) { 3027 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3028 if (!Op1CI) return false; 3029 // Turn Op0 << Op1 into Op0 * 2^Op1 3030 APInt Op1Int = Op1CI->getValue(); 3031 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3032 APInt API(Op1Int.getBitWidth(), 0); 3033 API.setBit(BitToSet); 3034 Op1 = ConstantInt::get(V->getContext(), API); 3035 } 3036 3037 Value *Mul0 = nullptr; 3038 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3039 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3040 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3041 if (Op1C->getType()->getPrimitiveSizeInBits() < 3042 MulC->getType()->getPrimitiveSizeInBits()) 3043 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3044 if (Op1C->getType()->getPrimitiveSizeInBits() > 3045 MulC->getType()->getPrimitiveSizeInBits()) 3046 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3047 3048 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3049 Multiple = ConstantExpr::getMul(MulC, Op1C); 3050 return true; 3051 } 3052 3053 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3054 if (Mul0CI->getValue() == 1) { 3055 // V == Base * Op1, so return Op1 3056 Multiple = Op1; 3057 return true; 3058 } 3059 } 3060 3061 Value *Mul1 = nullptr; 3062 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3063 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3064 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3065 if (Op0C->getType()->getPrimitiveSizeInBits() < 3066 MulC->getType()->getPrimitiveSizeInBits()) 3067 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3068 if (Op0C->getType()->getPrimitiveSizeInBits() > 3069 MulC->getType()->getPrimitiveSizeInBits()) 3070 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3071 3072 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3073 Multiple = ConstantExpr::getMul(MulC, Op0C); 3074 return true; 3075 } 3076 3077 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3078 if (Mul1CI->getValue() == 1) { 3079 // V == Base * Op0, so return Op0 3080 Multiple = Op0; 3081 return true; 3082 } 3083 } 3084 } 3085 } 3086 3087 // We could not determine if V is a multiple of Base. 3088 return false; 3089 } 3090 3091 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3092 const TargetLibraryInfo *TLI) { 3093 const Function *F = ICS.getCalledFunction(); 3094 if (!F) 3095 return Intrinsic::not_intrinsic; 3096 3097 if (F->isIntrinsic()) 3098 return F->getIntrinsicID(); 3099 3100 if (!TLI) 3101 return Intrinsic::not_intrinsic; 3102 3103 LibFunc Func; 3104 // We're going to make assumptions on the semantics of the functions, check 3105 // that the target knows that it's available in this environment and it does 3106 // not have local linkage. 3107 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3108 return Intrinsic::not_intrinsic; 3109 3110 if (!ICS.onlyReadsMemory()) 3111 return Intrinsic::not_intrinsic; 3112 3113 // Otherwise check if we have a call to a function that can be turned into a 3114 // vector intrinsic. 3115 switch (Func) { 3116 default: 3117 break; 3118 case LibFunc_sin: 3119 case LibFunc_sinf: 3120 case LibFunc_sinl: 3121 return Intrinsic::sin; 3122 case LibFunc_cos: 3123 case LibFunc_cosf: 3124 case LibFunc_cosl: 3125 return Intrinsic::cos; 3126 case LibFunc_exp: 3127 case LibFunc_expf: 3128 case LibFunc_expl: 3129 return Intrinsic::exp; 3130 case LibFunc_exp2: 3131 case LibFunc_exp2f: 3132 case LibFunc_exp2l: 3133 return Intrinsic::exp2; 3134 case LibFunc_log: 3135 case LibFunc_logf: 3136 case LibFunc_logl: 3137 return Intrinsic::log; 3138 case LibFunc_log10: 3139 case LibFunc_log10f: 3140 case LibFunc_log10l: 3141 return Intrinsic::log10; 3142 case LibFunc_log2: 3143 case LibFunc_log2f: 3144 case LibFunc_log2l: 3145 return Intrinsic::log2; 3146 case LibFunc_fabs: 3147 case LibFunc_fabsf: 3148 case LibFunc_fabsl: 3149 return Intrinsic::fabs; 3150 case LibFunc_fmin: 3151 case LibFunc_fminf: 3152 case LibFunc_fminl: 3153 return Intrinsic::minnum; 3154 case LibFunc_fmax: 3155 case LibFunc_fmaxf: 3156 case LibFunc_fmaxl: 3157 return Intrinsic::maxnum; 3158 case LibFunc_copysign: 3159 case LibFunc_copysignf: 3160 case LibFunc_copysignl: 3161 return Intrinsic::copysign; 3162 case LibFunc_floor: 3163 case LibFunc_floorf: 3164 case LibFunc_floorl: 3165 return Intrinsic::floor; 3166 case LibFunc_ceil: 3167 case LibFunc_ceilf: 3168 case LibFunc_ceill: 3169 return Intrinsic::ceil; 3170 case LibFunc_trunc: 3171 case LibFunc_truncf: 3172 case LibFunc_truncl: 3173 return Intrinsic::trunc; 3174 case LibFunc_rint: 3175 case LibFunc_rintf: 3176 case LibFunc_rintl: 3177 return Intrinsic::rint; 3178 case LibFunc_nearbyint: 3179 case LibFunc_nearbyintf: 3180 case LibFunc_nearbyintl: 3181 return Intrinsic::nearbyint; 3182 case LibFunc_round: 3183 case LibFunc_roundf: 3184 case LibFunc_roundl: 3185 return Intrinsic::round; 3186 case LibFunc_pow: 3187 case LibFunc_powf: 3188 case LibFunc_powl: 3189 return Intrinsic::pow; 3190 case LibFunc_sqrt: 3191 case LibFunc_sqrtf: 3192 case LibFunc_sqrtl: 3193 return Intrinsic::sqrt; 3194 } 3195 3196 return Intrinsic::not_intrinsic; 3197 } 3198 3199 /// Return true if we can prove that the specified FP value is never equal to 3200 /// -0.0. 3201 /// 3202 /// NOTE: this function will need to be revisited when we support non-default 3203 /// rounding modes! 3204 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3205 unsigned Depth) { 3206 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3207 return !CFP->getValueAPF().isNegZero(); 3208 3209 // Limit search depth. 3210 if (Depth == MaxDepth) 3211 return false; 3212 3213 auto *Op = dyn_cast<Operator>(V); 3214 if (!Op) 3215 return false; 3216 3217 // Check if the nsz fast-math flag is set. 3218 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3219 if (FPO->hasNoSignedZeros()) 3220 return true; 3221 3222 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3223 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3224 return true; 3225 3226 // sitofp and uitofp turn into +0.0 for zero. 3227 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3228 return true; 3229 3230 if (auto *Call = dyn_cast<CallInst>(Op)) { 3231 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3232 switch (IID) { 3233 default: 3234 break; 3235 // sqrt(-0.0) = -0.0, no other negative results are possible. 3236 case Intrinsic::sqrt: 3237 case Intrinsic::canonicalize: 3238 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3239 // fabs(x) != -0.0 3240 case Intrinsic::fabs: 3241 return true; 3242 } 3243 } 3244 3245 return false; 3246 } 3247 3248 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3249 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3250 /// bit despite comparing equal. 3251 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3252 const TargetLibraryInfo *TLI, 3253 bool SignBitOnly, 3254 unsigned Depth) { 3255 // TODO: This function does not do the right thing when SignBitOnly is true 3256 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3257 // which flips the sign bits of NaNs. See 3258 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3259 3260 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3261 return !CFP->getValueAPF().isNegative() || 3262 (!SignBitOnly && CFP->getValueAPF().isZero()); 3263 } 3264 3265 // Handle vector of constants. 3266 if (auto *CV = dyn_cast<Constant>(V)) { 3267 if (CV->getType()->isVectorTy()) { 3268 unsigned NumElts = CV->getType()->getVectorNumElements(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3271 if (!CFP) 3272 return false; 3273 if (CFP->getValueAPF().isNegative() && 3274 (SignBitOnly || !CFP->getValueAPF().isZero())) 3275 return false; 3276 } 3277 3278 // All non-negative ConstantFPs. 3279 return true; 3280 } 3281 } 3282 3283 if (Depth == MaxDepth) 3284 return false; // Limit search depth. 3285 3286 const Operator *I = dyn_cast<Operator>(V); 3287 if (!I) 3288 return false; 3289 3290 switch (I->getOpcode()) { 3291 default: 3292 break; 3293 // Unsigned integers are always nonnegative. 3294 case Instruction::UIToFP: 3295 return true; 3296 case Instruction::FMul: 3297 // x*x is always non-negative or a NaN. 3298 if (I->getOperand(0) == I->getOperand(1) && 3299 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3300 return true; 3301 3302 LLVM_FALLTHROUGH; 3303 case Instruction::FAdd: 3304 case Instruction::FDiv: 3305 case Instruction::FRem: 3306 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3307 Depth + 1) && 3308 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3309 Depth + 1); 3310 case Instruction::Select: 3311 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3312 Depth + 1) && 3313 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3314 Depth + 1); 3315 case Instruction::FPExt: 3316 case Instruction::FPTrunc: 3317 // Widening/narrowing never change sign. 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::ExtractElement: 3321 // Look through extract element. At the moment we keep this simple and skip 3322 // tracking the specific element. But at least we might find information 3323 // valid for all elements of the vector. 3324 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Instruction::Call: 3327 const auto *CI = cast<CallInst>(I); 3328 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3329 switch (IID) { 3330 default: 3331 break; 3332 case Intrinsic::maxnum: 3333 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3334 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3335 SignBitOnly, Depth + 1)) || 3336 (isKnownNeverNaN(I->getOperand(1), TLI) && 3337 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3338 SignBitOnly, Depth + 1)); 3339 3340 case Intrinsic::maximum: 3341 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3342 Depth + 1) || 3343 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3344 Depth + 1); 3345 case Intrinsic::minnum: 3346 case Intrinsic::minimum: 3347 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3348 Depth + 1) && 3349 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3350 Depth + 1); 3351 case Intrinsic::exp: 3352 case Intrinsic::exp2: 3353 case Intrinsic::fabs: 3354 return true; 3355 3356 case Intrinsic::sqrt: 3357 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3358 if (!SignBitOnly) 3359 return true; 3360 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3361 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3362 3363 case Intrinsic::powi: 3364 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3365 // powi(x,n) is non-negative if n is even. 3366 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3367 return true; 3368 } 3369 // TODO: This is not correct. Given that exp is an integer, here are the 3370 // ways that pow can return a negative value: 3371 // 3372 // pow(x, exp) --> negative if exp is odd and x is negative. 3373 // pow(-0, exp) --> -inf if exp is negative odd. 3374 // pow(-0, exp) --> -0 if exp is positive odd. 3375 // pow(-inf, exp) --> -0 if exp is negative odd. 3376 // pow(-inf, exp) --> -inf if exp is positive odd. 3377 // 3378 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3379 // but we must return false if x == -0. Unfortunately we do not currently 3380 // have a way of expressing this constraint. See details in 3381 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3382 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3383 Depth + 1); 3384 3385 case Intrinsic::fma: 3386 case Intrinsic::fmuladd: 3387 // x*x+y is non-negative if y is non-negative. 3388 return I->getOperand(0) == I->getOperand(1) && 3389 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3390 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3391 Depth + 1); 3392 } 3393 break; 3394 } 3395 return false; 3396 } 3397 3398 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3399 const TargetLibraryInfo *TLI) { 3400 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3401 } 3402 3403 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3404 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3405 } 3406 3407 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3408 unsigned Depth) { 3409 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3410 3411 // If we're told that infinities won't happen, assume they won't. 3412 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3413 if (FPMathOp->hasNoInfs()) 3414 return true; 3415 3416 // Handle scalar constants. 3417 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3418 return !CFP->isInfinity(); 3419 3420 if (Depth == MaxDepth) 3421 return false; 3422 3423 if (auto *Inst = dyn_cast<Instruction>(V)) { 3424 switch (Inst->getOpcode()) { 3425 case Instruction::Select: { 3426 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3427 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3428 } 3429 case Instruction::UIToFP: 3430 // If the input type fits into the floating type the result is finite. 3431 return ilogb(APFloat::getLargest( 3432 Inst->getType()->getScalarType()->getFltSemantics())) >= 3433 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3434 default: 3435 break; 3436 } 3437 } 3438 3439 // Bail out for constant expressions, but try to handle vector constants. 3440 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3441 return false; 3442 3443 // For vectors, verify that each element is not infinity. 3444 unsigned NumElts = V->getType()->getVectorNumElements(); 3445 for (unsigned i = 0; i != NumElts; ++i) { 3446 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3447 if (!Elt) 3448 return false; 3449 if (isa<UndefValue>(Elt)) 3450 continue; 3451 auto *CElt = dyn_cast<ConstantFP>(Elt); 3452 if (!CElt || CElt->isInfinity()) 3453 return false; 3454 } 3455 // All elements were confirmed non-infinity or undefined. 3456 return true; 3457 } 3458 3459 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3460 unsigned Depth) { 3461 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3462 3463 // If we're told that NaNs won't happen, assume they won't. 3464 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3465 if (FPMathOp->hasNoNaNs()) 3466 return true; 3467 3468 // Handle scalar constants. 