1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 // This optimization is known to cause performance regressions is some cases, 55 // keep it under a temporary flag for now. 56 static cl::opt<bool> 57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 58 cl::Hidden, cl::init(true)); 59 60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 61 /// 0). For vector types, returns the element type's bitwidth. 62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 63 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 64 return BitWidth; 65 66 return DL.getPointerTypeSizeInBits(Ty); 67 } 68 69 namespace { 70 // Simplifying using an assume can only be done in a particular control-flow 71 // context (the context instruction provides that context). If an assume and 72 // the context instruction are not in the same block then the DT helps in 73 // figuring out if we can use it. 74 struct Query { 75 const DataLayout &DL; 76 AssumptionCache *AC; 77 const Instruction *CxtI; 78 const DominatorTree *DT; 79 80 /// Set of assumptions that should be excluded from further queries. 81 /// This is because of the potential for mutual recursion to cause 82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 83 /// classic case of this is assume(x = y), which will attempt to determine 84 /// bits in x from bits in y, which will attempt to determine bits in y from 85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 88 /// on. 89 std::array<const Value *, MaxDepth> Excluded; 90 unsigned NumExcluded; 91 92 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 93 const DominatorTree *DT) 94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 95 96 Query(const Query &Q, const Value *NewExcl) 97 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 98 Excluded = Q.Excluded; 99 Excluded[NumExcluded++] = NewExcl; 100 assert(NumExcluded <= Excluded.size()); 101 } 102 103 bool isExcluded(const Value *Value) const { 104 if (NumExcluded == 0) 105 return false; 106 auto End = Excluded.begin() + NumExcluded; 107 return std::find(Excluded.begin(), End, Value) != End; 108 } 109 }; 110 } // end anonymous namespace 111 112 // Given the provided Value and, potentially, a context instruction, return 113 // the preferred context instruction (if any). 114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 115 // If we've been provided with a context instruction, then use that (provided 116 // it has been inserted). 117 if (CxtI && CxtI->getParent()) 118 return CxtI; 119 120 // If the value is really an already-inserted instruction, then use that. 121 CxtI = dyn_cast<Instruction>(V); 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 return nullptr; 126 } 127 128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 129 unsigned Depth, const Query &Q); 130 131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 136 Query(DL, AC, safeCxtI(V, CxtI), DT)); 137 } 138 139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 140 const DataLayout &DL, 141 AssumptionCache *AC, const Instruction *CxtI, 142 const DominatorTree *DT) { 143 assert(LHS->getType() == RHS->getType() && 144 "LHS and RHS should have the same type"); 145 assert(LHS->getType()->isIntOrIntVectorTy() && 146 "LHS and RHS should be integers"); 147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 153 } 154 155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 156 unsigned Depth, const Query &Q); 157 158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 159 const DataLayout &DL, unsigned Depth, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 163 Query(DL, AC, safeCxtI(V, CxtI), DT)); 164 } 165 166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 167 const Query &Q); 168 169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 170 bool OrZero, 171 unsigned Depth, AssumptionCache *AC, 172 const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 179 180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 181 AssumptionCache *AC, const Instruction *CxtI, 182 const DominatorTree *DT) { 183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 184 } 185 186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 187 unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 bool NonNegative, Negative; 191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 192 return NonNegative; 193 } 194 195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 if (auto *CI = dyn_cast<ConstantInt>(V)) 199 return CI->getValue().isStrictlyPositive(); 200 201 // TODO: We'd doing two recursive queries here. We should factor this such 202 // that only a single query is needed. 203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 205 } 206 207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 208 AssumptionCache *AC, const Instruction *CxtI, 209 const DominatorTree *DT) { 210 bool NonNegative, Negative; 211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 212 return Negative; 213 } 214 215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 216 217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 218 const DataLayout &DL, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 222 safeCxtI(V1, safeCxtI(V2, CxtI)), 223 DT)); 224 } 225 226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 230 const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT) { 233 return ::MaskedValueIsZero(V, Mask, Depth, 234 Query(DL, AC, safeCxtI(V, CxtI), DT)); 235 } 236 237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 238 const Query &Q); 239 240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 241 unsigned Depth, AssumptionCache *AC, 242 const Instruction *CxtI, 243 const DominatorTree *DT) { 244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 245 } 246 247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 248 bool NSW, 249 APInt &KnownZero, APInt &KnownOne, 250 APInt &KnownZero2, APInt &KnownOne2, 251 unsigned Depth, const Query &Q) { 252 if (!Add) { 253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 254 // We know that the top bits of C-X are clear if X contains less bits 255 // than C (i.e. no wrap-around can happen). For example, 20-X is 256 // positive if we can prove that X is >= 0 and < 16. 257 if (!CLHS->getValue().isNegative()) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 260 // NLZ can't be BitWidth with no sign bit 261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 263 264 // If all of the MaskV bits are known to be zero, then we know the 265 // output top bits are zero, because we now know that the output is 266 // from [0-C]. 267 if ((KnownZero2 & MaskV) == MaskV) { 268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 269 // Top bits known zero. 270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 271 } 272 } 273 } 274 } 275 276 unsigned BitWidth = KnownZero.getBitWidth(); 277 278 // If an initial sequence of bits in the result is not needed, the 279 // corresponding bits in the operands are not needed. 280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 283 284 // Carry in a 1 for a subtract, rather than a 0. 285 APInt CarryIn(BitWidth, 0); 286 if (!Add) { 287 // Sum = LHS + ~RHS + 1 288 std::swap(KnownZero2, KnownOne2); 289 CarryIn.setBit(0); 290 } 291 292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 294 295 // Compute known bits of the carry. 296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 298 299 // Compute set of known bits (where all three relevant bits are known). 300 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 301 APInt RHSKnown = KnownZero2 | KnownOne2; 302 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 303 APInt Known = LHSKnown & RHSKnown & CarryKnown; 304 305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 306 "known bits of sum differ"); 307 308 // Compute known bits of the result. 309 KnownZero = ~PossibleSumOne & Known; 310 KnownOne = PossibleSumOne & Known; 311 312 // Are we still trying to solve for the sign bit? 313 if (!Known.isNegative()) { 314 if (NSW) { 315 // Adding two non-negative numbers, or subtracting a negative number from 316 // a non-negative one, can't wrap into negative. 317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 318 KnownZero |= APInt::getSignBit(BitWidth); 319 // Adding two negative numbers, or subtracting a non-negative number from 320 // a negative one, can't wrap into non-negative. 321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 322 KnownOne |= APInt::getSignBit(BitWidth); 323 } 324 } 325 } 326 327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 328 APInt &KnownZero, APInt &KnownOne, 329 APInt &KnownZero2, APInt &KnownOne2, 330 unsigned Depth, const Query &Q) { 331 unsigned BitWidth = KnownZero.getBitWidth(); 332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 334 335 bool isKnownNegative = false; 336 bool isKnownNonNegative = false; 337 // If the multiplication is known not to overflow, compute the sign bit. 338 if (NSW) { 339 if (Op0 == Op1) { 340 // The product of a number with itself is non-negative. 341 isKnownNonNegative = true; 342 } else { 343 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 345 bool isKnownNegativeOp1 = KnownOne.isNegative(); 346 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 347 // The product of two numbers with the same sign is non-negative. 348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 350 // The product of a negative number and a non-negative number is either 351 // negative or zero. 352 if (!isKnownNonNegative) 353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 354 isKnownNonZero(Op0, Depth, Q)) || 355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 356 isKnownNonZero(Op1, Depth, Q)); 357 } 358 } 359 360 // If low bits are zero in either operand, output low known-0 bits. 361 // Also compute a conservative estimate for high known-0 bits. 362 // More trickiness is possible, but this is sufficient for the 363 // interesting case of alignment computation. 364 KnownOne.clearAllBits(); 365 unsigned TrailZ = KnownZero.countTrailingOnes() + 366 KnownZero2.countTrailingOnes(); 367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 368 KnownZero2.countLeadingOnes(), 369 BitWidth) - BitWidth; 370 371 TrailZ = std::min(TrailZ, BitWidth); 372 LeadZ = std::min(LeadZ, BitWidth); 373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 374 APInt::getHighBitsSet(BitWidth, LeadZ); 375 376 // Only make use of no-wrap flags if we failed to compute the sign bit 377 // directly. This matters if the multiplication always overflows, in 378 // which case we prefer to follow the result of the direct computation, 379 // though as the program is invoking undefined behaviour we can choose 380 // whatever we like here. 381 if (isKnownNonNegative && !KnownOne.isNegative()) 382 KnownZero.setBit(BitWidth - 1); 383 else if (isKnownNegative && !KnownZero.isNegative()) 384 KnownOne.setBit(BitWidth - 1); 385 } 386 387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 388 APInt &KnownZero, 389 APInt &KnownOne) { 390 unsigned BitWidth = KnownZero.getBitWidth(); 391 unsigned NumRanges = Ranges.getNumOperands() / 2; 392 assert(NumRanges >= 1); 393 394 KnownZero.setAllBits(); 395 KnownOne.setAllBits(); 396 397 for (unsigned i = 0; i < NumRanges; ++i) { 398 ConstantInt *Lower = 399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 400 ConstantInt *Upper = 401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 402 ConstantRange Range(Lower->getValue(), Upper->getValue()); 403 404 // The first CommonPrefixBits of all values in Range are equal. 405 unsigned CommonPrefixBits = 406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 407 408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 409 KnownOne &= Range.getUnsignedMax() & Mask; 410 KnownZero &= ~Range.getUnsignedMax() & Mask; 411 } 412 } 413 414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 415 SmallVector<const Value *, 16> WorkSet(1, I); 416 SmallPtrSet<const Value *, 32> Visited; 417 SmallPtrSet<const Value *, 16> EphValues; 418 419 // The instruction defining an assumption's condition itself is always 420 // considered ephemeral to that assumption (even if it has other 421 // non-ephemeral users). See r246696's test case for an example. 422 if (is_contained(I->operands(), E)) 423 return true; 424 425 while (!WorkSet.empty()) { 426 const Value *V = WorkSet.pop_back_val(); 427 if (!Visited.insert(V).second) 428 continue; 429 430 // If all uses of this value are ephemeral, then so is this value. 431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 432 if (V == E) 433 return true; 434 435 EphValues.insert(V); 436 if (const User *U = dyn_cast<User>(V)) 437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 438 J != JE; ++J) { 439 if (isSafeToSpeculativelyExecute(*J)) 440 WorkSet.push_back(*J); 441 } 442 } 443 } 444 445 return false; 446 } 447 448 // Is this an intrinsic that cannot be speculated but also cannot trap? 449 static bool isAssumeLikeIntrinsic(const Instruction *I) { 450 if (const CallInst *CI = dyn_cast<CallInst>(I)) 451 if (Function *F = CI->getCalledFunction()) 452 switch (F->getIntrinsicID()) { 453 default: break; 454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 455 case Intrinsic::assume: 456 case Intrinsic::dbg_declare: 457 case Intrinsic::dbg_value: 458 case Intrinsic::invariant_start: 459 case Intrinsic::invariant_end: 460 case Intrinsic::lifetime_start: 461 case Intrinsic::lifetime_end: 462 case Intrinsic::objectsize: 463 case Intrinsic::ptr_annotation: 464 case Intrinsic::var_annotation: 465 return true; 466 } 467 468 return false; 469 } 470 471 bool llvm::isValidAssumeForContext(const Instruction *Inv, 472 const Instruction *CxtI, 473 const DominatorTree *DT) { 474 475 // There are two restrictions on the use of an assume: 476 // 1. The assume must dominate the context (or the control flow must 477 // reach the assume whenever it reaches the context). 478 // 2. The context must not be in the assume's set of ephemeral values 479 // (otherwise we will use the assume to prove that the condition 480 // feeding the assume is trivially true, thus causing the removal of 481 // the assume). 482 483 if (DT) { 484 if (DT->dominates(Inv, CxtI)) 485 return true; 486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 487 // We don't have a DT, but this trivially dominates. 488 return true; 489 } 490 491 // With or without a DT, the only remaining case we will check is if the 492 // instructions are in the same BB. Give up if that is not the case. 493 if (Inv->getParent() != CxtI->getParent()) 494 return false; 495 496 // If we have a dom tree, then we now know that the assume doens't dominate 497 // the other instruction. If we don't have a dom tree then we can check if 498 // the assume is first in the BB. 499 if (!DT) { 500 // Search forward from the assume until we reach the context (or the end 501 // of the block); the common case is that the assume will come first. 502 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 503 IE = Inv->getParent()->end(); I != IE; ++I) 504 if (&*I == CxtI) 505 return true; 506 } 507 508 // The context comes first, but they're both in the same block. Make sure 509 // there is nothing in between that might interrupt the control flow. 510 for (BasicBlock::const_iterator I = 511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 512 I != IE; ++I) 513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 514 return false; 515 516 return !isEphemeralValueOf(Inv, CxtI); 517 } 518 519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 520 APInt &KnownOne, unsigned Depth, 521 const Query &Q) { 522 // Use of assumptions is context-sensitive. If we don't have a context, we 523 // cannot use them! 524 if (!Q.AC || !Q.CxtI) 525 return; 526 527 unsigned BitWidth = KnownZero.getBitWidth(); 528 529 // Note that the patterns below need to be kept in sync with the code 530 // in AssumptionCache::updateAffectedValues. 531 532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 533 if (!AssumeVH) 534 continue; 535 CallInst *I = cast<CallInst>(AssumeVH); 536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 537 "Got assumption for the wrong function!"); 538 if (Q.isExcluded(I)) 539 continue; 540 541 // Warning: This loop can end up being somewhat performance sensetive. 542 // We're running this loop for once for each value queried resulting in a 543 // runtime of ~O(#assumes * #values). 544 545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 546 "must be an assume intrinsic"); 547 548 Value *Arg = I->getArgOperand(0); 549 550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 551 assert(BitWidth == 1 && "assume operand is not i1?"); 552 KnownZero.clearAllBits(); 553 KnownOne.setAllBits(); 554 return; 555 } 556 if (match(Arg, m_Not(m_Specific(V))) && 557 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 558 assert(BitWidth == 1 && "assume operand is not i1?"); 559 KnownZero.setAllBits(); 560 KnownOne.clearAllBits(); 561 return; 562 } 563 564 // The remaining tests are all recursive, so bail out if we hit the limit. 