1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Note that the patterns below need to be kept in sync with the code 674 // in AssumptionCache::updateAffectedValues. 675 676 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 677 if (!AssumeVH) 678 continue; 679 CallInst *I = cast<CallInst>(AssumeVH); 680 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 681 "Got assumption for the wrong function!"); 682 if (Q.isExcluded(I)) 683 continue; 684 685 // Warning: This loop can end up being somewhat performance sensitive. 686 // We're running this loop for once for each value queried resulting in a 687 // runtime of ~O(#assumes * #values). 688 689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 690 "must be an assume intrinsic"); 691 692 Value *Arg = I->getArgOperand(0); 693 694 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 assert(BitWidth == 1 && "assume operand is not i1?"); 696 Known.setAllOnes(); 697 return; 698 } 699 if (match(Arg, m_Not(m_Specific(V))) && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 assert(BitWidth == 1 && "assume operand is not i1?"); 702 Known.setAllZero(); 703 return; 704 } 705 706 // The remaining tests are all recursive, so bail out if we hit the limit. 707 if (Depth == MaxAnalysisRecursionDepth) 708 continue; 709 710 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 711 if (!Cmp) 712 continue; 713 714 // Note that ptrtoint may change the bitwidth. 715 Value *A, *B; 716 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 717 718 CmpInst::Predicate Pred; 719 uint64_t C; 720 switch (Cmp->getPredicate()) { 721 default: 722 break; 723 case ICmpInst::ICMP_EQ: 724 // assume(v = a) 725 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown = 728 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 729 Known.Zero |= RHSKnown.Zero; 730 Known.One |= RHSKnown.One; 731 // assume(v & b = a) 732 } else if (match(Cmp, 733 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 KnownBits MaskKnown = 738 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 740 // For those bits in the mask that are known to be one, we can propagate 741 // known bits from the RHS to V. 742 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 743 Known.One |= RHSKnown.One & MaskKnown.One; 744 // assume(~(v & b) = a) 745 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 746 m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // inverted known bits from the RHS to V. 755 Known.Zero |= RHSKnown.One & MaskKnown.One; 756 Known.One |= RHSKnown.Zero & MaskKnown.One; 757 // assume(v | b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 763 KnownBits BKnown = 764 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 766 // For those bits in B that are known to be zero, we can propagate known 767 // bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 769 Known.One |= RHSKnown.One & BKnown.Zero; 770 // assume(~(v | b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & BKnown.Zero; 782 Known.One |= RHSKnown.Zero & BKnown.Zero; 783 // assume(v ^ b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. For those bits in B that are known to be one, 794 // we can propagate inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 Known.Zero |= RHSKnown.One & BKnown.One; 798 Known.One |= RHSKnown.Zero & BKnown.One; 799 // assume(~(v ^ b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 KnownBits BKnown = 806 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 808 // For those bits in B that are known to be zero, we can propagate 809 // inverted known bits from the RHS to V. For those bits in B that are 810 // known to be one, we can propagate known bits from the RHS to V. 811 Known.Zero |= RHSKnown.One & BKnown.Zero; 812 Known.One |= RHSKnown.Zero & BKnown.Zero; 813 Known.Zero |= RHSKnown.Zero & BKnown.One; 814 Known.One |= RHSKnown.One & BKnown.One; 815 // assume(v << c = a) 816 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 817 m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 819 KnownBits RHSKnown = 820 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 821 822 // For those bits in RHS that are known, we can propagate them to known 823 // bits in V shifted to the right by C. 824 RHSKnown.Zero.lshrInPlace(C); 825 Known.Zero |= RHSKnown.Zero; 826 RHSKnown.One.lshrInPlace(C); 827 Known.One |= RHSKnown.One; 828 // assume(~(v << c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 RHSKnown.One.lshrInPlace(C); 837 Known.Zero |= RHSKnown.One; 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.One |= RHSKnown.Zero; 840 // assume(v >> c = a) 841 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 842 m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 846 // For those bits in RHS that are known, we can propagate them to known 847 // bits in V shifted to the right by C. 848 Known.Zero |= RHSKnown.Zero << C; 849 Known.One |= RHSKnown.One << C; 850 // assume(~(v >> c) = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them inverted 857 // to known bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.One << C; 859 Known.One |= RHSKnown.Zero << C; 860 } 861 break; 862 case ICmpInst::ICMP_SGE: 863 // assume(v >=_s c) where c is non-negative 864 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 865 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 866 KnownBits RHSKnown = 867 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 868 869 if (RHSKnown.isNonNegative()) { 870 // We know that the sign bit is zero. 871 Known.makeNonNegative(); 872 } 873 } 874 break; 875 case ICmpInst::ICMP_SGT: 876 // assume(v >_s c) where c is at least -1. 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SLE: 889 // assume(v <=_s c) where c is negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNegative()) { 896 // We know that the sign bit is one. 897 Known.makeNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLT: 902 // assume(v <_s c) where c is non-positive 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_ULE: 915 // assume(v <=_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 921 // Whatever high bits in c are zero are known to be zero. 922 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 923 } 924 break; 925 case ICmpInst::ICMP_ULT: 926 // assume(v <_u c) 927 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 928 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 929 KnownBits RHSKnown = 930 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 931 932 // If the RHS is known zero, then this assumption must be wrong (nothing 933 // is unsigned less than zero). Signal a conflict and get out of here. 934 if (RHSKnown.isZero()) { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 break; 938 } 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 943 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 944 else 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 946 } 947 break; 948 } 949 } 950 951 // If assumptions conflict with each other or previous known bits, then we 952 // have a logical fallacy. It's possible that the assumption is not reachable, 953 // so this isn't a real bug. On the other hand, the program may have undefined 954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 955 // clear out the known bits, try to warn the user, and hope for the best. 956 if (Known.Zero.intersects(Known.One)) { 957 Known.resetAll(); 958 959 if (Q.ORE) 960 Q.ORE->emit([&]() { 961 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 963 CxtI) 964 << "Detected conflicting code assumptions. Program may " 965 "have undefined behavior, or compiler may have " 966 "internal error."; 967 }); 968 } 969 } 970 971 /// Compute known bits from a shift operator, including those with a 972 /// non-constant shift amount. Known is the output of this function. Known2 is a 973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 974 /// operator-specific functions that, given the known-zero or known-one bits 975 /// respectively, and a shift amount, compute the implied known-zero or 976 /// known-one bits of the shift operator's result respectively for that shift 977 /// amount. The results from calling KZF and KOF are conservatively combined for 978 /// all permitted shift amounts. 979 static void computeKnownBitsFromShiftOperator( 980 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 981 KnownBits &Known2, unsigned Depth, const Query &Q, 982 function_ref<APInt(const APInt &, unsigned)> KZF, 983 function_ref<APInt(const APInt &, unsigned)> KOF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 if (Known.isConstant()) { 988 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 989 990 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 991 Known.Zero = KZF(Known.Zero, ShiftAmt); 992 Known.One = KOF(Known.One, ShiftAmt); 993 // If the known bits conflict, this must be an overflowing left shift, so 994 // the shift result is poison. We can return anything we want. Choose 0 for 995 // the best folding opportunity. 996 if (Known.hasConflict()) 997 Known.setAllZero(); 998 999 return; 1000 } 1001 1002 // If the shift amount could be greater than or equal to the bit-width of the 1003 // LHS, the value could be poison, but bail out because the check below is 1004 // expensive. 1005 // TODO: Should we just carry on? 1006 if (Known.getMaxValue().uge(BitWidth)) { 1007 Known.resetAll(); 1008 return; 1009 } 1010 1011 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1012 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1013 // limit value (which implies all bits are known). 1014 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1015 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1036 1037 Known.Zero.setAllBits(); 1038 Known.One.setAllBits(); 1039 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1040 // Combine the shifted known input bits only for those shift amounts 1041 // compatible with its known constraints. 1042 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1043 continue; 1044 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1045 continue; 1046 // If we know the shifter is nonzero, we may be able to infer more known 1047 // bits. This check is sunk down as far as possible to avoid the expensive 1048 // call to isKnownNonZero if the cheaper checks above fail. 1049 if (ShiftAmt == 0) { 1050 if (!ShifterOperandIsNonZero.hasValue()) 1051 ShifterOperandIsNonZero = 1052 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1053 if (*ShifterOperandIsNonZero) 1054 continue; 1055 } 1056 1057 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1058 Known.One &= KOF(Known2.One, ShiftAmt); 1059 } 1060 1061 // If the known bits conflict, the result is poison. Return a 0 and hope the 1062 // caller can further optimize that. 1063 if (Known.hasConflict()) 1064 Known.setAllZero(); 1065 } 1066 1067 static void computeKnownBitsFromOperator(const Operator *I, 1068 const APInt &DemandedElts, 1069 KnownBits &Known, unsigned Depth, 1070 const Query &Q) { 1071 unsigned BitWidth = Known.getBitWidth(); 1072 1073 KnownBits Known2(BitWidth); 1074 switch (I->getOpcode()) { 1075 default: break; 1076 case Instruction::Load: 1077 if (MDNode *MD = 1078 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1079 computeKnownBitsFromRangeMetadata(*MD, Known); 1080 break; 1081 case Instruction::And: { 1082 // If either the LHS or the RHS are Zero, the result is zero. 1083 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1085 1086 Known &= Known2; 1087 1088 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1089 // here we handle the more general case of adding any odd number by 1090 // matching the form add(x, add(x, y)) where y is odd. 1091 // TODO: This could be generalized to clearing any bit set in y where the 1092 // following bit is known to be unset in y. 1093 Value *X = nullptr, *Y = nullptr; 1094 if (!Known.Zero[0] && !Known.One[0] && 1095 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1096 Known2.resetAll(); 1097 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1098 if (Known2.countMinTrailingOnes() > 0) 1099 Known.Zero.setBit(0); 1100 } 1101 break; 1102 } 1103 case Instruction::Or: 1104 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1106 1107 Known |= Known2; 1108 break; 1109 case Instruction::Xor: 1110 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1111 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1112 1113 Known ^= Known2; 1114 break; 1115 case Instruction::Mul: { 1116 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1117 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1118 Known, Known2, Depth, Q); 1119 break; 1120 } 1121 case Instruction::UDiv: { 1122 // For the purposes of computing leading zeros we can conservatively 1123 // treat a udiv as a logical right shift by the power of 2 known to 1124 // be less than the denominator. 1125 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1126 unsigned LeadZ = Known2.countMinLeadingZeros(); 1127 1128 Known2.resetAll(); 1129 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1130 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1131 if (RHSMaxLeadingZeros != BitWidth) 1132 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1133 1134 Known.Zero.setHighBits(LeadZ); 1135 break; 1136 } 1137 case Instruction::Select: { 1138 const Value *LHS = nullptr, *RHS = nullptr; 1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1140 if (SelectPatternResult::isMinOrMax(SPF)) { 1141 computeKnownBits(RHS, Known, Depth + 1, Q); 1142 computeKnownBits(LHS, Known2, Depth + 1, Q); 1143 switch (SPF) { 1144 default: 1145 llvm_unreachable("Unhandled select pattern flavor!"); 1146 case SPF_SMAX: 1147 Known = KnownBits::smax(Known, Known2); 1148 break; 1149 case SPF_SMIN: 1150 Known = KnownBits::smin(Known, Known2); 1151 break; 1152 case SPF_UMAX: 1153 Known = KnownBits::umax(Known, Known2); 1154 break; 1155 case SPF_UMIN: 1156 Known = KnownBits::umin(Known, Known2); 1157 break; 1158 } 1159 break; 1160 } 1161 1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1164 1165 // Only known if known in both the LHS and RHS. 1166 Known.One &= Known2.One; 1167 Known.Zero &= Known2.Zero; 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 break; 1219 } 1220 case Instruction::SExt: { 1221 // Compute the bits in the result that are not present in the input. 1222 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1223 1224 Known = Known.trunc(SrcBitWidth); 1225 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1226 // If the sign bit of the input is known set or clear, then we know the 1227 // top bits of the result. 1228 Known = Known.sext(BitWidth); 1229 break; 1230 } 1231 case Instruction::Shl: { 1232 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1233 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1234 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1235 APInt KZResult = KnownZero << ShiftAmt; 1236 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1237 // If this shift has "nsw" keyword, then the result is either a poison 1238 // value or has the same sign bit as the first operand. 1239 if (NSW && KnownZero.isSignBitSet()) 1240 KZResult.setSignBit(); 1241 return KZResult; 1242 }; 1243 1244 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1245 APInt KOResult = KnownOne << ShiftAmt; 1246 if (NSW && KnownOne.isSignBitSet()) 1247 KOResult.setSignBit(); 1248 return KOResult; 1249 }; 1250 1251 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1252 KZF, KOF); 1253 break; 1254 } 1255 case Instruction::LShr: { 1256 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1257 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1258 APInt KZResult = KnownZero.lshr(ShiftAmt); 1259 // High bits known zero. 1260 KZResult.setHighBits(ShiftAmt); 1261 return KZResult; 1262 }; 1263 1264 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1265 return KnownOne.lshr(ShiftAmt); 1266 }; 1267 1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1269 KZF, KOF); 1270 break; 1271 } 1272 case Instruction::AShr: { 1273 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1274 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1275 return KnownZero.ashr(ShiftAmt); 1276 }; 1277 1278 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1279 return KnownOne.ashr(ShiftAmt); 1280 }; 1281 1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1283 KZF, KOF); 1284 break; 1285 } 1286 case Instruction::Sub: { 1287 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1288 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1289 DemandedElts, Known, Known2, Depth, Q); 1290 break; 1291 } 1292 case Instruction::Add: { 1293 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1294 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1295 DemandedElts, Known, Known2, Depth, Q); 1296 break; 1297 } 1298 case Instruction::SRem: 1299 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1300 APInt RA = Rem->getValue().abs(); 1301 if (RA.isPowerOf2()) { 1302 APInt LowBits = RA - 1; 1303 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1304 1305 // The low bits of the first operand are unchanged by the srem. 1306 Known.Zero = Known2.Zero & LowBits; 1307 Known.One = Known2.One & LowBits; 1308 1309 // If the first operand is non-negative or has all low bits zero, then 1310 // the upper bits are all zero. 1311 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1312 Known.Zero |= ~LowBits; 1313 1314 // If the first operand is negative and not all low bits are zero, then 1315 // the upper bits are all one. 1316 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1317 Known.One |= ~LowBits; 1318 1319 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1320 break; 1321 } 1322 } 1323 1324 // The sign bit is the LHS's sign bit, except when the result of the 1325 // remainder is zero. 1326 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1327 // If it's known zero, our sign bit is also zero. 1328 if (Known2.isNonNegative()) 1329 Known.makeNonNegative(); 1330 1331 break; 1332 case Instruction::URem: { 1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1334 const APInt &RA = Rem->getValue(); 1335 if (RA.isPowerOf2()) { 1336 APInt LowBits = (RA - 1); 1337 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1338 Known.Zero |= ~LowBits; 1339 Known.One &= LowBits; 1340 break; 1341 } 1342 } 1343 1344 // Since the result is less than or equal to either operand, any leading 1345 // zero bits in either operand must also exist in the result. 