3469 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3470 return !CFP->isNaN(); 3471 3472 if (Depth == MaxDepth) 3473 return false; 3474 3475 if (auto *Inst = dyn_cast<Instruction>(V)) { 3476 switch (Inst->getOpcode()) { 3477 case Instruction::FAdd: 3478 case Instruction::FSub: 3479 // Adding positive and negative infinity produces NaN. 3480 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3481 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3482 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3483 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3484 3485 case Instruction::FMul: 3486 // Zero multiplied with infinity produces NaN. 3487 // FIXME: If neither side can be zero fmul never produces NaN. 3488 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3489 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3490 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3491 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3492 3493 case Instruction::FDiv: 3494 case Instruction::FRem: 3495 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3496 return false; 3497 3498 case Instruction::Select: { 3499 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3500 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3501 } 3502 case Instruction::SIToFP: 3503 case Instruction::UIToFP: 3504 return true; 3505 case Instruction::FPTrunc: 3506 case Instruction::FPExt: 3507 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3508 default: 3509 break; 3510 } 3511 } 3512 3513 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3514 switch (II->getIntrinsicID()) { 3515 case Intrinsic::canonicalize: 3516 case Intrinsic::fabs: 3517 case Intrinsic::copysign: 3518 case Intrinsic::exp: 3519 case Intrinsic::exp2: 3520 case Intrinsic::floor: 3521 case Intrinsic::ceil: 3522 case Intrinsic::trunc: 3523 case Intrinsic::rint: 3524 case Intrinsic::nearbyint: 3525 case Intrinsic::round: 3526 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3527 case Intrinsic::sqrt: 3528 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3529 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3530 case Intrinsic::minnum: 3531 case Intrinsic::maxnum: 3532 // If either operand is not NaN, the result is not NaN. 3533 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3534 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3535 default: 3536 return false; 3537 } 3538 } 3539 3540 // Bail out for constant expressions, but try to handle vector constants. 3541 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3542 return false; 3543 3544 // For vectors, verify that each element is not NaN. 3545 unsigned NumElts = V->getType()->getVectorNumElements(); 3546 for (unsigned i = 0; i != NumElts; ++i) { 3547 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3548 if (!Elt) 3549 return false; 3550 if (isa<UndefValue>(Elt)) 3551 continue; 3552 auto *CElt = dyn_cast<ConstantFP>(Elt); 3553 if (!CElt || CElt->isNaN()) 3554 return false; 3555 } 3556 // All elements were confirmed not-NaN or undefined. 3557 return true; 3558 } 3559 3560 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3561 3562 // All byte-wide stores are splatable, even of arbitrary variables. 3563 if (V->getType()->isIntegerTy(8)) 3564 return V; 3565 3566 LLVMContext &Ctx = V->getContext(); 3567 3568 // Undef don't care. 3569 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3570 if (isa<UndefValue>(V)) 3571 return UndefInt8; 3572 3573 // Return Undef for zero-sized type. 3574 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3575 return UndefInt8; 3576 3577 Constant *C = dyn_cast<Constant>(V); 3578 if (!C) { 3579 // Conceptually, we could handle things like: 3580 // %a = zext i8 %X to i16 3581 // %b = shl i16 %a, 8 3582 // %c = or i16 %a, %b 3583 // but until there is an example that actually needs this, it doesn't seem 3584 // worth worrying about. 3585 return nullptr; 3586 } 3587 3588 // Handle 'null' ConstantArrayZero etc. 3589 if (C->isNullValue()) 3590 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3591 3592 // Constant floating-point values can be handled as integer values if the 3593 // corresponding integer value is "byteable". An important case is 0.0. 3594 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3595 Type *Ty = nullptr; 3596 if (CFP->getType()->isHalfTy()) 3597 Ty = Type::getInt16Ty(Ctx); 3598 else if (CFP->getType()->isFloatTy()) 3599 Ty = Type::getInt32Ty(Ctx); 3600 else if (CFP->getType()->isDoubleTy()) 3601 Ty = Type::getInt64Ty(Ctx); 3602 // Don't handle long double formats, which have strange constraints. 3603 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3604 : nullptr; 3605 } 3606 3607 // We can handle constant integers that are multiple of 8 bits. 3608 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3609 if (CI->getBitWidth() % 8 == 0) { 3610 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3611 if (!CI->getValue().isSplat(8)) 3612 return nullptr; 3613 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3614 } 3615 } 3616 3617 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3618 if (CE->getOpcode() == Instruction::IntToPtr) { 3619 auto PS = DL.getPointerSizeInBits( 3620 cast<PointerType>(CE->getType())->getAddressSpace()); 3621 return isBytewiseValue( 3622 ConstantExpr::getIntegerCast(CE->getOperand(0), 3623 Type::getIntNTy(Ctx, PS), false), 3624 DL); 3625 } 3626 } 3627 3628 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3629 if (LHS == RHS) 3630 return LHS; 3631 if (!LHS || !RHS) 3632 return nullptr; 3633 if (LHS == UndefInt8) 3634 return RHS; 3635 if (RHS == UndefInt8) 3636 return LHS; 3637 return nullptr; 3638 }; 3639 3640 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3641 Value *Val = UndefInt8; 3642 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3643 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3644 return nullptr; 3645 return Val; 3646 } 3647 3648 if (isa<ConstantAggregate>(C)) { 3649 Value *Val = UndefInt8; 3650 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3651 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3652 return nullptr; 3653 return Val; 3654 } 3655 3656 // Don't try to handle the handful of other constants. 3657 return nullptr; 3658 } 3659 3660 // This is the recursive version of BuildSubAggregate. It takes a few different 3661 // arguments. Idxs is the index within the nested struct From that we are 3662 // looking at now (which is of type IndexedType). IdxSkip is the number of 3663 // indices from Idxs that should be left out when inserting into the resulting 3664 // struct. To is the result struct built so far, new insertvalue instructions 3665 // build on that. 3666 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3667 SmallVectorImpl<unsigned> &Idxs, 3668 unsigned IdxSkip, 3669 Instruction *InsertBefore) { 3670 StructType *STy = dyn_cast<StructType>(IndexedType); 3671 if (STy) { 3672 // Save the original To argument so we can modify it 3673 Value *OrigTo = To; 3674 // General case, the type indexed by Idxs is a struct 3675 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3676 // Process each struct element recursively 3677 Idxs.push_back(i); 3678 Value *PrevTo = To; 3679 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3680 InsertBefore); 3681 Idxs.pop_back(); 3682 if (!To) { 3683 // Couldn't find any inserted value for this index? Cleanup 3684 while (PrevTo != OrigTo) { 3685 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3686 PrevTo = Del->getAggregateOperand(); 3687 Del->eraseFromParent(); 3688 } 3689 // Stop processing elements 3690 break; 3691 } 3692 } 3693 // If we successfully found a value for each of our subaggregates 3694 if (To) 3695 return To; 3696 } 3697 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3698 // the struct's elements had a value that was inserted directly. In the latter 3699 // case, perhaps we can't determine each of the subelements individually, but 3700 // we might be able to find the complete struct somewhere. 3701 3702 // Find the value that is at that particular spot 3703 Value *V = FindInsertedValue(From, Idxs); 3704 3705 if (!V) 3706 return nullptr; 3707 3708 // Insert the value in the new (sub) aggregate 3709 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3710 "tmp", InsertBefore); 3711 } 3712 3713 // This helper takes a nested struct and extracts a part of it (which is again a 3714 // struct) into a new value. For example, given the struct: 3715 // { a, { b, { c, d }, e } } 3716 // and the indices "1, 1" this returns 3717 // { c, d }. 3718 // 3719 // It does this by inserting an insertvalue for each element in the resulting 3720 // struct, as opposed to just inserting a single struct. This will only work if 3721 // each of the elements of the substruct are known (ie, inserted into From by an 3722 // insertvalue instruction somewhere). 3723 // 3724 // All inserted insertvalue instructions are inserted before InsertBefore 3725 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3726 Instruction *InsertBefore) { 3727 assert(InsertBefore && "Must have someplace to insert!"); 3728 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3729 idx_range); 3730 Value *To = UndefValue::get(IndexedType); 3731 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3732 unsigned IdxSkip = Idxs.size(); 3733 3734 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3735 } 3736 3737 /// Given an aggregate and a sequence of indices, see if the scalar value 3738 /// indexed is already around as a register, for example if it was inserted 3739 /// directly into the aggregate. 3740 /// 3741 /// If InsertBefore is not null, this function will duplicate (modified) 3742 /// insertvalues when a part of a nested struct is extracted. 3743 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3744 Instruction *InsertBefore) { 3745 // Nothing to index? Just return V then (this is useful at the end of our 3746 // recursion). 3747 if (idx_range.empty()) 3748 return V; 3749 // We have indices, so V should have an indexable type. 3750 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3751 "Not looking at a struct or array?"); 3752 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3753 "Invalid indices for type?"); 3754 3755 if (Constant *C = dyn_cast<Constant>(V)) { 3756 C = C->getAggregateElement(idx_range[0]); 3757 if (!C) return nullptr; 3758 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3759 } 3760 3761 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3762 // Loop the indices for the insertvalue instruction in parallel with the 3763 // requested indices 3764 const unsigned *req_idx = idx_range.begin(); 3765 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3766 i != e; ++i, ++req_idx) { 3767 if (req_idx == idx_range.end()) { 3768 // We can't handle this without inserting insertvalues 3769 if (!InsertBefore) 3770 return nullptr; 3771 3772 // The requested index identifies a part of a nested aggregate. Handle 3773 // this specially. For example, 3774 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3775 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3776 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3777 // This can be changed into 3778 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3779 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3780 // which allows the unused 0,0 element from the nested struct to be 3781 // removed. 3782 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3783 InsertBefore); 3784 } 3785 3786 // This insert value inserts something else than what we are looking for. 3787 // See if the (aggregate) value inserted into has the value we are 3788 // looking for, then. 3789 if (*req_idx != *i) 3790 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3791 InsertBefore); 3792 } 3793 // If we end up here, the indices of the insertvalue match with those 3794 // requested (though possibly only partially). Now we recursively look at 3795 // the inserted value, passing any remaining indices. 3796 return FindInsertedValue(I->getInsertedValueOperand(), 3797 makeArrayRef(req_idx, idx_range.end()), 3798 InsertBefore); 3799 } 3800 3801 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3802 // If we're extracting a value from an aggregate that was extracted from 3803 // something else, we can extract from that something else directly instead. 3804 // However, we will need to chain I's indices with the requested indices. 3805 3806 // Calculate the number of indices required 3807 unsigned size = I->getNumIndices() + idx_range.size(); 3808 // Allocate some space to put the new indices in 3809 SmallVector<unsigned, 5> Idxs; 3810 Idxs.reserve(size); 3811 // Add indices from the extract value instruction 3812 Idxs.append(I->idx_begin(), I->idx_end()); 3813 3814 // Add requested indices 3815 Idxs.append(idx_range.begin(), idx_range.end()); 3816 3817 assert(Idxs.size() == size 3818 && "Number of indices added not correct?"); 3819 3820 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3821 } 3822 // Otherwise, we don't know (such as, extracting from a function return value 3823 // or load instruction) 3824 return nullptr; 3825 } 3826 3827 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3828 unsigned CharSize) { 3829 // Make sure the GEP has exactly three arguments. 3830 if (GEP->getNumOperands() != 3) 3831 return false; 3832 3833 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3834 // CharSize. 3835 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3836 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3837 return false; 3838 3839 // Check to make sure that the first operand of the GEP is an integer and 3840 // has value 0 so that we are sure we're indexing into the initializer. 3841 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3842 if (!FirstIdx || !FirstIdx->isZero()) 3843 return false; 3844 3845 return true; 3846 } 3847 3848 bool llvm::getConstantDataArrayInfo(const Value *V, 3849 ConstantDataArraySlice &Slice, 3850 unsigned ElementSize, uint64_t Offset) { 3851 assert(V); 3852 3853 // Look through bitcast instructions and geps. 3854 V = V->stripPointerCasts(); 3855 3856 // If the value is a GEP instruction or constant expression, treat it as an 3857 // offset. 3858 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3859 // The GEP operator should be based on a pointer to string constant, and is 3860 // indexing into the string constant. 3861 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3862 return false; 3863 3864 // If the second index isn't a ConstantInt, then this is a variable index 3865 // into the array. If this occurs, we can't say anything meaningful about 3866 // the string. 