565 if (Depth == MaxDepth) 566 continue; 567 568 Value *A, *B; 569 auto m_V = m_CombineOr(m_Specific(V), 570 m_CombineOr(m_PtrToInt(m_Specific(V)), 571 m_BitCast(m_Specific(V)))); 572 573 CmpInst::Predicate Pred; 574 ConstantInt *C; 575 // assume(v = a) 576 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 577 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 580 KnownZero |= RHSKnownZero; 581 KnownOne |= RHSKnownOne; 582 // assume(v & b = a) 583 } else if (match(Arg, 584 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 585 Pred == ICmpInst::ICMP_EQ && 586 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 589 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 590 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 591 592 // For those bits in the mask that are known to be one, we can propagate 593 // known bits from the RHS to V. 594 KnownZero |= RHSKnownZero & MaskKnownOne; 595 KnownOne |= RHSKnownOne & MaskKnownOne; 596 // assume(~(v & b) = a) 597 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 598 m_Value(A))) && 599 Pred == ICmpInst::ICMP_EQ && 600 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 601 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 602 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 603 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 604 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 605 606 // For those bits in the mask that are known to be one, we can propagate 607 // inverted known bits from the RHS to V. 608 KnownZero |= RHSKnownOne & MaskKnownOne; 609 KnownOne |= RHSKnownZero & MaskKnownOne; 610 // assume(v | b = a) 611 } else if (match(Arg, 612 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 613 Pred == ICmpInst::ICMP_EQ && 614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 615 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 616 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 617 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 618 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 619 620 // For those bits in B that are known to be zero, we can propagate known 621 // bits from the RHS to V. 622 KnownZero |= RHSKnownZero & BKnownZero; 623 KnownOne |= RHSKnownOne & BKnownZero; 624 // assume(~(v | b) = a) 625 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 626 m_Value(A))) && 627 Pred == ICmpInst::ICMP_EQ && 628 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 629 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 630 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 631 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 632 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 633 634 // For those bits in B that are known to be zero, we can propagate 635 // inverted known bits from the RHS to V. 636 KnownZero |= RHSKnownOne & BKnownZero; 637 KnownOne |= RHSKnownZero & BKnownZero; 638 // assume(v ^ b = a) 639 } else if (match(Arg, 640 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 641 Pred == ICmpInst::ICMP_EQ && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 647 648 // For those bits in B that are known to be zero, we can propagate known 649 // bits from the RHS to V. For those bits in B that are known to be one, 650 // we can propagate inverted known bits from the RHS to V. 651 KnownZero |= RHSKnownZero & BKnownZero; 652 KnownOne |= RHSKnownOne & BKnownZero; 653 KnownZero |= RHSKnownOne & BKnownOne; 654 KnownOne |= RHSKnownZero & BKnownOne; 655 // assume(~(v ^ b) = a) 656 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 657 m_Value(A))) && 658 Pred == ICmpInst::ICMP_EQ && 659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 662 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 663 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 664 665 // For those bits in B that are known to be zero, we can propagate 666 // inverted known bits from the RHS to V. For those bits in B that are 667 // known to be one, we can propagate known bits from the RHS to V. 668 KnownZero |= RHSKnownOne & BKnownZero; 669 KnownOne |= RHSKnownZero & BKnownZero; 670 KnownZero |= RHSKnownZero & BKnownOne; 671 KnownOne |= RHSKnownOne & BKnownOne; 672 // assume(v << c = a) 673 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 674 m_Value(A))) && 675 Pred == ICmpInst::ICMP_EQ && 676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 679 // For those bits in RHS that are known, we can propagate them to known 680 // bits in V shifted to the right by C. 681 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 682 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 683 // assume(~(v << c) = a) 684 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 685 m_Value(A))) && 686 Pred == ICmpInst::ICMP_EQ && 687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 690 // For those bits in RHS that are known, we can propagate them inverted 691 // to known bits in V shifted to the right by C. 692 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 693 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 694 // assume(v >> c = a) 695 } else if (match(Arg, 696 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 697 m_AShr(m_V, m_ConstantInt(C))), 698 m_Value(A))) && 699 Pred == ICmpInst::ICMP_EQ && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 703 // For those bits in RHS that are known, we can propagate them to known 704 // bits in V shifted to the right by C. 705 KnownZero |= RHSKnownZero << C->getZExtValue(); 706 KnownOne |= RHSKnownOne << C->getZExtValue(); 707 // assume(~(v >> c) = a) 708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 709 m_LShr(m_V, m_ConstantInt(C)), 710 m_AShr(m_V, m_ConstantInt(C)))), 711 m_Value(A))) && 712 Pred == ICmpInst::ICMP_EQ && 713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 716 // For those bits in RHS that are known, we can propagate them inverted 717 // to known bits in V shifted to the right by C. 718 KnownZero |= RHSKnownOne << C->getZExtValue(); 719 KnownOne |= RHSKnownZero << C->getZExtValue(); 720 // assume(v >=_s c) where c is non-negative 721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 722 Pred == ICmpInst::ICMP_SGE && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 726 727 if (RHSKnownZero.isNegative()) { 728 // We know that the sign bit is zero. 729 KnownZero |= APInt::getSignBit(BitWidth); 730 } 731 // assume(v >_s c) where c is at least -1. 732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 733 Pred == ICmpInst::ICMP_SGT && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 736 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 737 738 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 739 // We know that the sign bit is zero. 740 KnownZero |= APInt::getSignBit(BitWidth); 741 } 742 // assume(v <=_s c) where c is negative 743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 744 Pred == ICmpInst::ICMP_SLE && 745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 746 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 747 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 748 749 if (RHSKnownOne.isNegative()) { 750 // We know that the sign bit is one. 751 KnownOne |= APInt::getSignBit(BitWidth); 752 } 753 // assume(v <_s c) where c is non-positive 754 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 755 Pred == ICmpInst::ICMP_SLT && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 757 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 758 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 759 760 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 761 // We know that the sign bit is one. 762 KnownOne |= APInt::getSignBit(BitWidth); 763 } 764 // assume(v <=_u c) 765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 766 Pred == ICmpInst::ICMP_ULE && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 770 771 // Whatever high bits in c are zero are known to be zero. 772 KnownZero |= 773 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 774 // assume(v <_u c) 775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 776 Pred == ICmpInst::ICMP_ULT && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 780 781 // Whatever high bits in c are zero are known to be zero (if c is a power 782 // of 2, then one more). 783 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 784 KnownZero |= 785 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 786 else 787 KnownZero |= 788 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 789 } 790 } 791 792 // If assumptions conflict with each other or previous known bits, then we 793 // have a logical fallacy. This should only happen when a program has 794 // undefined behavior. We can't assert/crash, so clear out the known bits and 795 // hope for the best. 796 797 // FIXME: Publish a warning/remark that we have encountered UB or the compiler 798 // is broken. 799 800 if ((KnownZero & KnownOne) != 0) { 801 KnownZero.clearAllBits(); 802 KnownOne.clearAllBits(); 803 } 804 } 805 806 // Compute known bits from a shift operator, including those with a 807 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 808 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 809 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 810 // functors that, given the known-zero or known-one bits respectively, and a 811 // shift amount, compute the implied known-zero or known-one bits of the shift 812 // operator's result respectively for that shift amount. The results from calling 813 // KZF and KOF are conservatively combined for all permitted shift amounts. 814 static void computeKnownBitsFromShiftOperator( 815 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 816 APInt &KnownOne2, unsigned Depth, const Query &Q, 817 function_ref<APInt(const APInt &, unsigned)> KZF, 818 function_ref<APInt(const APInt &, unsigned)> KOF) { 819 unsigned BitWidth = KnownZero.getBitWidth(); 820 821 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 822 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 823 824 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 825 KnownZero = KZF(KnownZero, ShiftAmt); 826 KnownOne = KOF(KnownOne, ShiftAmt); 827 // If there is conflict between KnownZero and KnownOne, this must be an 828 // overflowing left shift, so the shift result is undefined. Clear KnownZero 829 // and KnownOne bits so that other code could propagate this undef. 830 if ((KnownZero & KnownOne) != 0) { 831 KnownZero.clearAllBits(); 832 KnownOne.clearAllBits(); 833 } 834 835 return; 836 } 837 838 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 839 840 // Note: We cannot use KnownZero.getLimitedValue() here, because if 841 // BitWidth > 64 and any upper bits are known, we'll end up returning the 842 // limit value (which implies all bits are known). 843 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 844 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 845 846 // It would be more-clearly correct to use the two temporaries for this 847 // calculation. Reusing the APInts here to prevent unnecessary allocations. 848 KnownZero.clearAllBits(); 849 KnownOne.clearAllBits(); 850 851 // If we know the shifter operand is nonzero, we can sometimes infer more 852 // known bits. However this is expensive to compute, so be lazy about it and 853 // only compute it when absolutely necessary. 854 Optional<bool> ShifterOperandIsNonZero; 855 856 // Early exit if we can't constrain any well-defined shift amount. 857 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 858 ShifterOperandIsNonZero = 859 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 860 if (!*ShifterOperandIsNonZero) 861 return; 862 } 863 864 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 865 866 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 867 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 868 // Combine the shifted known input bits only for those shift amounts 869 // compatible with its known constraints. 870 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 871 continue; 872 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 873 continue; 874 // If we know the shifter is nonzero, we may be able to infer more known 875 // bits. This check is sunk down as far as possible to avoid the expensive 876 // call to isKnownNonZero if the cheaper checks above fail. 877 if (ShiftAmt == 0) { 878 if (!ShifterOperandIsNonZero.hasValue()) 879 ShifterOperandIsNonZero = 880 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 881 if (*ShifterOperandIsNonZero) 882 continue; 883 } 884 885 KnownZero &= KZF(KnownZero2, ShiftAmt); 886 KnownOne &= KOF(KnownOne2, ShiftAmt); 887 } 888 889 // If there are no compatible shift amounts, then we've proven that the shift 890 // amount must be >= the BitWidth, and the result is undefined. We could 891 // return anything we'd like, but we need to make sure the sets of known bits 892 // stay disjoint (it should be better for some other code to actually 893 // propagate the undef than to pick a value here using known bits). 894 if ((KnownZero & KnownOne) != 0) { 895 KnownZero.clearAllBits(); 896 KnownOne.clearAllBits(); 897 } 898 } 899 900 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 901 APInt &KnownOne, unsigned Depth, 902 const Query &Q) { 903 unsigned BitWidth = KnownZero.getBitWidth(); 904 905 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 906 switch (I->getOpcode()) { 907 default: break; 908 case Instruction::Load: 909 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 910 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 911 break; 912 case Instruction::And: { 913 // If either the LHS or the RHS are Zero, the result is zero. 914 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 915 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 916 917 // Output known-1 bits are only known if set in both the LHS & RHS. 918 KnownOne &= KnownOne2; 919 // Output known-0 are known to be clear if zero in either the LHS | RHS. 920 KnownZero |= KnownZero2; 921 922 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 923 // here we handle the more general case of adding any odd number by 924 // matching the form add(x, add(x, y)) where y is odd. 925 // TODO: This could be generalized to clearing any bit set in y where the 926 // following bit is known to be unset in y. 927 Value *Y = nullptr; 928 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 929 m_Value(Y))) || 930 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 931 m_Value(Y)))) { 932 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 933 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 934 if (KnownOne3.countTrailingOnes() > 0) 935 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 936 } 937 break; 938 } 939 case Instruction::Or: { 940 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 942 943 // Output known-0 bits are only known if clear in both the LHS & RHS. 944 KnownZero &= KnownZero2; 945 // Output known-1 are known to be set if set in either the LHS | RHS. 946 KnownOne |= KnownOne2; 947 break; 948 } 949 case Instruction::Xor: { 950 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 951 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 952 953 // Output known-0 bits are known if clear or set in both the LHS & RHS. 954 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 955 // Output known-1 are known to be set if set in only one of the LHS, RHS. 956 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 957 KnownZero = KnownZeroOut; 958 break; 959 } 960 case Instruction::Mul: { 961 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 962 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 963 KnownOne, KnownZero2, KnownOne2, Depth, Q); 964 break; 965 } 966 case Instruction::UDiv: { 967 // For the purposes of computing leading zeros we can conservatively 968 // treat a udiv as a logical right shift by the power of 2 known to 969 // be less than the denominator. 970 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 971 unsigned LeadZ = KnownZero2.countLeadingOnes(); 972 973 KnownOne2.clearAllBits(); 974 KnownZero2.clearAllBits(); 975 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 976 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 977 if (RHSUnknownLeadingOnes != BitWidth) 978 LeadZ = std::min(BitWidth, 979 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 980 981 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 982 break; 983 } 984 case Instruction::Select: { 985 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 986 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 987 988 const Value *LHS; 989 const Value *RHS; 990 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 991 if (SelectPatternResult::isMinOrMax(SPF)) { 992 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 993 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 994 } else { 995 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 996 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 997 } 998 999 unsigned MaxHighOnes = 0; 1000 unsigned MaxHighZeros = 0; 1001 if (SPF == SPF_SMAX) { 1002 // If both sides are negative, the result is negative. 1003 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 1004 // We can derive a lower bound on the result by taking the max of the 1005 // leading one bits. 1006 MaxHighOnes = 1007 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1008 // If either side is non-negative, the result is non-negative. 1009 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1010 MaxHighZeros = 1; 1011 } else if (SPF == SPF_SMIN) { 1012 // If both sides are non-negative, the result is non-negative. 1013 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1014 // We can derive an upper bound on the result by taking the max of the 1015 // leading zero bits. 1016 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1017 KnownZero2.countLeadingOnes()); 1018 // If either side is negative, the result is negative. 1019 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1020 MaxHighOnes = 1; 1021 } else if (SPF == SPF_UMAX) { 1022 // We can derive a lower bound on the result by taking the max of the 1023 // leading one bits. 1024 MaxHighOnes = 1025 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1026 } else if (SPF == SPF_UMIN) { 1027 // We can derive an upper bound on the result by taking the max of the 1028 // leading zero bits. 1029 MaxHighZeros = 1030 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1031 } 1032 1033 // Only known if known in both the LHS and RHS. 1034 KnownOne &= KnownOne2; 1035 KnownZero &= KnownZero2; 1036 if (MaxHighOnes > 0) 1037 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1038 if (MaxHighZeros > 0) 1039 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1040 break; 1041 } 1042 case Instruction::FPTrunc: 1043 case Instruction::FPExt: 1044 case Instruction::FPToUI: 1045 case Instruction::FPToSI: 1046 case Instruction::SIToFP: 1047 case Instruction::UIToFP: 1048 break; // Can't work with floating point. 1049 case Instruction::PtrToInt: 1050 case Instruction::IntToPtr: 1051 // Fall through and handle them the same as zext/trunc. 1052 LLVM_FALLTHROUGH; 1053 case Instruction::ZExt: 1054 case Instruction::Trunc: { 1055 Type *SrcTy = I->getOperand(0)->getType(); 1056 1057 unsigned SrcBitWidth; 1058 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1059 // which fall through here. 1060 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1061 1062 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1063 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1064 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1065 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1066 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1067 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1068 // Any top bits are known to be zero. 1069 if (BitWidth > SrcBitWidth) 1070 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1071 break; 1072 } 1073 case Instruction::BitCast: { 1074 Type *SrcTy = I->getOperand(0)->getType(); 1075 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1076 // TODO: For now, not handling conversions like: 1077 // (bitcast i64 %x to <2 x i32>) 1078 !I->getType()->isVectorTy()) { 1079 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1080 break; 1081 } 1082 break; 1083 } 1084 case Instruction::SExt: { 1085 // Compute the bits in the result that are not present in the input. 1086 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1087 1088 KnownZero = KnownZero.trunc(SrcBitWidth); 1089 KnownOne = KnownOne.trunc(SrcBitWidth); 1090 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1091 KnownZero = KnownZero.zext(BitWidth); 1092 KnownOne = KnownOne.zext(BitWidth); 1093 1094 // If the sign bit of the input is known set or clear, then we know the 1095 // top bits of the result. 1096 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1097 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1098 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1099 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1100 break; 1101 } 1102 case Instruction::Shl: { 1103 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1104 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1105 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1106 APInt KZResult = 1107 (KnownZero << ShiftAmt) | 1108 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1109 // If this shift has "nsw" keyword, then the result is either a poison 1110 // value or has the same sign bit as the first operand. 