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 1349 unsigned Leaders = 1350 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1351 Known.resetAll(); 1352 Known.Zero.setHighBits(Leaders); 1353 break; 1354 } 1355 case Instruction::Alloca: 1356 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1357 break; 1358 case Instruction::GetElementPtr: { 1359 // Analyze all of the subscripts of this getelementptr instruction 1360 // to determine if we can prove known low zero bits. 1361 KnownBits LocalKnown(BitWidth); 1362 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1363 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1364 1365 gep_type_iterator GTI = gep_type_begin(I); 1366 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1367 // TrailZ can only become smaller, short-circuit if we hit zero. 1368 if (TrailZ == 0) 1369 break; 1370 1371 Value *Index = I->getOperand(i); 1372 if (StructType *STy = GTI.getStructTypeOrNull()) { 1373 // Handle struct member offset arithmetic. 1374 1375 // Handle case when index is vector zeroinitializer 1376 Constant *CIndex = cast<Constant>(Index); 1377 if (CIndex->isZeroValue()) 1378 continue; 1379 1380 if (CIndex->getType()->isVectorTy()) 1381 Index = CIndex->getSplatValue(); 1382 1383 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1384 const StructLayout *SL = Q.DL.getStructLayout(STy); 1385 uint64_t Offset = SL->getElementOffset(Idx); 1386 TrailZ = std::min<unsigned>(TrailZ, 1387 countTrailingZeros(Offset)); 1388 } else { 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 TrailZ = 0; 1393 break; 1394 } 1395 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1396 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1397 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1398 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1399 TrailZ = std::min(TrailZ, 1400 unsigned(countTrailingZeros(TypeSize) + 1401 LocalKnown.countMinTrailingZeros())); 1402 } 1403 } 1404 1405 Known.Zero.setLowBits(TrailZ); 1406 break; 1407 } 1408 case Instruction::PHI: { 1409 const PHINode *P = cast<PHINode>(I); 1410 // Handle the case of a simple two-predecessor recurrence PHI. 1411 // There's a lot more that could theoretically be done here, but 1412 // this is sufficient to catch some interesting cases. 1413 if (P->getNumIncomingValues() == 2) { 1414 for (unsigned i = 0; i != 2; ++i) { 1415 Value *L = P->getIncomingValue(i); 1416 Value *R = P->getIncomingValue(!i); 1417 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1418 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1419 Operator *LU = dyn_cast<Operator>(L); 1420 if (!LU) 1421 continue; 1422 unsigned Opcode = LU->getOpcode(); 1423 // Check for operations that have the property that if 1424 // both their operands have low zero bits, the result 1425 // will have low zero bits. 1426 if (Opcode == Instruction::Add || 1427 Opcode == Instruction::Sub || 1428 Opcode == Instruction::And || 1429 Opcode == Instruction::Or || 1430 Opcode == Instruction::Mul) { 1431 Value *LL = LU->getOperand(0); 1432 Value *LR = LU->getOperand(1); 1433 // Find a recurrence. 1434 if (LL == I) 1435 L = LR; 1436 else if (LR == I) 1437 L = LL; 1438 else 1439 continue; // Check for recurrence with L and R flipped. 1440 1441 // Change the context instruction to the "edge" that flows into the 1442 // phi. This is important because that is where the value is actually 1443 // "evaluated" even though it is used later somewhere else. (see also 1444 // D69571). 1445 Query RecQ = Q; 1446 1447 // Ok, we have a PHI of the form L op= R. Check for low 1448 // zero bits. 1449 RecQ.CxtI = RInst; 1450 computeKnownBits(R, Known2, Depth + 1, RecQ); 1451 1452 // We need to take the minimum number of known bits 1453 KnownBits Known3(BitWidth); 1454 RecQ.CxtI = LInst; 1455 computeKnownBits(L, Known3, Depth + 1, RecQ); 1456 1457 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1458 Known3.countMinTrailingZeros())); 1459 1460 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1461 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1462 // If initial value of recurrence is nonnegative, and we are adding 1463 // a nonnegative number with nsw, the result can only be nonnegative 1464 // or poison value regardless of the number of times we execute the 1465 // add in phi recurrence. If initial value is negative and we are 1466 // adding a negative number with nsw, the result can only be 1467 // negative or poison value. Similar arguments apply to sub and mul. 1468 // 1469 // (add non-negative, non-negative) --> non-negative 1470 // (add negative, negative) --> negative 1471 if (Opcode == Instruction::Add) { 1472 if (Known2.isNonNegative() && Known3.isNonNegative()) 1473 Known.makeNonNegative(); 1474 else if (Known2.isNegative() && Known3.isNegative()) 1475 Known.makeNegative(); 1476 } 1477 1478 // (sub nsw non-negative, negative) --> non-negative 1479 // (sub nsw negative, non-negative) --> negative 1480 else if (Opcode == Instruction::Sub && LL == I) { 1481 if (Known2.isNonNegative() && Known3.isNegative()) 1482 Known.makeNonNegative(); 1483 else if (Known2.isNegative() && Known3.isNonNegative()) 1484 Known.makeNegative(); 1485 } 1486 1487 // (mul nsw non-negative, non-negative) --> non-negative 1488 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1489 Known3.isNonNegative()) 1490 Known.makeNonNegative(); 1491 } 1492 1493 break; 1494 } 1495 } 1496 } 1497 1498 // Unreachable blocks may have zero-operand PHI nodes. 1499 if (P->getNumIncomingValues() == 0) 1500 break; 1501 1502 // Otherwise take the unions of the known bit sets of the operands, 1503 // taking conservative care to avoid excessive recursion. 1504 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1505 // Skip if every incoming value references to ourself. 1506 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1507 break; 1508 1509 Known.Zero.setAllBits(); 1510 Known.One.setAllBits(); 1511 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1512 Value *IncValue = P->getIncomingValue(u); 1513 // Skip direct self references. 1514 if (IncValue == P) continue; 1515 1516 // Change the context instruction to the "edge" that flows into the 1517 // phi. This is important because that is where the value is actually 1518 // "evaluated" even though it is used later somewhere else. (see also 1519 // D69571). 1520 Query RecQ = Q; 1521 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1522 1523 Known2 = KnownBits(BitWidth); 1524 // Recurse, but cap the recursion to one level, because we don't 1525 // want to waste time spinning around in loops. 1526 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1527 Known.Zero &= Known2.Zero; 1528 Known.One &= Known2.One; 1529 // If all bits have been ruled out, there's no need to check 1530 // more operands. 1531 if (!Known.Zero && !Known.One) 1532 break; 1533 } 1534 } 1535 break; 1536 } 1537 case Instruction::Call: 1538 case Instruction::Invoke: 1539 // If range metadata is attached to this call, set known bits from that, 1540 // and then intersect with known bits based on other properties of the 1541 // function. 1542 if (MDNode *MD = 1543 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1544 computeKnownBitsFromRangeMetadata(*MD, Known); 1545 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1546 computeKnownBits(RV, Known2, Depth + 1, Q); 1547 Known.Zero |= Known2.Zero; 1548 Known.One |= Known2.One; 1549 } 1550 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1551 switch (II->getIntrinsicID()) { 1552 default: break; 1553 case Intrinsic::abs: 1554 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1555 1556 // If the source's MSB is zero then we know the rest of the bits. 1557 if (Known2.isNonNegative()) { 1558 Known.Zero |= Known2.Zero; 1559 Known.One |= Known2.One; 1560 break; 1561 } 1562 1563 // Absolute value preserves trailing zero count. 1564 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1565 1566 // If this call is undefined for INT_MIN, the result is positive. We 1567 // also know it can't be INT_MIN if there is a set bit that isn't the 1568 // sign bit. 1569 Known2.One.clearSignBit(); 1570 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1571 Known.Zero.setSignBit(); 1572 // FIXME: Handle known negative input? 1573 // FIXME: Calculate the negated Known bits and combine them? 1574 break; 1575 case Intrinsic::bitreverse: 1576 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1577 Known.Zero |= Known2.Zero.reverseBits(); 1578 Known.One |= Known2.One.reverseBits(); 1579 break; 1580 case Intrinsic::bswap: 1581 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1582 Known.Zero |= Known2.Zero.byteSwap(); 1583 Known.One |= Known2.One.byteSwap(); 1584 break; 1585 case Intrinsic::ctlz: { 1586 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1587 // If we have a known 1, its position is our upper bound. 1588 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1589 // If this call is undefined for 0, the result will be less than 2^n. 1590 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1591 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1592 unsigned LowBits = Log2_32(PossibleLZ)+1; 1593 Known.Zero.setBitsFrom(LowBits); 1594 break; 1595 } 1596 case Intrinsic::cttz: { 1597 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1598 // If we have a known 1, its position is our upper bound. 1599 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1600 // If this call is undefined for 0, the result will be less than 2^n. 1601 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1602 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1603 unsigned LowBits = Log2_32(PossibleTZ)+1; 1604 Known.Zero.setBitsFrom(LowBits); 1605 break; 1606 } 1607 case Intrinsic::ctpop: { 1608 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1609 // We can bound the space the count needs. Also, bits known to be zero 1610 // can't contribute to the population. 1611 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1612 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1613 Known.Zero.setBitsFrom(LowBits); 1614 // TODO: we could bound KnownOne using the lower bound on the number 1615 // of bits which might be set provided by popcnt KnownOne2. 1616 break; 1617 } 1618 case Intrinsic::fshr: 1619 case Intrinsic::fshl: { 1620 const APInt *SA; 1621 if (!match(I->getOperand(2), m_APInt(SA))) 1622 break; 1623 1624 // Normalize to funnel shift left. 1625 uint64_t ShiftAmt = SA->urem(BitWidth); 1626 if (II->getIntrinsicID() == Intrinsic::fshr) 1627 ShiftAmt = BitWidth - ShiftAmt; 1628 1629 KnownBits Known3(BitWidth); 1630 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1632 1633 Known.Zero = 1634 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1635 Known.One = 1636 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1637 break; 1638 } 1639 case Intrinsic::uadd_sat: 1640 case Intrinsic::usub_sat: { 1641 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 1645 // Add: Leading ones of either operand are preserved. 1646 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1647 // as leading zeros in the result. 1648 unsigned LeadingKnown; 1649 if (IsAdd) 1650 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1651 Known2.countMinLeadingOnes()); 1652 else 1653 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1654 Known2.countMinLeadingOnes()); 1655 1656 Known = KnownBits::computeForAddSub( 1657 IsAdd, /* NSW */ false, Known, Known2); 1658 1659 // We select between the operation result and all-ones/zero 1660 // respectively, so we can preserve known ones/zeros. 1661 if (IsAdd) { 1662 Known.One.setHighBits(LeadingKnown); 1663 Known.Zero.clearAllBits(); 1664 } else { 1665 Known.Zero.setHighBits(LeadingKnown); 1666 Known.One.clearAllBits(); 1667 } 1668 break; 1669 } 1670 case Intrinsic::umin: 1671 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1672 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1673 Known = KnownBits::umin(Known, Known2); 1674 break; 1675 case Intrinsic::umax: 1676 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1677 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1678 Known = KnownBits::umax(Known, Known2); 1679 break; 1680 case Intrinsic::smin: 1681 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1682 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1683 Known = KnownBits::smin(Known, Known2); 1684 break; 1685 case Intrinsic::smax: 1686 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1687 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1688 Known = KnownBits::smax(Known, Known2); 1689 break; 1690 case Intrinsic::x86_sse42_crc32_64_64: 1691 Known.Zero.setBitsFrom(32); 1692 break; 1693 } 1694 } 1695 break; 1696 case Instruction::ShuffleVector: { 1697 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1698 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1699 if (!Shuf) { 1700 Known.resetAll(); 1701 return; 1702 } 1703 // For undef elements, we don't know anything about the common state of 1704 // the shuffle result. 1705 APInt DemandedLHS, DemandedRHS; 1706 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1707 Known.resetAll(); 1708 return; 1709 } 1710 Known.One.setAllBits(); 1711 Known.Zero.setAllBits(); 1712 if (!!DemandedLHS) { 1713 const Value *LHS = Shuf->getOperand(0); 1714 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1715 // If we don't know any bits, early out. 1716 if (Known.isUnknown()) 1717 break; 1718 } 1719 if (!!DemandedRHS) { 1720 const Value *RHS = Shuf->getOperand(1); 1721 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1722 Known.One &= Known2.One; 1723 Known.Zero &= Known2.Zero; 1724 } 1725 break; 1726 } 1727 case Instruction::InsertElement: { 1728 const Value *Vec = I->getOperand(0); 1729 const Value *Elt = I->getOperand(1); 1730 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1731 // Early out if the index is non-constant or out-of-range. 1732 unsigned NumElts = DemandedElts.getBitWidth(); 1733 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1734 Known.resetAll(); 1735 return; 1736 } 1737 Known.One.setAllBits(); 1738 Known.Zero.setAllBits(); 1739 unsigned EltIdx = CIdx->getZExtValue(); 1740 // Do we demand the inserted element? 1741 if (DemandedElts[EltIdx]) { 1742 computeKnownBits(Elt, Known, Depth + 1, Q); 1743 // If we don't know any bits, early out. 1744 if (Known.isUnknown()) 1745 break; 1746 } 1747 // We don't need the base vector element that has been inserted. 1748 APInt DemandedVecElts = DemandedElts; 1749 DemandedVecElts.clearBit(EltIdx); 1750 if (!!DemandedVecElts) { 1751 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1752 Known.One &= Known2.One; 1753 Known.Zero &= Known2.Zero; 1754 } 1755 break; 1756 } 1757 case Instruction::ExtractElement: { 1758 // Look through extract element. If the index is non-constant or 1759 // out-of-range demand all elements, otherwise just the extracted element. 