3867 uint64_t StartIdx = 0; 3868 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3869 StartIdx = CI->getZExtValue(); 3870 else 3871 return false; 3872 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3873 StartIdx + Offset); 3874 } 3875 3876 // The GEP instruction, constant or instruction, must reference a global 3877 // variable that is a constant and is initialized. The referenced constant 3878 // initializer is the array that we'll use for optimization. 3879 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3880 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3881 return false; 3882 3883 const ConstantDataArray *Array; 3884 ArrayType *ArrayTy; 3885 if (GV->getInitializer()->isNullValue()) { 3886 Type *GVTy = GV->getValueType(); 3887 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3888 // A zeroinitializer for the array; there is no ConstantDataArray. 3889 Array = nullptr; 3890 } else { 3891 const DataLayout &DL = GV->getParent()->getDataLayout(); 3892 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3893 uint64_t Length = SizeInBytes / (ElementSize / 8); 3894 if (Length <= Offset) 3895 return false; 3896 3897 Slice.Array = nullptr; 3898 Slice.Offset = 0; 3899 Slice.Length = Length - Offset; 3900 return true; 3901 } 3902 } else { 3903 // This must be a ConstantDataArray. 3904 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3905 if (!Array) 3906 return false; 3907 ArrayTy = Array->getType(); 3908 } 3909 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3910 return false; 3911 3912 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3913 if (Offset > NumElts) 3914 return false; 3915 3916 Slice.Array = Array; 3917 Slice.Offset = Offset; 3918 Slice.Length = NumElts - Offset; 3919 return true; 3920 } 3921 3922 /// This function computes the length of a null-terminated C string pointed to 3923 /// by V. If successful, it returns true and returns the string in Str. 3924 /// If unsuccessful, it returns false. 3925 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3926 uint64_t Offset, bool TrimAtNul) { 3927 ConstantDataArraySlice Slice; 3928 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3929 return false; 3930 3931 if (Slice.Array == nullptr) { 3932 if (TrimAtNul) { 3933 Str = StringRef(); 3934 return true; 3935 } 3936 if (Slice.Length == 1) { 3937 Str = StringRef("", 1); 3938 return true; 3939 } 3940 // We cannot instantiate a StringRef as we do not have an appropriate string 3941 // of 0s at hand. 3942 return false; 3943 } 3944 3945 // Start out with the entire array in the StringRef. 3946 Str = Slice.Array->getAsString(); 3947 // Skip over 'offset' bytes. 3948 Str = Str.substr(Slice.Offset); 3949 3950 if (TrimAtNul) { 3951 // Trim off the \0 and anything after it. If the array is not nul 3952 // terminated, we just return the whole end of string. The client may know 3953 // some other way that the string is length-bound. 3954 Str = Str.substr(0, Str.find('\0')); 3955 } 3956 return true; 3957 } 3958 3959 // These next two are very similar to the above, but also look through PHI 3960 // nodes. 3961 // TODO: See if we can integrate these two together. 3962 3963 /// If we can compute the length of the string pointed to by 3964 /// the specified pointer, return 'len+1'. If we can't, return 0. 3965 static uint64_t GetStringLengthH(const Value *V, 3966 SmallPtrSetImpl<const PHINode*> &PHIs, 3967 unsigned CharSize) { 3968 // Look through noop bitcast instructions. 3969 V = V->stripPointerCasts(); 3970 3971 // If this is a PHI node, there are two cases: either we have already seen it 3972 // or we haven't. 3973 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3974 if (!PHIs.insert(PN).second) 3975 return ~0ULL; // already in the set. 3976 3977 // If it was new, see if all the input strings are the same length. 3978 uint64_t LenSoFar = ~0ULL; 3979 for (Value *IncValue : PN->incoming_values()) { 3980 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3981 if (Len == 0) return 0; // Unknown length -> unknown. 3982 3983 if (Len == ~0ULL) continue; 3984 3985 if (Len != LenSoFar && LenSoFar != ~0ULL) 3986 return 0; // Disagree -> unknown. 3987 LenSoFar = Len; 3988 } 3989 3990 // Success, all agree. 3991 return LenSoFar; 3992 } 3993 3994 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3995 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3996 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3997 if (Len1 == 0) return 0; 3998 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3999 if (Len2 == 0) return 0; 4000 if (Len1 == ~0ULL) return Len2; 4001 if (Len2 == ~0ULL) return Len1; 4002 if (Len1 != Len2) return 0; 4003 return Len1; 4004 } 4005 4006 // Otherwise, see if we can read the string. 4007 ConstantDataArraySlice Slice; 4008 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4009 return 0; 4010 4011 if (Slice.Array == nullptr) 4012 return 1; 4013 4014 // Search for nul characters 4015 unsigned NullIndex = 0; 4016 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4017 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4018 break; 4019 } 4020 4021 return NullIndex + 1; 4022 } 4023 4024 /// If we can compute the length of the string pointed to by 4025 /// the specified pointer, return 'len+1'. If we can't, return 0. 4026 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4027 if (!V->getType()->isPointerTy()) 4028 return 0; 4029 4030 SmallPtrSet<const PHINode*, 32> PHIs; 4031 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4032 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4033 // an empty string as a length. 4034 return Len == ~0ULL ? 1 : Len; 4035 } 4036 4037 const Value * 4038 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4039 bool MustPreserveNullness) { 4040 assert(Call && 4041 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4042 if (const Value *RV = Call->getReturnedArgOperand()) 4043 return RV; 4044 // This can be used only as a aliasing property. 4045 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4046 Call, MustPreserveNullness)) 4047 return Call->getArgOperand(0); 4048 return nullptr; 4049 } 4050 4051 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4052 const CallBase *Call, bool MustPreserveNullness) { 4053 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4054 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4055 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4056 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4057 (!MustPreserveNullness && 4058 Call->getIntrinsicID() == Intrinsic::ptrmask); 4059 } 4060 4061 /// \p PN defines a loop-variant pointer to an object. Check if the 4062 /// previous iteration of the loop was referring to the same object as \p PN. 4063 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4064 const LoopInfo *LI) { 4065 // Find the loop-defined value. 4066 Loop *L = LI->getLoopFor(PN->getParent()); 4067 if (PN->getNumIncomingValues() != 2) 4068 return true; 4069 4070 // Find the value from previous iteration. 4071 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4072 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4073 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4074 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4075 return true; 4076 4077 // If a new pointer is loaded in the loop, the pointer references a different 4078 // object in every iteration. E.g.: 4079 // for (i) 4080 // int *p = a[i]; 4081 // ... 4082 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4083 if (!L->isLoopInvariant(Load->getPointerOperand())) 4084 return false; 4085 return true; 4086 } 4087 4088 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4089 unsigned MaxLookup) { 4090 if (!V->getType()->isPointerTy()) 4091 return V; 4092 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4093 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4094 V = GEP->getPointerOperand(); 4095 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4096 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4097 V = cast<Operator>(V)->getOperand(0); 4098 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4099 if (GA->isInterposable()) 4100 return V; 4101 V = GA->getAliasee(); 4102 } else if (isa<AllocaInst>(V)) { 4103 // An alloca can't be further simplified. 4104 return V; 4105 } else { 4106 if (auto *Call = dyn_cast<CallBase>(V)) { 4107 // CaptureTracking can know about special capturing properties of some 4108 // intrinsics like launder.invariant.group, that can't be expressed with 4109 // the attributes, but have properties like returning aliasing pointer. 4110 // Because some analysis may assume that nocaptured pointer is not 4111 // returned from some special intrinsic (because function would have to 4112 // be marked with returns attribute), it is crucial to use this function 4113 // because it should be in sync with CaptureTracking. Not using it may 4114 // cause weird miscompilations where 2 aliasing pointers are assumed to 4115 // noalias. 4116 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4117 V = RP; 4118 continue; 4119 } 4120 } 4121 4122 // See if InstructionSimplify knows any relevant tricks. 4123 if (Instruction *I = dyn_cast<Instruction>(V)) 4124 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4125 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4126 V = Simplified; 4127 continue; 4128 } 4129 4130 return V; 4131 } 4132 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4133 } 4134 return V; 4135 } 4136 4137 void llvm::GetUnderlyingObjects(const Value *V, 4138 SmallVectorImpl<const Value *> &Objects, 4139 const DataLayout &DL, LoopInfo *LI, 4140 unsigned MaxLookup) { 4141 SmallPtrSet<const Value *, 4> Visited; 4142 SmallVector<const Value *, 4> Worklist; 4143 Worklist.push_back(V); 4144 do { 4145 const Value *P = Worklist.pop_back_val(); 4146 P = GetUnderlyingObject(P, DL, MaxLookup); 4147 4148 if (!Visited.insert(P).second) 4149 continue; 4150 4151 if (auto *SI = dyn_cast<SelectInst>(P)) { 4152 Worklist.push_back(SI->getTrueValue()); 4153 Worklist.push_back(SI->getFalseValue()); 4154 continue; 4155 } 4156 4157 if (auto *PN = dyn_cast<PHINode>(P)) { 4158 // If this PHI changes the underlying object in every iteration of the 4159 // loop, don't look through it. Consider: 4160 // int **A; 4161 // for (i) { 4162 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4163 // Curr = A[i]; 4164 // *Prev, *Curr; 4165 // 4166 // Prev is tracking Curr one iteration behind so they refer to different 4167 // underlying objects. 4168 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4169 isSameUnderlyingObjectInLoop(PN, LI)) 4170 for (Value *IncValue : PN->incoming_values()) 4171 Worklist.push_back(IncValue); 4172 continue; 4173 } 4174 4175 Objects.push_back(P); 4176 } while (!Worklist.empty()); 4177 } 4178 4179 /// This is the function that does the work of looking through basic 4180 /// ptrtoint+arithmetic+inttoptr sequences. 4181 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4182 do { 4183 if (const Operator *U = dyn_cast<Operator>(V)) { 4184 // If we find a ptrtoint, we can transfer control back to the 4185 // regular getUnderlyingObjectFromInt. 4186 if (U->getOpcode() == Instruction::PtrToInt) 4187 return U->getOperand(0); 4188 // If we find an add of a constant, a multiplied value, or a phi, it's 4189 // likely that the other operand will lead us to the base 4190 // object. We don't have to worry about the case where the 4191 // object address is somehow being computed by the multiply, 4192 // because our callers only care when the result is an 4193 // identifiable object. 4194 if (U->getOpcode() != Instruction::Add || 4195 (!isa<ConstantInt>(U->getOperand(1)) && 4196 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4197 !isa<PHINode>(U->getOperand(1)))) 4198 return V; 4199 V = U->getOperand(0); 4200 } else { 4201 return V; 4202 } 4203 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4204 } while (true); 4205 } 4206 4207 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4208 /// ptrtoint+arithmetic+inttoptr sequences. 4209 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4210 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4211 SmallVectorImpl<Value *> &Objects, 4212 const DataLayout &DL) { 4213 SmallPtrSet<const Value *, 16> Visited; 4214 SmallVector<const Value *, 4> Working(1, V); 4215 do { 4216 V = Working.pop_back_val(); 4217 4218 SmallVector<const Value *, 4> Objs; 4219 GetUnderlyingObjects(V, Objs, DL); 4220 4221 for (const Value *V : Objs) { 4222 if (!Visited.insert(V).second) 4223 continue; 4224 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4225 const Value *O = 4226 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4227 if (O->getType()->isPointerTy()) { 4228 Working.push_back(O); 4229 continue; 4230 } 4231 } 4232 // If GetUnderlyingObjects fails to find an identifiable object, 4233 // getUnderlyingObjectsForCodeGen also fails for safety. 4234 if (!isIdentifiedObject(V)) { 4235 Objects.clear(); 4236 return false; 4237 } 4238 Objects.push_back(const_cast<Value *>(V)); 4239 } 4240 } while (!Working.empty()); 4241 return true; 4242 } 4243 4244 /// Return true if the only users of this pointer are lifetime markers. 4245 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4246 for (const User *U : V->users()) { 4247 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4248 if (!II) return false; 4249 4250 if (!II->isLifetimeStartOrEnd()) 4251 return false; 4252 } 4253 return true; 4254 } 4255 4256 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4257 if (!LI.isUnordered()) 4258 return true; 4259 const Function &F = *LI.getFunction(); 4260 // Speculative load may create a race that did not exist in the source. 4261 return F.hasFnAttribute(Attribute::SanitizeThread) || 4262 // Speculative load may load data from dirty regions. 4263 F.hasFnAttribute(Attribute::SanitizeAddress) || 4264 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4265 } 4266 4267 4268 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4269 const Instruction *CtxI, 4270 const DominatorTree *DT) { 4271 const Operator *Inst = dyn_cast<Operator>(V); 4272 if (!Inst) 4273 return false; 4274 4275 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4276 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4277 if (C->canTrap()) 4278 return false; 4279 4280 switch (Inst->getOpcode()) { 4281 default: 4282 return true; 4283 case Instruction::UDiv: 4284 case Instruction::URem: { 4285 // x / y is undefined if y == 0. 