1111 if (NSW && KnownZero.isNegative()) 1112 KZResult.setBit(BitWidth - 1); 1113 return KZResult; 1114 }; 1115 1116 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1117 APInt KOResult = KnownOne << ShiftAmt; 1118 if (NSW && KnownOne.isNegative()) 1119 KOResult.setBit(BitWidth - 1); 1120 return KOResult; 1121 }; 1122 1123 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1124 KnownZero2, KnownOne2, Depth, Q, KZF, 1125 KOF); 1126 break; 1127 } 1128 case Instruction::LShr: { 1129 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1130 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1131 return APIntOps::lshr(KnownZero, ShiftAmt) | 1132 // High bits known zero. 1133 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1134 }; 1135 1136 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1137 return APIntOps::lshr(KnownOne, ShiftAmt); 1138 }; 1139 1140 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1141 KnownZero2, KnownOne2, Depth, Q, KZF, 1142 KOF); 1143 break; 1144 } 1145 case Instruction::AShr: { 1146 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1147 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1148 return APIntOps::ashr(KnownZero, ShiftAmt); 1149 }; 1150 1151 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1152 return APIntOps::ashr(KnownOne, ShiftAmt); 1153 }; 1154 1155 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1156 KnownZero2, KnownOne2, Depth, Q, KZF, 1157 KOF); 1158 break; 1159 } 1160 case Instruction::Sub: { 1161 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1162 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1163 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1164 Q); 1165 break; 1166 } 1167 case Instruction::Add: { 1168 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1169 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1170 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1171 Q); 1172 break; 1173 } 1174 case Instruction::SRem: 1175 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1176 APInt RA = Rem->getValue().abs(); 1177 if (RA.isPowerOf2()) { 1178 APInt LowBits = RA - 1; 1179 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1180 Q); 1181 1182 // The low bits of the first operand are unchanged by the srem. 1183 KnownZero = KnownZero2 & LowBits; 1184 KnownOne = KnownOne2 & LowBits; 1185 1186 // If the first operand is non-negative or has all low bits zero, then 1187 // the upper bits are all zero. 1188 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1189 KnownZero |= ~LowBits; 1190 1191 // If the first operand is negative and not all low bits are zero, then 1192 // the upper bits are all one. 1193 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1194 KnownOne |= ~LowBits; 1195 1196 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1197 } 1198 } 1199 1200 // The sign bit is the LHS's sign bit, except when the result of the 1201 // remainder is zero. 1202 if (KnownZero.isNonNegative()) { 1203 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1204 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1205 Q); 1206 // If it's known zero, our sign bit is also zero. 1207 if (LHSKnownZero.isNegative()) 1208 KnownZero.setBit(BitWidth - 1); 1209 } 1210 1211 break; 1212 case Instruction::URem: { 1213 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1214 const APInt &RA = Rem->getValue(); 1215 if (RA.isPowerOf2()) { 1216 APInt LowBits = (RA - 1); 1217 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1218 KnownZero |= ~LowBits; 1219 KnownOne &= LowBits; 1220 break; 1221 } 1222 } 1223 1224 // Since the result is less than or equal to either operand, any leading 1225 // zero bits in either operand must also exist in the result. 1226 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1227 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1228 1229 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1230 KnownZero2.countLeadingOnes()); 1231 KnownOne.clearAllBits(); 1232 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1233 break; 1234 } 1235 1236 case Instruction::Alloca: { 1237 const AllocaInst *AI = cast<AllocaInst>(I); 1238 unsigned Align = AI->getAlignment(); 1239 if (Align == 0) 1240 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1241 1242 if (Align > 0) 1243 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1244 break; 1245 } 1246 case Instruction::GetElementPtr: { 1247 // Analyze all of the subscripts of this getelementptr instruction 1248 // to determine if we can prove known low zero bits. 1249 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1250 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1251 Q); 1252 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1253 1254 gep_type_iterator GTI = gep_type_begin(I); 1255 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1256 Value *Index = I->getOperand(i); 1257 if (StructType *STy = GTI.getStructTypeOrNull()) { 1258 // Handle struct member offset arithmetic. 1259 1260 // Handle case when index is vector zeroinitializer 1261 Constant *CIndex = cast<Constant>(Index); 1262 if (CIndex->isZeroValue()) 1263 continue; 1264 1265 if (CIndex->getType()->isVectorTy()) 1266 Index = CIndex->getSplatValue(); 1267 1268 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1269 const StructLayout *SL = Q.DL.getStructLayout(STy); 1270 uint64_t Offset = SL->getElementOffset(Idx); 1271 TrailZ = std::min<unsigned>(TrailZ, 1272 countTrailingZeros(Offset)); 1273 } else { 1274 // Handle array index arithmetic. 1275 Type *IndexedTy = GTI.getIndexedType(); 1276 if (!IndexedTy->isSized()) { 1277 TrailZ = 0; 1278 break; 1279 } 1280 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1281 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1282 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1283 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1284 TrailZ = std::min(TrailZ, 1285 unsigned(countTrailingZeros(TypeSize) + 1286 LocalKnownZero.countTrailingOnes())); 1287 } 1288 } 1289 1290 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1291 break; 1292 } 1293 case Instruction::PHI: { 1294 const PHINode *P = cast<PHINode>(I); 1295 // Handle the case of a simple two-predecessor recurrence PHI. 1296 // There's a lot more that could theoretically be done here, but 1297 // this is sufficient to catch some interesting cases. 1298 if (P->getNumIncomingValues() == 2) { 1299 for (unsigned i = 0; i != 2; ++i) { 1300 Value *L = P->getIncomingValue(i); 1301 Value *R = P->getIncomingValue(!i); 1302 Operator *LU = dyn_cast<Operator>(L); 1303 if (!LU) 1304 continue; 1305 unsigned Opcode = LU->getOpcode(); 1306 // Check for operations that have the property that if 1307 // both their operands have low zero bits, the result 1308 // will have low zero bits. 1309 if (Opcode == Instruction::Add || 1310 Opcode == Instruction::Sub || 1311 Opcode == Instruction::And || 1312 Opcode == Instruction::Or || 1313 Opcode == Instruction::Mul) { 1314 Value *LL = LU->getOperand(0); 1315 Value *LR = LU->getOperand(1); 1316 // Find a recurrence. 1317 if (LL == I) 1318 L = LR; 1319 else if (LR == I) 1320 L = LL; 1321 else 1322 break; 1323 // Ok, we have a PHI of the form L op= R. Check for low 1324 // zero bits. 1325 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1326 1327 // We need to take the minimum number of known bits 1328 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1329 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1330 1331 KnownZero = APInt::getLowBitsSet( 1332 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1333 KnownZero3.countTrailingOnes())); 1334 1335 if (DontImproveNonNegativePhiBits) 1336 break; 1337 1338 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1339 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1340 // If initial value of recurrence is nonnegative, and we are adding 1341 // a nonnegative number with nsw, the result can only be nonnegative 1342 // or poison value regardless of the number of times we execute the 1343 // add in phi recurrence. If initial value is negative and we are 1344 // adding a negative number with nsw, the result can only be 1345 // negative or poison value. Similar arguments apply to sub and mul. 1346 // 1347 // (add non-negative, non-negative) --> non-negative 1348 // (add negative, negative) --> negative 1349 if (Opcode == Instruction::Add) { 1350 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1351 KnownZero.setBit(BitWidth - 1); 1352 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1353 KnownOne.setBit(BitWidth - 1); 1354 } 1355 1356 // (sub nsw non-negative, negative) --> non-negative 1357 // (sub nsw negative, non-negative) --> negative 1358 else if (Opcode == Instruction::Sub && LL == I) { 1359 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1360 KnownZero.setBit(BitWidth - 1); 1361 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1362 KnownOne.setBit(BitWidth - 1); 1363 } 1364 1365 // (mul nsw non-negative, non-negative) --> non-negative 1366 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1367 KnownZero3.isNegative()) 1368 KnownZero.setBit(BitWidth - 1); 1369 } 1370 1371 break; 1372 } 1373 } 1374 } 1375 1376 // Unreachable blocks may have zero-operand PHI nodes. 1377 if (P->getNumIncomingValues() == 0) 1378 break; 1379 1380 // Otherwise take the unions of the known bit sets of the operands, 1381 // taking conservative care to avoid excessive recursion. 1382 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1383 // Skip if every incoming value references to ourself. 1384 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1385 break; 1386 1387 KnownZero = APInt::getAllOnesValue(BitWidth); 1388 KnownOne = APInt::getAllOnesValue(BitWidth); 1389 for (Value *IncValue : P->incoming_values()) { 1390 // Skip direct self references. 1391 if (IncValue == P) continue; 1392 1393 KnownZero2 = APInt(BitWidth, 0); 1394 KnownOne2 = APInt(BitWidth, 0); 1395 // Recurse, but cap the recursion to one level, because we don't 1396 // want to waste time spinning around in loops. 1397 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1398 KnownZero &= KnownZero2; 1399 KnownOne &= KnownOne2; 1400 // If all bits have been ruled out, there's no need to check 1401 // more operands. 1402 if (!KnownZero && !KnownOne) 1403 break; 1404 } 1405 } 1406 break; 1407 } 1408 case Instruction::Call: 1409 case Instruction::Invoke: 1410 // If range metadata is attached to this call, set known bits from that, 1411 // and then intersect with known bits based on other properties of the 1412 // function. 1413 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1414 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1415 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1416 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1417 KnownZero |= KnownZero2; 1418 KnownOne |= KnownOne2; 1419 } 1420 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1421 switch (II->getIntrinsicID()) { 1422 default: break; 1423 case Intrinsic::bitreverse: 1424 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1425 KnownZero = KnownZero2.reverseBits(); 1426 KnownOne = KnownOne2.reverseBits(); 1427 break; 1428 case Intrinsic::bswap: 1429 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1430 KnownZero |= KnownZero2.byteSwap(); 1431 KnownOne |= KnownOne2.byteSwap(); 1432 break; 1433 case Intrinsic::ctlz: 1434 case Intrinsic::cttz: { 1435 unsigned LowBits = Log2_32(BitWidth)+1; 1436 // If this call is undefined for 0, the result will be less than 2^n. 1437 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1438 LowBits -= 1; 1439 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1440 break; 1441 } 1442 case Intrinsic::ctpop: { 1443 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1444 // We can bound the space the count needs. Also, bits known to be zero 1445 // can't contribute to the population. 1446 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1447 unsigned LeadingZeros = 1448 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1449 assert(LeadingZeros <= BitWidth); 1450 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1451 KnownOne &= ~KnownZero; 1452 // TODO: we could bound KnownOne using the lower bound on the number 1453 // of bits which might be set provided by popcnt KnownOne2. 1454 break; 1455 } 1456 case Intrinsic::x86_sse42_crc32_64_64: 1457 KnownZero |= APInt::getHighBitsSet(64, 32); 1458 break; 1459 } 1460 } 1461 break; 1462 case Instruction::ExtractElement: 1463 // Look through extract element. At the moment we keep this simple and skip 1464 // tracking the specific element. But at least we might find information 1465 // valid for all elements of the vector (for example if vector is sign 1466 // extended, shifted, etc). 1467 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1468 break; 1469 case Instruction::ExtractValue: 1470 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1471 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1472 if (EVI->getNumIndices() != 1) break; 1473 if (EVI->getIndices()[0] == 0) { 1474 switch (II->getIntrinsicID()) { 1475 default: break; 1476 case Intrinsic::uadd_with_overflow: 1477 case Intrinsic::sadd_with_overflow: 1478 computeKnownBitsAddSub(true, II->getArgOperand(0), 1479 II->getArgOperand(1), false, KnownZero, 1480 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1481 break; 1482 case Intrinsic::usub_with_overflow: 1483 case Intrinsic::ssub_with_overflow: 1484 computeKnownBitsAddSub(false, II->getArgOperand(0), 1485 II->getArgOperand(1), false, KnownZero, 1486 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1487 break; 1488 case Intrinsic::umul_with_overflow: 1489 case Intrinsic::smul_with_overflow: 1490 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1491 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1492 Q); 1493 break; 1494 } 1495 } 1496 } 1497 } 1498 } 1499 1500 /// Determine which bits of V are known to be either zero or one and return 1501 /// them in the KnownZero/KnownOne bit sets. 1502 /// 1503 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1504 /// we cannot optimize based on the assumption that it is zero without changing 1505 /// it to be an explicit zero. If we don't change it to zero, other code could 1506 /// optimized based on the contradictory assumption that it is non-zero. 1507 /// Because instcombine aggressively folds operations with undef args anyway, 1508 /// this won't lose us code quality. 1509 /// 1510 /// This function is defined on values with integer type, values with pointer 1511 /// type, and vectors of integers. In the case 1512 /// where V is a vector, known zero, and known one values are the 1513 /// same width as the vector element, and the bit is set only if it is true 1514 /// for all of the elements in the vector. 1515 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1516 unsigned Depth, const Query &Q) { 1517 assert(V && "No Value?"); 1518 assert(Depth <= MaxDepth && "Limit Search Depth"); 1519 unsigned BitWidth = KnownZero.getBitWidth(); 1520 1521 assert((V->getType()->isIntOrIntVectorTy() || 1522 V->getType()->getScalarType()->isPointerTy()) && 1523 "Not integer or pointer type!"); 1524 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1525 (!V->getType()->isIntOrIntVectorTy() || 1526 V->getType()->getScalarSizeInBits() == BitWidth) && 1527 KnownZero.getBitWidth() == BitWidth && 1528 KnownOne.getBitWidth() == BitWidth && 1529 "V, KnownOne and KnownZero should have same BitWidth"); 1530 1531 const APInt *C; 1532 if (match(V, m_APInt(C))) { 1533 // We know all of the bits for a scalar constant or a splat vector constant! 1534 KnownOne = *C; 1535 KnownZero = ~KnownOne; 1536 return; 1537 } 1538 // Null and aggregate-zero are all-zeros. 1539 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1540 KnownOne.clearAllBits(); 1541 KnownZero = APInt::getAllOnesValue(BitWidth); 1542 return; 1543 } 1544 // Handle a constant vector by taking the intersection of the known bits of 1545 // each element. 1546 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1547 // We know that CDS must be a vector of integers. Take the intersection of 1548 // each element. 1549 KnownZero.setAllBits(); KnownOne.setAllBits(); 1550 APInt Elt(KnownZero.getBitWidth(), 0); 1551 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1552 Elt = CDS->getElementAsInteger(i); 1553 KnownZero &= ~Elt; 1554 KnownOne &= Elt; 1555 } 1556 return; 1557 } 1558 1559 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1560 // We know that CV must be a vector of integers. Take the intersection of 1561 // each element. 1562 KnownZero.setAllBits(); KnownOne.setAllBits(); 1563 APInt Elt(KnownZero.getBitWidth(), 0); 1564 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1565 Constant *Element = CV->getAggregateElement(i); 1566 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1567 if (!ElementCI) { 1568 KnownZero.clearAllBits(); 1569 KnownOne.clearAllBits(); 1570 return; 1571 } 1572 Elt = ElementCI->getValue(); 1573 KnownZero &= ~Elt; 1574 KnownOne &= Elt; 1575 } 1576 return; 1577 } 1578 1579 // Start out not knowing anything. 1580 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1581 1582 // We can't imply anything about undefs. 1583 if (isa<UndefValue>(V)) 1584 return; 1585 1586 // There's no point in looking through other users of ConstantData for 1587 // assumptions. Confirm that we've handled them all. 1588 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1589 1590 // Limit search depth. 1591 // All recursive calls that increase depth must come after this. 1592 if (Depth == MaxDepth) 1593 return; 1594 1595 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1596 // the bits of its aliasee. 1597 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1598 if (!GA->isInterposable()) 1599 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1600 return; 1601 } 1602 1603 if (const Operator *I = dyn_cast<Operator>(V)) 1604 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1605 1606 // Aligned pointers have trailing zeros - refine KnownZero set 1607 if (V->getType()->isPointerTy()) { 1608 unsigned Align = V->getPointerAlignment(Q.DL); 1609 if (Align) 1610 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1611 } 1612 1613 // computeKnownBitsFromAssume strictly refines KnownZero and 1614 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1615 1616 // Check whether a nearby assume intrinsic can determine some known bits. 1617 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1618 1619 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1620 } 1621 1622 /// Determine whether the sign bit is known to be zero or one. 1623 /// Convenience wrapper around computeKnownBits. 1624 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1625 unsigned Depth, const Query &Q) { 1626 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1627 if (!BitWidth) { 1628 KnownZero = false; 1629 KnownOne = false; 1630 return; 1631 } 1632 APInt ZeroBits(BitWidth, 0); 1633 APInt OneBits(BitWidth, 0); 1634 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1635 KnownOne = OneBits[BitWidth - 1]; 1636 KnownZero = ZeroBits[BitWidth - 1]; 1637 } 1638 1639 /// Return true if the given value is known to have exactly one 1640 /// bit set when defined. For vectors return true if every element is known to 1641 /// be a power of two when defined. Supports values with integer or pointer 1642 /// types and vectors of integers. 1643 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1644 const Query &Q) { 1645 if (const Constant *C = dyn_cast<Constant>(V)) { 1646 if (C->isNullValue()) 1647 return OrZero; 1648 1649 const APInt *ConstIntOrConstSplatInt; 1650 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1651 return ConstIntOrConstSplatInt->isPowerOf2(); 1652 } 1653 1654 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1655 // it is shifted off the end then the result is undefined. 1656 if (match(V, m_Shl(m_One(), m_Value()))) 1657 return true; 1658 1659 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1660 // bottom. If it is shifted off the bottom then the result is undefined. 1661 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1662 return true; 1663 1664 // The remaining tests are all recursive, so bail out if we hit the limit. 1665 if (Depth++ == MaxDepth) 1666 return false; 1667 1668 Value *X = nullptr, *Y = nullptr; 1669 // A shift left or a logical shift right of a power of two is a power of two 1670 // or zero. 1671 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1672 match(V, m_LShr(m_Value(X), m_Value())))) 1673 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1674 1675 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1676 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1677 1678 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1679 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1680 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1681 1682 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1683 // A power of two and'd with anything is a power of two or zero. 1684 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1685 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1686 return true; 1687 // X & (-X) is always a power of two or zero. 1688 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1689 return true; 1690 return false; 1691 } 1692 1693 // Adding a power-of-two or zero to the same power-of-two or zero yields 1694 // either the original power-of-two, a larger power-of-two or zero. 1695 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1696 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1697 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1698 if (match(X, m_And(m_Specific(Y), m_Value())) || 1699 match(X, m_And(m_Value(), m_Specific(Y)))) 1700 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1701 return true; 1702 if (match(Y, m_And(m_Specific(X), m_Value())) || 1703 match(Y, m_And(m_Value(), m_Specific(X)))) 1704 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1705 return true; 1706 1707 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1708 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1709 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1710 1711 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1712 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1713 // If i8 V is a power of two or zero: 1714 // ZeroBits: 1 1 1 0 1 1 1 1 1715 // ~ZeroBits: 0 0 0 1 0 0 0 0 1716 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1717 // If OrZero isn't set, we cannot give back a zero result. 