1760 const Value *Vec = I->getOperand(0); 1761 const Value *Idx = I->getOperand(1); 1762 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1763 if (isa<ScalableVectorType>(Vec->getType())) { 1764 // FIXME: there's probably *something* we can do with scalable vectors 1765 Known.resetAll(); 1766 break; 1767 } 1768 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1769 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1770 if (CIdx && CIdx->getValue().ult(NumElts)) 1771 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1772 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1773 break; 1774 } 1775 case Instruction::ExtractValue: 1776 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1777 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1778 if (EVI->getNumIndices() != 1) break; 1779 if (EVI->getIndices()[0] == 0) { 1780 switch (II->getIntrinsicID()) { 1781 default: break; 1782 case Intrinsic::uadd_with_overflow: 1783 case Intrinsic::sadd_with_overflow: 1784 computeKnownBitsAddSub(true, II->getArgOperand(0), 1785 II->getArgOperand(1), false, DemandedElts, 1786 Known, Known2, Depth, Q); 1787 break; 1788 case Intrinsic::usub_with_overflow: 1789 case Intrinsic::ssub_with_overflow: 1790 computeKnownBitsAddSub(false, II->getArgOperand(0), 1791 II->getArgOperand(1), false, DemandedElts, 1792 Known, Known2, Depth, Q); 1793 break; 1794 case Intrinsic::umul_with_overflow: 1795 case Intrinsic::smul_with_overflow: 1796 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1797 DemandedElts, Known, Known2, Depth, Q); 1798 break; 1799 } 1800 } 1801 } 1802 break; 1803 case Instruction::Freeze: 1804 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1805 Depth + 1)) 1806 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1807 break; 1808 } 1809 } 1810 1811 /// Determine which bits of V are known to be either zero or one and return 1812 /// them. 1813 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1814 unsigned Depth, const Query &Q) { 1815 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1816 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1817 return Known; 1818 } 1819 1820 /// Determine which bits of V are known to be either zero or one and return 1821 /// them. 1822 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1823 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1824 computeKnownBits(V, Known, Depth, Q); 1825 return Known; 1826 } 1827 1828 /// Determine which bits of V are known to be either zero or one and return 1829 /// them in the Known bit set. 1830 /// 1831 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1832 /// we cannot optimize based on the assumption that it is zero without changing 1833 /// it to be an explicit zero. If we don't change it to zero, other code could 1834 /// optimized based on the contradictory assumption that it is non-zero. 1835 /// Because instcombine aggressively folds operations with undef args anyway, 1836 /// this won't lose us code quality. 1837 /// 1838 /// This function is defined on values with integer type, values with pointer 1839 /// type, and vectors of integers. In the case 1840 /// where V is a vector, known zero, and known one values are the 1841 /// same width as the vector element, and the bit is set only if it is true 1842 /// for all of the demanded elements in the vector specified by DemandedElts. 1843 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1844 KnownBits &Known, unsigned Depth, const Query &Q) { 1845 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1846 // No demanded elts or V is a scalable vector, better to assume we don't 1847 // know anything. 1848 Known.resetAll(); 1849 return; 1850 } 1851 1852 assert(V && "No Value?"); 1853 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1854 1855 #ifndef NDEBUG 1856 Type *Ty = V->getType(); 1857 unsigned BitWidth = Known.getBitWidth(); 1858 1859 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1860 "Not integer or pointer type!"); 1861 1862 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1863 assert( 1864 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1865 "DemandedElt width should equal the fixed vector number of elements"); 1866 } else { 1867 assert(DemandedElts == APInt(1, 1) && 1868 "DemandedElt width should be 1 for scalars"); 1869 } 1870 1871 Type *ScalarTy = Ty->getScalarType(); 1872 if (ScalarTy->isPointerTy()) { 1873 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1874 "V and Known should have same BitWidth"); 1875 } else { 1876 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1877 "V and Known should have same BitWidth"); 1878 } 1879 #endif 1880 1881 const APInt *C; 1882 if (match(V, m_APInt(C))) { 1883 // We know all of the bits for a scalar constant or a splat vector constant! 1884 Known.One = *C; 1885 Known.Zero = ~Known.One; 1886 return; 1887 } 1888 // Null and aggregate-zero are all-zeros. 1889 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1890 Known.setAllZero(); 1891 return; 1892 } 1893 // Handle a constant vector by taking the intersection of the known bits of 1894 // each element. 1895 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1896 // We know that CDV must be a vector of integers. Take the intersection of 1897 // each element. 1898 Known.Zero.setAllBits(); Known.One.setAllBits(); 1899 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1900 if (!DemandedElts[i]) 1901 continue; 1902 APInt Elt = CDV->getElementAsAPInt(i); 1903 Known.Zero &= ~Elt; 1904 Known.One &= Elt; 1905 } 1906 return; 1907 } 1908 1909 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1910 // We know that CV must be a vector of integers. Take the intersection of 1911 // each element. 1912 Known.Zero.setAllBits(); Known.One.setAllBits(); 1913 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1914 if (!DemandedElts[i]) 1915 continue; 1916 Constant *Element = CV->getAggregateElement(i); 1917 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1918 if (!ElementCI) { 1919 Known.resetAll(); 1920 return; 1921 } 1922 const APInt &Elt = ElementCI->getValue(); 1923 Known.Zero &= ~Elt; 1924 Known.One &= Elt; 1925 } 1926 return; 1927 } 1928 1929 // Start out not knowing anything. 1930 Known.resetAll(); 1931 1932 // We can't imply anything about undefs. 1933 if (isa<UndefValue>(V)) 1934 return; 1935 1936 // There's no point in looking through other users of ConstantData for 1937 // assumptions. Confirm that we've handled them all. 1938 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1939 1940 // All recursive calls that increase depth must come after this. 1941 if (Depth == MaxAnalysisRecursionDepth) 1942 return; 1943 1944 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1945 // the bits of its aliasee. 1946 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1947 if (!GA->isInterposable()) 1948 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1949 return; 1950 } 1951 1952 if (const Operator *I = dyn_cast<Operator>(V)) 1953 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1954 1955 // Aligned pointers have trailing zeros - refine Known.Zero set 1956 if (isa<PointerType>(V->getType())) { 1957 Align Alignment = V->getPointerAlignment(Q.DL); 1958 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 1959 } 1960 1961 // computeKnownBitsFromAssume strictly refines Known. 1962 // Therefore, we run them after computeKnownBitsFromOperator. 1963 1964 // Check whether a nearby assume intrinsic can determine some known bits. 1965 computeKnownBitsFromAssume(V, Known, Depth, Q); 1966 1967 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1968 } 1969 1970 /// Return true if the given value is known to have exactly one 1971 /// bit set when defined. For vectors return true if every element is known to 1972 /// be a power of two when defined. Supports values with integer or pointer 1973 /// types and vectors of integers. 1974 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1975 const Query &Q) { 1976 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1977 1978 // Attempt to match against constants. 1979 if (OrZero && match(V, m_Power2OrZero())) 1980 return true; 1981 if (match(V, m_Power2())) 1982 return true; 1983 1984 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1985 // it is shifted off the end then the result is undefined. 1986 if (match(V, m_Shl(m_One(), m_Value()))) 1987 return true; 1988 1989 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1990 // the bottom. If it is shifted off the bottom then the result is undefined. 1991 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1992 return true; 1993 1994 // The remaining tests are all recursive, so bail out if we hit the limit. 1995 if (Depth++ == MaxAnalysisRecursionDepth) 1996 return false; 1997 1998 Value *X = nullptr, *Y = nullptr; 1999 // A shift left or a logical shift right of a power of two is a power of two 2000 // or zero. 2001 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2002 match(V, m_LShr(m_Value(X), m_Value())))) 2003 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2004 2005 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2006 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2007 2008 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2009 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2010 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2011 2012 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2013 // A power of two and'd with anything is a power of two or zero. 2014 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2015 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2016 return true; 2017 // X & (-X) is always a power of two or zero. 2018 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2019 return true; 2020 return false; 2021 } 2022 2023 // Adding a power-of-two or zero to the same power-of-two or zero yields 2024 // either the original power-of-two, a larger power-of-two or zero. 2025 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2026 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2027 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2028 Q.IIQ.hasNoSignedWrap(VOBO)) { 2029 if (match(X, m_And(m_Specific(Y), m_Value())) || 2030 match(X, m_And(m_Value(), m_Specific(Y)))) 2031 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2032 return true; 2033 if (match(Y, m_And(m_Specific(X), m_Value())) || 2034 match(Y, m_And(m_Value(), m_Specific(X)))) 2035 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2036 return true; 2037 2038 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2039 KnownBits LHSBits(BitWidth); 2040 computeKnownBits(X, LHSBits, Depth, Q); 2041 2042 KnownBits RHSBits(BitWidth); 2043 computeKnownBits(Y, RHSBits, Depth, Q); 2044 // If i8 V is a power of two or zero: 2045 // ZeroBits: 1 1 1 0 1 1 1 1 2046 // ~ZeroBits: 0 0 0 1 0 0 0 0 2047 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2048 // If OrZero isn't set, we cannot give back a zero result. 2049 // Make sure either the LHS or RHS has a bit set. 2050 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2051 return true; 2052 } 2053 } 2054 2055 // An exact divide or right shift can only shift off zero bits, so the result 2056 // is a power of two only if the first operand is a power of two and not 2057 // copying a sign bit (sdiv int_min, 2). 2058 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2059 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2060 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2061 Depth, Q); 2062 } 2063 2064 return false; 2065 } 2066 2067 /// Test whether a GEP's result is known to be non-null. 2068 /// 2069 /// Uses properties inherent in a GEP to try to determine whether it is known 2070 /// to be non-null. 2071 /// 2072 /// Currently this routine does not support vector GEPs. 2073 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2074 const Query &Q) { 2075 const Function *F = nullptr; 2076 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2077 F = I->getFunction(); 2078 2079 if (!GEP->isInBounds() || 2080 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2081 return false; 2082 2083 // FIXME: Support vector-GEPs. 2084 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2085 2086 // If the base pointer is non-null, we cannot walk to a null address with an 2087 // inbounds GEP in address space zero. 2088 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2089 return true; 2090 2091 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2092 // If so, then the GEP cannot produce a null pointer, as doing so would 2093 // inherently violate the inbounds contract within address space zero. 2094 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2095 GTI != GTE; ++GTI) { 2096 // Struct types are easy -- they must always be indexed by a constant. 2097 if (StructType *STy = GTI.getStructTypeOrNull()) { 2098 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2099 unsigned ElementIdx = OpC->getZExtValue(); 2100 const StructLayout *SL = Q.DL.getStructLayout(STy); 2101 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2102 if (ElementOffset > 0) 2103 return true; 2104 continue; 2105 } 2106 2107 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2108 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2109 continue; 2110 2111 // Fast path the constant operand case both for efficiency and so we don't 2112 // increment Depth when just zipping down an all-constant GEP. 2113 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2114 if (!OpC->isZero()) 2115 return true; 2116 continue; 2117 } 2118 2119 // We post-increment Depth here because while isKnownNonZero increments it 2120 // as well, when we pop back up that increment won't persist. We don't want 2121 // to recurse 10k times just because we have 10k GEP operands. We don't 2122 // bail completely out because we want to handle constant GEPs regardless 2123 // of depth. 2124 if (Depth++ >= MaxAnalysisRecursionDepth) 2125 continue; 2126 2127 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2128 return true; 2129 } 2130 2131 return false; 2132 } 2133 2134 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2135 const Instruction *CtxI, 2136 const DominatorTree *DT) { 2137 if (isa<Constant>(V)) 2138 return false; 2139 2140 if (!CtxI || !DT) 2141 return false; 2142 2143 unsigned NumUsesExplored = 0; 2144 for (auto *U : V->users()) { 2145 // Avoid massive lists 2146 if (NumUsesExplored >= DomConditionsMaxUses) 2147 break; 2148 NumUsesExplored++; 2149 2150 // If the value is used as an argument to a call or invoke, then argument 2151 // attributes may provide an answer about null-ness. 2152 if (const auto *CB = dyn_cast<CallBase>(U)) 2153 if (auto *CalledFunc = CB->getCalledFunction()) 2154 for (const Argument &Arg : CalledFunc->args()) 2155 if (CB->getArgOperand(Arg.getArgNo()) == V && 2156 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2157 return true; 2158 2159 // If the value is used as a load/store, then the pointer must be non null. 2160 if (V == getLoadStorePointerOperand(U)) { 2161 const Instruction *I = cast<Instruction>(U); 2162 if (!NullPointerIsDefined(I->getFunction(), 2163 V->getType()->getPointerAddressSpace()) && 2164 DT->dominates(I, CtxI)) 2165 return true; 2166 } 2167 2168 // Consider only compare instructions uniquely controlling a branch 2169 CmpInst::Predicate Pred; 2170 if (!match(const_cast<User *>(U), 2171 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2172 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2173 continue; 2174 2175 SmallVector<const User *, 4> WorkList; 2176 SmallPtrSet<const User *, 4> Visited; 2177 for (auto *CmpU : U->users()) { 2178 assert(WorkList.empty() && "Should be!"); 2179 if (Visited.insert(CmpU).second) 2180 WorkList.push_back(CmpU); 2181 2182 while (!WorkList.empty()) { 2183 auto *Curr = WorkList.pop_back_val(); 2184 2185 // If a user is an AND, add all its users to the work list. We only 2186 // propagate "pred != null" condition through AND because it is only 2187 // correct to assume that all conditions of AND are met in true branch. 2188 // TODO: Support similar logic of OR and EQ predicate? 2189 if (Pred == ICmpInst::ICMP_NE) 2190 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2191 if (BO->getOpcode() == Instruction::And) { 2192 for (auto *BOU : BO->users()) 2193 if (Visited.insert(BOU).second) 2194 WorkList.push_back(BOU); 2195 continue; 2196 } 2197 2198 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2199 assert(BI->isConditional() && "uses a comparison!"); 2200 2201 BasicBlock *NonNullSuccessor = 2202 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2203 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2204 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2205 return true; 2206 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2207 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2208 return true; 2209 } 2210 } 2211 } 2212 } 2213 2214 return false; 2215 } 2216 2217 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2218 /// ensure that the value it's attached to is never Value? 'RangeType' is 2219 /// is the type of the value described by the range. 2220 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2221 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2222 assert(NumRanges >= 1); 2223 for (unsigned i = 0; i < NumRanges; ++i) { 2224 ConstantInt *Lower = 2225 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2226 ConstantInt *Upper = 2227 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2228 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2229 if (Range.contains(Value)) 2230 return false; 2231 } 2232 return true; 2233 } 2234 2235 /// Return true if the given value is known to be non-zero when defined. For 2236 /// vectors, return true if every demanded element is known to be non-zero when 2237 /// defined. For pointers, if the context instruction and dominator tree are 2238 /// specified, perform context-sensitive analysis and return true if the 2239 /// pointer couldn't possibly be null at the specified instruction. 2240 /// Supports values with integer or pointer type and vectors of integers. 