4286 const APInt *V; 4287 if (match(Inst->getOperand(1), m_APInt(V))) 4288 return *V != 0; 4289 return false; 4290 } 4291 case Instruction::SDiv: 4292 case Instruction::SRem: { 4293 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4294 const APInt *Numerator, *Denominator; 4295 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4296 return false; 4297 // We cannot hoist this division if the denominator is 0. 4298 if (*Denominator == 0) 4299 return false; 4300 // It's safe to hoist if the denominator is not 0 or -1. 4301 if (*Denominator != -1) 4302 return true; 4303 // At this point we know that the denominator is -1. It is safe to hoist as 4304 // long we know that the numerator is not INT_MIN. 4305 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4306 return !Numerator->isMinSignedValue(); 4307 // The numerator *might* be MinSignedValue. 4308 return false; 4309 } 4310 case Instruction::Load: { 4311 const LoadInst *LI = cast<LoadInst>(Inst); 4312 if (mustSuppressSpeculation(*LI)) 4313 return false; 4314 const DataLayout &DL = LI->getModule()->getDataLayout(); 4315 return isDereferenceableAndAlignedPointer( 4316 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4317 DL, CtxI, DT); 4318 } 4319 case Instruction::Call: { 4320 auto *CI = cast<const CallInst>(Inst); 4321 const Function *Callee = CI->getCalledFunction(); 4322 4323 // The called function could have undefined behavior or side-effects, even 4324 // if marked readnone nounwind. 4325 return Callee && Callee->isSpeculatable(); 4326 } 4327 case Instruction::VAArg: 4328 case Instruction::Alloca: 4329 case Instruction::Invoke: 4330 case Instruction::CallBr: 4331 case Instruction::PHI: 4332 case Instruction::Store: 4333 case Instruction::Ret: 4334 case Instruction::Br: 4335 case Instruction::IndirectBr: 4336 case Instruction::Switch: 4337 case Instruction::Unreachable: 4338 case Instruction::Fence: 4339 case Instruction::AtomicRMW: 4340 case Instruction::AtomicCmpXchg: 4341 case Instruction::LandingPad: 4342 case Instruction::Resume: 4343 case Instruction::CatchSwitch: 4344 case Instruction::CatchPad: 4345 case Instruction::CatchRet: 4346 case Instruction::CleanupPad: 4347 case Instruction::CleanupRet: 4348 return false; // Misc instructions which have effects 4349 } 4350 } 4351 4352 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4353 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4354 } 4355 4356 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4357 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4358 switch (OR) { 4359 case ConstantRange::OverflowResult::MayOverflow: 4360 return OverflowResult::MayOverflow; 4361 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4362 return OverflowResult::AlwaysOverflowsLow; 4363 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4364 return OverflowResult::AlwaysOverflowsHigh; 4365 case ConstantRange::OverflowResult::NeverOverflows: 4366 return OverflowResult::NeverOverflows; 4367 } 4368 llvm_unreachable("Unknown OverflowResult"); 4369 } 4370 4371 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4372 static ConstantRange computeConstantRangeIncludingKnownBits( 4373 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4374 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4375 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4376 KnownBits Known = computeKnownBits( 4377 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4378 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4379 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4380 ConstantRange::PreferredRangeType RangeType = 4381 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4382 return CR1.intersectWith(CR2, RangeType); 4383 } 4384 4385 OverflowResult llvm::computeOverflowForUnsignedMul( 4386 const Value *LHS, const Value *RHS, const DataLayout &DL, 4387 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4388 bool UseInstrInfo) { 4389 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4390 nullptr, UseInstrInfo); 4391 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4392 nullptr, UseInstrInfo); 4393 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4394 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4395 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4396 } 4397 4398 OverflowResult 4399 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4400 const DataLayout &DL, AssumptionCache *AC, 4401 const Instruction *CxtI, 4402 const DominatorTree *DT, bool UseInstrInfo) { 4403 // Multiplying n * m significant bits yields a result of n + m significant 4404 // bits. If the total number of significant bits does not exceed the 4405 // result bit width (minus 1), there is no overflow. 4406 // This means if we have enough leading sign bits in the operands 4407 // we can guarantee that the result does not overflow. 4408 // Ref: "Hacker's Delight" by Henry Warren 4409 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4410 4411 // Note that underestimating the number of sign bits gives a more 4412 // conservative answer. 4413 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4414 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4415 4416 // First handle the easy case: if we have enough sign bits there's 4417 // definitely no overflow. 4418 if (SignBits > BitWidth + 1) 4419 return OverflowResult::NeverOverflows; 4420 4421 // There are two ambiguous cases where there can be no overflow: 4422 // SignBits == BitWidth + 1 and 4423 // SignBits == BitWidth 4424 // The second case is difficult to check, therefore we only handle the 4425 // first case. 4426 if (SignBits == BitWidth + 1) { 4427 // It overflows only when both arguments are negative and the true 4428 // product is exactly the minimum negative number. 4429 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4430 // For simplicity we just check if at least one side is not negative. 4431 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4432 nullptr, UseInstrInfo); 4433 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4434 nullptr, UseInstrInfo); 4435 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4436 return OverflowResult::NeverOverflows; 4437 } 4438 return OverflowResult::MayOverflow; 4439 } 4440 4441 OverflowResult llvm::computeOverflowForUnsignedAdd( 4442 const Value *LHS, const Value *RHS, const DataLayout &DL, 4443 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4444 bool UseInstrInfo) { 4445 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4446 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4447 nullptr, UseInstrInfo); 4448 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4449 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4450 nullptr, UseInstrInfo); 4451 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4452 } 4453 4454 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4455 const Value *RHS, 4456 const AddOperator *Add, 4457 const DataLayout &DL, 4458 AssumptionCache *AC, 4459 const Instruction *CxtI, 4460 const DominatorTree *DT) { 4461 if (Add && Add->hasNoSignedWrap()) { 4462 return OverflowResult::NeverOverflows; 4463 } 4464 4465 // If LHS and RHS each have at least two sign bits, the addition will look 4466 // like 4467 // 4468 // XX..... + 4469 // YY..... 4470 // 4471 // If the carry into the most significant position is 0, X and Y can't both 4472 // be 1 and therefore the carry out of the addition is also 0. 4473 // 4474 // If the carry into the most significant position is 1, X and Y can't both 4475 // be 0 and therefore the carry out of the addition is also 1. 4476 // 4477 // Since the carry into the most significant position is always equal to 4478 // the carry out of the addition, there is no signed overflow. 4479 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4480 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4481 return OverflowResult::NeverOverflows; 4482 4483 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4484 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4485 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4486 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4487 OverflowResult OR = 4488 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4489 if (OR != OverflowResult::MayOverflow) 4490 return OR; 4491 4492 // The remaining code needs Add to be available. Early returns if not so. 4493 if (!Add) 4494 return OverflowResult::MayOverflow; 4495 4496 // If the sign of Add is the same as at least one of the operands, this add 4497 // CANNOT overflow. If this can be determined from the known bits of the 4498 // operands the above signedAddMayOverflow() check will have already done so. 4499 // The only other way to improve on the known bits is from an assumption, so 4500 // call computeKnownBitsFromAssume() directly. 4501 bool LHSOrRHSKnownNonNegative = 4502 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4503 bool LHSOrRHSKnownNegative = 4504 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4505 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4506 KnownBits AddKnown(LHSRange.getBitWidth()); 4507 computeKnownBitsFromAssume( 4508 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4509 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4510 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4511 return OverflowResult::NeverOverflows; 4512 } 4513 4514 return OverflowResult::MayOverflow; 4515 } 4516 4517 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4518 const Value *RHS, 4519 const DataLayout &DL, 4520 AssumptionCache *AC, 4521 const Instruction *CxtI, 4522 const DominatorTree *DT) { 4523 // Checking for conditions implied by dominating conditions may be expensive. 4524 // Limit it to usub_with_overflow calls for now. 4525 if (match(CxtI, 4526 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4527 if (auto C = 4528 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4529 if (*C) 4530 return OverflowResult::NeverOverflows; 4531 return OverflowResult::AlwaysOverflowsLow; 4532 } 4533 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4534 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4535 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4536 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4537 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4538 } 4539 4540 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4541 const Value *RHS, 4542 const DataLayout &DL, 4543 AssumptionCache *AC, 4544 const Instruction *CxtI, 4545 const DominatorTree *DT) { 4546 // If LHS and RHS each have at least two sign bits, the subtraction 4547 // cannot overflow. 4548 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4549 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4550 return OverflowResult::NeverOverflows; 4551 4552 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4553 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4554 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4555 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4556 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4557 } 4558 4559 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4560 const DominatorTree &DT) { 4561 SmallVector<const BranchInst *, 2> GuardingBranches; 4562 SmallVector<const ExtractValueInst *, 2> Results; 4563 4564 for (const User *U : WO->users()) { 4565 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4566 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4567 4568 if (EVI->getIndices()[0] == 0) 4569 Results.push_back(EVI); 4570 else { 4571 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4572 4573 for (const auto *U : EVI->users()) 4574 if (const auto *B = dyn_cast<BranchInst>(U)) { 4575 assert(B->isConditional() && "How else is it using an i1?"); 4576 GuardingBranches.push_back(B); 4577 } 4578 } 4579 } else { 4580 // We are using the aggregate directly in a way we don't want to analyze 4581 // here (storing it to a global, say). 4582 return false; 4583 } 4584 } 4585 4586 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4587 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4588 if (!NoWrapEdge.isSingleEdge()) 4589 return false; 4590 4591 // Check if all users of the add are provably no-wrap. 4592 for (const auto *Result : Results) { 4593 // If the extractvalue itself is not executed on overflow, the we don't 4594 // need to check each use separately, since domination is transitive. 4595 if (DT.dominates(NoWrapEdge, Result->getParent())) 4596 continue; 4597 4598 for (auto &RU : Result->uses()) 4599 if (!DT.dominates(NoWrapEdge, RU)) 4600 return false; 4601 } 4602 4603 return true; 4604 }; 4605 4606 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4607 } 4608 4609 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4610 const Instruction *CtxI, 4611 const DominatorTree *DT) { 4612 // If the value is a freeze instruction, then it can never 4613 // be undef or poison. 4614 if (isa<FreezeInst>(V)) 4615 return true; 4616 // TODO: Some instructions are guaranteed to return neither undef 4617 // nor poison if their arguments are not poison/undef. 4618 4619 if (auto *C = dyn_cast<Constant>(V)) { 4620 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4621 // possibility of poison. 4622 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4623 return false; 4624 4625 // TODO: Add ConstantFP and pointers. 4626 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) ) 4627 return true; 4628 4629 if (C->getType()->isVectorTy()) 4630 return !C->containsUndefElement() && !C->containsConstantExpression(); 4631 4632 // TODO: Recursively analyze aggregates or other constants. 4633 return false; 4634 } 4635 4636 if (auto PN = dyn_cast<PHINode>(V)) { 4637 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4638 return isa<ConstantInt>(U.get()); 4639 })) 4640 return true; 4641 } 4642 4643 if (auto II = dyn_cast<ICmpInst>(V)) { 4644 if (llvm::all_of(II->operands(), [](const Value *V) { 4645 return isGuaranteedNotToBeUndefOrPoison(V); 4646 })) 4647 return true; 4648 } 4649 4650 if (auto I = dyn_cast<Instruction>(V)) { 4651 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4652 // Note: once we have an agreement that poison is a value-wise concept, 4653 // we can remove the isIntegerTy(1) constraint. 4654 return true; 4655 } 4656 4657 // CxtI may be null or a cloned instruction. 4658 if (!CtxI || !CtxI->getParent() || !DT) 4659 return false; 4660 4661 // If V is used as a branch condition before reaching CtxI, V cannot be 4662 // undef or poison. 