1718 // Make sure either the LHS or RHS has a bit set. 1719 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1720 return true; 1721 } 1722 } 1723 1724 // An exact divide or right shift can only shift off zero bits, so the result 1725 // is a power of two only if the first operand is a power of two and not 1726 // copying a sign bit (sdiv int_min, 2). 1727 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1728 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1729 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1730 Depth, Q); 1731 } 1732 1733 return false; 1734 } 1735 1736 /// \brief Test whether a GEP's result is known to be non-null. 1737 /// 1738 /// Uses properties inherent in a GEP to try to determine whether it is known 1739 /// to be non-null. 1740 /// 1741 /// Currently this routine does not support vector GEPs. 1742 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1743 const Query &Q) { 1744 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1745 return false; 1746 1747 // FIXME: Support vector-GEPs. 1748 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1749 1750 // If the base pointer is non-null, we cannot walk to a null address with an 1751 // inbounds GEP in address space zero. 1752 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1753 return true; 1754 1755 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1756 // If so, then the GEP cannot produce a null pointer, as doing so would 1757 // inherently violate the inbounds contract within address space zero. 1758 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1759 GTI != GTE; ++GTI) { 1760 // Struct types are easy -- they must always be indexed by a constant. 1761 if (StructType *STy = GTI.getStructTypeOrNull()) { 1762 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1763 unsigned ElementIdx = OpC->getZExtValue(); 1764 const StructLayout *SL = Q.DL.getStructLayout(STy); 1765 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1766 if (ElementOffset > 0) 1767 return true; 1768 continue; 1769 } 1770 1771 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1772 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1773 continue; 1774 1775 // Fast path the constant operand case both for efficiency and so we don't 1776 // increment Depth when just zipping down an all-constant GEP. 1777 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1778 if (!OpC->isZero()) 1779 return true; 1780 continue; 1781 } 1782 1783 // We post-increment Depth here because while isKnownNonZero increments it 1784 // as well, when we pop back up that increment won't persist. We don't want 1785 // to recurse 10k times just because we have 10k GEP operands. We don't 1786 // bail completely out because we want to handle constant GEPs regardless 1787 // of depth. 1788 if (Depth++ >= MaxDepth) 1789 continue; 1790 1791 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1792 return true; 1793 } 1794 1795 return false; 1796 } 1797 1798 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1799 /// ensure that the value it's attached to is never Value? 'RangeType' is 1800 /// is the type of the value described by the range. 1801 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1802 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1803 assert(NumRanges >= 1); 1804 for (unsigned i = 0; i < NumRanges; ++i) { 1805 ConstantInt *Lower = 1806 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1807 ConstantInt *Upper = 1808 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1809 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1810 if (Range.contains(Value)) 1811 return false; 1812 } 1813 return true; 1814 } 1815 1816 /// Return true if the given value is known to be non-zero when defined. 1817 /// For vectors return true if every element is known to be non-zero when 1818 /// defined. Supports values with integer or pointer type and vectors of 1819 /// integers. 1820 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1821 if (auto *C = dyn_cast<Constant>(V)) { 1822 if (C->isNullValue()) 1823 return false; 1824 if (isa<ConstantInt>(C)) 1825 // Must be non-zero due to null test above. 1826 return true; 1827 1828 // For constant vectors, check that all elements are undefined or known 1829 // non-zero to determine that the whole vector is known non-zero. 1830 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1831 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1832 Constant *Elt = C->getAggregateElement(i); 1833 if (!Elt || Elt->isNullValue()) 1834 return false; 1835 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 return false; 1842 } 1843 1844 if (auto *I = dyn_cast<Instruction>(V)) { 1845 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1846 // If the possible ranges don't contain zero, then the value is 1847 // definitely non-zero. 1848 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1849 const APInt ZeroValue(Ty->getBitWidth(), 0); 1850 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1851 return true; 1852 } 1853 } 1854 } 1855 1856 // The remaining tests are all recursive, so bail out if we hit the limit. 1857 if (Depth++ >= MaxDepth) 1858 return false; 1859 1860 // Check for pointer simplifications. 1861 if (V->getType()->isPointerTy()) { 1862 if (isKnownNonNull(V)) 1863 return true; 1864 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1865 if (isGEPKnownNonNull(GEP, Depth, Q)) 1866 return true; 1867 } 1868 1869 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1870 1871 // X | Y != 0 if X != 0 or Y != 0. 1872 Value *X = nullptr, *Y = nullptr; 1873 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1874 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1875 1876 // ext X != 0 if X != 0. 1877 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1878 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1879 1880 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1881 // if the lowest bit is shifted off the end. 1882 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1883 // shl nuw can't remove any non-zero bits. 1884 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1885 if (BO->hasNoUnsignedWrap()) 1886 return isKnownNonZero(X, Depth, Q); 1887 1888 APInt KnownZero(BitWidth, 0); 1889 APInt KnownOne(BitWidth, 0); 1890 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1891 if (KnownOne[0]) 1892 return true; 1893 } 1894 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1895 // defined if the sign bit is shifted off the end. 1896 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1897 // shr exact can only shift out zero bits. 1898 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1899 if (BO->isExact()) 1900 return isKnownNonZero(X, Depth, Q); 1901 1902 bool XKnownNonNegative, XKnownNegative; 1903 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1904 if (XKnownNegative) 1905 return true; 1906 1907 // If the shifter operand is a constant, and all of the bits shifted 1908 // out are known to be zero, and X is known non-zero then at least one 1909 // non-zero bit must remain. 1910 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1911 APInt KnownZero(BitWidth, 0); 1912 APInt KnownOne(BitWidth, 0); 1913 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1914 1915 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1916 // Is there a known one in the portion not shifted out? 1917 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1918 return true; 1919 // Are all the bits to be shifted out known zero? 1920 if (KnownZero.countTrailingOnes() >= ShiftVal) 1921 return isKnownNonZero(X, Depth, Q); 1922 } 1923 } 1924 // div exact can only produce a zero if the dividend is zero. 1925 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1926 return isKnownNonZero(X, Depth, Q); 1927 } 1928 // X + Y. 1929 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1930 bool XKnownNonNegative, XKnownNegative; 1931 bool YKnownNonNegative, YKnownNegative; 1932 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1933 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1934 1935 // If X and Y are both non-negative (as signed values) then their sum is not 1936 // zero unless both X and Y are zero. 1937 if (XKnownNonNegative && YKnownNonNegative) 1938 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1939 return true; 1940 1941 // If X and Y are both negative (as signed values) then their sum is not 1942 // zero unless both X and Y equal INT_MIN. 1943 if (BitWidth && XKnownNegative && YKnownNegative) { 1944 APInt KnownZero(BitWidth, 0); 1945 APInt KnownOne(BitWidth, 0); 1946 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1947 // The sign bit of X is set. If some other bit is set then X is not equal 1948 // to INT_MIN. 1949 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1950 if ((KnownOne & Mask) != 0) 1951 return true; 1952 // The sign bit of Y is set. If some other bit is set then Y is not equal 1953 // to INT_MIN. 1954 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1955 if ((KnownOne & Mask) != 0) 1956 return true; 1957 } 1958 1959 // The sum of a non-negative number and a power of two is not zero. 1960 if (XKnownNonNegative && 1961 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1962 return true; 1963 if (YKnownNonNegative && 1964 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1965 return true; 1966 } 1967 // X * Y. 1968 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1969 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1970 // If X and Y are non-zero then so is X * Y as long as the multiplication 1971 // does not overflow. 1972 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1973 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1974 return true; 1975 } 1976 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1977 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1978 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1979 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1980 return true; 1981 } 1982 // PHI 1983 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1984 // Try and detect a recurrence that monotonically increases from a 1985 // starting value, as these are common as induction variables. 1986 if (PN->getNumIncomingValues() == 2) { 1987 Value *Start = PN->getIncomingValue(0); 1988 Value *Induction = PN->getIncomingValue(1); 1989 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1990 std::swap(Start, Induction); 1991 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1992 if (!C->isZero() && !C->isNegative()) { 1993 ConstantInt *X; 1994 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1995 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1996 !X->isNegative()) 1997 return true; 1998 } 1999 } 2000 } 2001 // Check if all incoming values are non-zero constant. 2002 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2003 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2004 }); 2005 if (AllNonZeroConstants) 2006 return true; 2007 } 2008 2009 if (!BitWidth) return false; 2010 APInt KnownZero(BitWidth, 0); 2011 APInt KnownOne(BitWidth, 0); 2012 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2013 return KnownOne != 0; 2014 } 2015 2016 /// Return true if V2 == V1 + X, where X is known non-zero. 2017 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2018 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2019 if (!BO || BO->getOpcode() != Instruction::Add) 2020 return false; 2021 Value *Op = nullptr; 2022 if (V2 == BO->getOperand(0)) 2023 Op = BO->getOperand(1); 2024 else if (V2 == BO->getOperand(1)) 2025 Op = BO->getOperand(0); 2026 else 2027 return false; 2028 return isKnownNonZero(Op, 0, Q); 2029 } 2030 2031 /// Return true if it is known that V1 != V2. 2032 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2033 if (V1->getType()->isVectorTy() || V1 == V2) 2034 return false; 2035 if (V1->getType() != V2->getType()) 2036 // We can't look through casts yet. 2037 return false; 2038 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2039 return true; 2040 2041 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2042 // Are any known bits in V1 contradictory to known bits in V2? If V1 2043 // has a known zero where V2 has a known one, they must not be equal. 2044 auto BitWidth = Ty->getBitWidth(); 2045 APInt KnownZero1(BitWidth, 0); 2046 APInt KnownOne1(BitWidth, 0); 2047 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2048 APInt KnownZero2(BitWidth, 0); 2049 APInt KnownOne2(BitWidth, 0); 2050 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2051 2052 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2053 if (OppositeBits.getBoolValue()) 2054 return true; 2055 } 2056 return false; 2057 } 2058 2059 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2060 /// simplify operations downstream. Mask is known to be zero for bits that V 2061 /// cannot have. 2062 /// 2063 /// This function is defined on values with integer type, values with pointer 2064 /// type, and vectors of integers. In the case 2065 /// where V is a vector, the mask, known zero, and known one values are the 2066 /// same width as the vector element, and the bit is set only if it is true 2067 /// for all of the elements in the vector. 2068 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2069 const Query &Q) { 2070 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2071 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2072 return (KnownZero & Mask) == Mask; 2073 } 2074 2075 /// For vector constants, loop over the elements and find the constant with the 2076 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2077 /// or if any element was not analyzed; otherwise, return the count for the 2078 /// element with the minimum number of sign bits. 2079 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2080 unsigned TyBits) { 2081 const auto *CV = dyn_cast<Constant>(V); 2082 if (!CV || !CV->getType()->isVectorTy()) 2083 return 0; 2084 2085 unsigned MinSignBits = TyBits; 2086 unsigned NumElts = CV->getType()->getVectorNumElements(); 2087 for (unsigned i = 0; i != NumElts; ++i) { 2088 // If we find a non-ConstantInt, bail out. 2089 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2090 if (!Elt) 2091 return 0; 2092 2093 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2094 APInt EltVal = Elt->getValue(); 2095 if (EltVal.isNegative()) 2096 EltVal = ~EltVal; 2097 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2098 } 2099 2100 return MinSignBits; 2101 } 2102 2103 /// Return the number of times the sign bit of the register is replicated into 2104 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2105 /// (itself), but other cases can give us information. For example, immediately 2106 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2107 /// other, so we return 3. For vectors, return the number of sign bits for the 2108 /// vector element with the mininum number of known sign bits. 2109 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2110 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2111 unsigned Tmp, Tmp2; 2112 unsigned FirstAnswer = 1; 2113 2114 // Note that ConstantInt is handled by the general computeKnownBits case 2115 // below. 2116 2117 if (Depth == MaxDepth) 2118 return 1; // Limit search depth. 2119 2120 const Operator *U = dyn_cast<Operator>(V); 2121 switch (Operator::getOpcode(V)) { 2122 default: break; 2123 case Instruction::SExt: 2124 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2125 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2126 2127 case Instruction::SDiv: { 2128 const APInt *Denominator; 2129 // sdiv X, C -> adds log(C) sign bits. 2130 if (match(U->getOperand(1), m_APInt(Denominator))) { 2131 2132 // Ignore non-positive denominator. 2133 if (!Denominator->isStrictlyPositive()) 2134 break; 2135 2136 // Calculate the incoming numerator bits. 2137 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2138 2139 // Add floor(log(C)) bits to the numerator bits. 2140 return std::min(TyBits, NumBits + Denominator->logBase2()); 2141 } 2142 break; 2143 } 2144 2145 case Instruction::SRem: { 2146 const APInt *Denominator; 2147 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2148 // positive constant. This let us put a lower bound on the number of sign 2149 // bits. 2150 if (match(U->getOperand(1), m_APInt(Denominator))) { 2151 2152 // Ignore non-positive denominator. 2153 if (!Denominator->isStrictlyPositive()) 2154 break; 2155 2156 // Calculate the incoming numerator bits. SRem by a positive constant 2157 // can't lower the number of sign bits. 2158 unsigned NumrBits = 2159 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2160 2161 // Calculate the leading sign bit constraints by examining the 2162 // denominator. Given that the denominator is positive, there are two 2163 // cases: 2164 // 2165 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2166 // (1 << ceilLogBase2(C)). 2167 // 2168 // 2. the numerator is negative. Then the result range is (-C,0] and 2169 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2170 // 2171 // Thus a lower bound on the number of sign bits is `TyBits - 2172 // ceilLogBase2(C)`. 2173 2174 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2175 return std::max(NumrBits, ResBits); 2176 } 2177 break; 2178 } 2179 2180 case Instruction::AShr: { 2181 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2182 // ashr X, C -> adds C sign bits. Vectors too. 2183 const APInt *ShAmt; 2184 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2185 Tmp += ShAmt->getZExtValue(); 2186 if (Tmp > TyBits) Tmp = TyBits; 2187 } 2188 return Tmp; 2189 } 2190 case Instruction::Shl: { 2191 const APInt *ShAmt; 2192 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2193 // shl destroys sign bits. 2194 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2195 Tmp2 = ShAmt->getZExtValue(); 2196 if (Tmp2 >= TyBits || // Bad shift. 2197 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2198 return Tmp - Tmp2; 2199 } 2200 break; 2201 } 2202 case Instruction::And: 2203 case Instruction::Or: 2204 case Instruction::Xor: // NOT is handled here. 2205 // Logical binary ops preserve the number of sign bits at the worst. 2206 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2207 if (Tmp != 1) { 2208 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2209 FirstAnswer = std::min(Tmp, Tmp2); 2210 // We computed what we know about the sign bits as our first 2211 // answer. Now proceed to the generic code that uses 2212 // computeKnownBits, and pick whichever answer is better. 2213 } 2214 break; 2215 2216 case Instruction::Select: 2217 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2218 if (Tmp == 1) return 1; // Early out. 2219 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2220 return std::min(Tmp, Tmp2); 2221 2222 case Instruction::Add: 2223 // Add can have at most one carry bit. Thus we know that the output 2224 // is, at worst, one more bit than the inputs. 