2241 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2242 const Query &Q) { 2243 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2244 // vector 2245 if (isa<ScalableVectorType>(V->getType())) 2246 return false; 2247 2248 if (auto *C = dyn_cast<Constant>(V)) { 2249 if (C->isNullValue()) 2250 return false; 2251 if (isa<ConstantInt>(C)) 2252 // Must be non-zero due to null test above. 2253 return true; 2254 2255 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2256 // See the comment for IntToPtr/PtrToInt instructions below. 2257 if (CE->getOpcode() == Instruction::IntToPtr || 2258 CE->getOpcode() == Instruction::PtrToInt) 2259 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2260 .getFixedSize() <= 2261 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2262 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2263 } 2264 2265 // For constant vectors, check that all elements are undefined or known 2266 // non-zero to determine that the whole vector is known non-zero. 2267 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2268 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2269 if (!DemandedElts[i]) 2270 continue; 2271 Constant *Elt = C->getAggregateElement(i); 2272 if (!Elt || Elt->isNullValue()) 2273 return false; 2274 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2275 return false; 2276 } 2277 return true; 2278 } 2279 2280 // A global variable in address space 0 is non null unless extern weak 2281 // or an absolute symbol reference. Other address spaces may have null as a 2282 // valid address for a global, so we can't assume anything. 2283 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2284 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2285 GV->getType()->getAddressSpace() == 0) 2286 return true; 2287 } else 2288 return false; 2289 } 2290 2291 if (auto *I = dyn_cast<Instruction>(V)) { 2292 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2293 // If the possible ranges don't contain zero, then the value is 2294 // definitely non-zero. 2295 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2296 const APInt ZeroValue(Ty->getBitWidth(), 0); 2297 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2298 return true; 2299 } 2300 } 2301 } 2302 2303 if (isKnownNonZeroFromAssume(V, Q)) 2304 return true; 2305 2306 // Some of the tests below are recursive, so bail out if we hit the limit. 2307 if (Depth++ >= MaxAnalysisRecursionDepth) 2308 return false; 2309 2310 // Check for pointer simplifications. 2311 2312 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2313 // Alloca never returns null, malloc might. 2314 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2315 return true; 2316 2317 // A byval, inalloca may not be null in a non-default addres space. A 2318 // nonnull argument is assumed never 0. 2319 if (const Argument *A = dyn_cast<Argument>(V)) { 2320 if (((A->hasPassPointeeByValueCopyAttr() && 2321 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2322 A->hasNonNullAttr())) 2323 return true; 2324 } 2325 2326 // A Load tagged with nonnull metadata is never null. 2327 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2328 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2329 return true; 2330 2331 if (const auto *Call = dyn_cast<CallBase>(V)) { 2332 if (Call->isReturnNonNull()) 2333 return true; 2334 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2335 return isKnownNonZero(RP, Depth, Q); 2336 } 2337 } 2338 2339 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2340 return true; 2341 2342 // Check for recursive pointer simplifications. 2343 if (V->getType()->isPointerTy()) { 2344 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2345 // do not alter the value, or at least not the nullness property of the 2346 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2347 // 2348 // Note that we have to take special care to avoid looking through 2349 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2350 // as casts that can alter the value, e.g., AddrSpaceCasts. 2351 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2352 return isGEPKnownNonNull(GEP, Depth, Q); 2353 2354 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2355 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2356 2357 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2358 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2359 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2360 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2361 } 2362 2363 // Similar to int2ptr above, we can look through ptr2int here if the cast 2364 // is a no-op or an extend and not a truncate. 2365 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2366 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2367 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2368 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2369 2370 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2371 2372 // X | Y != 0 if X != 0 or Y != 0. 2373 Value *X = nullptr, *Y = nullptr; 2374 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2375 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2376 isKnownNonZero(Y, DemandedElts, Depth, Q); 2377 2378 // ext X != 0 if X != 0. 2379 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2380 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2381 2382 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2383 // if the lowest bit is shifted off the end. 2384 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2385 // shl nuw can't remove any non-zero bits. 2386 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2387 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2388 return isKnownNonZero(X, Depth, Q); 2389 2390 KnownBits Known(BitWidth); 2391 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2392 if (Known.One[0]) 2393 return true; 2394 } 2395 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2396 // defined if the sign bit is shifted off the end. 2397 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2398 // shr exact can only shift out zero bits. 2399 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2400 if (BO->isExact()) 2401 return isKnownNonZero(X, Depth, Q); 2402 2403 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2404 if (Known.isNegative()) 2405 return true; 2406 2407 // If the shifter operand is a constant, and all of the bits shifted 2408 // out are known to be zero, and X is known non-zero then at least one 2409 // non-zero bit must remain. 2410 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2411 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2412 // Is there a known one in the portion not shifted out? 2413 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2414 return true; 2415 // Are all the bits to be shifted out known zero? 2416 if (Known.countMinTrailingZeros() >= ShiftVal) 2417 return isKnownNonZero(X, DemandedElts, Depth, Q); 2418 } 2419 } 2420 // div exact can only produce a zero if the dividend is zero. 2421 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2422 return isKnownNonZero(X, DemandedElts, Depth, Q); 2423 } 2424 // X + Y. 2425 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2426 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2427 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2428 2429 // If X and Y are both non-negative (as signed values) then their sum is not 2430 // zero unless both X and Y are zero. 2431 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2432 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2433 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2434 return true; 2435 2436 // If X and Y are both negative (as signed values) then their sum is not 2437 // zero unless both X and Y equal INT_MIN. 2438 if (XKnown.isNegative() && YKnown.isNegative()) { 2439 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2440 // The sign bit of X is set. If some other bit is set then X is not equal 2441 // to INT_MIN. 2442 if (XKnown.One.intersects(Mask)) 2443 return true; 2444 // The sign bit of Y is set. If some other bit is set then Y is not equal 2445 // to INT_MIN. 2446 if (YKnown.One.intersects(Mask)) 2447 return true; 2448 } 2449 2450 // The sum of a non-negative number and a power of two is not zero. 2451 if (XKnown.isNonNegative() && 2452 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2453 return true; 2454 if (YKnown.isNonNegative() && 2455 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2456 return true; 2457 } 2458 // X * Y. 2459 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2460 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2461 // If X and Y are non-zero then so is X * Y as long as the multiplication 2462 // does not overflow. 2463 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2464 isKnownNonZero(X, DemandedElts, Depth, Q) && 2465 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2466 return true; 2467 } 2468 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2469 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2470 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2471 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2472 return true; 2473 } 2474 // PHI 2475 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2476 // Try and detect a recurrence that monotonically increases from a 2477 // starting value, as these are common as induction variables. 2478 if (PN->getNumIncomingValues() == 2) { 2479 Value *Start = PN->getIncomingValue(0); 2480 Value *Induction = PN->getIncomingValue(1); 2481 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2482 std::swap(Start, Induction); 2483 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2484 if (!C->isZero() && !C->isNegative()) { 2485 ConstantInt *X; 2486 if (Q.IIQ.UseInstrInfo && 2487 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2488 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2489 !X->isNegative()) 2490 return true; 2491 } 2492 } 2493 } 2494 // Check if all incoming values are non-zero using recursion. 2495 Query RecQ = Q; 2496 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2497 return llvm::all_of(PN->operands(), [&](const Use &U) { 2498 if (U.get() == PN) 2499 return true; 2500 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2501 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2502 }); 2503 } 2504 // ExtractElement 2505 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2506 const Value *Vec = EEI->getVectorOperand(); 2507 const Value *Idx = EEI->getIndexOperand(); 2508 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2509 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2510 unsigned NumElts = VecTy->getNumElements(); 2511 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2512 if (CIdx && CIdx->getValue().ult(NumElts)) 2513 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2514 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2515 } 2516 } 2517 // Freeze 2518 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2519 auto *Op = FI->getOperand(0); 2520 if (isKnownNonZero(Op, Depth, Q) && 2521 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2522 return true; 2523 } 2524 2525 KnownBits Known(BitWidth); 2526 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2527 return Known.One != 0; 2528 } 2529 2530 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2531 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2532 // vector 2533 if (isa<ScalableVectorType>(V->getType())) 2534 return false; 2535 2536 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2537 APInt DemandedElts = 2538 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2539 return isKnownNonZero(V, DemandedElts, Depth, Q); 2540 } 2541 2542 /// Return true if V2 == V1 + X, where X is known non-zero. 2543 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2544 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2545 if (!BO || BO->getOpcode() != Instruction::Add) 2546 return false; 2547 Value *Op = nullptr; 2548 if (V2 == BO->getOperand(0)) 2549 Op = BO->getOperand(1); 2550 else if (V2 == BO->getOperand(1)) 2551 Op = BO->getOperand(0); 2552 else 2553 return false; 2554 return isKnownNonZero(Op, 0, Q); 2555 } 2556 2557 /// Return true if it is known that V1 != V2. 2558 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2559 if (V1 == V2) 2560 return false; 2561 if (V1->getType() != V2->getType()) 2562 // We can't look through casts yet. 2563 return false; 2564 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2565 return true; 2566 2567 if (V1->getType()->isIntOrIntVectorTy()) { 2568 // Are any known bits in V1 contradictory to known bits in V2? If V1 2569 // has a known zero where V2 has a known one, they must not be equal. 2570 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2571 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2572 2573 if (Known1.Zero.intersects(Known2.One) || 2574 Known2.Zero.intersects(Known1.One)) 2575 return true; 2576 } 2577 return false; 2578 } 2579 2580 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2581 /// simplify operations downstream. Mask is known to be zero for bits that V 2582 /// cannot have. 2583 /// 2584 /// This function is defined on values with integer type, values with pointer 2585 /// type, and vectors of integers. In the case 2586 /// where V is a vector, the mask, known zero, and known one values are the 2587 /// same width as the vector element, and the bit is set only if it is true 2588 /// for all of the elements in the vector. 2589 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2590 const Query &Q) { 2591 KnownBits Known(Mask.getBitWidth()); 2592 computeKnownBits(V, Known, Depth, Q); 2593 return Mask.isSubsetOf(Known.Zero); 2594 } 2595 2596 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2597 // Returns the input and lower/upper bounds. 2598 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2599 const APInt *&CLow, const APInt *&CHigh) { 2600 assert(isa<Operator>(Select) && 2601 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2602 "Input should be a Select!"); 2603 2604 const Value *LHS = nullptr, *RHS = nullptr; 2605 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2606 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2607 return false; 2608 2609 if (!match(RHS, m_APInt(CLow))) 2610 return false; 2611 2612 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2613 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2614 if (getInverseMinMaxFlavor(SPF) != SPF2) 2615 return false; 2616 2617 if (!match(RHS2, m_APInt(CHigh))) 2618 return false; 2619 2620 if (SPF == SPF_SMIN) 2621 std::swap(CLow, CHigh); 2622 2623 In = LHS2; 2624 return CLow->sle(*CHigh); 2625 } 2626 2627 /// For vector constants, loop over the elements and find the constant with the 2628 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2629 /// or if any element was not analyzed; otherwise, return the count for the 2630 /// element with the minimum number of sign bits. 2631 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2632 const APInt &DemandedElts, 2633 unsigned TyBits) { 2634 const auto *CV = dyn_cast<Constant>(V); 2635 if (!CV || !isa<FixedVectorType>(CV->getType())) 2636 return 0; 2637 2638 unsigned MinSignBits = TyBits; 2639 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2640 for (unsigned i = 0; i != NumElts; ++i) { 2641 if (!DemandedElts[i]) 2642 continue; 2643 // If we find a non-ConstantInt, bail out. 2644 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2645 if (!Elt) 2646 return 0; 2647 2648 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2649 } 2650 2651 return MinSignBits; 2652 } 2653 2654 static unsigned ComputeNumSignBitsImpl(const Value *V, 2655 const APInt &DemandedElts, 2656 unsigned Depth, const Query &Q); 2657 2658 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2659 unsigned Depth, const Query &Q) { 2660 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2661 assert(Result > 0 && "At least one sign bit needs to be present!"); 2662 return Result; 2663 } 2664 2665 /// Return the number of times the sign bit of the register is replicated into 2666 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2667 /// (itself), but other cases can give us information. For example, immediately 2668 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2669 /// other, so we return 3. For vectors, return the number of sign bits for the 2670 /// vector element with the minimum number of known sign bits of the demanded 2671 /// elements in the vector specified by DemandedElts. 2672 static unsigned ComputeNumSignBitsImpl(const Value *V, 2673 const APInt &DemandedElts, 2674 unsigned Depth, const Query &Q) { 2675 Type *Ty = V->getType(); 2676 2677 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2678 // vector 2679 if (isa<ScalableVectorType>(Ty)) 2680 return 1; 2681 2682 #ifndef NDEBUG 2683 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2684 2685 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2686 assert( 2687 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2688 "DemandedElt width should equal the fixed vector number of elements"); 2689 } else { 2690 assert(DemandedElts == APInt(1, 1) && 2691 "DemandedElt width should be 1 for scalars"); 2692 } 2693 #endif 2694 2695 // We return the minimum number of sign bits that are guaranteed to be present 2696 // in V, so for undef we have to conservatively return 1. We don't have the 2697 // same behavior for poison though -- that's a FIXME today. 