4663 // br V, BB1, BB2 4664 // BB1: 4665 // CtxI ; V cannot be undef or poison here 4666 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4667 while (Dominator) { 4668 auto *TI = Dominator->getBlock()->getTerminator(); 4669 4670 if (auto BI = dyn_cast<BranchInst>(TI)) { 4671 if (BI->isConditional() && BI->getCondition() == V) 4672 return true; 4673 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4674 if (SI->getCondition() == V) 4675 return true; 4676 } 4677 4678 Dominator = Dominator->getIDom(); 4679 } 4680 4681 return false; 4682 } 4683 4684 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4685 const DataLayout &DL, 4686 AssumptionCache *AC, 4687 const Instruction *CxtI, 4688 const DominatorTree *DT) { 4689 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4690 Add, DL, AC, CxtI, DT); 4691 } 4692 4693 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4694 const Value *RHS, 4695 const DataLayout &DL, 4696 AssumptionCache *AC, 4697 const Instruction *CxtI, 4698 const DominatorTree *DT) { 4699 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4700 } 4701 4702 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4703 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4704 // of time because it's possible for another thread to interfere with it for an 4705 // arbitrary length of time, but programs aren't allowed to rely on that. 4706 4707 // If there is no successor, then execution can't transfer to it. 4708 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4709 return !CRI->unwindsToCaller(); 4710 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4711 return !CatchSwitch->unwindsToCaller(); 4712 if (isa<ResumeInst>(I)) 4713 return false; 4714 if (isa<ReturnInst>(I)) 4715 return false; 4716 if (isa<UnreachableInst>(I)) 4717 return false; 4718 4719 // Calls can throw, or contain an infinite loop, or kill the process. 4720 if (auto CS = ImmutableCallSite(I)) { 4721 // Call sites that throw have implicit non-local control flow. 4722 if (!CS.doesNotThrow()) 4723 return false; 4724 4725 // A function which doens't throw and has "willreturn" attribute will 4726 // always return. 4727 if (CS.hasFnAttr(Attribute::WillReturn)) 4728 return true; 4729 4730 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4731 // etc. and thus not return. However, LLVM already assumes that 4732 // 4733 // - Thread exiting actions are modeled as writes to memory invisible to 4734 // the program. 4735 // 4736 // - Loops that don't have side effects (side effects are volatile/atomic 4737 // stores and IO) always terminate (see http://llvm.org/PR965). 4738 // Furthermore IO itself is also modeled as writes to memory invisible to 4739 // the program. 4740 // 4741 // We rely on those assumptions here, and use the memory effects of the call 4742 // target as a proxy for checking that it always returns. 4743 4744 // FIXME: This isn't aggressive enough; a call which only writes to a global 4745 // is guaranteed to return. 4746 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4747 } 4748 4749 // Other instructions return normally. 4750 return true; 4751 } 4752 4753 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4754 // TODO: This is slightly conservative for invoke instruction since exiting 4755 // via an exception *is* normal control for them. 4756 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4757 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4758 return false; 4759 return true; 4760 } 4761 4762 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4763 const Loop *L) { 4764 // The loop header is guaranteed to be executed for every iteration. 4765 // 4766 // FIXME: Relax this constraint to cover all basic blocks that are 4767 // guaranteed to be executed at every iteration. 4768 if (I->getParent() != L->getHeader()) return false; 4769 4770 for (const Instruction &LI : *L->getHeader()) { 4771 if (&LI == I) return true; 4772 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4773 } 4774 llvm_unreachable("Instruction not contained in its own parent basic block."); 4775 } 4776 4777 bool llvm::propagatesFullPoison(const Instruction *I) { 4778 // TODO: This should include all instructions apart from phis, selects and 4779 // call-like instructions. 4780 switch (I->getOpcode()) { 4781 case Instruction::Add: 4782 case Instruction::Sub: 4783 case Instruction::Xor: 4784 case Instruction::Trunc: 4785 case Instruction::BitCast: 4786 case Instruction::AddrSpaceCast: 4787 case Instruction::Mul: 4788 case Instruction::Shl: 4789 case Instruction::GetElementPtr: 4790 // These operations all propagate poison unconditionally. Note that poison 4791 // is not any particular value, so xor or subtraction of poison with 4792 // itself still yields poison, not zero. 4793 return true; 4794 4795 case Instruction::AShr: 4796 case Instruction::SExt: 4797 // For these operations, one bit of the input is replicated across 4798 // multiple output bits. A replicated poison bit is still poison. 4799 return true; 4800 4801 case Instruction::ICmp: 4802 // Comparing poison with any value yields poison. This is why, for 4803 // instance, x s< (x +nsw 1) can be folded to true. 4804 return true; 4805 4806 default: 4807 return false; 4808 } 4809 } 4810 4811 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4812 switch (I->getOpcode()) { 4813 case Instruction::Store: 4814 return cast<StoreInst>(I)->getPointerOperand(); 4815 4816 case Instruction::Load: 4817 return cast<LoadInst>(I)->getPointerOperand(); 4818 4819 case Instruction::AtomicCmpXchg: 4820 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4821 4822 case Instruction::AtomicRMW: 4823 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4824 4825 case Instruction::UDiv: 4826 case Instruction::SDiv: 4827 case Instruction::URem: 4828 case Instruction::SRem: 4829 return I->getOperand(1); 4830 4831 case Instruction::Call: 4832 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4833 switch (II->getIntrinsicID()) { 4834 case Intrinsic::assume: 4835 return II->getArgOperand(0); 4836 default: 4837 return nullptr; 4838 } 4839 } 4840 return nullptr; 4841 4842 default: 4843 return nullptr; 4844 } 4845 } 4846 4847 bool llvm::mustTriggerUB(const Instruction *I, 4848 const SmallSet<const Value *, 16>& KnownPoison) { 4849 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4850 return (NotPoison && KnownPoison.count(NotPoison)); 4851 } 4852 4853 4854 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4855 // We currently only look for uses of poison values within the same basic 4856 // block, as that makes it easier to guarantee that the uses will be 4857 // executed given that PoisonI is executed. 4858 // 4859 // FIXME: Expand this to consider uses beyond the same basic block. To do 4860 // this, look out for the distinction between post-dominance and strong 4861 // post-dominance. 4862 const BasicBlock *BB = PoisonI->getParent(); 4863 4864 // Set of instructions that we have proved will yield poison if PoisonI 4865 // does. 4866 SmallSet<const Value *, 16> YieldsPoison; 4867 SmallSet<const BasicBlock *, 4> Visited; 4868 YieldsPoison.insert(PoisonI); 4869 Visited.insert(PoisonI->getParent()); 4870 4871 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4872 4873 unsigned Iter = 0; 4874 while (Iter++ < MaxDepth) { 4875 for (auto &I : make_range(Begin, End)) { 4876 if (&I != PoisonI) { 4877 if (mustTriggerUB(&I, YieldsPoison)) 4878 return true; 4879 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4880 return false; 4881 } 4882 4883 // Mark poison that propagates from I through uses of I. 4884 if (YieldsPoison.count(&I)) { 4885 for (const User *User : I.users()) { 4886 const Instruction *UserI = cast<Instruction>(User); 4887 if (propagatesFullPoison(UserI)) 4888 YieldsPoison.insert(User); 4889 } 4890 } 4891 } 4892 4893 if (auto *NextBB = BB->getSingleSuccessor()) { 4894 if (Visited.insert(NextBB).second) { 4895 BB = NextBB; 4896 Begin = BB->getFirstNonPHI()->getIterator(); 4897 End = BB->end(); 4898 continue; 4899 } 4900 } 4901 4902 break; 4903 } 4904 return false; 4905 } 4906 4907 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4908 if (FMF.noNaNs()) 4909 return true; 4910 4911 if (auto *C = dyn_cast<ConstantFP>(V)) 4912 return !C->isNaN(); 4913 4914 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4915 if (!C->getElementType()->isFloatingPointTy()) 4916 return false; 4917 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4918 if (C->getElementAsAPFloat(I).isNaN()) 4919 return false; 4920 } 4921 return true; 4922 } 4923 4924 if (isa<ConstantAggregateZero>(V)) 4925 return true; 4926 4927 return false; 4928 } 4929 4930 static bool isKnownNonZero(const Value *V) { 4931 if (auto *C = dyn_cast<ConstantFP>(V)) 4932 return !C->isZero(); 4933 4934 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4935 if (!C->getElementType()->isFloatingPointTy()) 4936 return false; 4937 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4938 if (C->getElementAsAPFloat(I).isZero()) 4939 return false; 4940 } 4941 return true; 4942 } 4943 4944 return false; 4945 } 4946 4947 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4948 /// Given non-min/max outer cmp/select from the clamp pattern this 4949 /// function recognizes if it can be substitued by a "canonical" min/max 4950 /// pattern. 4951 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4952 Value *CmpLHS, Value *CmpRHS, 4953 Value *TrueVal, Value *FalseVal, 4954 Value *&LHS, Value *&RHS) { 4955 // Try to match 4956 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4957 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4958 // and return description of the outer Max/Min. 4959 4960 // First, check if select has inverse order: 4961 if (CmpRHS == FalseVal) { 4962 std::swap(TrueVal, FalseVal); 4963 Pred = CmpInst::getInversePredicate(Pred); 4964 } 4965 4966 // Assume success now. If there's no match, callers should not use these anyway. 4967 LHS = TrueVal; 4968 RHS = FalseVal; 4969 4970 const APFloat *FC1; 4971 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4972 return {SPF_UNKNOWN, SPNB_NA, false}; 4973 4974 const APFloat *FC2; 4975 switch (Pred) { 4976 case CmpInst::FCMP_OLT: 4977 case CmpInst::FCMP_OLE: 4978 case CmpInst::FCMP_ULT: 4979 case CmpInst::FCMP_ULE: 4980 if (match(FalseVal, 4981 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4982 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4983 *FC1 < *FC2) 4984 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4985 break; 4986 case CmpInst::FCMP_OGT: 4987 case CmpInst::FCMP_OGE: 4988 case CmpInst::FCMP_UGT: 4989 case CmpInst::FCMP_UGE: 4990 if (match(FalseVal, 4991 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4992 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4993 *FC1 > *FC2) 4994 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4995 break; 4996 default: 4997 break; 4998 } 4999 5000 return {SPF_UNKNOWN, SPNB_NA, false}; 5001 } 5002 5003 /// Recognize variations of: 5004 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5005 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5006 Value *CmpLHS, Value *CmpRHS, 5007 Value *TrueVal, Value *FalseVal) { 5008 // Swap the select operands and predicate to match the patterns below. 5009 if (CmpRHS != TrueVal) { 5010 Pred = ICmpInst::getSwappedPredicate(Pred); 5011 std::swap(TrueVal, FalseVal); 5012 } 5013 const APInt *C1; 5014 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5015 const APInt *C2; 5016 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5017 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5018 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5019 return {SPF_SMAX, SPNB_NA, false}; 5020 5021 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5022 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5023 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5024 return {SPF_SMIN, SPNB_NA, false}; 5025 5026 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5027 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5028 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5029 return {SPF_UMAX, SPNB_NA, false}; 5030 5031 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5032 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5033 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5034 return {SPF_UMIN, SPNB_NA, false}; 5035 } 5036 return {SPF_UNKNOWN, SPNB_NA, false}; 5037 } 5038 5039 /// Recognize variations of: 5040 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5041 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5042 Value *CmpLHS, Value *CmpRHS, 5043 Value *TVal, Value *FVal, 5044 unsigned Depth) { 5045 // TODO: Allow FP min/max with nnan/nsz. 5046 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5047 5048 Value *A = nullptr, *B = nullptr; 5049 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5050 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5051 return {SPF_UNKNOWN, SPNB_NA, false}; 5052 5053 Value *C = nullptr, *D = nullptr; 5054 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5055 if (L.Flavor != R.Flavor) 5056 return {SPF_UNKNOWN, SPNB_NA, false}; 5057 5058 // We have something like: x Pred y ? min(a, b) : min(c, d). 5059 // Try to match the compare to the min/max operations of the select operands. 5060 // First, make sure we have the right compare predicate. 5061 switch (L.Flavor) { 5062 case SPF_SMIN: 5063 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5064 Pred = ICmpInst::getSwappedPredicate(Pred); 5065 std::swap(CmpLHS, CmpRHS); 5066 } 5067 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5068 break; 5069 return {SPF_UNKNOWN, SPNB_NA, false}; 5070 case SPF_SMAX: 5071 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5072 Pred = ICmpInst::getSwappedPredicate(Pred); 5073 std::swap(CmpLHS, CmpRHS); 5074 } 5075 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5076 break; 5077 return {SPF_UNKNOWN, SPNB_NA, false}; 5078 case SPF_UMIN: 5079 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5080 Pred = ICmpInst::getSwappedPredicate(Pred); 5081 std::swap(CmpLHS, CmpRHS); 5082 } 5083 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5084 break; 5085 return {SPF_UNKNOWN, SPNB_NA, false}; 5086 case SPF_UMAX: 5087 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5088 Pred = ICmpInst::getSwappedPredicate(Pred); 5089 std::swap(CmpLHS, CmpRHS); 5090 } 5091 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5092 break; 5093 return {SPF_UNKNOWN, SPNB_NA, false}; 5094 default: 5095 return {SPF_UNKNOWN, SPNB_NA, false}; 5096 } 5097 5098 // If there is a common operand in the already matched min/max and the other 5099 // min/max operands match the compare operands (either directly or inverted), 5100 // then this is min/max of the same flavor. 