2225 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2226 if (Tmp == 1) return 1; // Early out. 2227 2228 // Special case decrementing a value (ADD X, -1): 2229 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2230 if (CRHS->isAllOnesValue()) { 2231 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2232 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2233 2234 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2235 // sign bits set. 2236 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2237 return TyBits; 2238 2239 // If we are subtracting one from a positive number, there is no carry 2240 // out of the result. 2241 if (KnownZero.isNegative()) 2242 return Tmp; 2243 } 2244 2245 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2246 if (Tmp2 == 1) return 1; 2247 return std::min(Tmp, Tmp2)-1; 2248 2249 case Instruction::Sub: 2250 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2251 if (Tmp2 == 1) return 1; 2252 2253 // Handle NEG. 2254 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2255 if (CLHS->isNullValue()) { 2256 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2257 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2258 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2259 // sign bits set. 2260 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2261 return TyBits; 2262 2263 // If the input is known to be positive (the sign bit is known clear), 2264 // the output of the NEG has the same number of sign bits as the input. 2265 if (KnownZero.isNegative()) 2266 return Tmp2; 2267 2268 // Otherwise, we treat this like a SUB. 2269 } 2270 2271 // Sub can have at most one carry bit. Thus we know that the output 2272 // is, at worst, one more bit than the inputs. 2273 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2274 if (Tmp == 1) return 1; // Early out. 2275 return std::min(Tmp, Tmp2)-1; 2276 2277 case Instruction::PHI: { 2278 const PHINode *PN = cast<PHINode>(U); 2279 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2280 // Don't analyze large in-degree PHIs. 2281 if (NumIncomingValues > 4) break; 2282 // Unreachable blocks may have zero-operand PHI nodes. 2283 if (NumIncomingValues == 0) break; 2284 2285 // Take the minimum of all incoming values. This can't infinitely loop 2286 // because of our depth threshold. 2287 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2288 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2289 if (Tmp == 1) return Tmp; 2290 Tmp = std::min( 2291 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2292 } 2293 return Tmp; 2294 } 2295 2296 case Instruction::Trunc: 2297 // FIXME: it's tricky to do anything useful for this, but it is an important 2298 // case for targets like X86. 2299 break; 2300 2301 case Instruction::ExtractElement: 2302 // Look through extract element. At the moment we keep this simple and skip 2303 // tracking the specific element. But at least we might find information 2304 // valid for all elements of the vector (for example if vector is sign 2305 // extended, shifted, etc). 2306 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2307 } 2308 2309 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2310 // use this information. 2311 2312 // If we can examine all elements of a vector constant successfully, we're 2313 // done (we can't do any better than that). If not, keep trying. 2314 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2315 return VecSignBits; 2316 2317 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2318 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2319 2320 // If we know that the sign bit is either zero or one, determine the number of 2321 // identical bits in the top of the input value. 2322 if (KnownZero.isNegative()) 2323 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2324 2325 if (KnownOne.isNegative()) 2326 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2327 2328 // computeKnownBits gave us no extra information about the top bits. 2329 return FirstAnswer; 2330 } 2331 2332 /// This function computes the integer multiple of Base that equals V. 2333 /// If successful, it returns true and returns the multiple in 2334 /// Multiple. If unsuccessful, it returns false. It looks 2335 /// through SExt instructions only if LookThroughSExt is true. 2336 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2337 bool LookThroughSExt, unsigned Depth) { 2338 const unsigned MaxDepth = 6; 2339 2340 assert(V && "No Value?"); 2341 assert(Depth <= MaxDepth && "Limit Search Depth"); 2342 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2343 2344 Type *T = V->getType(); 2345 2346 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2347 2348 if (Base == 0) 2349 return false; 2350 2351 if (Base == 1) { 2352 Multiple = V; 2353 return true; 2354 } 2355 2356 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2357 Constant *BaseVal = ConstantInt::get(T, Base); 2358 if (CO && CO == BaseVal) { 2359 // Multiple is 1. 2360 Multiple = ConstantInt::get(T, 1); 2361 return true; 2362 } 2363 2364 if (CI && CI->getZExtValue() % Base == 0) { 2365 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2366 return true; 2367 } 2368 2369 if (Depth == MaxDepth) return false; // Limit search depth. 2370 2371 Operator *I = dyn_cast<Operator>(V); 2372 if (!I) return false; 2373 2374 switch (I->getOpcode()) { 2375 default: break; 2376 case Instruction::SExt: 2377 if (!LookThroughSExt) return false; 2378 // otherwise fall through to ZExt 2379 case Instruction::ZExt: 2380 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2381 LookThroughSExt, Depth+1); 2382 case Instruction::Shl: 2383 case Instruction::Mul: { 2384 Value *Op0 = I->getOperand(0); 2385 Value *Op1 = I->getOperand(1); 2386 2387 if (I->getOpcode() == Instruction::Shl) { 2388 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2389 if (!Op1CI) return false; 2390 // Turn Op0 << Op1 into Op0 * 2^Op1 2391 APInt Op1Int = Op1CI->getValue(); 2392 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2393 APInt API(Op1Int.getBitWidth(), 0); 2394 API.setBit(BitToSet); 2395 Op1 = ConstantInt::get(V->getContext(), API); 2396 } 2397 2398 Value *Mul0 = nullptr; 2399 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2400 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2401 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2402 if (Op1C->getType()->getPrimitiveSizeInBits() < 2403 MulC->getType()->getPrimitiveSizeInBits()) 2404 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2405 if (Op1C->getType()->getPrimitiveSizeInBits() > 2406 MulC->getType()->getPrimitiveSizeInBits()) 2407 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2408 2409 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2410 Multiple = ConstantExpr::getMul(MulC, Op1C); 2411 return true; 2412 } 2413 2414 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2415 if (Mul0CI->getValue() == 1) { 2416 // V == Base * Op1, so return Op1 2417 Multiple = Op1; 2418 return true; 2419 } 2420 } 2421 2422 Value *Mul1 = nullptr; 2423 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2424 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2425 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2426 if (Op0C->getType()->getPrimitiveSizeInBits() < 2427 MulC->getType()->getPrimitiveSizeInBits()) 2428 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2429 if (Op0C->getType()->getPrimitiveSizeInBits() > 2430 MulC->getType()->getPrimitiveSizeInBits()) 2431 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2432 2433 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2434 Multiple = ConstantExpr::getMul(MulC, Op0C); 2435 return true; 2436 } 2437 2438 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2439 if (Mul1CI->getValue() == 1) { 2440 // V == Base * Op0, so return Op0 2441 Multiple = Op0; 2442 return true; 2443 } 2444 } 2445 } 2446 } 2447 2448 // We could not determine if V is a multiple of Base. 2449 return false; 2450 } 2451 2452 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2453 const TargetLibraryInfo *TLI) { 2454 const Function *F = ICS.getCalledFunction(); 2455 if (!F) 2456 return Intrinsic::not_intrinsic; 2457 2458 if (F->isIntrinsic()) 2459 return F->getIntrinsicID(); 2460 2461 if (!TLI) 2462 return Intrinsic::not_intrinsic; 2463 2464 LibFunc Func; 2465 // We're going to make assumptions on the semantics of the functions, check 2466 // that the target knows that it's available in this environment and it does 2467 // not have local linkage. 2468 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2469 return Intrinsic::not_intrinsic; 2470 2471 if (!ICS.onlyReadsMemory()) 2472 return Intrinsic::not_intrinsic; 2473 2474 // Otherwise check if we have a call to a function that can be turned into a 2475 // vector intrinsic. 2476 switch (Func) { 2477 default: 2478 break; 2479 case LibFunc_sin: 2480 case LibFunc_sinf: 2481 case LibFunc_sinl: 2482 return Intrinsic::sin; 2483 case LibFunc_cos: 2484 case LibFunc_cosf: 2485 case LibFunc_cosl: 2486 return Intrinsic::cos; 2487 case LibFunc_exp: 2488 case LibFunc_expf: 2489 case LibFunc_expl: 2490 return Intrinsic::exp; 2491 case LibFunc_exp2: 2492 case LibFunc_exp2f: 2493 case LibFunc_exp2l: 2494 return Intrinsic::exp2; 2495 case LibFunc_log: 2496 case LibFunc_logf: 2497 case LibFunc_logl: 2498 return Intrinsic::log; 2499 case LibFunc_log10: 2500 case LibFunc_log10f: 2501 case LibFunc_log10l: 2502 return Intrinsic::log10; 2503 case LibFunc_log2: 2504 case LibFunc_log2f: 2505 case LibFunc_log2l: 2506 return Intrinsic::log2; 2507 case LibFunc_fabs: 2508 case LibFunc_fabsf: 2509 case LibFunc_fabsl: 2510 return Intrinsic::fabs; 2511 case LibFunc_fmin: 2512 case LibFunc_fminf: 2513 case LibFunc_fminl: 2514 return Intrinsic::minnum; 2515 case LibFunc_fmax: 2516 case LibFunc_fmaxf: 2517 case LibFunc_fmaxl: 2518 return Intrinsic::maxnum; 2519 case LibFunc_copysign: 2520 case LibFunc_copysignf: 2521 case LibFunc_copysignl: 2522 return Intrinsic::copysign; 2523 case LibFunc_floor: 2524 case LibFunc_floorf: 2525 case LibFunc_floorl: 2526 return Intrinsic::floor; 2527 case LibFunc_ceil: 2528 case LibFunc_ceilf: 2529 case LibFunc_ceill: 2530 return Intrinsic::ceil; 2531 case LibFunc_trunc: 2532 case LibFunc_truncf: 2533 case LibFunc_truncl: 2534 return Intrinsic::trunc; 2535 case LibFunc_rint: 2536 case LibFunc_rintf: 2537 case LibFunc_rintl: 2538 return Intrinsic::rint; 2539 case LibFunc_nearbyint: 2540 case LibFunc_nearbyintf: 2541 case LibFunc_nearbyintl: 2542 return Intrinsic::nearbyint; 2543 case LibFunc_round: 2544 case LibFunc_roundf: 2545 case LibFunc_roundl: 2546 return Intrinsic::round; 2547 case LibFunc_pow: 2548 case LibFunc_powf: 2549 case LibFunc_powl: 2550 return Intrinsic::pow; 2551 case LibFunc_sqrt: 2552 case LibFunc_sqrtf: 2553 case LibFunc_sqrtl: 2554 if (ICS->hasNoNaNs()) 2555 return Intrinsic::sqrt; 2556 return Intrinsic::not_intrinsic; 2557 } 2558 2559 return Intrinsic::not_intrinsic; 2560 } 2561 2562 /// Return true if we can prove that the specified FP value is never equal to 2563 /// -0.0. 2564 /// 2565 /// NOTE: this function will need to be revisited when we support non-default 2566 /// rounding modes! 2567 /// 2568 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2569 unsigned Depth) { 2570 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2571 return !CFP->getValueAPF().isNegZero(); 2572 2573 if (Depth == MaxDepth) 2574 return false; // Limit search depth. 2575 2576 const Operator *I = dyn_cast<Operator>(V); 2577 if (!I) return false; 2578 2579 // Check if the nsz fast-math flag is set 2580 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2581 if (FPO->hasNoSignedZeros()) 2582 return true; 2583 2584 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2585 if (I->getOpcode() == Instruction::FAdd) 2586 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2587 if (CFP->isNullValue()) 2588 return true; 2589 2590 // sitofp and uitofp turn into +0.0 for zero. 2591 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2592 return true; 2593 2594 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2595 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2596 switch (IID) { 2597 default: 2598 break; 2599 // sqrt(-0.0) = -0.0, no other negative results are possible. 2600 case Intrinsic::sqrt: 2601 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2602 // fabs(x) != -0.0 2603 case Intrinsic::fabs: 2604 return true; 2605 } 2606 } 2607 2608 return false; 2609 } 2610 2611 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2612 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2613 /// bit despite comparing equal. 2614 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2615 const TargetLibraryInfo *TLI, 2616 bool SignBitOnly, 2617 unsigned Depth) { 2618 // TODO: This function does not do the right thing when SignBitOnly is true 2619 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2620 // which flips the sign bits of NaNs. See 2621 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2622 2623 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2624 return !CFP->getValueAPF().isNegative() || 2625 (!SignBitOnly && CFP->getValueAPF().isZero()); 2626 } 2627 2628 if (Depth == MaxDepth) 2629 return false; // Limit search depth. 2630 2631 const Operator *I = dyn_cast<Operator>(V); 2632 if (!I) 2633 return false; 2634 2635 switch (I->getOpcode()) { 2636 default: 2637 break; 2638 // Unsigned integers are always nonnegative. 2639 case Instruction::UIToFP: 2640 return true; 2641 case Instruction::FMul: 2642 // x*x is always non-negative or a NaN. 2643 if (I->getOperand(0) == I->getOperand(1) && 2644 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2645 return true; 2646 2647 LLVM_FALLTHROUGH; 2648 case Instruction::FAdd: 2649 case Instruction::FDiv: 2650 case Instruction::FRem: 2651 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2652 Depth + 1) && 2653 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2654 Depth + 1); 2655 case Instruction::Select: 2656 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2657 Depth + 1) && 2658 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2659 Depth + 1); 2660 case Instruction::FPExt: 2661 case Instruction::FPTrunc: 2662 // Widening/narrowing never change sign. 2663 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2664 Depth + 1); 2665 case Instruction::Call: 2666 const auto *CI = cast<CallInst>(I); 2667 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2668 switch (IID) { 2669 default: 2670 break; 2671 case Intrinsic::maxnum: 2672 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2673 Depth + 1) || 2674 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2675 Depth + 1); 2676 case Intrinsic::minnum: 2677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2678 Depth + 1) && 2679 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2680 Depth + 1); 2681 case Intrinsic::exp: 2682 case Intrinsic::exp2: 2683 case Intrinsic::fabs: 2684 return true; 2685 2686 case Intrinsic::sqrt: 2687 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2688 if (!SignBitOnly) 2689 return true; 2690 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2691 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2692 2693 case Intrinsic::powi: 2694 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2695 // powi(x,n) is non-negative if n is even. 2696 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2697 return true; 2698 } 2699 // TODO: This is not correct. Given that exp is an integer, here are the 2700 // ways that pow can return a negative value: 2701 // 2702 // pow(x, exp) --> negative if exp is odd and x is negative. 2703 // pow(-0, exp) --> -inf if exp is negative odd. 2704 // pow(-0, exp) --> -0 if exp is positive odd. 2705 // pow(-inf, exp) --> -0 if exp is negative odd. 2706 // pow(-inf, exp) --> -inf if exp is positive odd. 2707 // 2708 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2709 // but we must return false if x == -0. Unfortunately we do not currently 2710 // have a way of expressing this constraint. See details in 2711 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2712 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2713 Depth + 1); 2714 2715 case Intrinsic::fma: 2716 case Intrinsic::fmuladd: 2717 // x*x+y is non-negative if y is non-negative. 2718 return I->getOperand(0) == I->getOperand(1) && 2719 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2720 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2721 Depth + 1); 2722 } 2723 break; 2724 } 2725 return false; 2726 } 2727 2728 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2729 const TargetLibraryInfo *TLI) { 2730 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2731 } 2732 2733 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2734 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2735 } 2736 2737 /// If the specified value can be set by repeating the same byte in memory, 2738 /// return the i8 value that it is represented with. This is 2739 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2740 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2741 /// byte store (e.g. i16 0x1234), return null. 2742 Value *llvm::isBytewiseValue(Value *V) { 2743 // All byte-wide stores are splatable, even of arbitrary variables. 2744 if (V->getType()->isIntegerTy(8)) return V; 2745 2746 // Handle 'null' ConstantArrayZero etc. 2747 if (Constant *C = dyn_cast<Constant>(V)) 2748 if (C->isNullValue()) 2749 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2750 2751 // Constant float and double values can be handled as integer values if the 2752 // corresponding integer value is "byteable". An important case is 0.0. 2753 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2754 if (CFP->getType()->isFloatTy()) 2755 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2756 if (CFP->getType()->isDoubleTy()) 2757 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2758 // Don't handle long double formats, which have strange constraints. 2759 } 2760 2761 // We can handle constant integers that are multiple of 8 bits. 2762 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2763 if (CI->getBitWidth() % 8 == 0) { 2764 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2765 2766 if (!CI->getValue().isSplat(8)) 2767 return nullptr; 2768 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2769 } 2770 } 2771 2772 // A ConstantDataArray/Vector is splatable if all its members are equal and 2773 // also splatable. 2774 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2775 Value *Elt = CA->getElementAsConstant(0); 2776 Value *Val = isBytewiseValue(Elt); 2777 if (!Val) 2778 return nullptr; 2779 2780 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2781 if (CA->getElementAsConstant(I) != Elt) 2782 return nullptr; 2783 2784 return Val; 2785 } 2786 2787 // Conceptually, we could handle things like: 2788 // %a = zext i8 %X to i16 2789 // %b = shl i16 %a, 8 2790 // %c = or i16 %a, %b 2791 // but until there is an example that actually needs this, it doesn't seem 2792 // worth worrying about. 