2698 2699 Type *ScalarTy = Ty->getScalarType(); 2700 unsigned TyBits = ScalarTy->isPointerTy() ? 2701 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2702 Q.DL.getTypeSizeInBits(ScalarTy); 2703 2704 unsigned Tmp, Tmp2; 2705 unsigned FirstAnswer = 1; 2706 2707 // Note that ConstantInt is handled by the general computeKnownBits case 2708 // below. 2709 2710 if (Depth == MaxAnalysisRecursionDepth) 2711 return 1; 2712 2713 if (auto *U = dyn_cast<Operator>(V)) { 2714 switch (Operator::getOpcode(V)) { 2715 default: break; 2716 case Instruction::SExt: 2717 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2718 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2719 2720 case Instruction::SDiv: { 2721 const APInt *Denominator; 2722 // sdiv X, C -> adds log(C) sign bits. 2723 if (match(U->getOperand(1), m_APInt(Denominator))) { 2724 2725 // Ignore non-positive denominator. 2726 if (!Denominator->isStrictlyPositive()) 2727 break; 2728 2729 // Calculate the incoming numerator bits. 2730 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2731 2732 // Add floor(log(C)) bits to the numerator bits. 2733 return std::min(TyBits, NumBits + Denominator->logBase2()); 2734 } 2735 break; 2736 } 2737 2738 case Instruction::SRem: { 2739 const APInt *Denominator; 2740 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2741 // positive constant. This let us put a lower bound on the number of sign 2742 // bits. 2743 if (match(U->getOperand(1), m_APInt(Denominator))) { 2744 2745 // Ignore non-positive denominator. 2746 if (!Denominator->isStrictlyPositive()) 2747 break; 2748 2749 // Calculate the incoming numerator bits. SRem by a positive constant 2750 // can't lower the number of sign bits. 2751 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2752 2753 // Calculate the leading sign bit constraints by examining the 2754 // denominator. Given that the denominator is positive, there are two 2755 // cases: 2756 // 2757 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2758 // (1 << ceilLogBase2(C)). 2759 // 2760 // 2. the numerator is negative. Then the result range is (-C,0] and 2761 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2762 // 2763 // Thus a lower bound on the number of sign bits is `TyBits - 2764 // ceilLogBase2(C)`. 2765 2766 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2767 return std::max(NumrBits, ResBits); 2768 } 2769 break; 2770 } 2771 2772 case Instruction::AShr: { 2773 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2774 // ashr X, C -> adds C sign bits. Vectors too. 2775 const APInt *ShAmt; 2776 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2777 if (ShAmt->uge(TyBits)) 2778 break; // Bad shift. 2779 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2780 Tmp += ShAmtLimited; 2781 if (Tmp > TyBits) Tmp = TyBits; 2782 } 2783 return Tmp; 2784 } 2785 case Instruction::Shl: { 2786 const APInt *ShAmt; 2787 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2788 // shl destroys sign bits. 2789 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2790 if (ShAmt->uge(TyBits) || // Bad shift. 2791 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2792 Tmp2 = ShAmt->getZExtValue(); 2793 return Tmp - Tmp2; 2794 } 2795 break; 2796 } 2797 case Instruction::And: 2798 case Instruction::Or: 2799 case Instruction::Xor: // NOT is handled here. 2800 // Logical binary ops preserve the number of sign bits at the worst. 2801 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2802 if (Tmp != 1) { 2803 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2804 FirstAnswer = std::min(Tmp, Tmp2); 2805 // We computed what we know about the sign bits as our first 2806 // answer. Now proceed to the generic code that uses 2807 // computeKnownBits, and pick whichever answer is better. 2808 } 2809 break; 2810 2811 case Instruction::Select: { 2812 // If we have a clamp pattern, we know that the number of sign bits will 2813 // be the minimum of the clamp min/max range. 2814 const Value *X; 2815 const APInt *CLow, *CHigh; 2816 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2817 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2818 2819 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2820 if (Tmp == 1) break; 2821 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2822 return std::min(Tmp, Tmp2); 2823 } 2824 2825 case Instruction::Add: 2826 // Add can have at most one carry bit. Thus we know that the output 2827 // is, at worst, one more bit than the inputs. 2828 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2829 if (Tmp == 1) break; 2830 2831 // Special case decrementing a value (ADD X, -1): 2832 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2833 if (CRHS->isAllOnesValue()) { 2834 KnownBits Known(TyBits); 2835 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2836 2837 // If the input is known to be 0 or 1, the output is 0/-1, which is 2838 // all sign bits set. 2839 if ((Known.Zero | 1).isAllOnesValue()) 2840 return TyBits; 2841 2842 // If we are subtracting one from a positive number, there is no carry 2843 // out of the result. 2844 if (Known.isNonNegative()) 2845 return Tmp; 2846 } 2847 2848 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2849 if (Tmp2 == 1) break; 2850 return std::min(Tmp, Tmp2) - 1; 2851 2852 case Instruction::Sub: 2853 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2854 if (Tmp2 == 1) break; 2855 2856 // Handle NEG. 2857 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2858 if (CLHS->isNullValue()) { 2859 KnownBits Known(TyBits); 2860 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2861 // If the input is known to be 0 or 1, the output is 0/-1, which is 2862 // all sign bits set. 2863 if ((Known.Zero | 1).isAllOnesValue()) 2864 return TyBits; 2865 2866 // If the input is known to be positive (the sign bit is known clear), 2867 // the output of the NEG has the same number of sign bits as the 2868 // input. 2869 if (Known.isNonNegative()) 2870 return Tmp2; 2871 2872 // Otherwise, we treat this like a SUB. 2873 } 2874 2875 // Sub can have at most one carry bit. Thus we know that the output 2876 // is, at worst, one more bit than the inputs. 2877 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2878 if (Tmp == 1) break; 2879 return std::min(Tmp, Tmp2) - 1; 2880 2881 case Instruction::Mul: { 2882 // The output of the Mul can be at most twice the valid bits in the 2883 // inputs. 2884 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2885 if (SignBitsOp0 == 1) break; 2886 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (SignBitsOp1 == 1) break; 2888 unsigned OutValidBits = 2889 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2890 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2891 } 2892 2893 case Instruction::PHI: { 2894 const PHINode *PN = cast<PHINode>(U); 2895 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2896 // Don't analyze large in-degree PHIs. 2897 if (NumIncomingValues > 4) break; 2898 // Unreachable blocks may have zero-operand PHI nodes. 2899 if (NumIncomingValues == 0) break; 2900 2901 // Take the minimum of all incoming values. This can't infinitely loop 2902 // because of our depth threshold. 2903 Query RecQ = Q; 2904 Tmp = TyBits; 2905 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2906 if (Tmp == 1) return Tmp; 2907 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2908 Tmp = std::min( 2909 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2910 } 2911 return Tmp; 2912 } 2913 2914 case Instruction::Trunc: 2915 // FIXME: it's tricky to do anything useful for this, but it is an 2916 // important case for targets like X86. 2917 break; 2918 2919 case Instruction::ExtractElement: 2920 // Look through extract element. At the moment we keep this simple and 2921 // skip tracking the specific element. But at least we might find 2922 // information valid for all elements of the vector (for example if vector 2923 // is sign extended, shifted, etc). 2924 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2925 2926 case Instruction::ShuffleVector: { 2927 // Collect the minimum number of sign bits that are shared by every vector 2928 // element referenced by the shuffle. 2929 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2930 if (!Shuf) { 2931 // FIXME: Add support for shufflevector constant expressions. 2932 return 1; 2933 } 2934 APInt DemandedLHS, DemandedRHS; 2935 // For undef elements, we don't know anything about the common state of 2936 // the shuffle result. 2937 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2938 return 1; 2939 Tmp = std::numeric_limits<unsigned>::max(); 2940 if (!!DemandedLHS) { 2941 const Value *LHS = Shuf->getOperand(0); 2942 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2943 } 2944 // If we don't know anything, early out and try computeKnownBits 2945 // fall-back. 2946 if (Tmp == 1) 2947 break; 2948 if (!!DemandedRHS) { 2949 const Value *RHS = Shuf->getOperand(1); 2950 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2951 Tmp = std::min(Tmp, Tmp2); 2952 } 2953 // If we don't know anything, early out and try computeKnownBits 2954 // fall-back. 2955 if (Tmp == 1) 2956 break; 2957 assert(Tmp <= Ty->getScalarSizeInBits() && 2958 "Failed to determine minimum sign bits"); 2959 return Tmp; 2960 } 2961 case Instruction::Call: { 2962 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2963 switch (II->getIntrinsicID()) { 2964 default: break; 2965 case Intrinsic::abs: 2966 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2967 if (Tmp == 1) break; 2968 2969 // Absolute value reduces number of sign bits by at most 1. 2970 return Tmp - 1; 2971 } 2972 } 2973 } 2974 } 2975 } 2976 2977 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2978 // use this information. 2979 2980 // If we can examine all elements of a vector constant successfully, we're 2981 // done (we can't do any better than that). If not, keep trying. 2982 if (unsigned VecSignBits = 2983 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2984 return VecSignBits; 2985 2986 KnownBits Known(TyBits); 2987 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2988 2989 // If we know that the sign bit is either zero or one, determine the number of 2990 // identical bits in the top of the input value. 2991 return std::max(FirstAnswer, Known.countMinSignBits()); 2992 } 2993 2994 /// This function computes the integer multiple of Base that equals V. 2995 /// If successful, it returns true and returns the multiple in 2996 /// Multiple. If unsuccessful, it returns false. It looks 2997 /// through SExt instructions only if LookThroughSExt is true. 2998 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2999 bool LookThroughSExt, unsigned Depth) { 3000 assert(V && "No Value?"); 3001 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3002 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3003 3004 Type *T = V->getType(); 3005 3006 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3007 3008 if (Base == 0) 3009 return false; 3010 3011 if (Base == 1) { 3012 Multiple = V; 3013 return true; 3014 } 3015 3016 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3017 Constant *BaseVal = ConstantInt::get(T, Base); 3018 if (CO && CO == BaseVal) { 3019 // Multiple is 1. 3020 Multiple = ConstantInt::get(T, 1); 3021 return true; 3022 } 3023 3024 if (CI && CI->getZExtValue() % Base == 0) { 3025 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3026 return true; 3027 } 3028 3029 if (Depth == MaxAnalysisRecursionDepth) return false; 3030 3031 Operator *I = dyn_cast<Operator>(V); 3032 if (!I) return false; 3033 3034 switch (I->getOpcode()) { 3035 default: break; 3036 case Instruction::SExt: 3037 if (!LookThroughSExt) return false; 3038 // otherwise fall through to ZExt 3039 LLVM_FALLTHROUGH; 3040 case Instruction::ZExt: 3041 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3042 LookThroughSExt, Depth+1); 3043 case Instruction::Shl: 3044 case Instruction::Mul: { 3045 Value *Op0 = I->getOperand(0); 3046 Value *Op1 = I->getOperand(1); 3047 3048 if (I->getOpcode() == Instruction::Shl) { 3049 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3050 if (!Op1CI) return false; 3051 // Turn Op0 << Op1 into Op0 * 2^Op1 3052 APInt Op1Int = Op1CI->getValue(); 3053 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3054 APInt API(Op1Int.getBitWidth(), 0); 3055 API.setBit(BitToSet); 3056 Op1 = ConstantInt::get(V->getContext(), API); 3057 } 3058 3059 Value *Mul0 = nullptr; 3060 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3061 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3062 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3063 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3064 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3065 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3066 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3067 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3068 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3069 3070 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3071 Multiple = ConstantExpr::getMul(MulC, Op1C); 3072 return true; 3073 } 3074 3075 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3076 if (Mul0CI->getValue() == 1) { 3077 // V == Base * Op1, so return Op1 3078 Multiple = Op1; 3079 return true; 3080 } 3081 } 3082 3083 Value *Mul1 = nullptr; 3084 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3085 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3086 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3087 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3088 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3089 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3090 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3091 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3092 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3093 3094 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3095 Multiple = ConstantExpr::getMul(MulC, Op0C); 3096 return true; 3097 } 3098 3099 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3100 if (Mul1CI->getValue() == 1) { 3101 // V == Base * Op0, so return Op0 3102 Multiple = Op0; 3103 return true; 3104 } 3105 } 3106 } 3107 } 3108 3109 // We could not determine if V is a multiple of Base. 3110 return false; 3111 } 3112 3113 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3114 const TargetLibraryInfo *TLI) { 3115 const Function *F = CB.getCalledFunction(); 3116 if (!F) 3117 return Intrinsic::not_intrinsic; 3118 3119 if (F->isIntrinsic()) 3120 return F->getIntrinsicID(); 3121 3122 // We are going to infer semantics of a library function based on mapping it 3123 // to an LLVM intrinsic. Check that the library function is available from 3124 // this callbase and in this environment. 3125 LibFunc Func; 3126 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3127 !CB.onlyReadsMemory()) 3128 return Intrinsic::not_intrinsic; 3129 3130 switch (Func) { 3131 default: 3132 break; 3133 case LibFunc_sin: 3134 case LibFunc_sinf: 3135 case LibFunc_sinl: 3136 return Intrinsic::sin; 3137 case LibFunc_cos: 3138 case LibFunc_cosf: 3139 case LibFunc_cosl: 3140 return Intrinsic::cos; 3141 case LibFunc_exp: 3142 case LibFunc_expf: 3143 case LibFunc_expl: 3144 return Intrinsic::exp; 3145 case LibFunc_exp2: 3146 case LibFunc_exp2f: 3147 case LibFunc_exp2l: 3148 return Intrinsic::exp2; 3149 case LibFunc_log: 3150 case LibFunc_logf: 3151 case LibFunc_logl: 3152 return Intrinsic::log; 3153 case LibFunc_log10: 3154 case LibFunc_log10f: 3155 case LibFunc_log10l: 3156 return Intrinsic::log10; 3157 case LibFunc_log2: 3158 case LibFunc_log2f: 3159 case LibFunc_log2l: 3160 return Intrinsic::log2; 3161 case LibFunc_fabs: 3162 case LibFunc_fabsf: 3163 case LibFunc_fabsl: 3164 return Intrinsic::fabs; 3165 case LibFunc_fmin: 3166 case LibFunc_fminf: 3167 case LibFunc_fminl: 3168 return Intrinsic::minnum; 3169 case LibFunc_fmax: 3170 case LibFunc_fmaxf: 3171 case LibFunc_fmaxl: 3172 return Intrinsic::maxnum; 3173 case LibFunc_copysign: 3174 case LibFunc_copysignf: 3175 case LibFunc_copysignl: 3176 return Intrinsic::copysign; 3177 case LibFunc_floor: 3178 case LibFunc_floorf: 3179 case LibFunc_floorl: 3180 return Intrinsic::floor; 3181 case LibFunc_ceil: 3182 case LibFunc_ceilf: 3183 case LibFunc_ceill: 3184 return Intrinsic::ceil; 3185 case LibFunc_trunc: 3186 case LibFunc_truncf: 3187 case LibFunc_truncl: 3188 return Intrinsic::trunc; 3189 case LibFunc_rint: 3190 case LibFunc_rintf: 3191 case LibFunc_rintl: 3192 return Intrinsic::rint; 3193 case LibFunc_nearbyint: 3194 case LibFunc_nearbyintf: 3195 case LibFunc_nearbyintl: 3196 return Intrinsic::nearbyint; 3197 case LibFunc_round: 3198 case LibFunc_roundf: 3199 case LibFunc_roundl: 3200 return Intrinsic::round; 3201 case LibFunc_roundeven: 3202 case LibFunc_roundevenf: 3203 case LibFunc_roundevenl: 3204 return Intrinsic::roundeven; 3205 case LibFunc_pow: 3206 case LibFunc_powf: 3207 case LibFunc_powl: 3208 return Intrinsic::pow; 3209 case LibFunc_sqrt: 3210 case LibFunc_sqrtf: 3211 case LibFunc_sqrtl: 3212 return Intrinsic::sqrt; 3213 } 3214 3215 return Intrinsic::not_intrinsic; 3216 } 3217 3218 /// Return true if we can prove that the specified FP value is never equal to 3219 /// -0.0. 