5101 5102 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5103 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5104 if (D == B) { 5105 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5106 match(A, m_Not(m_Specific(CmpRHS))))) 5107 return {L.Flavor, SPNB_NA, false}; 5108 } 5109 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5110 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5111 if (C == B) { 5112 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5113 match(A, m_Not(m_Specific(CmpRHS))))) 5114 return {L.Flavor, SPNB_NA, false}; 5115 } 5116 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5117 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5118 if (D == A) { 5119 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5120 match(B, m_Not(m_Specific(CmpRHS))))) 5121 return {L.Flavor, SPNB_NA, false}; 5122 } 5123 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5124 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5125 if (C == A) { 5126 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5127 match(B, m_Not(m_Specific(CmpRHS))))) 5128 return {L.Flavor, SPNB_NA, false}; 5129 } 5130 5131 return {SPF_UNKNOWN, SPNB_NA, false}; 5132 } 5133 5134 /// Match non-obvious integer minimum and maximum sequences. 5135 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5136 Value *CmpLHS, Value *CmpRHS, 5137 Value *TrueVal, Value *FalseVal, 5138 Value *&LHS, Value *&RHS, 5139 unsigned Depth) { 5140 // Assume success. If there's no match, callers should not use these anyway. 5141 LHS = TrueVal; 5142 RHS = FalseVal; 5143 5144 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5145 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5146 return SPR; 5147 5148 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5149 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5150 return SPR; 5151 5152 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5153 return {SPF_UNKNOWN, SPNB_NA, false}; 5154 5155 // Z = X -nsw Y 5156 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5157 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5158 if (match(TrueVal, m_Zero()) && 5159 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5160 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5161 5162 // Z = X -nsw Y 5163 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5164 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5165 if (match(FalseVal, m_Zero()) && 5166 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5167 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5168 5169 const APInt *C1; 5170 if (!match(CmpRHS, m_APInt(C1))) 5171 return {SPF_UNKNOWN, SPNB_NA, false}; 5172 5173 // An unsigned min/max can be written with a signed compare. 5174 const APInt *C2; 5175 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5176 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5177 // Is the sign bit set? 5178 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5179 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5180 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5181 C2->isMaxSignedValue()) 5182 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5183 5184 // Is the sign bit clear? 5185 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5186 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5187 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5188 C2->isMinSignedValue()) 5189 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5190 } 5191 5192 // Look through 'not' ops to find disguised signed min/max. 5193 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5194 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5195 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5196 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5197 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5198 5199 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5200 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5201 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5202 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5203 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5204 5205 return {SPF_UNKNOWN, SPNB_NA, false}; 5206 } 5207 5208 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5209 assert(X && Y && "Invalid operand"); 5210 5211 // X = sub (0, Y) || X = sub nsw (0, Y) 5212 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5213 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5214 return true; 5215 5216 // Y = sub (0, X) || Y = sub nsw (0, X) 5217 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5218 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5219 return true; 5220 5221 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5222 Value *A, *B; 5223 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5224 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5225 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5226 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5227 } 5228 5229 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5230 FastMathFlags FMF, 5231 Value *CmpLHS, Value *CmpRHS, 5232 Value *TrueVal, Value *FalseVal, 5233 Value *&LHS, Value *&RHS, 5234 unsigned Depth) { 5235 if (CmpInst::isFPPredicate(Pred)) { 5236 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5237 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5238 // purpose of identifying min/max. Disregard vector constants with undefined 5239 // elements because those can not be back-propagated for analysis. 5240 Value *OutputZeroVal = nullptr; 5241 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5242 !cast<Constant>(TrueVal)->containsUndefElement()) 5243 OutputZeroVal = TrueVal; 5244 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5245 !cast<Constant>(FalseVal)->containsUndefElement()) 5246 OutputZeroVal = FalseVal; 5247 5248 if (OutputZeroVal) { 5249 if (match(CmpLHS, m_AnyZeroFP())) 5250 CmpLHS = OutputZeroVal; 5251 if (match(CmpRHS, m_AnyZeroFP())) 5252 CmpRHS = OutputZeroVal; 5253 } 5254 } 5255 5256 LHS = CmpLHS; 5257 RHS = CmpRHS; 5258 5259 // Signed zero may return inconsistent results between implementations. 5260 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5261 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5262 // Therefore, we behave conservatively and only proceed if at least one of the 5263 // operands is known to not be zero or if we don't care about signed zero. 5264 switch (Pred) { 5265 default: break; 5266 // FIXME: Include OGT/OLT/UGT/ULT. 5267 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5268 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5269 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5270 !isKnownNonZero(CmpRHS)) 5271 return {SPF_UNKNOWN, SPNB_NA, false}; 5272 } 5273 5274 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5275 bool Ordered = false; 5276 5277 // When given one NaN and one non-NaN input: 5278 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5279 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5280 // ordered comparison fails), which could be NaN or non-NaN. 5281 // so here we discover exactly what NaN behavior is required/accepted. 5282 if (CmpInst::isFPPredicate(Pred)) { 5283 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5284 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5285 5286 if (LHSSafe && RHSSafe) { 5287 // Both operands are known non-NaN. 5288 NaNBehavior = SPNB_RETURNS_ANY; 5289 } else if (CmpInst::isOrdered(Pred)) { 5290 // An ordered comparison will return false when given a NaN, so it 5291 // returns the RHS. 5292 Ordered = true; 5293 if (LHSSafe) 5294 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5295 NaNBehavior = SPNB_RETURNS_NAN; 5296 else if (RHSSafe) 5297 NaNBehavior = SPNB_RETURNS_OTHER; 5298 else 5299 // Completely unsafe. 5300 return {SPF_UNKNOWN, SPNB_NA, false}; 5301 } else { 5302 Ordered = false; 5303 // An unordered comparison will return true when given a NaN, so it 5304 // returns the LHS. 5305 if (LHSSafe) 5306 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5307 NaNBehavior = SPNB_RETURNS_OTHER; 5308 else if (RHSSafe) 5309 NaNBehavior = SPNB_RETURNS_NAN; 5310 else 5311 // Completely unsafe. 5312 return {SPF_UNKNOWN, SPNB_NA, false}; 5313 } 5314 } 5315 5316 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5317 std::swap(CmpLHS, CmpRHS); 5318 Pred = CmpInst::getSwappedPredicate(Pred); 5319 if (NaNBehavior == SPNB_RETURNS_NAN) 5320 NaNBehavior = SPNB_RETURNS_OTHER; 5321 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5322 NaNBehavior = SPNB_RETURNS_NAN; 5323 Ordered = !Ordered; 5324 } 5325 5326 // ([if]cmp X, Y) ? X : Y 5327 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5328 switch (Pred) { 5329 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5330 case ICmpInst::ICMP_UGT: 5331 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5332 case ICmpInst::ICMP_SGT: 5333 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5334 case ICmpInst::ICMP_ULT: 5335 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5336 case ICmpInst::ICMP_SLT: 5337 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5338 case FCmpInst::FCMP_UGT: 5339 case FCmpInst::FCMP_UGE: 5340 case FCmpInst::FCMP_OGT: 5341 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5342 case FCmpInst::FCMP_ULT: 5343 case FCmpInst::FCMP_ULE: 5344 case FCmpInst::FCMP_OLT: 5345 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5346 } 5347 } 5348 5349 if (isKnownNegation(TrueVal, FalseVal)) { 5350 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5351 // match against either LHS or sext(LHS). 5352 auto MaybeSExtCmpLHS = 5353 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5354 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5355 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5356 if (match(TrueVal, MaybeSExtCmpLHS)) { 5357 // Set the return values. If the compare uses the negated value (-X >s 0), 5358 // swap the return values because the negated value is always 'RHS'. 5359 LHS = TrueVal; 5360 RHS = FalseVal; 5361 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5362 std::swap(LHS, RHS); 5363 5364 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5365 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5366 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5367 return {SPF_ABS, SPNB_NA, false}; 5368 5369 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5370 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5371 return {SPF_ABS, SPNB_NA, false}; 5372 5373 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5374 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5375 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5376 return {SPF_NABS, SPNB_NA, false}; 5377 } 5378 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5379 // Set the return values. If the compare uses the negated value (-X >s 0), 5380 // swap the return values because the negated value is always 'RHS'. 5381 LHS = FalseVal; 5382 RHS = TrueVal; 5383 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5384 std::swap(LHS, RHS); 5385 5386 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5387 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5388 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5389 return {SPF_NABS, SPNB_NA, false}; 5390 5391 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5392 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5393 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5394 return {SPF_ABS, SPNB_NA, false}; 5395 } 5396 } 5397 5398 if (CmpInst::isIntPredicate(Pred)) 5399 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5400 5401 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5402 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5403 // semantics than minNum. Be conservative in such case. 5404 if (NaNBehavior != SPNB_RETURNS_ANY || 5405 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5406 !isKnownNonZero(CmpRHS))) 5407 return {SPF_UNKNOWN, SPNB_NA, false}; 5408 5409 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5410 } 5411 5412 /// Helps to match a select pattern in case of a type mismatch. 5413 /// 5414 /// The function processes the case when type of true and false values of a 5415 /// select instruction differs from type of the cmp instruction operands because 5416 /// of a cast instruction. The function checks if it is legal to move the cast 5417 /// operation after "select". If yes, it returns the new second value of 5418 /// "select" (with the assumption that cast is moved): 5419 /// 1. As operand of cast instruction when both values of "select" are same cast 5420 /// instructions. 5421 /// 2. As restored constant (by applying reverse cast operation) when the first 5422 /// value of the "select" is a cast operation and the second value is a 5423 /// constant. 5424 /// NOTE: We return only the new second value because the first value could be 5425 /// accessed as operand of cast instruction. 5426 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5427 Instruction::CastOps *CastOp) { 5428 auto *Cast1 = dyn_cast<CastInst>(V1); 5429 if (!Cast1) 5430 return nullptr; 5431 5432 *CastOp = Cast1->getOpcode(); 5433 Type *SrcTy = Cast1->getSrcTy(); 5434 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5435 // If V1 and V2 are both the same cast from the same type, look through V1. 5436 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5437 return Cast2->getOperand(0); 5438 return nullptr; 5439 } 5440 5441 auto *C = dyn_cast<Constant>(V2); 5442 if (!C) 5443 return nullptr; 5444 5445 Constant *CastedTo = nullptr; 5446 switch (*CastOp) { 5447 case Instruction::ZExt: 5448 if (CmpI->isUnsigned()) 5449 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5450 break; 5451 case Instruction::SExt: 5452 if (CmpI->isSigned()) 5453 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5454 break; 5455 case Instruction::Trunc: 5456 Constant *CmpConst; 5457 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5458 CmpConst->getType() == SrcTy) { 5459 // Here we have the following case: 5460 // 5461 // %cond = cmp iN %x, CmpConst 5462 // %tr = trunc iN %x to iK 5463 // %narrowsel = select i1 %cond, iK %t, iK C 5464 // 5465 // We can always move trunc after select operation: 5466 // 5467 // %cond = cmp iN %x, CmpConst 5468 // %widesel = select i1 %cond, iN %x, iN CmpConst 5469 // %tr = trunc iN %widesel to iK 5470 // 5471 // Note that C could be extended in any way because we don't care about 5472 // upper bits after truncation. It can't be abs pattern, because it would 5473 // look like: 5474 // 5475 // select i1 %cond, x, -x. 5476 // 5477 // So only min/max pattern could be matched. Such match requires widened C 5478 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5479 // CmpConst == C is checked below. 