2793 return nullptr; 2794 } 2795 2796 2797 // This is the recursive version of BuildSubAggregate. It takes a few different 2798 // arguments. Idxs is the index within the nested struct From that we are 2799 // looking at now (which is of type IndexedType). IdxSkip is the number of 2800 // indices from Idxs that should be left out when inserting into the resulting 2801 // struct. To is the result struct built so far, new insertvalue instructions 2802 // build on that. 2803 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2804 SmallVectorImpl<unsigned> &Idxs, 2805 unsigned IdxSkip, 2806 Instruction *InsertBefore) { 2807 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2808 if (STy) { 2809 // Save the original To argument so we can modify it 2810 Value *OrigTo = To; 2811 // General case, the type indexed by Idxs is a struct 2812 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2813 // Process each struct element recursively 2814 Idxs.push_back(i); 2815 Value *PrevTo = To; 2816 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2817 InsertBefore); 2818 Idxs.pop_back(); 2819 if (!To) { 2820 // Couldn't find any inserted value for this index? Cleanup 2821 while (PrevTo != OrigTo) { 2822 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2823 PrevTo = Del->getAggregateOperand(); 2824 Del->eraseFromParent(); 2825 } 2826 // Stop processing elements 2827 break; 2828 } 2829 } 2830 // If we successfully found a value for each of our subaggregates 2831 if (To) 2832 return To; 2833 } 2834 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2835 // the struct's elements had a value that was inserted directly. In the latter 2836 // case, perhaps we can't determine each of the subelements individually, but 2837 // we might be able to find the complete struct somewhere. 2838 2839 // Find the value that is at that particular spot 2840 Value *V = FindInsertedValue(From, Idxs); 2841 2842 if (!V) 2843 return nullptr; 2844 2845 // Insert the value in the new (sub) aggregrate 2846 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2847 "tmp", InsertBefore); 2848 } 2849 2850 // This helper takes a nested struct and extracts a part of it (which is again a 2851 // struct) into a new value. For example, given the struct: 2852 // { a, { b, { c, d }, e } } 2853 // and the indices "1, 1" this returns 2854 // { c, d }. 2855 // 2856 // It does this by inserting an insertvalue for each element in the resulting 2857 // struct, as opposed to just inserting a single struct. This will only work if 2858 // each of the elements of the substruct are known (ie, inserted into From by an 2859 // insertvalue instruction somewhere). 2860 // 2861 // All inserted insertvalue instructions are inserted before InsertBefore 2862 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2863 Instruction *InsertBefore) { 2864 assert(InsertBefore && "Must have someplace to insert!"); 2865 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2866 idx_range); 2867 Value *To = UndefValue::get(IndexedType); 2868 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2869 unsigned IdxSkip = Idxs.size(); 2870 2871 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2872 } 2873 2874 /// Given an aggregrate and an sequence of indices, see if 2875 /// the scalar value indexed is already around as a register, for example if it 2876 /// were inserted directly into the aggregrate. 2877 /// 2878 /// If InsertBefore is not null, this function will duplicate (modified) 2879 /// insertvalues when a part of a nested struct is extracted. 2880 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2881 Instruction *InsertBefore) { 2882 // Nothing to index? Just return V then (this is useful at the end of our 2883 // recursion). 2884 if (idx_range.empty()) 2885 return V; 2886 // We have indices, so V should have an indexable type. 2887 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2888 "Not looking at a struct or array?"); 2889 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2890 "Invalid indices for type?"); 2891 2892 if (Constant *C = dyn_cast<Constant>(V)) { 2893 C = C->getAggregateElement(idx_range[0]); 2894 if (!C) return nullptr; 2895 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2896 } 2897 2898 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2899 // Loop the indices for the insertvalue instruction in parallel with the 2900 // requested indices 2901 const unsigned *req_idx = idx_range.begin(); 2902 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2903 i != e; ++i, ++req_idx) { 2904 if (req_idx == idx_range.end()) { 2905 // We can't handle this without inserting insertvalues 2906 if (!InsertBefore) 2907 return nullptr; 2908 2909 // The requested index identifies a part of a nested aggregate. Handle 2910 // this specially. For example, 2911 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2912 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2913 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2914 // This can be changed into 2915 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2916 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2917 // which allows the unused 0,0 element from the nested struct to be 2918 // removed. 2919 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2920 InsertBefore); 2921 } 2922 2923 // This insert value inserts something else than what we are looking for. 2924 // See if the (aggregate) value inserted into has the value we are 2925 // looking for, then. 2926 if (*req_idx != *i) 2927 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2928 InsertBefore); 2929 } 2930 // If we end up here, the indices of the insertvalue match with those 2931 // requested (though possibly only partially). Now we recursively look at 2932 // the inserted value, passing any remaining indices. 2933 return FindInsertedValue(I->getInsertedValueOperand(), 2934 makeArrayRef(req_idx, idx_range.end()), 2935 InsertBefore); 2936 } 2937 2938 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2939 // If we're extracting a value from an aggregate that was extracted from 2940 // something else, we can extract from that something else directly instead. 2941 // However, we will need to chain I's indices with the requested indices. 2942 2943 // Calculate the number of indices required 2944 unsigned size = I->getNumIndices() + idx_range.size(); 2945 // Allocate some space to put the new indices in 2946 SmallVector<unsigned, 5> Idxs; 2947 Idxs.reserve(size); 2948 // Add indices from the extract value instruction 2949 Idxs.append(I->idx_begin(), I->idx_end()); 2950 2951 // Add requested indices 2952 Idxs.append(idx_range.begin(), idx_range.end()); 2953 2954 assert(Idxs.size() == size 2955 && "Number of indices added not correct?"); 2956 2957 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2958 } 2959 // Otherwise, we don't know (such as, extracting from a function return value 2960 // or load instruction) 2961 return nullptr; 2962 } 2963 2964 /// Analyze the specified pointer to see if it can be expressed as a base 2965 /// pointer plus a constant offset. Return the base and offset to the caller. 2966 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2967 const DataLayout &DL) { 2968 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2969 APInt ByteOffset(BitWidth, 0); 2970 2971 // We walk up the defs but use a visited set to handle unreachable code. In 2972 // that case, we stop after accumulating the cycle once (not that it 2973 // matters). 2974 SmallPtrSet<Value *, 16> Visited; 2975 while (Visited.insert(Ptr).second) { 2976 if (Ptr->getType()->isVectorTy()) 2977 break; 2978 2979 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2980 // If one of the values we have visited is an addrspacecast, then 2981 // the pointer type of this GEP may be different from the type 2982 // of the Ptr parameter which was passed to this function. This 2983 // means when we construct GEPOffset, we need to use the size 2984 // of GEP's pointer type rather than the size of the original 2985 // pointer type. 2986 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2987 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2988 break; 2989 2990 ByteOffset += GEPOffset.getSExtValue(); 2991 2992 Ptr = GEP->getPointerOperand(); 2993 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2994 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2995 Ptr = cast<Operator>(Ptr)->getOperand(0); 2996 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2997 if (GA->isInterposable()) 2998 break; 2999 Ptr = GA->getAliasee(); 3000 } else { 3001 break; 3002 } 3003 } 3004 Offset = ByteOffset.getSExtValue(); 3005 return Ptr; 3006 } 3007 3008 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3009 // Make sure the GEP has exactly three arguments. 3010 if (GEP->getNumOperands() != 3) 3011 return false; 3012 3013 // Make sure the index-ee is a pointer to array of i8. 3014 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3015 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3016 return false; 3017 3018 // Check to make sure that the first operand of the GEP is an integer and 3019 // has value 0 so that we are sure we're indexing into the initializer. 3020 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3021 if (!FirstIdx || !FirstIdx->isZero()) 3022 return false; 3023 3024 return true; 3025 } 3026 3027 /// This function computes the length of a null-terminated C string pointed to 3028 /// by V. If successful, it returns true and returns the string in Str. 3029 /// If unsuccessful, it returns false. 3030 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3031 uint64_t Offset, bool TrimAtNul) { 3032 assert(V); 3033 3034 // Look through bitcast instructions and geps. 3035 V = V->stripPointerCasts(); 3036 3037 // If the value is a GEP instruction or constant expression, treat it as an 3038 // offset. 3039 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3040 // The GEP operator should be based on a pointer to string constant, and is 3041 // indexing into the string constant. 3042 if (!isGEPBasedOnPointerToString(GEP)) 3043 return false; 3044 3045 // If the second index isn't a ConstantInt, then this is a variable index 3046 // into the array. If this occurs, we can't say anything meaningful about 3047 // the string. 3048 uint64_t StartIdx = 0; 3049 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3050 StartIdx = CI->getZExtValue(); 3051 else 3052 return false; 3053 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3054 TrimAtNul); 3055 } 3056 3057 // The GEP instruction, constant or instruction, must reference a global 3058 // variable that is a constant and is initialized. The referenced constant 3059 // initializer is the array that we'll use for optimization. 3060 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3061 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3062 return false; 3063 3064 // Handle the all-zeros case. 3065 if (GV->getInitializer()->isNullValue()) { 3066 // This is a degenerate case. The initializer is constant zero so the 3067 // length of the string must be zero. 3068 Str = ""; 3069 return true; 3070 } 3071 3072 // This must be a ConstantDataArray. 3073 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3074 if (!Array || !Array->isString()) 3075 return false; 3076 3077 // Get the number of elements in the array. 3078 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3079 3080 // Start out with the entire array in the StringRef. 3081 Str = Array->getAsString(); 3082 3083 if (Offset > NumElts) 3084 return false; 3085 3086 // Skip over 'offset' bytes. 3087 Str = Str.substr(Offset); 3088 3089 if (TrimAtNul) { 3090 // Trim off the \0 and anything after it. If the array is not nul 3091 // terminated, we just return the whole end of string. The client may know 3092 // some other way that the string is length-bound. 3093 Str = Str.substr(0, Str.find('\0')); 3094 } 3095 return true; 3096 } 3097 3098 // These next two are very similar to the above, but also look through PHI 3099 // nodes. 3100 // TODO: See if we can integrate these two together. 3101 3102 /// If we can compute the length of the string pointed to by 3103 /// the specified pointer, return 'len+1'. If we can't, return 0. 3104 static uint64_t GetStringLengthH(const Value *V, 3105 SmallPtrSetImpl<const PHINode*> &PHIs) { 3106 // Look through noop bitcast instructions. 3107 V = V->stripPointerCasts(); 3108 3109 // If this is a PHI node, there are two cases: either we have already seen it 3110 // or we haven't. 3111 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3112 if (!PHIs.insert(PN).second) 3113 return ~0ULL; // already in the set. 3114 3115 // If it was new, see if all the input strings are the same length. 3116 uint64_t LenSoFar = ~0ULL; 3117 for (Value *IncValue : PN->incoming_values()) { 3118 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3119 if (Len == 0) return 0; // Unknown length -> unknown. 3120 3121 if (Len == ~0ULL) continue; 3122 3123 if (Len != LenSoFar && LenSoFar != ~0ULL) 3124 return 0; // Disagree -> unknown. 3125 LenSoFar = Len; 3126 } 3127 3128 // Success, all agree. 3129 return LenSoFar; 3130 } 3131 3132 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3133 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3134 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3135 if (Len1 == 0) return 0; 3136 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3137 if (Len2 == 0) return 0; 3138 if (Len1 == ~0ULL) return Len2; 3139 if (Len2 == ~0ULL) return Len1; 3140 if (Len1 != Len2) return 0; 3141 return Len1; 3142 } 3143 3144 // Otherwise, see if we can read the string. 3145 StringRef StrData; 3146 if (!getConstantStringInfo(V, StrData)) 3147 return 0; 3148 3149 return StrData.size()+1; 3150 } 3151 3152 /// If we can compute the length of the string pointed to by 3153 /// the specified pointer, return 'len+1'. If we can't, return 0. 3154 uint64_t llvm::GetStringLength(const Value *V) { 3155 if (!V->getType()->isPointerTy()) return 0; 3156 3157 SmallPtrSet<const PHINode*, 32> PHIs; 3158 uint64_t Len = GetStringLengthH(V, PHIs); 3159 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3160 // an empty string as a length. 3161 return Len == ~0ULL ? 1 : Len; 3162 } 3163 3164 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3165 /// previous iteration of the loop was referring to the same object as \p PN. 3166 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3167 const LoopInfo *LI) { 3168 // Find the loop-defined value. 3169 Loop *L = LI->getLoopFor(PN->getParent()); 3170 if (PN->getNumIncomingValues() != 2) 3171 return true; 3172 3173 // Find the value from previous iteration. 3174 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3175 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3176 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3177 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3178 return true; 3179 3180 // If a new pointer is loaded in the loop, the pointer references a different 3181 // object in every iteration. E.g.: 3182 // for (i) 3183 // int *p = a[i]; 3184 // ... 3185 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3186 if (!L->isLoopInvariant(Load->getPointerOperand())) 3187 return false; 3188 return true; 3189 } 3190 3191 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3192 unsigned MaxLookup) { 3193 if (!V->getType()->isPointerTy()) 3194 return V; 3195 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3196 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3197 V = GEP->getPointerOperand(); 3198 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3199 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3200 V = cast<Operator>(V)->getOperand(0); 3201 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3202 if (GA->isInterposable()) 3203 return V; 3204 V = GA->getAliasee(); 3205 } else { 3206 if (auto CS = CallSite(V)) 3207 if (Value *RV = CS.getReturnedArgOperand()) { 3208 V = RV; 3209 continue; 3210 } 3211 3212 // See if InstructionSimplify knows any relevant tricks. 3213 if (Instruction *I = dyn_cast<Instruction>(V)) 3214 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3215 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3216 V = Simplified; 3217 continue; 3218 } 3219 3220 return V; 3221 } 3222 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3223 } 3224 return V; 3225 } 3226 3227 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3228 const DataLayout &DL, LoopInfo *LI, 3229 unsigned MaxLookup) { 3230 SmallPtrSet<Value *, 4> Visited; 3231 SmallVector<Value *, 4> Worklist; 3232 Worklist.push_back(V); 3233 do { 3234 Value *P = Worklist.pop_back_val(); 3235 P = GetUnderlyingObject(P, DL, MaxLookup); 3236 3237 if (!Visited.insert(P).second) 3238 continue; 3239 3240 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3241 Worklist.push_back(SI->getTrueValue()); 3242 Worklist.push_back(SI->getFalseValue()); 3243 continue; 3244 } 3245 3246 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3247 // If this PHI changes the underlying object in every iteration of the 3248 // loop, don't look through it. Consider: 3249 // int **A; 3250 // for (i) { 3251 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3252 // Curr = A[i]; 3253 // *Prev, *Curr; 3254 // 3255 // Prev is tracking Curr one iteration behind so they refer to different 3256 // underlying objects. 3257 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3258 isSameUnderlyingObjectInLoop(PN, LI)) 3259 for (Value *IncValue : PN->incoming_values()) 3260 Worklist.push_back(IncValue); 3261 continue; 3262 } 3263 3264 Objects.push_back(P); 3265 } while (!Worklist.empty()); 3266 } 3267 3268 /// Return true if the only users of this pointer are lifetime markers. 3269 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3270 for (const User *U : V->users()) { 3271 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3272 if (!II) return false; 3273 3274 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3275 II->getIntrinsicID() != Intrinsic::lifetime_end) 3276 return false; 3277 } 3278 return true; 3279 } 3280 3281 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3282 const Instruction *CtxI, 3283 const DominatorTree *DT) { 3284 const Operator *Inst = dyn_cast<Operator>(V); 3285 if (!Inst) 3286 return false; 3287 3288 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3289 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3290 if (C->canTrap()) 3291 return false; 3292 3293 switch (Inst->getOpcode()) { 3294 default: 3295 return true; 3296 case Instruction::UDiv: 3297 case Instruction::URem: { 3298 // x / y is undefined if y == 0. 3299 const APInt *V; 3300 if (match(Inst->getOperand(1), m_APInt(V))) 3301 return *V != 0; 3302 return false; 3303 } 3304 case Instruction::SDiv: 3305 case Instruction::SRem: { 3306 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3307 const APInt *Numerator, *Denominator; 3308 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3309 return false; 3310 // We cannot hoist this division if the denominator is 0. 3311 if (*Denominator == 0) 3312 return false; 3313 // It's safe to hoist if the denominator is not 0 or -1. 3314 if (*Denominator != -1) 3315 return true; 3316 // At this point we know that the denominator is -1. It is safe to hoist as 3317 // long we know that the numerator is not INT_MIN. 3318 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3319 return !Numerator->isMinSignedValue(); 3320 // The numerator *might* be MinSignedValue. 3321 return false; 3322 } 3323 case Instruction::Load: { 3324 const LoadInst *LI = cast<LoadInst>(Inst); 3325 if (!LI->isUnordered() || 3326 // Speculative load may create a race that did not exist in the source. 3327 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3328 // Speculative load may load data from dirty regions. 3329 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3330 return false; 3331 const DataLayout &DL = LI->getModule()->getDataLayout(); 3332 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3333 LI->getAlignment(), DL, CtxI, DT); 3334 } 3335 case Instruction::Call: { 3336 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3337 switch (II->getIntrinsicID()) { 3338 // These synthetic intrinsics have no side-effects and just mark 3339 // information about their operands. 3340 // FIXME: There are other no-op synthetic instructions that potentially 3341 // should be considered at least *safe* to speculate... 