3220 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3221 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3222 /// the same as +0.0 in floating-point ops. 3223 /// 3224 /// NOTE: this function will need to be revisited when we support non-default 3225 /// rounding modes! 3226 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3227 unsigned Depth) { 3228 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3229 return !CFP->getValueAPF().isNegZero(); 3230 3231 if (Depth == MaxAnalysisRecursionDepth) 3232 return false; 3233 3234 auto *Op = dyn_cast<Operator>(V); 3235 if (!Op) 3236 return false; 3237 3238 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3239 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3240 return true; 3241 3242 // sitofp and uitofp turn into +0.0 for zero. 3243 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3244 return true; 3245 3246 if (auto *Call = dyn_cast<CallInst>(Op)) { 3247 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3248 switch (IID) { 3249 default: 3250 break; 3251 // sqrt(-0.0) = -0.0, no other negative results are possible. 3252 case Intrinsic::sqrt: 3253 case Intrinsic::canonicalize: 3254 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3255 // fabs(x) != -0.0 3256 case Intrinsic::fabs: 3257 return true; 3258 } 3259 } 3260 3261 return false; 3262 } 3263 3264 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3265 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3266 /// bit despite comparing equal. 3267 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3268 const TargetLibraryInfo *TLI, 3269 bool SignBitOnly, 3270 unsigned Depth) { 3271 // TODO: This function does not do the right thing when SignBitOnly is true 3272 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3273 // which flips the sign bits of NaNs. See 3274 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3275 3276 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3277 return !CFP->getValueAPF().isNegative() || 3278 (!SignBitOnly && CFP->getValueAPF().isZero()); 3279 } 3280 3281 // Handle vector of constants. 3282 if (auto *CV = dyn_cast<Constant>(V)) { 3283 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3284 unsigned NumElts = CVFVTy->getNumElements(); 3285 for (unsigned i = 0; i != NumElts; ++i) { 3286 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3287 if (!CFP) 3288 return false; 3289 if (CFP->getValueAPF().isNegative() && 3290 (SignBitOnly || !CFP->getValueAPF().isZero())) 3291 return false; 3292 } 3293 3294 // All non-negative ConstantFPs. 3295 return true; 3296 } 3297 } 3298 3299 if (Depth == MaxAnalysisRecursionDepth) 3300 return false; 3301 3302 const Operator *I = dyn_cast<Operator>(V); 3303 if (!I) 3304 return false; 3305 3306 switch (I->getOpcode()) { 3307 default: 3308 break; 3309 // Unsigned integers are always nonnegative. 3310 case Instruction::UIToFP: 3311 return true; 3312 case Instruction::FMul: 3313 case Instruction::FDiv: 3314 // X * X is always non-negative or a NaN. 3315 // X / X is always exactly 1.0 or a NaN. 3316 if (I->getOperand(0) == I->getOperand(1) && 3317 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3318 return true; 3319 3320 LLVM_FALLTHROUGH; 3321 case Instruction::FAdd: 3322 case Instruction::FRem: 3323 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3324 Depth + 1) && 3325 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3326 Depth + 1); 3327 case Instruction::Select: 3328 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3329 Depth + 1) && 3330 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3331 Depth + 1); 3332 case Instruction::FPExt: 3333 case Instruction::FPTrunc: 3334 // Widening/narrowing never change sign. 3335 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3336 Depth + 1); 3337 case Instruction::ExtractElement: 3338 // Look through extract element. At the moment we keep this simple and skip 3339 // tracking the specific element. But at least we might find information 3340 // valid for all elements of the vector. 3341 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3342 Depth + 1); 3343 case Instruction::Call: 3344 const auto *CI = cast<CallInst>(I); 3345 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3346 switch (IID) { 3347 default: 3348 break; 3349 case Intrinsic::maxnum: { 3350 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3351 auto isPositiveNum = [&](Value *V) { 3352 if (SignBitOnly) { 3353 // With SignBitOnly, this is tricky because the result of 3354 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3355 // a constant strictly greater than 0.0. 3356 const APFloat *C; 3357 return match(V, m_APFloat(C)) && 3358 *C > APFloat::getZero(C->getSemantics()); 3359 } 3360 3361 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3362 // maxnum can't be ordered-less-than-zero. 3363 return isKnownNeverNaN(V, TLI) && 3364 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3365 }; 3366 3367 // TODO: This could be improved. We could also check that neither operand 3368 // has its sign bit set (and at least 1 is not-NAN?). 3369 return isPositiveNum(V0) || isPositiveNum(V1); 3370 } 3371 3372 case Intrinsic::maximum: 3373 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3374 Depth + 1) || 3375 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3376 Depth + 1); 3377 case Intrinsic::minnum: 3378 case Intrinsic::minimum: 3379 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3380 Depth + 1) && 3381 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3382 Depth + 1); 3383 case Intrinsic::exp: 3384 case Intrinsic::exp2: 3385 case Intrinsic::fabs: 3386 return true; 3387 3388 case Intrinsic::sqrt: 3389 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3390 if (!SignBitOnly) 3391 return true; 3392 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3393 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3394 3395 case Intrinsic::powi: 3396 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3397 // powi(x,n) is non-negative if n is even. 3398 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3399 return true; 3400 } 3401 // TODO: This is not correct. Given that exp is an integer, here are the 3402 // ways that pow can return a negative value: 3403 // 3404 // pow(x, exp) --> negative if exp is odd and x is negative. 3405 // pow(-0, exp) --> -inf if exp is negative odd. 3406 // pow(-0, exp) --> -0 if exp is positive odd. 3407 // pow(-inf, exp) --> -0 if exp is negative odd. 3408 // pow(-inf, exp) --> -inf if exp is positive odd. 3409 // 3410 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3411 // but we must return false if x == -0. Unfortunately we do not currently 3412 // have a way of expressing this constraint. See details in 3413 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3414 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3415 Depth + 1); 3416 3417 case Intrinsic::fma: 3418 case Intrinsic::fmuladd: 3419 // x*x+y is non-negative if y is non-negative. 3420 return I->getOperand(0) == I->getOperand(1) && 3421 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3422 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3423 Depth + 1); 3424 } 3425 break; 3426 } 3427 return false; 3428 } 3429 3430 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3431 const TargetLibraryInfo *TLI) { 3432 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3433 } 3434 3435 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3436 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3437 } 3438 3439 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3440 unsigned Depth) { 3441 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3442 3443 // If we're told that infinities won't happen, assume they won't. 3444 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3445 if (FPMathOp->hasNoInfs()) 3446 return true; 3447 3448 // Handle scalar constants. 3449 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3450 return !CFP->isInfinity(); 3451 3452 if (Depth == MaxAnalysisRecursionDepth) 3453 return false; 3454 3455 if (auto *Inst = dyn_cast<Instruction>(V)) { 3456 switch (Inst->getOpcode()) { 3457 case Instruction::Select: { 3458 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3459 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3460 } 3461 case Instruction::SIToFP: 3462 case Instruction::UIToFP: { 3463 // Get width of largest magnitude integer (remove a bit if signed). 3464 // This still works for a signed minimum value because the largest FP 3465 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3466 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3467 if (Inst->getOpcode() == Instruction::SIToFP) 3468 --IntSize; 3469 3470 // If the exponent of the largest finite FP value can hold the largest 3471 // integer, the result of the cast must be finite. 3472 Type *FPTy = Inst->getType()->getScalarType(); 3473 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3474 } 3475 default: 3476 break; 3477 } 3478 } 3479 3480 // try to handle fixed width vector constants 3481 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3482 if (VFVTy && isa<Constant>(V)) { 3483 // For vectors, verify that each element is not infinity. 3484 unsigned NumElts = VFVTy->getNumElements(); 3485 for (unsigned i = 0; i != NumElts; ++i) { 3486 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3487 if (!Elt) 3488 return false; 3489 if (isa<UndefValue>(Elt)) 3490 continue; 3491 auto *CElt = dyn_cast<ConstantFP>(Elt); 3492 if (!CElt || CElt->isInfinity()) 3493 return false; 3494 } 3495 // All elements were confirmed non-infinity or undefined. 3496 return true; 3497 } 3498 3499 // was not able to prove that V never contains infinity 3500 return false; 3501 } 3502 3503 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3504 unsigned Depth) { 3505 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3506 3507 // If we're told that NaNs won't happen, assume they won't. 3508 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3509 if (FPMathOp->hasNoNaNs()) 3510 return true; 3511 3512 // Handle scalar constants. 3513 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3514 return !CFP->isNaN(); 3515 3516 if (Depth == MaxAnalysisRecursionDepth) 3517 return false; 3518 3519 if (auto *Inst = dyn_cast<Instruction>(V)) { 3520 switch (Inst->getOpcode()) { 3521 case Instruction::FAdd: 3522 case Instruction::FSub: 3523 // Adding positive and negative infinity produces NaN. 3524 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3525 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3526 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3527 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3528 3529 case Instruction::FMul: 3530 // Zero multiplied with infinity produces NaN. 3531 // FIXME: If neither side can be zero fmul never produces NaN. 3532 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3533 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3534 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3535 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3536 3537 case Instruction::FDiv: 3538 case Instruction::FRem: 3539 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3540 return false; 3541 3542 case Instruction::Select: { 3543 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3544 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3545 } 3546 case Instruction::SIToFP: 3547 case Instruction::UIToFP: 3548 return true; 3549 case Instruction::FPTrunc: 3550 case Instruction::FPExt: 3551 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3552 default: 3553 break; 3554 } 3555 } 3556 3557 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3558 switch (II->getIntrinsicID()) { 3559 case Intrinsic::canonicalize: 3560 case Intrinsic::fabs: 3561 case Intrinsic::copysign: 3562 case Intrinsic::exp: 3563 case Intrinsic::exp2: 3564 case Intrinsic::floor: 3565 case Intrinsic::ceil: 3566 case Intrinsic::trunc: 3567 case Intrinsic::rint: 3568 case Intrinsic::nearbyint: 3569 case Intrinsic::round: 3570 case Intrinsic::roundeven: 3571 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3572 case Intrinsic::sqrt: 3573 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3574 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3575 case Intrinsic::minnum: 3576 case Intrinsic::maxnum: 3577 // If either operand is not NaN, the result is not NaN. 3578 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3579 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3580 default: 3581 return false; 3582 } 3583 } 3584 3585 // Try to handle fixed width vector constants 3586 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3587 if (VFVTy && isa<Constant>(V)) { 3588 // For vectors, verify that each element is not NaN. 3589 unsigned NumElts = VFVTy->getNumElements(); 3590 for (unsigned i = 0; i != NumElts; ++i) { 3591 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3592 if (!Elt) 3593 return false; 3594 if (isa<UndefValue>(Elt)) 3595 continue; 3596 auto *CElt = dyn_cast<ConstantFP>(Elt); 3597 if (!CElt || CElt->isNaN()) 3598 return false; 3599 } 3600 // All elements were confirmed not-NaN or undefined. 3601 return true; 3602 } 3603 3604 // Was not able to prove that V never contains NaN 3605 return false; 3606 } 3607 3608 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3609 3610 // All byte-wide stores are splatable, even of arbitrary variables. 3611 if (V->getType()->isIntegerTy(8)) 3612 return V; 3613 3614 LLVMContext &Ctx = V->getContext(); 3615 3616 // Undef don't care. 3617 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3618 if (isa<UndefValue>(V)) 3619 return UndefInt8; 3620 3621 // Return Undef for zero-sized type. 3622 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3623 return UndefInt8; 3624 3625 Constant *C = dyn_cast<Constant>(V); 3626 if (!C) { 3627 // Conceptually, we could handle things like: 3628 // %a = zext i8 %X to i16 3629 // %b = shl i16 %a, 8 3630 // %c = or i16 %a, %b 3631 // but until there is an example that actually needs this, it doesn't seem 3632 // worth worrying about. 3633 return nullptr; 3634 } 3635 3636 // Handle 'null' ConstantArrayZero etc. 3637 if (C->isNullValue()) 3638 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3639 3640 // Constant floating-point values can be handled as integer values if the 3641 // corresponding integer value is "byteable". An important case is 0.0. 3642 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3643 Type *Ty = nullptr; 3644 if (CFP->getType()->isHalfTy()) 3645 Ty = Type::getInt16Ty(Ctx); 3646 else if (CFP->getType()->isFloatTy()) 3647 Ty = Type::getInt32Ty(Ctx); 3648 else if (CFP->getType()->isDoubleTy()) 3649 Ty = Type::getInt64Ty(Ctx); 3650 // Don't handle long double formats, which have strange constraints. 3651 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3652 : nullptr; 3653 } 3654 3655 // We can handle constant integers that are multiple of 8 bits. 3656 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3657 if (CI->getBitWidth() % 8 == 0) { 3658 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3659 if (!CI->getValue().isSplat(8)) 3660 return nullptr; 3661 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3662 } 3663 } 3664 3665 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3666 if (CE->getOpcode() == Instruction::IntToPtr) { 3667 auto PS = DL.getPointerSizeInBits( 3668 cast<PointerType>(CE->getType())->getAddressSpace()); 3669 return isBytewiseValue( 3670 ConstantExpr::getIntegerCast(CE->getOperand(0), 3671 Type::getIntNTy(Ctx, PS), false), 3672 DL); 3673 } 3674 } 3675 3676 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3677 if (LHS == RHS) 3678 return LHS; 3679 if (!LHS || !RHS) 3680 return nullptr; 3681 if (LHS == UndefInt8) 3682 return RHS; 3683 if (RHS == UndefInt8) 3684 return LHS; 3685 return nullptr; 3686 }; 3687 3688 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3689 Value *Val = UndefInt8; 3690 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3691 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3692 return nullptr; 3693 return Val; 3694 } 3695 3696 if (isa<ConstantAggregate>(C)) { 3697 Value *Val = UndefInt8; 3698 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3699 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3700 return nullptr; 3701 return Val; 3702 } 3703 3704 // Don't try to handle the handful of other constants. 