5480 CastedTo = CmpConst; 5481 } else { 5482 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5483 } 5484 break; 5485 case Instruction::FPTrunc: 5486 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5487 break; 5488 case Instruction::FPExt: 5489 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5490 break; 5491 case Instruction::FPToUI: 5492 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5493 break; 5494 case Instruction::FPToSI: 5495 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5496 break; 5497 case Instruction::UIToFP: 5498 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5499 break; 5500 case Instruction::SIToFP: 5501 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5502 break; 5503 default: 5504 break; 5505 } 5506 5507 if (!CastedTo) 5508 return nullptr; 5509 5510 // Make sure the cast doesn't lose any information. 5511 Constant *CastedBack = 5512 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5513 if (CastedBack != C) 5514 return nullptr; 5515 5516 return CastedTo; 5517 } 5518 5519 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5520 Instruction::CastOps *CastOp, 5521 unsigned Depth) { 5522 if (Depth >= MaxDepth) 5523 return {SPF_UNKNOWN, SPNB_NA, false}; 5524 5525 SelectInst *SI = dyn_cast<SelectInst>(V); 5526 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5527 5528 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5529 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5530 5531 Value *TrueVal = SI->getTrueValue(); 5532 Value *FalseVal = SI->getFalseValue(); 5533 5534 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5535 CastOp, Depth); 5536 } 5537 5538 SelectPatternResult llvm::matchDecomposedSelectPattern( 5539 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5540 Instruction::CastOps *CastOp, unsigned Depth) { 5541 CmpInst::Predicate Pred = CmpI->getPredicate(); 5542 Value *CmpLHS = CmpI->getOperand(0); 5543 Value *CmpRHS = CmpI->getOperand(1); 5544 FastMathFlags FMF; 5545 if (isa<FPMathOperator>(CmpI)) 5546 FMF = CmpI->getFastMathFlags(); 5547 5548 // Bail out early. 5549 if (CmpI->isEquality()) 5550 return {SPF_UNKNOWN, SPNB_NA, false}; 5551 5552 // Deal with type mismatches. 5553 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5554 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5555 // If this is a potential fmin/fmax with a cast to integer, then ignore 5556 // -0.0 because there is no corresponding integer value. 5557 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5558 FMF.setNoSignedZeros(); 5559 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5560 cast<CastInst>(TrueVal)->getOperand(0), C, 5561 LHS, RHS, Depth); 5562 } 5563 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5564 // If this is a potential fmin/fmax with a cast to integer, then ignore 5565 // -0.0 because there is no corresponding integer value. 5566 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5567 FMF.setNoSignedZeros(); 5568 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5569 C, cast<CastInst>(FalseVal)->getOperand(0), 5570 LHS, RHS, Depth); 5571 } 5572 } 5573 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5574 LHS, RHS, Depth); 5575 } 5576 5577 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5578 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5579 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5580 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5581 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5582 if (SPF == SPF_FMINNUM) 5583 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5584 if (SPF == SPF_FMAXNUM) 5585 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5586 llvm_unreachable("unhandled!"); 5587 } 5588 5589 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5590 if (SPF == SPF_SMIN) return SPF_SMAX; 5591 if (SPF == SPF_UMIN) return SPF_UMAX; 5592 if (SPF == SPF_SMAX) return SPF_SMIN; 5593 if (SPF == SPF_UMAX) return SPF_UMIN; 5594 llvm_unreachable("unhandled!"); 5595 } 5596 5597 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5598 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5599 } 5600 5601 /// Return true if "icmp Pred LHS RHS" is always true. 5602 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5603 const Value *RHS, const DataLayout &DL, 5604 unsigned Depth) { 5605 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5606 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5607 return true; 5608 5609 switch (Pred) { 5610 default: 5611 return false; 5612 5613 case CmpInst::ICMP_SLE: { 5614 const APInt *C; 5615 5616 // LHS s<= LHS +_{nsw} C if C >= 0 5617 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5618 return !C->isNegative(); 5619 return false; 5620 } 5621 5622 case CmpInst::ICMP_ULE: { 5623 const APInt *C; 5624 5625 // LHS u<= LHS +_{nuw} C for any C 5626 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5627 return true; 5628 5629 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5630 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5631 const Value *&X, 5632 const APInt *&CA, const APInt *&CB) { 5633 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5634 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5635 return true; 5636 5637 // If X & C == 0 then (X | C) == X +_{nuw} C 5638 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5639 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5640 KnownBits Known(CA->getBitWidth()); 5641 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5642 /*CxtI*/ nullptr, /*DT*/ nullptr); 5643 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5644 return true; 5645 } 5646 5647 return false; 5648 }; 5649 5650 const Value *X; 5651 const APInt *CLHS, *CRHS; 5652 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5653 return CLHS->ule(*CRHS); 5654 5655 return false; 5656 } 5657 } 5658 } 5659 5660 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5661 /// ALHS ARHS" is true. Otherwise, return None. 5662 static Optional<bool> 5663 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5664 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5665 const DataLayout &DL, unsigned Depth) { 5666 switch (Pred) { 5667 default: 5668 return None; 5669 5670 case CmpInst::ICMP_SLT: 5671 case CmpInst::ICMP_SLE: 5672 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5673 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5674 return true; 5675 return None; 5676 5677 case CmpInst::ICMP_ULT: 5678 case CmpInst::ICMP_ULE: 5679 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5680 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5681 return true; 5682 return None; 5683 } 5684 } 5685 5686 /// Return true if the operands of the two compares match. IsSwappedOps is true 5687 /// when the operands match, but are swapped. 5688 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5689 const Value *BLHS, const Value *BRHS, 5690 bool &IsSwappedOps) { 5691 5692 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5693 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5694 return IsMatchingOps || IsSwappedOps; 5695 } 5696 5697 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5698 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5699 /// Otherwise, return None if we can't infer anything. 5700 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5701 CmpInst::Predicate BPred, 5702 bool AreSwappedOps) { 5703 // Canonicalize the predicate as if the operands were not commuted. 5704 if (AreSwappedOps) 5705 BPred = ICmpInst::getSwappedPredicate(BPred); 5706 5707 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5708 return true; 5709 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5710 return false; 5711 5712 return None; 5713 } 5714 5715 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5716 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5717 /// Otherwise, return None if we can't infer anything. 5718 static Optional<bool> 5719 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5720 const ConstantInt *C1, 5721 CmpInst::Predicate BPred, 5722 const ConstantInt *C2) { 5723 ConstantRange DomCR = 5724 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5725 ConstantRange CR = 5726 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5727 ConstantRange Intersection = DomCR.intersectWith(CR); 5728 ConstantRange Difference = DomCR.difference(CR); 5729 if (Intersection.isEmptySet()) 5730 return false; 5731 if (Difference.isEmptySet()) 5732 return true; 5733 return None; 5734 } 5735 5736 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5737 /// false. Otherwise, return None if we can't infer anything. 5738 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5739 CmpInst::Predicate BPred, 5740 const Value *BLHS, const Value *BRHS, 5741 const DataLayout &DL, bool LHSIsTrue, 5742 unsigned Depth) { 5743 Value *ALHS = LHS->getOperand(0); 5744 Value *ARHS = LHS->getOperand(1); 5745 5746 // The rest of the logic assumes the LHS condition is true. If that's not the 5747 // case, invert the predicate to make it so. 5748 CmpInst::Predicate APred = 5749 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5750 5751 // Can we infer anything when the two compares have matching operands? 5752 bool AreSwappedOps; 5753 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5754 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5755 APred, BPred, AreSwappedOps)) 5756 return Implication; 5757 // No amount of additional analysis will infer the second condition, so 5758 // early exit. 5759 return None; 5760 } 5761 5762 // Can we infer anything when the LHS operands match and the RHS operands are 5763 // constants (not necessarily matching)? 5764 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5765 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5766 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5767 return Implication; 5768 // No amount of additional analysis will infer the second condition, so 5769 // early exit. 5770 return None; 5771 } 5772 5773 if (APred == BPred) 5774 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5775 return None; 5776 } 5777 5778 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5779 /// false. Otherwise, return None if we can't infer anything. We expect the 5780 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5781 static Optional<bool> 5782 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5783 const Value *RHSOp0, const Value *RHSOp1, 5784 5785 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5786 // The LHS must be an 'or' or an 'and' instruction. 5787 assert((LHS->getOpcode() == Instruction::And || 5788 LHS->getOpcode() == Instruction::Or) && 5789 "Expected LHS to be 'and' or 'or'."); 5790 5791 assert(Depth <= MaxDepth && "Hit recursion limit"); 5792 5793 // If the result of an 'or' is false, then we know both legs of the 'or' are 5794 // false. Similarly, if the result of an 'and' is true, then we know both 5795 // legs of the 'and' are true. 5796 Value *ALHS, *ARHS; 5797 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5798 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5799 // FIXME: Make this non-recursion. 5800 if (Optional<bool> Implication = isImpliedCondition( 5801 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5802 return Implication; 5803 if (Optional<bool> Implication = isImpliedCondition( 5804 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5805 return Implication; 5806 return None; 5807 } 5808 return None; 5809 } 5810 5811 Optional<bool> 5812 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5813 const Value *RHSOp0, const Value *RHSOp1, 5814 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5815 // Bail out when we hit the limit. 5816 if (Depth == MaxDepth) 5817 return None; 5818 5819 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5820 // example. 5821 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5822 return None; 5823 5824 Type *OpTy = LHS->getType(); 5825 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5826 5827 // FIXME: Extending the code below to handle vectors. 5828 if (OpTy->isVectorTy()) 5829 return None; 5830 5831 assert(OpTy->isIntegerTy(1) && "implied by above"); 5832 5833 // Both LHS and RHS are icmps. 5834 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5835 if (LHSCmp) 5836 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5837 Depth); 5838 5839 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5840 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5841 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5842 if (LHSBO) { 5843 if ((LHSBO->getOpcode() == Instruction::And || 5844 LHSBO->getOpcode() == Instruction::Or)) 5845 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5846 Depth); 5847 } 5848 return None; 5849 } 5850 5851 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5852 const DataLayout &DL, bool LHSIsTrue, 5853 unsigned Depth) { 5854 // LHS ==> RHS by definition 5855 if (LHS == RHS) 5856 return LHSIsTrue; 5857 5858 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5859 if (RHSCmp) 5860 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5861 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5862 LHSIsTrue, Depth); 5863 return None; 5864 } 5865 5866 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5867 // condition dominating ContextI or nullptr, if no condition is found. 5868 static std::pair<Value *, bool> 5869 getDomPredecessorCondition(const Instruction *ContextI) { 5870 if (!ContextI || !ContextI->getParent()) 5871 return {nullptr, false}; 5872 5873 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5874 // dominator tree (eg, from a SimplifyQuery) instead? 5875 const BasicBlock *ContextBB = ContextI->getParent(); 5876 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5877 if (!PredBB) 5878 return {nullptr, false}; 5879 5880 // We need a conditional branch in the predecessor. 