3342 case Intrinsic::dbg_declare: 3343 case Intrinsic::dbg_value: 3344 return true; 3345 3346 case Intrinsic::bitreverse: 3347 case Intrinsic::bswap: 3348 case Intrinsic::ctlz: 3349 case Intrinsic::ctpop: 3350 case Intrinsic::cttz: 3351 case Intrinsic::objectsize: 3352 case Intrinsic::sadd_with_overflow: 3353 case Intrinsic::smul_with_overflow: 3354 case Intrinsic::ssub_with_overflow: 3355 case Intrinsic::uadd_with_overflow: 3356 case Intrinsic::umul_with_overflow: 3357 case Intrinsic::usub_with_overflow: 3358 return true; 3359 // These intrinsics are defined to have the same behavior as libm 3360 // functions except for setting errno. 3361 case Intrinsic::sqrt: 3362 case Intrinsic::fma: 3363 case Intrinsic::fmuladd: 3364 return true; 3365 // These intrinsics are defined to have the same behavior as libm 3366 // functions, and the corresponding libm functions never set errno. 3367 case Intrinsic::trunc: 3368 case Intrinsic::copysign: 3369 case Intrinsic::fabs: 3370 case Intrinsic::minnum: 3371 case Intrinsic::maxnum: 3372 return true; 3373 // These intrinsics are defined to have the same behavior as libm 3374 // functions, which never overflow when operating on the IEEE754 types 3375 // that we support, and never set errno otherwise. 3376 case Intrinsic::ceil: 3377 case Intrinsic::floor: 3378 case Intrinsic::nearbyint: 3379 case Intrinsic::rint: 3380 case Intrinsic::round: 3381 return true; 3382 // These intrinsics do not correspond to any libm function, and 3383 // do not set errno. 3384 case Intrinsic::powi: 3385 return true; 3386 // TODO: are convert_{from,to}_fp16 safe? 3387 // TODO: can we list target-specific intrinsics here? 3388 default: break; 3389 } 3390 } 3391 return false; // The called function could have undefined behavior or 3392 // side-effects, even if marked readnone nounwind. 3393 } 3394 case Instruction::VAArg: 3395 case Instruction::Alloca: 3396 case Instruction::Invoke: 3397 case Instruction::PHI: 3398 case Instruction::Store: 3399 case Instruction::Ret: 3400 case Instruction::Br: 3401 case Instruction::IndirectBr: 3402 case Instruction::Switch: 3403 case Instruction::Unreachable: 3404 case Instruction::Fence: 3405 case Instruction::AtomicRMW: 3406 case Instruction::AtomicCmpXchg: 3407 case Instruction::LandingPad: 3408 case Instruction::Resume: 3409 case Instruction::CatchSwitch: 3410 case Instruction::CatchPad: 3411 case Instruction::CatchRet: 3412 case Instruction::CleanupPad: 3413 case Instruction::CleanupRet: 3414 return false; // Misc instructions which have effects 3415 } 3416 } 3417 3418 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3419 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3420 } 3421 3422 /// Return true if we know that the specified value is never null. 3423 bool llvm::isKnownNonNull(const Value *V) { 3424 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3425 3426 // Alloca never returns null, malloc might. 3427 if (isa<AllocaInst>(V)) return true; 3428 3429 // A byval, inalloca, or nonnull argument is never null. 3430 if (const Argument *A = dyn_cast<Argument>(V)) 3431 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3432 3433 // A global variable in address space 0 is non null unless extern weak 3434 // or an absolute symbol reference. Other address spaces may have null as a 3435 // valid address for a global, so we can't assume anything. 3436 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3437 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3438 GV->getType()->getAddressSpace() == 0; 3439 3440 // A Load tagged with nonnull metadata is never null. 3441 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3442 return LI->getMetadata(LLVMContext::MD_nonnull); 3443 3444 if (auto CS = ImmutableCallSite(V)) 3445 if (CS.isReturnNonNull()) 3446 return true; 3447 3448 return false; 3449 } 3450 3451 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3452 const Instruction *CtxI, 3453 const DominatorTree *DT) { 3454 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3455 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3456 assert(CtxI && "Context instruction required for analysis"); 3457 assert(DT && "Dominator tree required for analysis"); 3458 3459 unsigned NumUsesExplored = 0; 3460 for (auto *U : V->users()) { 3461 // Avoid massive lists 3462 if (NumUsesExplored >= DomConditionsMaxUses) 3463 break; 3464 NumUsesExplored++; 3465 // Consider only compare instructions uniquely controlling a branch 3466 CmpInst::Predicate Pred; 3467 if (!match(const_cast<User *>(U), 3468 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3469 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3470 continue; 3471 3472 for (auto *CmpU : U->users()) { 3473 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3474 assert(BI->isConditional() && "uses a comparison!"); 3475 3476 BasicBlock *NonNullSuccessor = 3477 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3478 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3479 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3480 return true; 3481 } else if (Pred == ICmpInst::ICMP_NE && 3482 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3483 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3484 return true; 3485 } 3486 } 3487 } 3488 3489 return false; 3490 } 3491 3492 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3493 const DominatorTree *DT) { 3494 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3495 return false; 3496 3497 if (isKnownNonNull(V)) 3498 return true; 3499 3500 if (!CtxI || !DT) 3501 return false; 3502 3503 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3504 } 3505 3506 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3507 const Value *RHS, 3508 const DataLayout &DL, 3509 AssumptionCache *AC, 3510 const Instruction *CxtI, 3511 const DominatorTree *DT) { 3512 // Multiplying n * m significant bits yields a result of n + m significant 3513 // bits. If the total number of significant bits does not exceed the 3514 // result bit width (minus 1), there is no overflow. 3515 // This means if we have enough leading zero bits in the operands 3516 // we can guarantee that the result does not overflow. 3517 // Ref: "Hacker's Delight" by Henry Warren 3518 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3519 APInt LHSKnownZero(BitWidth, 0); 3520 APInt LHSKnownOne(BitWidth, 0); 3521 APInt RHSKnownZero(BitWidth, 0); 3522 APInt RHSKnownOne(BitWidth, 0); 3523 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3524 DT); 3525 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3526 DT); 3527 // Note that underestimating the number of zero bits gives a more 3528 // conservative answer. 3529 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3530 RHSKnownZero.countLeadingOnes(); 3531 // First handle the easy case: if we have enough zero bits there's 3532 // definitely no overflow. 3533 if (ZeroBits >= BitWidth) 3534 return OverflowResult::NeverOverflows; 3535 3536 // Get the largest possible values for each operand. 3537 APInt LHSMax = ~LHSKnownZero; 3538 APInt RHSMax = ~RHSKnownZero; 3539 3540 // We know the multiply operation doesn't overflow if the maximum values for 3541 // each operand will not overflow after we multiply them together. 3542 bool MaxOverflow; 3543 LHSMax.umul_ov(RHSMax, MaxOverflow); 3544 if (!MaxOverflow) 3545 return OverflowResult::NeverOverflows; 3546 3547 // We know it always overflows if multiplying the smallest possible values for 3548 // the operands also results in overflow. 3549 bool MinOverflow; 3550 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3551 if (MinOverflow) 3552 return OverflowResult::AlwaysOverflows; 3553 3554 return OverflowResult::MayOverflow; 3555 } 3556 3557 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3558 const Value *RHS, 3559 const DataLayout &DL, 3560 AssumptionCache *AC, 3561 const Instruction *CxtI, 3562 const DominatorTree *DT) { 3563 bool LHSKnownNonNegative, LHSKnownNegative; 3564 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3565 AC, CxtI, DT); 3566 if (LHSKnownNonNegative || LHSKnownNegative) { 3567 bool RHSKnownNonNegative, RHSKnownNegative; 3568 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3569 AC, CxtI, DT); 3570 3571 if (LHSKnownNegative && RHSKnownNegative) { 3572 // The sign bit is set in both cases: this MUST overflow. 3573 // Create a simple add instruction, and insert it into the struct. 3574 return OverflowResult::AlwaysOverflows; 3575 } 3576 3577 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3578 // The sign bit is clear in both cases: this CANNOT overflow. 3579 // Create a simple add instruction, and insert it into the struct. 3580 return OverflowResult::NeverOverflows; 3581 } 3582 } 3583 3584 return OverflowResult::MayOverflow; 3585 } 3586 3587 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3588 const Value *RHS, 3589 const AddOperator *Add, 3590 const DataLayout &DL, 3591 AssumptionCache *AC, 3592 const Instruction *CxtI, 3593 const DominatorTree *DT) { 3594 if (Add && Add->hasNoSignedWrap()) { 3595 return OverflowResult::NeverOverflows; 3596 } 3597 3598 bool LHSKnownNonNegative, LHSKnownNegative; 3599 bool RHSKnownNonNegative, RHSKnownNegative; 3600 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3601 AC, CxtI, DT); 3602 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3603 AC, CxtI, DT); 3604 3605 if ((LHSKnownNonNegative && RHSKnownNegative) || 3606 (LHSKnownNegative && RHSKnownNonNegative)) { 3607 // The sign bits are opposite: this CANNOT overflow. 3608 return OverflowResult::NeverOverflows; 3609 } 3610 3611 // The remaining code needs Add to be available. Early returns if not so. 3612 if (!Add) 3613 return OverflowResult::MayOverflow; 3614 3615 // If the sign of Add is the same as at least one of the operands, this add 3616 // CANNOT overflow. This is particularly useful when the sum is 3617 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3618 // operands. 3619 bool LHSOrRHSKnownNonNegative = 3620 (LHSKnownNonNegative || RHSKnownNonNegative); 3621 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3622 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3623 bool AddKnownNonNegative, AddKnownNegative; 3624 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3625 /*Depth=*/0, AC, CxtI, DT); 3626 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3627 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3628 return OverflowResult::NeverOverflows; 3629 } 3630 } 3631 3632 return OverflowResult::MayOverflow; 3633 } 3634 3635 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3636 const DominatorTree &DT) { 3637 #ifndef NDEBUG 3638 auto IID = II->getIntrinsicID(); 3639 assert((IID == Intrinsic::sadd_with_overflow || 3640 IID == Intrinsic::uadd_with_overflow || 3641 IID == Intrinsic::ssub_with_overflow || 3642 IID == Intrinsic::usub_with_overflow || 3643 IID == Intrinsic::smul_with_overflow || 3644 IID == Intrinsic::umul_with_overflow) && 3645 "Not an overflow intrinsic!"); 3646 #endif 3647 3648 SmallVector<const BranchInst *, 2> GuardingBranches; 3649 SmallVector<const ExtractValueInst *, 2> Results; 3650 3651 for (const User *U : II->users()) { 3652 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3653 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3654 3655 if (EVI->getIndices()[0] == 0) 3656 Results.push_back(EVI); 3657 else { 3658 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3659 3660 for (const auto *U : EVI->users()) 3661 if (const auto *B = dyn_cast<BranchInst>(U)) { 3662 assert(B->isConditional() && "How else is it using an i1?"); 3663 GuardingBranches.push_back(B); 3664 } 3665 } 3666 } else { 3667 // We are using the aggregate directly in a way we don't want to analyze 3668 // here (storing it to a global, say). 3669 return false; 3670 } 3671 } 3672 3673 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3674 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3675 if (!NoWrapEdge.isSingleEdge()) 3676 return false; 3677 3678 // Check if all users of the add are provably no-wrap. 3679 for (const auto *Result : Results) { 3680 // If the extractvalue itself is not executed on overflow, the we don't 3681 // need to check each use separately, since domination is transitive. 3682 if (DT.dominates(NoWrapEdge, Result->getParent())) 3683 continue; 3684 3685 for (auto &RU : Result->uses()) 3686 if (!DT.dominates(NoWrapEdge, RU)) 3687 return false; 3688 } 3689 3690 return true; 3691 }; 3692 3693 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3694 } 3695 3696 3697 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3698 const DataLayout &DL, 3699 AssumptionCache *AC, 3700 const Instruction *CxtI, 3701 const DominatorTree *DT) { 3702 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3703 Add, DL, AC, CxtI, DT); 3704 } 3705 3706 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3707 const Value *RHS, 3708 const DataLayout &DL, 3709 AssumptionCache *AC, 3710 const Instruction *CxtI, 3711 const DominatorTree *DT) { 3712 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3713 } 3714 3715 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3716 // A memory operation returns normally if it isn't volatile. A volatile 3717 // operation is allowed to trap. 3718 // 3719 // An atomic operation isn't guaranteed to return in a reasonable amount of 3720 // time because it's possible for another thread to interfere with it for an 3721 // arbitrary length of time, but programs aren't allowed to rely on that. 3722 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3723 return !LI->isVolatile(); 3724 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3725 return !SI->isVolatile(); 3726 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3727 return !CXI->isVolatile(); 3728 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3729 return !RMWI->isVolatile(); 3730 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3731 return !MII->isVolatile(); 3732 3733 // If there is no successor, then execution can't transfer to it. 3734 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3735 return !CRI->unwindsToCaller(); 3736 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3737 return !CatchSwitch->unwindsToCaller(); 3738 if (isa<ResumeInst>(I)) 3739 return false; 3740 if (isa<ReturnInst>(I)) 3741 return false; 3742 3743 // Calls can throw, or contain an infinite loop, or kill the process. 3744 if (auto CS = ImmutableCallSite(I)) { 3745 // Call sites that throw have implicit non-local control flow. 3746 if (!CS.doesNotThrow()) 3747 return false; 3748 3749 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3750 // etc. and thus not return. However, LLVM already assumes that 3751 // 3752 // - Thread exiting actions are modeled as writes to memory invisible to 3753 // the program. 3754 // 3755 // - Loops that don't have side effects (side effects are volatile/atomic 3756 // stores and IO) always terminate (see http://llvm.org/PR965). 3757 // Furthermore IO itself is also modeled as writes to memory invisible to 3758 // the program. 3759 // 3760 // We rely on those assumptions here, and use the memory effects of the call 3761 // target as a proxy for checking that it always returns. 3762 3763 // FIXME: This isn't aggressive enough; a call which only writes to a global 3764 // is guaranteed to return. 3765 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3766 match(I, m_Intrinsic<Intrinsic::assume>()); 3767 } 3768 3769 // Other instructions return normally. 3770 return true; 3771 } 3772 3773 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3774 const Loop *L) { 3775 // The loop header is guaranteed to be executed for every iteration. 3776 // 3777 // FIXME: Relax this constraint to cover all basic blocks that are 3778 // guaranteed to be executed at every iteration. 3779 if (I->getParent() != L->getHeader()) return false; 3780 3781 for (const Instruction &LI : *L->getHeader()) { 3782 if (&LI == I) return true; 3783 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3784 } 3785 llvm_unreachable("Instruction not contained in its own parent basic block."); 3786 } 3787 3788 bool llvm::propagatesFullPoison(const Instruction *I) { 3789 switch (I->getOpcode()) { 3790 case Instruction::Add: 3791 case Instruction::Sub: 3792 case Instruction::Xor: 3793 case Instruction::Trunc: 3794 case Instruction::BitCast: 3795 case Instruction::AddrSpaceCast: 3796 // These operations all propagate poison unconditionally. Note that poison 3797 // is not any particular value, so xor or subtraction of poison with 3798 // itself still yields poison, not zero. 3799 return true; 3800 3801 case Instruction::AShr: 3802 case Instruction::SExt: 3803 // For these operations, one bit of the input is replicated across 3804 // multiple output bits. A replicated poison bit is still poison. 3805 return true; 3806 3807 case Instruction::Shl: { 3808 // Left shift *by* a poison value is poison. The number of 3809 // positions to shift is unsigned, so no negative values are 3810 // possible there. Left shift by zero places preserves poison. So 3811 // it only remains to consider left shift of poison by a positive 3812 // number of places. 3813 // 3814 // A left shift by a positive number of places leaves the lowest order bit 3815 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3816 // make the poison operand violate that flag, yielding a fresh full-poison 3817 // value. 3818 auto *OBO = cast<OverflowingBinaryOperator>(I); 3819 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3820 } 3821 3822 case Instruction::Mul: { 3823 // A multiplication by zero yields a non-poison zero result, so we need to 3824 // rule out zero as an operand. Conservatively, multiplication by a 3825 // non-zero constant is not multiplication by zero. 3826 // 3827 // Multiplication by a non-zero constant can leave some bits 3828 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3829 // order bit unpoisoned. So we need to consider that. 3830 // 3831 // Multiplication by 1 preserves poison. If the multiplication has a 3832 // no-wrap flag, then we can make the poison operand violate that flag 3833 // when multiplied by any integer other than 0 and 1. 3834 auto *OBO = cast<OverflowingBinaryOperator>(I); 3835 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3836 for (Value *V : OBO->operands()) { 3837 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3838 // A ConstantInt cannot yield poison, so we can assume that it is 3839 // the other operand that is poison. 3840 return !CI->isZero(); 3841 } 3842 } 3843 } 3844 return false; 3845 } 3846 3847 case Instruction::ICmp: 3848 // Comparing poison with any value yields poison. This is why, for 3849 // instance, x s< (x +nsw 1) can be folded to true. 3850 return true; 3851 3852 case Instruction::GetElementPtr: 3853 // A GEP implicitly represents a sequence of additions, subtractions, 3854 // truncations, sign extensions and multiplications. The multiplications 3855 // are by the non-zero sizes of some set of types, so we do not have to be 3856 // concerned with multiplication by zero. If the GEP is in-bounds, then 3857 // these operations are implicitly no-signed-wrap so poison is propagated 3858 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3859 return cast<GEPOperator>(I)->isInBounds(); 3860 3861 default: 3862 return false; 3863 } 3864 } 3865 3866 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3867 switch (I->getOpcode()) { 3868 case Instruction::Store: 3869 return cast<StoreInst>(I)->getPointerOperand(); 3870 3871 case Instruction::Load: 3872 return cast<LoadInst>(I)->getPointerOperand(); 3873 3874 case Instruction::AtomicCmpXchg: 3875 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3876 3877 case Instruction::AtomicRMW: 3878 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3879 3880 case Instruction::UDiv: 3881 case Instruction::SDiv: 3882 case Instruction::URem: 3883 case Instruction::SRem: 3884 return I->getOperand(1); 3885 3886 default: 3887 return nullptr; 3888 } 3889 } 3890 3891 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3892 // We currently only look for uses of poison values within the same basic 3893 // block, as that makes it easier to guarantee that the uses will be 3894 // executed given that PoisonI is executed. 