3705 return nullptr; 3706 } 3707 3708 // This is the recursive version of BuildSubAggregate. It takes a few different 3709 // arguments. Idxs is the index within the nested struct From that we are 3710 // looking at now (which is of type IndexedType). IdxSkip is the number of 3711 // indices from Idxs that should be left out when inserting into the resulting 3712 // struct. To is the result struct built so far, new insertvalue instructions 3713 // build on that. 3714 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3715 SmallVectorImpl<unsigned> &Idxs, 3716 unsigned IdxSkip, 3717 Instruction *InsertBefore) { 3718 StructType *STy = dyn_cast<StructType>(IndexedType); 3719 if (STy) { 3720 // Save the original To argument so we can modify it 3721 Value *OrigTo = To; 3722 // General case, the type indexed by Idxs is a struct 3723 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3724 // Process each struct element recursively 3725 Idxs.push_back(i); 3726 Value *PrevTo = To; 3727 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3728 InsertBefore); 3729 Idxs.pop_back(); 3730 if (!To) { 3731 // Couldn't find any inserted value for this index? Cleanup 3732 while (PrevTo != OrigTo) { 3733 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3734 PrevTo = Del->getAggregateOperand(); 3735 Del->eraseFromParent(); 3736 } 3737 // Stop processing elements 3738 break; 3739 } 3740 } 3741 // If we successfully found a value for each of our subaggregates 3742 if (To) 3743 return To; 3744 } 3745 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3746 // the struct's elements had a value that was inserted directly. In the latter 3747 // case, perhaps we can't determine each of the subelements individually, but 3748 // we might be able to find the complete struct somewhere. 3749 3750 // Find the value that is at that particular spot 3751 Value *V = FindInsertedValue(From, Idxs); 3752 3753 if (!V) 3754 return nullptr; 3755 3756 // Insert the value in the new (sub) aggregate 3757 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3758 "tmp", InsertBefore); 3759 } 3760 3761 // This helper takes a nested struct and extracts a part of it (which is again a 3762 // struct) into a new value. For example, given the struct: 3763 // { a, { b, { c, d }, e } } 3764 // and the indices "1, 1" this returns 3765 // { c, d }. 3766 // 3767 // It does this by inserting an insertvalue for each element in the resulting 3768 // struct, as opposed to just inserting a single struct. This will only work if 3769 // each of the elements of the substruct are known (ie, inserted into From by an 3770 // insertvalue instruction somewhere). 3771 // 3772 // All inserted insertvalue instructions are inserted before InsertBefore 3773 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3774 Instruction *InsertBefore) { 3775 assert(InsertBefore && "Must have someplace to insert!"); 3776 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3777 idx_range); 3778 Value *To = UndefValue::get(IndexedType); 3779 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3780 unsigned IdxSkip = Idxs.size(); 3781 3782 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3783 } 3784 3785 /// Given an aggregate and a sequence of indices, see if the scalar value 3786 /// indexed is already around as a register, for example if it was inserted 3787 /// directly into the aggregate. 3788 /// 3789 /// If InsertBefore is not null, this function will duplicate (modified) 3790 /// insertvalues when a part of a nested struct is extracted. 3791 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3792 Instruction *InsertBefore) { 3793 // Nothing to index? Just return V then (this is useful at the end of our 3794 // recursion). 3795 if (idx_range.empty()) 3796 return V; 3797 // We have indices, so V should have an indexable type. 3798 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3799 "Not looking at a struct or array?"); 3800 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3801 "Invalid indices for type?"); 3802 3803 if (Constant *C = dyn_cast<Constant>(V)) { 3804 C = C->getAggregateElement(idx_range[0]); 3805 if (!C) return nullptr; 3806 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3807 } 3808 3809 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3810 // Loop the indices for the insertvalue instruction in parallel with the 3811 // requested indices 3812 const unsigned *req_idx = idx_range.begin(); 3813 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3814 i != e; ++i, ++req_idx) { 3815 if (req_idx == idx_range.end()) { 3816 // We can't handle this without inserting insertvalues 3817 if (!InsertBefore) 3818 return nullptr; 3819 3820 // The requested index identifies a part of a nested aggregate. Handle 3821 // this specially. For example, 3822 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3823 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3824 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3825 // This can be changed into 3826 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3827 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3828 // which allows the unused 0,0 element from the nested struct to be 3829 // removed. 3830 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3831 InsertBefore); 3832 } 3833 3834 // This insert value inserts something else than what we are looking for. 3835 // See if the (aggregate) value inserted into has the value we are 3836 // looking for, then. 3837 if (*req_idx != *i) 3838 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3839 InsertBefore); 3840 } 3841 // If we end up here, the indices of the insertvalue match with those 3842 // requested (though possibly only partially). Now we recursively look at 3843 // the inserted value, passing any remaining indices. 3844 return FindInsertedValue(I->getInsertedValueOperand(), 3845 makeArrayRef(req_idx, idx_range.end()), 3846 InsertBefore); 3847 } 3848 3849 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3850 // If we're extracting a value from an aggregate that was extracted from 3851 // something else, we can extract from that something else directly instead. 3852 // However, we will need to chain I's indices with the requested indices. 3853 3854 // Calculate the number of indices required 3855 unsigned size = I->getNumIndices() + idx_range.size(); 3856 // Allocate some space to put the new indices in 3857 SmallVector<unsigned, 5> Idxs; 3858 Idxs.reserve(size); 3859 // Add indices from the extract value instruction 3860 Idxs.append(I->idx_begin(), I->idx_end()); 3861 3862 // Add requested indices 3863 Idxs.append(idx_range.begin(), idx_range.end()); 3864 3865 assert(Idxs.size() == size 3866 && "Number of indices added not correct?"); 3867 3868 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3869 } 3870 // Otherwise, we don't know (such as, extracting from a function return value 3871 // or load instruction) 3872 return nullptr; 3873 } 3874 3875 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3876 unsigned CharSize) { 3877 // Make sure the GEP has exactly three arguments. 3878 if (GEP->getNumOperands() != 3) 3879 return false; 3880 3881 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3882 // CharSize. 3883 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3884 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3885 return false; 3886 3887 // Check to make sure that the first operand of the GEP is an integer and 3888 // has value 0 so that we are sure we're indexing into the initializer. 3889 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3890 if (!FirstIdx || !FirstIdx->isZero()) 3891 return false; 3892 3893 return true; 3894 } 3895 3896 bool llvm::getConstantDataArrayInfo(const Value *V, 3897 ConstantDataArraySlice &Slice, 3898 unsigned ElementSize, uint64_t Offset) { 3899 assert(V); 3900 3901 // Look through bitcast instructions and geps. 3902 V = V->stripPointerCasts(); 3903 3904 // If the value is a GEP instruction or constant expression, treat it as an 3905 // offset. 3906 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3907 // The GEP operator should be based on a pointer to string constant, and is 3908 // indexing into the string constant. 3909 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3910 return false; 3911 3912 // If the second index isn't a ConstantInt, then this is a variable index 3913 // into the array. If this occurs, we can't say anything meaningful about 3914 // the string. 3915 uint64_t StartIdx = 0; 3916 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3917 StartIdx = CI->getZExtValue(); 3918 else 3919 return false; 3920 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3921 StartIdx + Offset); 3922 } 3923 3924 // The GEP instruction, constant or instruction, must reference a global 3925 // variable that is a constant and is initialized. The referenced constant 3926 // initializer is the array that we'll use for optimization. 3927 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3928 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3929 return false; 3930 3931 const ConstantDataArray *Array; 3932 ArrayType *ArrayTy; 3933 if (GV->getInitializer()->isNullValue()) { 3934 Type *GVTy = GV->getValueType(); 3935 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3936 // A zeroinitializer for the array; there is no ConstantDataArray. 3937 Array = nullptr; 3938 } else { 3939 const DataLayout &DL = GV->getParent()->getDataLayout(); 3940 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3941 uint64_t Length = SizeInBytes / (ElementSize / 8); 3942 if (Length <= Offset) 3943 return false; 3944 3945 Slice.Array = nullptr; 3946 Slice.Offset = 0; 3947 Slice.Length = Length - Offset; 3948 return true; 3949 } 3950 } else { 3951 // This must be a ConstantDataArray. 3952 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3953 if (!Array) 3954 return false; 3955 ArrayTy = Array->getType(); 3956 } 3957 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3958 return false; 3959 3960 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3961 if (Offset > NumElts) 3962 return false; 3963 3964 Slice.Array = Array; 3965 Slice.Offset = Offset; 3966 Slice.Length = NumElts - Offset; 3967 return true; 3968 } 3969 3970 /// This function computes the length of a null-terminated C string pointed to 3971 /// by V. If successful, it returns true and returns the string in Str. 3972 /// If unsuccessful, it returns false. 3973 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3974 uint64_t Offset, bool TrimAtNul) { 3975 ConstantDataArraySlice Slice; 3976 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3977 return false; 3978 3979 if (Slice.Array == nullptr) { 3980 if (TrimAtNul) { 3981 Str = StringRef(); 3982 return true; 3983 } 3984 if (Slice.Length == 1) { 3985 Str = StringRef("", 1); 3986 return true; 3987 } 3988 // We cannot instantiate a StringRef as we do not have an appropriate string 3989 // of 0s at hand. 3990 return false; 3991 } 3992 3993 // Start out with the entire array in the StringRef. 3994 Str = Slice.Array->getAsString(); 3995 // Skip over 'offset' bytes. 3996 Str = Str.substr(Slice.Offset); 3997 3998 if (TrimAtNul) { 3999 // Trim off the \0 and anything after it. If the array is not nul 4000 // terminated, we just return the whole end of string. The client may know 4001 // some other way that the string is length-bound. 4002 Str = Str.substr(0, Str.find('\0')); 4003 } 4004 return true; 4005 } 4006 4007 // These next two are very similar to the above, but also look through PHI 4008 // nodes. 4009 // TODO: See if we can integrate these two together. 4010 4011 /// If we can compute the length of the string pointed to by 4012 /// the specified pointer, return 'len+1'. If we can't, return 0. 4013 static uint64_t GetStringLengthH(const Value *V, 4014 SmallPtrSetImpl<const PHINode*> &PHIs, 4015 unsigned CharSize) { 4016 // Look through noop bitcast instructions. 4017 V = V->stripPointerCasts(); 4018 4019 // If this is a PHI node, there are two cases: either we have already seen it 4020 // or we haven't. 4021 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4022 if (!PHIs.insert(PN).second) 4023 return ~0ULL; // already in the set. 4024 4025 // If it was new, see if all the input strings are the same length. 4026 uint64_t LenSoFar = ~0ULL; 4027 for (Value *IncValue : PN->incoming_values()) { 4028 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4029 if (Len == 0) return 0; // Unknown length -> unknown. 4030 4031 if (Len == ~0ULL) continue; 4032 4033 if (Len != LenSoFar && LenSoFar != ~0ULL) 4034 return 0; // Disagree -> unknown. 4035 LenSoFar = Len; 4036 } 4037 4038 // Success, all agree. 4039 return LenSoFar; 4040 } 4041 4042 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4043 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4044 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4045 if (Len1 == 0) return 0; 4046 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4047 if (Len2 == 0) return 0; 4048 if (Len1 == ~0ULL) return Len2; 4049 if (Len2 == ~0ULL) return Len1; 4050 if (Len1 != Len2) return 0; 4051 return Len1; 4052 } 4053 4054 // Otherwise, see if we can read the string. 4055 ConstantDataArraySlice Slice; 4056 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4057 return 0; 4058 4059 if (Slice.Array == nullptr) 4060 return 1; 4061 4062 // Search for nul characters 4063 unsigned NullIndex = 0; 4064 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4065 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4066 break; 4067 } 4068 4069 return NullIndex + 1; 4070 } 4071 4072 /// If we can compute the length of the string pointed to by 4073 /// the specified pointer, return 'len+1'. If we can't, return 0. 4074 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4075 if (!V->getType()->isPointerTy()) 4076 return 0; 4077 4078 SmallPtrSet<const PHINode*, 32> PHIs; 4079 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4080 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4081 // an empty string as a length. 4082 return Len == ~0ULL ? 1 : Len; 4083 } 4084 4085 const Value * 4086 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4087 bool MustPreserveNullness) { 4088 assert(Call && 4089 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4090 if (const Value *RV = Call->getReturnedArgOperand()) 4091 return RV; 4092 // This can be used only as a aliasing property. 4093 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4094 Call, MustPreserveNullness)) 4095 return Call->getArgOperand(0); 4096 return nullptr; 4097 } 4098 4099 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4100 const CallBase *Call, bool MustPreserveNullness) { 4101 switch (Call->getIntrinsicID()) { 4102 case Intrinsic::launder_invariant_group: 4103 case Intrinsic::strip_invariant_group: 4104 case Intrinsic::aarch64_irg: 4105 case Intrinsic::aarch64_tagp: 4106 return true; 4107 case Intrinsic::ptrmask: 4108 return !MustPreserveNullness; 4109 default: 4110 return false; 4111 } 4112 } 4113 4114 /// \p PN defines a loop-variant pointer to an object. Check if the 4115 /// previous iteration of the loop was referring to the same object as \p PN. 4116 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4117 const LoopInfo *LI) { 4118 // Find the loop-defined value. 4119 Loop *L = LI->getLoopFor(PN->getParent()); 4120 if (PN->getNumIncomingValues() != 2) 4121 return true; 4122 4123 // Find the value from previous iteration. 4124 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4125 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4126 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4127 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4128 return true; 4129 4130 // If a new pointer is loaded in the loop, the pointer references a different 4131 // object in every iteration. E.g.: 4132 // for (i) 4133 // int *p = a[i]; 4134 // ... 4135 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4136 if (!L->isLoopInvariant(Load->getPointerOperand())) 4137 return false; 4138 return true; 4139 } 4140 4141 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4142 if (!V->getType()->isPointerTy()) 4143 return V; 4144 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4145 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4146 V = GEP->getPointerOperand(); 4147 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4148 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4149 V = cast<Operator>(V)->getOperand(0); 4150 if (!V->getType()->isPointerTy()) 4151 return V; 4152 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4153 if (GA->isInterposable()) 4154 return V; 4155 V = GA->getAliasee(); 4156 } else { 4157 if (auto *PHI = dyn_cast<PHINode>(V)) { 4158 // Look through single-arg phi nodes created by LCSSA. 4159 if (PHI->getNumIncomingValues() == 1) { 4160 V = PHI->getIncomingValue(0); 4161 continue; 4162 } 4163 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4164 // CaptureTracking can know about special capturing properties of some 4165 // intrinsics like launder.invariant.group, that can't be expressed with 4166 // the attributes, but have properties like returning aliasing pointer. 4167 // Because some analysis may assume that nocaptured pointer is not 4168 // returned from some special intrinsic (because function would have to 4169 // be marked with returns attribute), it is crucial to use this function 4170 // because it should be in sync with CaptureTracking. Not using it may 4171 // cause weird miscompilations where 2 aliasing pointers are assumed to 4172 // noalias. 