5881 Value *PredCond; 5882 BasicBlock *TrueBB, *FalseBB; 5883 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5884 return {nullptr, false}; 5885 5886 // The branch should get simplified. Don't bother simplifying this condition. 5887 if (TrueBB == FalseBB) 5888 return {nullptr, false}; 5889 5890 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5891 "Predecessor block does not point to successor?"); 5892 5893 // Is this condition implied by the predecessor condition? 5894 return {PredCond, TrueBB == ContextBB}; 5895 } 5896 5897 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5898 const Instruction *ContextI, 5899 const DataLayout &DL) { 5900 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5901 auto PredCond = getDomPredecessorCondition(ContextI); 5902 if (PredCond.first) 5903 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5904 return None; 5905 } 5906 5907 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5908 const Value *LHS, const Value *RHS, 5909 const Instruction *ContextI, 5910 const DataLayout &DL) { 5911 auto PredCond = getDomPredecessorCondition(ContextI); 5912 if (PredCond.first) 5913 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5914 PredCond.second); 5915 return None; 5916 } 5917 5918 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5919 APInt &Upper, const InstrInfoQuery &IIQ) { 5920 unsigned Width = Lower.getBitWidth(); 5921 const APInt *C; 5922 switch (BO.getOpcode()) { 5923 case Instruction::Add: 5924 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5925 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5926 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5927 // 'add nuw x, C' produces [C, UINT_MAX]. 5928 Lower = *C; 5929 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5930 if (C->isNegative()) { 5931 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5932 Lower = APInt::getSignedMinValue(Width); 5933 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5934 } else { 5935 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5936 Lower = APInt::getSignedMinValue(Width) + *C; 5937 Upper = APInt::getSignedMaxValue(Width) + 1; 5938 } 5939 } 5940 } 5941 break; 5942 5943 case Instruction::And: 5944 if (match(BO.getOperand(1), m_APInt(C))) 5945 // 'and x, C' produces [0, C]. 5946 Upper = *C + 1; 5947 break; 5948 5949 case Instruction::Or: 5950 if (match(BO.getOperand(1), m_APInt(C))) 5951 // 'or x, C' produces [C, UINT_MAX]. 5952 Lower = *C; 5953 break; 5954 5955 case Instruction::AShr: 5956 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5957 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5958 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5959 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5960 } else if (match(BO.getOperand(0), m_APInt(C))) { 5961 unsigned ShiftAmount = Width - 1; 5962 if (!C->isNullValue() && IIQ.isExact(&BO)) 5963 ShiftAmount = C->countTrailingZeros(); 5964 if (C->isNegative()) { 5965 // 'ashr C, x' produces [C, C >> (Width-1)] 5966 Lower = *C; 5967 Upper = C->ashr(ShiftAmount) + 1; 5968 } else { 5969 // 'ashr C, x' produces [C >> (Width-1), C] 5970 Lower = C->ashr(ShiftAmount); 5971 Upper = *C + 1; 5972 } 5973 } 5974 break; 5975 5976 case Instruction::LShr: 5977 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5978 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5979 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5980 } else if (match(BO.getOperand(0), m_APInt(C))) { 5981 // 'lshr C, x' produces [C >> (Width-1), C]. 5982 unsigned ShiftAmount = Width - 1; 5983 if (!C->isNullValue() && IIQ.isExact(&BO)) 5984 ShiftAmount = C->countTrailingZeros(); 5985 Lower = C->lshr(ShiftAmount); 5986 Upper = *C + 1; 5987 } 5988 break; 5989 5990 case Instruction::Shl: 5991 if (match(BO.getOperand(0), m_APInt(C))) { 5992 if (IIQ.hasNoUnsignedWrap(&BO)) { 5993 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5994 Lower = *C; 5995 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5996 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5997 if (C->isNegative()) { 5998 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5999 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6000 Lower = C->shl(ShiftAmount); 6001 Upper = *C + 1; 6002 } else { 6003 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6004 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6005 Lower = *C; 6006 Upper = C->shl(ShiftAmount) + 1; 6007 } 6008 } 6009 } 6010 break; 6011 6012 case Instruction::SDiv: 6013 if (match(BO.getOperand(1), m_APInt(C))) { 6014 APInt IntMin = APInt::getSignedMinValue(Width); 6015 APInt IntMax = APInt::getSignedMaxValue(Width); 6016 if (C->isAllOnesValue()) { 6017 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6018 // where C != -1 and C != 0 and C != 1 6019 Lower = IntMin + 1; 6020 Upper = IntMax + 1; 6021 } else if (C->countLeadingZeros() < Width - 1) { 6022 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6023 // where C != -1 and C != 0 and C != 1 6024 Lower = IntMin.sdiv(*C); 6025 Upper = IntMax.sdiv(*C); 6026 if (Lower.sgt(Upper)) 6027 std::swap(Lower, Upper); 6028 Upper = Upper + 1; 6029 assert(Upper != Lower && "Upper part of range has wrapped!"); 6030 } 6031 } else if (match(BO.getOperand(0), m_APInt(C))) { 6032 if (C->isMinSignedValue()) { 6033 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6034 Lower = *C; 6035 Upper = Lower.lshr(1) + 1; 6036 } else { 6037 // 'sdiv C, x' produces [-|C|, |C|]. 6038 Upper = C->abs() + 1; 6039 Lower = (-Upper) + 1; 6040 } 6041 } 6042 break; 6043 6044 case Instruction::UDiv: 6045 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6046 // 'udiv x, C' produces [0, UINT_MAX / C]. 6047 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6048 } else if (match(BO.getOperand(0), m_APInt(C))) { 6049 // 'udiv C, x' produces [0, C]. 6050 Upper = *C + 1; 6051 } 6052 break; 6053 6054 case Instruction::SRem: 6055 if (match(BO.getOperand(1), m_APInt(C))) { 6056 // 'srem x, C' produces (-|C|, |C|). 6057 Upper = C->abs(); 6058 Lower = (-Upper) + 1; 6059 } 6060 break; 6061 6062 case Instruction::URem: 6063 if (match(BO.getOperand(1), m_APInt(C))) 6064 // 'urem x, C' produces [0, C). 6065 Upper = *C; 6066 break; 6067 6068 default: 6069 break; 6070 } 6071 } 6072 6073 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6074 APInt &Upper) { 6075 unsigned Width = Lower.getBitWidth(); 6076 const APInt *C; 6077 switch (II.getIntrinsicID()) { 6078 case Intrinsic::uadd_sat: 6079 // uadd.sat(x, C) produces [C, UINT_MAX]. 6080 if (match(II.getOperand(0), m_APInt(C)) || 6081 match(II.getOperand(1), m_APInt(C))) 6082 Lower = *C; 6083 break; 6084 case Intrinsic::sadd_sat: 6085 if (match(II.getOperand(0), m_APInt(C)) || 6086 match(II.getOperand(1), m_APInt(C))) { 6087 if (C->isNegative()) { 6088 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6089 Lower = APInt::getSignedMinValue(Width); 6090 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6091 } else { 6092 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6093 Lower = APInt::getSignedMinValue(Width) + *C; 6094 Upper = APInt::getSignedMaxValue(Width) + 1; 6095 } 6096 } 6097 break; 6098 case Intrinsic::usub_sat: 6099 // usub.sat(C, x) produces [0, C]. 6100 if (match(II.getOperand(0), m_APInt(C))) 6101 Upper = *C + 1; 6102 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6103 else if (match(II.getOperand(1), m_APInt(C))) 6104 Upper = APInt::getMaxValue(Width) - *C + 1; 6105 break; 6106 case Intrinsic::ssub_sat: 6107 if (match(II.getOperand(0), m_APInt(C))) { 6108 if (C->isNegative()) { 6109 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6110 Lower = APInt::getSignedMinValue(Width); 6111 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6112 } else { 6113 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6114 Lower = *C - APInt::getSignedMaxValue(Width); 6115 Upper = APInt::getSignedMaxValue(Width) + 1; 6116 } 6117 } else if (match(II.getOperand(1), m_APInt(C))) { 6118 if (C->isNegative()) { 6119 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6120 Lower = APInt::getSignedMinValue(Width) - *C; 6121 Upper = APInt::getSignedMaxValue(Width) + 1; 6122 } else { 6123 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6124 Lower = APInt::getSignedMinValue(Width); 6125 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6126 } 6127 } 6128 break; 6129 default: 6130 break; 6131 } 6132 } 6133 6134 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6135 APInt &Upper, const InstrInfoQuery &IIQ) { 6136 const Value *LHS = nullptr, *RHS = nullptr; 6137 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6138 if (R.Flavor == SPF_UNKNOWN) 6139 return; 6140 6141 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6142 6143 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6144 // If the negation part of the abs (in RHS) has the NSW flag, 6145 // then the result of abs(X) is [0..SIGNED_MAX], 6146 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6147 Lower = APInt::getNullValue(BitWidth); 6148 if (match(RHS, m_Neg(m_Specific(LHS))) && 6149 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6150 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6151 else 6152 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6153 return; 6154 } 6155 6156 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6157 // The result of -abs(X) is <= 0. 6158 Lower = APInt::getSignedMinValue(BitWidth); 6159 Upper = APInt(BitWidth, 1); 6160 return; 6161 } 6162 6163 const APInt *C; 6164 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6165 return; 6166 6167 switch (R.Flavor) { 6168 case SPF_UMIN: 6169 Upper = *C + 1; 6170 break; 6171 case SPF_UMAX: 6172 Lower = *C; 6173 break; 6174 case SPF_SMIN: 6175 Lower = APInt::getSignedMinValue(BitWidth); 6176 Upper = *C + 1; 6177 break; 6178 case SPF_SMAX: 6179 Lower = *C; 6180 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6181 break; 6182 default: 6183 break; 6184 } 6185 } 6186 6187 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6188 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6189 6190 const APInt *C; 6191 if (match(V, m_APInt(C))) 6192 return ConstantRange(*C); 6193 6194 InstrInfoQuery IIQ(UseInstrInfo); 6195 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6196 APInt Lower = APInt(BitWidth, 0); 6197 APInt Upper = APInt(BitWidth, 0); 6198 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6199 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6200 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6201 setLimitsForIntrinsic(*II, Lower, Upper); 6202 else if (auto *SI = dyn_cast<SelectInst>(V)) 6203 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6204 6205 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6206 6207 if (auto *I = dyn_cast<Instruction>(V)) 6208 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6209 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6210 6211 return CR; 6212 } 6213 6214 static Optional<int64_t> 6215 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6216 // Skip over the first indices. 6217 gep_type_iterator GTI = gep_type_begin(GEP); 6218 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6219 /*skip along*/; 6220 6221 // Compute the offset implied by the rest of the indices. 6222 int64_t Offset = 0; 6223 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6224 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6225 if (!OpC) 6226 return None; 6227 if (OpC->isZero()) 6228 continue; // No offset. 6229 6230 // Handle struct indices, which add their field offset to the pointer. 6231 if (StructType *STy = GTI.getStructTypeOrNull()) { 6232 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6233 continue; 6234 } 6235 6236 // Otherwise, we have a sequential type like an array or fixed-length 6237 // vector. Multiply the index by the ElementSize. 6238 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6239 if (Size.isScalable()) 6240 return None; 6241 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6242 } 6243 6244 return Offset; 6245 } 6246 6247 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6248 const DataLayout &DL) { 6249 Ptr1 = Ptr1->stripPointerCasts(); 6250 Ptr2 = Ptr2->stripPointerCasts(); 6251 6252 // Handle the trivial case first. 6253 if (Ptr1 == Ptr2) { 6254 return 0; 6255 } 6256 6257 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6258 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6259 6260 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6261 // as in "P" and "gep P, 1". 6262 // Also do this iteratively to handle the the following case: 6263 // Ptr_t1 = GEP Ptr1, c1 6264 // Ptr_t2 = GEP Ptr_t1, c2 6265 // Ptr2 = GEP Ptr_t2, c3 6266 // where we will return c1+c2+c3. 6267 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6268 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6269 // are the same, and return the difference between offsets. 6270 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6271 const Value *Ptr) -> Optional<int64_t> { 6272 const GEPOperator *GEP_T = GEP; 6273 int64_t OffsetVal = 0; 6274 bool HasSameBase = false; 6275 while (GEP_T) { 6276 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6277 if (!Offset) 6278 return None; 6279 OffsetVal += *Offset; 6280 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6281 if (Op0 == Ptr) { 6282 HasSameBase = true; 6283 break; 6284 } 6285 GEP_T = dyn_cast<GEPOperator>(Op0); 6286 } 6287 if (!HasSameBase) 6288 return None; 6289 return OffsetVal; 6290 }; 6291 6292 if (GEP1) { 6293 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6294 if (Offset) 6295 return -*Offset; 6296 } 6297 if (GEP2) { 6298 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6299 if (Offset) 6300 return Offset; 6301 } 6302 6303 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6304 // base. After that base, they may have some number of common (and 6305 // potentially variable) indices. After that they handle some constant 6306 // offset, which determines their offset from each other. At this point, we 6307 // handle no other case. 6308 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6309 return None; 6310 6311 // Skip any common indices and track the GEP types. 6312 unsigned Idx = 1; 6313 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6314 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6315 break; 6316 6317 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6318 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6319 if (!Offset1 || !Offset2) 6320 return None; 6321 return *Offset2 - *Offset1; 6322 } 6323