3895 // 3896 // FIXME: Expand this to consider uses beyond the same basic block. To do 3897 // this, look out for the distinction between post-dominance and strong 3898 // post-dominance. 3899 const BasicBlock *BB = PoisonI->getParent(); 3900 3901 // Set of instructions that we have proved will yield poison if PoisonI 3902 // does. 3903 SmallSet<const Value *, 16> YieldsPoison; 3904 SmallSet<const BasicBlock *, 4> Visited; 3905 YieldsPoison.insert(PoisonI); 3906 Visited.insert(PoisonI->getParent()); 3907 3908 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3909 3910 unsigned Iter = 0; 3911 while (Iter++ < MaxDepth) { 3912 for (auto &I : make_range(Begin, End)) { 3913 if (&I != PoisonI) { 3914 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3915 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3916 return true; 3917 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3918 return false; 3919 } 3920 3921 // Mark poison that propagates from I through uses of I. 3922 if (YieldsPoison.count(&I)) { 3923 for (const User *User : I.users()) { 3924 const Instruction *UserI = cast<Instruction>(User); 3925 if (propagatesFullPoison(UserI)) 3926 YieldsPoison.insert(User); 3927 } 3928 } 3929 } 3930 3931 if (auto *NextBB = BB->getSingleSuccessor()) { 3932 if (Visited.insert(NextBB).second) { 3933 BB = NextBB; 3934 Begin = BB->getFirstNonPHI()->getIterator(); 3935 End = BB->end(); 3936 continue; 3937 } 3938 } 3939 3940 break; 3941 }; 3942 return false; 3943 } 3944 3945 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3946 if (FMF.noNaNs()) 3947 return true; 3948 3949 if (auto *C = dyn_cast<ConstantFP>(V)) 3950 return !C->isNaN(); 3951 return false; 3952 } 3953 3954 static bool isKnownNonZero(const Value *V) { 3955 if (auto *C = dyn_cast<ConstantFP>(V)) 3956 return !C->isZero(); 3957 return false; 3958 } 3959 3960 /// Match non-obvious integer minimum and maximum sequences. 3961 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3962 Value *CmpLHS, Value *CmpRHS, 3963 Value *TrueVal, Value *FalseVal, 3964 Value *&LHS, Value *&RHS) { 3965 // Assume success. If there's no match, callers should not use these anyway. 3966 LHS = TrueVal; 3967 RHS = FalseVal; 3968 3969 // Recognize variations of: 3970 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3971 const APInt *C1; 3972 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3973 const APInt *C2; 3974 3975 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3976 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3977 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3978 return {SPF_SMAX, SPNB_NA, false}; 3979 3980 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3981 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3982 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3983 return {SPF_SMIN, SPNB_NA, false}; 3984 3985 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3986 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3987 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3988 return {SPF_UMAX, SPNB_NA, false}; 3989 3990 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3991 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3992 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3993 return {SPF_UMIN, SPNB_NA, false}; 3994 } 3995 3996 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3997 return {SPF_UNKNOWN, SPNB_NA, false}; 3998 3999 // Z = X -nsw Y 4000 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4001 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4002 if (match(TrueVal, m_Zero()) && 4003 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4004 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4005 4006 // Z = X -nsw Y 4007 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4008 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4009 if (match(FalseVal, m_Zero()) && 4010 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4011 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4012 4013 if (!match(CmpRHS, m_APInt(C1))) 4014 return {SPF_UNKNOWN, SPNB_NA, false}; 4015 4016 // An unsigned min/max can be written with a signed compare. 4017 const APInt *C2; 4018 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4019 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4020 // Is the sign bit set? 4021 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4022 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4023 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4024 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4025 4026 // Is the sign bit clear? 4027 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4028 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4029 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4030 C2->isMinSignedValue()) 4031 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4032 } 4033 4034 // Look through 'not' ops to find disguised signed min/max. 4035 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4036 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4037 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4038 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4039 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4040 4041 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4042 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4043 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4044 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4045 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4046 4047 return {SPF_UNKNOWN, SPNB_NA, false}; 4048 } 4049 4050 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4051 FastMathFlags FMF, 4052 Value *CmpLHS, Value *CmpRHS, 4053 Value *TrueVal, Value *FalseVal, 4054 Value *&LHS, Value *&RHS) { 4055 LHS = CmpLHS; 4056 RHS = CmpRHS; 4057 4058 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4059 // return inconsistent results between implementations. 4060 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4061 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4062 // Therefore we behave conservatively and only proceed if at least one of the 4063 // operands is known to not be zero, or if we don't care about signed zeroes. 4064 switch (Pred) { 4065 default: break; 4066 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4067 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4068 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4069 !isKnownNonZero(CmpRHS)) 4070 return {SPF_UNKNOWN, SPNB_NA, false}; 4071 } 4072 4073 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4074 bool Ordered = false; 4075 4076 // When given one NaN and one non-NaN input: 4077 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4078 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4079 // ordered comparison fails), which could be NaN or non-NaN. 4080 // so here we discover exactly what NaN behavior is required/accepted. 4081 if (CmpInst::isFPPredicate(Pred)) { 4082 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4083 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4084 4085 if (LHSSafe && RHSSafe) { 4086 // Both operands are known non-NaN. 4087 NaNBehavior = SPNB_RETURNS_ANY; 4088 } else if (CmpInst::isOrdered(Pred)) { 4089 // An ordered comparison will return false when given a NaN, so it 4090 // returns the RHS. 4091 Ordered = true; 4092 if (LHSSafe) 4093 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4094 NaNBehavior = SPNB_RETURNS_NAN; 4095 else if (RHSSafe) 4096 NaNBehavior = SPNB_RETURNS_OTHER; 4097 else 4098 // Completely unsafe. 4099 return {SPF_UNKNOWN, SPNB_NA, false}; 4100 } else { 4101 Ordered = false; 4102 // An unordered comparison will return true when given a NaN, so it 4103 // returns the LHS. 4104 if (LHSSafe) 4105 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4106 NaNBehavior = SPNB_RETURNS_OTHER; 4107 else if (RHSSafe) 4108 NaNBehavior = SPNB_RETURNS_NAN; 4109 else 4110 // Completely unsafe. 4111 return {SPF_UNKNOWN, SPNB_NA, false}; 4112 } 4113 } 4114 4115 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4116 std::swap(CmpLHS, CmpRHS); 4117 Pred = CmpInst::getSwappedPredicate(Pred); 4118 if (NaNBehavior == SPNB_RETURNS_NAN) 4119 NaNBehavior = SPNB_RETURNS_OTHER; 4120 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4121 NaNBehavior = SPNB_RETURNS_NAN; 4122 Ordered = !Ordered; 4123 } 4124 4125 // ([if]cmp X, Y) ? X : Y 4126 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4127 switch (Pred) { 4128 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4129 case ICmpInst::ICMP_UGT: 4130 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4131 case ICmpInst::ICMP_SGT: 4132 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4133 case ICmpInst::ICMP_ULT: 4134 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4135 case ICmpInst::ICMP_SLT: 4136 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4137 case FCmpInst::FCMP_UGT: 4138 case FCmpInst::FCMP_UGE: 4139 case FCmpInst::FCMP_OGT: 4140 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4141 case FCmpInst::FCMP_ULT: 4142 case FCmpInst::FCMP_ULE: 4143 case FCmpInst::FCMP_OLT: 4144 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4145 } 4146 } 4147 4148 const APInt *C1; 4149 if (match(CmpRHS, m_APInt(C1))) { 4150 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4151 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4152 4153 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4154 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4155 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4156 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4157 } 4158 4159 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4160 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4161 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4162 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4163 } 4164 } 4165 } 4166 4167 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4168 } 4169 4170 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4171 Instruction::CastOps *CastOp) { 4172 auto *Cast1 = dyn_cast<CastInst>(V1); 4173 if (!Cast1) 4174 return nullptr; 4175 4176 *CastOp = Cast1->getOpcode(); 4177 Type *SrcTy = Cast1->getSrcTy(); 4178 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4179 // If V1 and V2 are both the same cast from the same type, look through V1. 4180 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4181 return Cast2->getOperand(0); 4182 return nullptr; 4183 } 4184 4185 auto *C = dyn_cast<Constant>(V2); 4186 if (!C) 4187 return nullptr; 4188 4189 Constant *CastedTo = nullptr; 4190 switch (*CastOp) { 4191 case Instruction::ZExt: 4192 if (CmpI->isUnsigned()) 4193 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4194 break; 4195 case Instruction::SExt: 4196 if (CmpI->isSigned()) 4197 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4198 break; 4199 case Instruction::Trunc: 4200 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4201 break; 4202 case Instruction::FPTrunc: 4203 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4204 break; 4205 case Instruction::FPExt: 4206 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4207 break; 4208 case Instruction::FPToUI: 4209 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4210 break; 4211 case Instruction::FPToSI: 4212 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4213 break; 4214 case Instruction::UIToFP: 4215 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4216 break; 4217 case Instruction::SIToFP: 4218 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4219 break; 4220 default: 4221 break; 4222 } 4223 4224 if (!CastedTo) 4225 return nullptr; 4226 4227 // Make sure the cast doesn't lose any information. 4228 Constant *CastedBack = 4229 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4230 if (CastedBack != C) 4231 return nullptr; 4232 4233 return CastedTo; 4234 } 4235 4236 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4237 Instruction::CastOps *CastOp) { 4238 SelectInst *SI = dyn_cast<SelectInst>(V); 4239 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4240 4241 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4242 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4243 4244 CmpInst::Predicate Pred = CmpI->getPredicate(); 4245 Value *CmpLHS = CmpI->getOperand(0); 4246 Value *CmpRHS = CmpI->getOperand(1); 4247 Value *TrueVal = SI->getTrueValue(); 4248 Value *FalseVal = SI->getFalseValue(); 4249 FastMathFlags FMF; 4250 if (isa<FPMathOperator>(CmpI)) 4251 FMF = CmpI->getFastMathFlags(); 4252 4253 // Bail out early. 4254 if (CmpI->isEquality()) 4255 return {SPF_UNKNOWN, SPNB_NA, false}; 4256 4257 // Deal with type mismatches. 4258 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4259 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4260 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4261 cast<CastInst>(TrueVal)->getOperand(0), C, 4262 LHS, RHS); 4263 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4264 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4265 C, cast<CastInst>(FalseVal)->getOperand(0), 4266 LHS, RHS); 4267 } 4268 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4269 LHS, RHS); 4270 } 4271 4272 /// Return true if "icmp Pred LHS RHS" is always true. 4273 static bool isTruePredicate(CmpInst::Predicate Pred, 4274 const Value *LHS, const Value *RHS, 4275 const DataLayout &DL, unsigned Depth, 4276 AssumptionCache *AC, const Instruction *CxtI, 4277 const DominatorTree *DT) { 4278 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4279 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4280 return true; 4281 4282 switch (Pred) { 4283 default: 4284 return false; 4285 4286 case CmpInst::ICMP_SLE: { 4287 const APInt *C; 4288 4289 // LHS s<= LHS +_{nsw} C if C >= 0 4290 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4291 return !C->isNegative(); 4292 return false; 4293 } 4294 4295 case CmpInst::ICMP_ULE: { 4296 const APInt *C; 4297 4298 // LHS u<= LHS +_{nuw} C for any C 4299 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4300 return true; 4301 4302 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4303 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4304 const Value *&X, 4305 const APInt *&CA, const APInt *&CB) { 4306 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4307 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4308 return true; 4309 4310 // If X & C == 0 then (X | C) == X +_{nuw} C 4311 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4312 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4313 unsigned BitWidth = CA->getBitWidth(); 4314 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4315 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4316 4317 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4318 return true; 4319 } 4320 4321 return false; 4322 }; 4323 4324 const Value *X; 4325 const APInt *CLHS, *CRHS; 4326 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4327 return CLHS->ule(*CRHS); 4328 4329 return false; 4330 } 4331 } 4332 } 4333 4334 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4335 /// ALHS ARHS" is true. Otherwise, return None. 4336 static Optional<bool> 4337 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4338 const Value *ARHS, const Value *BLHS, 4339 const Value *BRHS, const DataLayout &DL, 4340 unsigned Depth, AssumptionCache *AC, 4341 const Instruction *CxtI, const DominatorTree *DT) { 4342 switch (Pred) { 4343 default: 4344 return None; 4345 4346 case CmpInst::ICMP_SLT: 4347 case CmpInst::ICMP_SLE: 4348 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4349 DT) && 4350 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4351 return true; 4352 return None; 4353 4354 case CmpInst::ICMP_ULT: 4355 case CmpInst::ICMP_ULE: 4356 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4357 DT) && 4358 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4359 return true; 4360 return None; 4361 } 4362 } 4363 4364 /// Return true if the operands of the two compares match. IsSwappedOps is true 4365 /// when the operands match, but are swapped. 4366 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4367 const Value *BLHS, const Value *BRHS, 4368 bool &IsSwappedOps) { 4369 4370 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4371 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4372 return IsMatchingOps || IsSwappedOps; 4373 } 4374 4375 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4376 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4377 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4378 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4379 const Value *ALHS, 4380 const Value *ARHS, 4381 CmpInst::Predicate BPred, 4382 const Value *BLHS, 4383 const Value *BRHS, 4384 bool IsSwappedOps) { 4385 // Canonicalize the operands so they're matching. 4386 if (IsSwappedOps) { 4387 std::swap(BLHS, BRHS); 4388 BPred = ICmpInst::getSwappedPredicate(BPred); 4389 } 4390 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4391 return true; 4392 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4393 return false; 4394 4395 return None; 4396 } 4397 4398 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4399 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4400 /// C2" is false. Otherwise, return None if we can't infer anything. 4401 static Optional<bool> 4402 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4403 const ConstantInt *C1, 4404 CmpInst::Predicate BPred, 4405 const Value *BLHS, const ConstantInt *C2) { 4406 assert(ALHS == BLHS && "LHS operands must match."); 4407 ConstantRange DomCR = 4408 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4409 ConstantRange CR = 4410 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4411 ConstantRange Intersection = DomCR.intersectWith(CR); 4412 ConstantRange Difference = DomCR.difference(CR); 4413 if (Intersection.isEmptySet()) 4414 return false; 4415 if (Difference.isEmptySet()) 4416 return true; 4417 return None; 4418 } 4419 4420 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4421 const DataLayout &DL, bool InvertAPred, 4422 unsigned Depth, AssumptionCache *AC, 4423 const Instruction *CxtI, 4424 const DominatorTree *DT) { 4425 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4426 if (LHS->getType() != RHS->getType()) 4427 return None; 4428 4429 Type *OpTy = LHS->getType(); 4430 assert(OpTy->getScalarType()->isIntegerTy(1)); 4431 4432 // LHS ==> RHS by definition 4433 if (!InvertAPred && LHS == RHS) 4434 return true; 4435 4436 if (OpTy->isVectorTy()) 4437 // TODO: extending the code below to handle vectors 4438 return None; 4439 assert(OpTy->isIntegerTy(1) && "implied by above"); 4440 4441 ICmpInst::Predicate APred, BPred; 4442 Value *ALHS, *ARHS; 4443 Value *BLHS, *BRHS; 4444 4445 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4446 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4447 return None; 4448 4449 if (InvertAPred) 4450 APred = CmpInst::getInversePredicate(APred); 4451 4452 // Can we infer anything when the two compares have matching operands? 4453 bool IsSwappedOps; 4454 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4455 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4456 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4457 return Implication; 4458 // No amount of additional analysis will infer the second condition, so 4459 // early exit. 4460 return None; 4461 } 4462 4463 // Can we infer anything when the LHS operands match and the RHS operands are 4464 // constants (not necessarily matching)? 4465 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4466 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4467 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4468 cast<ConstantInt>(BRHS))) 4469 return Implication; 4470 // No amount of additional analysis will infer the second condition, so 4471 // early exit. 4472 return None; 4473 } 4474 4475 if (APred == BPred) 4476 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4477 CxtI, DT); 4478 4479 return None; 4480 } 4481