4173 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4174 V = RP; 4175 continue; 4176 } 4177 } 4178 4179 return V; 4180 } 4181 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4182 } 4183 return V; 4184 } 4185 4186 void llvm::getUnderlyingObjects(const Value *V, 4187 SmallVectorImpl<const Value *> &Objects, 4188 LoopInfo *LI, unsigned MaxLookup) { 4189 SmallPtrSet<const Value *, 4> Visited; 4190 SmallVector<const Value *, 4> Worklist; 4191 Worklist.push_back(V); 4192 do { 4193 const Value *P = Worklist.pop_back_val(); 4194 P = getUnderlyingObject(P, MaxLookup); 4195 4196 if (!Visited.insert(P).second) 4197 continue; 4198 4199 if (auto *SI = dyn_cast<SelectInst>(P)) { 4200 Worklist.push_back(SI->getTrueValue()); 4201 Worklist.push_back(SI->getFalseValue()); 4202 continue; 4203 } 4204 4205 if (auto *PN = dyn_cast<PHINode>(P)) { 4206 // If this PHI changes the underlying object in every iteration of the 4207 // loop, don't look through it. Consider: 4208 // int **A; 4209 // for (i) { 4210 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4211 // Curr = A[i]; 4212 // *Prev, *Curr; 4213 // 4214 // Prev is tracking Curr one iteration behind so they refer to different 4215 // underlying objects. 4216 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4217 isSameUnderlyingObjectInLoop(PN, LI)) 4218 for (Value *IncValue : PN->incoming_values()) 4219 Worklist.push_back(IncValue); 4220 continue; 4221 } 4222 4223 Objects.push_back(P); 4224 } while (!Worklist.empty()); 4225 } 4226 4227 /// This is the function that does the work of looking through basic 4228 /// ptrtoint+arithmetic+inttoptr sequences. 4229 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4230 do { 4231 if (const Operator *U = dyn_cast<Operator>(V)) { 4232 // If we find a ptrtoint, we can transfer control back to the 4233 // regular getUnderlyingObjectFromInt. 4234 if (U->getOpcode() == Instruction::PtrToInt) 4235 return U->getOperand(0); 4236 // If we find an add of a constant, a multiplied value, or a phi, it's 4237 // likely that the other operand will lead us to the base 4238 // object. We don't have to worry about the case where the 4239 // object address is somehow being computed by the multiply, 4240 // because our callers only care when the result is an 4241 // identifiable object. 4242 if (U->getOpcode() != Instruction::Add || 4243 (!isa<ConstantInt>(U->getOperand(1)) && 4244 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4245 !isa<PHINode>(U->getOperand(1)))) 4246 return V; 4247 V = U->getOperand(0); 4248 } else { 4249 return V; 4250 } 4251 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4252 } while (true); 4253 } 4254 4255 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4256 /// ptrtoint+arithmetic+inttoptr sequences. 4257 /// It returns false if unidentified object is found in getUnderlyingObjects. 4258 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4259 SmallVectorImpl<Value *> &Objects) { 4260 SmallPtrSet<const Value *, 16> Visited; 4261 SmallVector<const Value *, 4> Working(1, V); 4262 do { 4263 V = Working.pop_back_val(); 4264 4265 SmallVector<const Value *, 4> Objs; 4266 getUnderlyingObjects(V, Objs); 4267 4268 for (const Value *V : Objs) { 4269 if (!Visited.insert(V).second) 4270 continue; 4271 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4272 const Value *O = 4273 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4274 if (O->getType()->isPointerTy()) { 4275 Working.push_back(O); 4276 continue; 4277 } 4278 } 4279 // If getUnderlyingObjects fails to find an identifiable object, 4280 // getUnderlyingObjectsForCodeGen also fails for safety. 4281 if (!isIdentifiedObject(V)) { 4282 Objects.clear(); 4283 return false; 4284 } 4285 Objects.push_back(const_cast<Value *>(V)); 4286 } 4287 } while (!Working.empty()); 4288 return true; 4289 } 4290 4291 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4292 AllocaInst *Result = nullptr; 4293 SmallPtrSet<Value *, 4> Visited; 4294 SmallVector<Value *, 4> Worklist; 4295 4296 auto AddWork = [&](Value *V) { 4297 if (Visited.insert(V).second) 4298 Worklist.push_back(V); 4299 }; 4300 4301 AddWork(V); 4302 do { 4303 V = Worklist.pop_back_val(); 4304 assert(Visited.count(V)); 4305 4306 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4307 if (Result && Result != AI) 4308 return nullptr; 4309 Result = AI; 4310 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4311 AddWork(CI->getOperand(0)); 4312 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4313 for (Value *IncValue : PN->incoming_values()) 4314 AddWork(IncValue); 4315 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4316 AddWork(SI->getTrueValue()); 4317 AddWork(SI->getFalseValue()); 4318 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4319 if (OffsetZero && !GEP->hasAllZeroIndices()) 4320 return nullptr; 4321 AddWork(GEP->getPointerOperand()); 4322 } else { 4323 return nullptr; 4324 } 4325 } while (!Worklist.empty()); 4326 4327 return Result; 4328 } 4329 4330 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4331 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4332 for (const User *U : V->users()) { 4333 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4334 if (!II) 4335 return false; 4336 4337 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4338 continue; 4339 4340 if (AllowDroppable && II->isDroppable()) 4341 continue; 4342 4343 return false; 4344 } 4345 return true; 4346 } 4347 4348 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4349 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4350 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4351 } 4352 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4353 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4354 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4355 } 4356 4357 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4358 if (!LI.isUnordered()) 4359 return true; 4360 const Function &F = *LI.getFunction(); 4361 // Speculative load may create a race that did not exist in the source. 4362 return F.hasFnAttribute(Attribute::SanitizeThread) || 4363 // Speculative load may load data from dirty regions. 4364 F.hasFnAttribute(Attribute::SanitizeAddress) || 4365 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4366 } 4367 4368 4369 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4370 const Instruction *CtxI, 4371 const DominatorTree *DT) { 4372 const Operator *Inst = dyn_cast<Operator>(V); 4373 if (!Inst) 4374 return false; 4375 4376 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4377 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4378 if (C->canTrap()) 4379 return false; 4380 4381 switch (Inst->getOpcode()) { 4382 default: 4383 return true; 4384 case Instruction::UDiv: 4385 case Instruction::URem: { 4386 // x / y is undefined if y == 0. 4387 const APInt *V; 4388 if (match(Inst->getOperand(1), m_APInt(V))) 4389 return *V != 0; 4390 return false; 4391 } 4392 case Instruction::SDiv: 4393 case Instruction::SRem: { 4394 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4395 const APInt *Numerator, *Denominator; 4396 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4397 return false; 4398 // We cannot hoist this division if the denominator is 0. 4399 if (*Denominator == 0) 4400 return false; 4401 // It's safe to hoist if the denominator is not 0 or -1. 4402 if (*Denominator != -1) 4403 return true; 4404 // At this point we know that the denominator is -1. It is safe to hoist as 4405 // long we know that the numerator is not INT_MIN. 4406 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4407 return !Numerator->isMinSignedValue(); 4408 // The numerator *might* be MinSignedValue. 4409 return false; 4410 } 4411 case Instruction::Load: { 4412 const LoadInst *LI = cast<LoadInst>(Inst); 4413 if (mustSuppressSpeculation(*LI)) 4414 return false; 4415 const DataLayout &DL = LI->getModule()->getDataLayout(); 4416 return isDereferenceableAndAlignedPointer( 4417 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4418 DL, CtxI, DT); 4419 } 4420 case Instruction::Call: { 4421 auto *CI = cast<const CallInst>(Inst); 4422 const Function *Callee = CI->getCalledFunction(); 4423 4424 // The called function could have undefined behavior or side-effects, even 4425 // if marked readnone nounwind. 4426 return Callee && Callee->isSpeculatable(); 4427 } 4428 case Instruction::VAArg: 4429 case Instruction::Alloca: 4430 case Instruction::Invoke: 4431 case Instruction::CallBr: 4432 case Instruction::PHI: 4433 case Instruction::Store: 4434 case Instruction::Ret: 4435 case Instruction::Br: 4436 case Instruction::IndirectBr: 4437 case Instruction::Switch: 4438 case Instruction::Unreachable: 4439 case Instruction::Fence: 4440 case Instruction::AtomicRMW: 4441 case Instruction::AtomicCmpXchg: 4442 case Instruction::LandingPad: 4443 case Instruction::Resume: 4444 case Instruction::CatchSwitch: 4445 case Instruction::CatchPad: 4446 case Instruction::CatchRet: 4447 case Instruction::CleanupPad: 4448 case Instruction::CleanupRet: 4449 return false; // Misc instructions which have effects 4450 } 4451 } 4452 4453 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4454 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4455 } 4456 4457 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4458 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4459 switch (OR) { 4460 case ConstantRange::OverflowResult::MayOverflow: 4461 return OverflowResult::MayOverflow; 4462 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4463 return OverflowResult::AlwaysOverflowsLow; 4464 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4465 return OverflowResult::AlwaysOverflowsHigh; 4466 case ConstantRange::OverflowResult::NeverOverflows: 4467 return OverflowResult::NeverOverflows; 4468 } 4469 llvm_unreachable("Unknown OverflowResult"); 4470 } 4471 4472 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4473 static ConstantRange computeConstantRangeIncludingKnownBits( 4474 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4475 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4476 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4477 KnownBits Known = computeKnownBits( 4478 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4479 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4480 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4481 ConstantRange::PreferredRangeType RangeType = 4482 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4483 return CR1.intersectWith(CR2, RangeType); 4484 } 4485 4486 OverflowResult llvm::computeOverflowForUnsignedMul( 4487 const Value *LHS, const Value *RHS, const DataLayout &DL, 4488 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4489 bool UseInstrInfo) { 4490 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4491 nullptr, UseInstrInfo); 4492 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4493 nullptr, UseInstrInfo); 4494 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4495 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4496 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4497 } 4498 4499 OverflowResult 4500 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4501 const DataLayout &DL, AssumptionCache *AC, 4502 const Instruction *CxtI, 4503 const DominatorTree *DT, bool UseInstrInfo) { 4504 // Multiplying n * m significant bits yields a result of n + m significant 4505 // bits. If the total number of significant bits does not exceed the 4506 // result bit width (minus 1), there is no overflow. 4507 // This means if we have enough leading sign bits in the operands 4508 // we can guarantee that the result does not overflow. 4509 // Ref: "Hacker's Delight" by Henry Warren 4510 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4511 4512 // Note that underestimating the number of sign bits gives a more 4513 // conservative answer. 4514 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4515 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4516 4517 // First handle the easy case: if we have enough sign bits there's 4518 // definitely no overflow. 4519 if (SignBits > BitWidth + 1) 4520 return OverflowResult::NeverOverflows; 4521 4522 // There are two ambiguous cases where there can be no overflow: 4523 // SignBits == BitWidth + 1 and 4524 // SignBits == BitWidth 4525 // The second case is difficult to check, therefore we only handle the 4526 // first case. 4527 if (SignBits == BitWidth + 1) { 4528 // It overflows only when both arguments are negative and the true 4529 // product is exactly the minimum negative number. 4530 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4531 // For simplicity we just check if at least one side is not negative. 4532 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4533 nullptr, UseInstrInfo); 4534 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4535 nullptr, UseInstrInfo); 4536 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4537 return OverflowResult::NeverOverflows; 4538 } 4539 return OverflowResult::MayOverflow; 4540 } 4541 4542 OverflowResult llvm::computeOverflowForUnsignedAdd( 4543 const Value *LHS, const Value *RHS, const DataLayout &DL, 4544 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4545 bool UseInstrInfo) { 4546 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4547 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4548 nullptr, UseInstrInfo); 4549 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4550 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4551 nullptr, UseInstrInfo); 4552 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4553 } 4554 4555 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4556 const Value *RHS, 4557 const AddOperator *Add, 4558 const DataLayout &DL, 4559 AssumptionCache *AC, 4560 const Instruction *CxtI, 4561 const DominatorTree *DT) { 4562 if (Add && Add->hasNoSignedWrap()) { 4563 return OverflowResult::NeverOverflows; 4564 } 4565 4566 // If LHS and RHS each have at least two sign bits, the addition will look 4567 // like 4568 // 4569 // XX..... + 4570 // YY..... 4571 // 4572 // If the carry into the most significant position is 0, X and Y can't both 4573 // be 1 and therefore the carry out of the addition is also 0. 4574 // 4575 // If the carry into the most significant position is 1, X and Y can't both 4576 // be 0 and therefore the carry out of the addition is also 1. 4577 // 4578 // Since the carry into the most significant position is always equal to 4579 // the carry out of the addition, there is no signed overflow. 4580 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4581 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4582 return OverflowResult::NeverOverflows; 4583 4584 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4585 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4586 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4587 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4588 OverflowResult OR = 4589 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4590 if (OR != OverflowResult::MayOverflow) 4591 return OR; 4592 4593 // The remaining code needs Add to be available. Early returns if not so. 4594 if (!Add) 4595 return OverflowResult::MayOverflow; 4596 4597 // If the sign of Add is the same as at least one of the operands, this add 4598 // CANNOT overflow. If this can be determined from the known bits of the 4599 // operands the above signedAddMayOverflow() check will have already done so. 4600 // The only other way to improve on the known bits is from an assumption, so 4601 // call computeKnownBitsFromAssume() directly. 4602 bool LHSOrRHSKnownNonNegative = 4603 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4604 bool LHSOrRHSKnownNegative = 4605 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4606 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4607 KnownBits AddKnown(LHSRange.getBitWidth()); 4608 computeKnownBitsFromAssume( 4609 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4610 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4611 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4612 return OverflowResult::NeverOverflows; 4613 } 4614 4615 return OverflowResult::MayOverflow; 4616 } 4617 4618 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4619 const Value *RHS, 4620 const DataLayout &DL, 4621 AssumptionCache *AC, 4622 const Instruction *CxtI, 4623 const DominatorTree *DT) { 4624 // Checking for conditions implied by dominating conditions may be expensive. 4625 // Limit it to usub_with_overflow calls for now. 4626 if (match(CxtI, 4627 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4628 if (auto C = 4629 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4630 if (*C) 4631 return OverflowResult::NeverOverflows; 4632 return OverflowResult::AlwaysOverflowsLow; 4633 } 4634 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4635 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4636 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4637 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4638 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4639 } 4640 4641 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4642 const Value *RHS, 4643 const DataLayout &DL, 4644 AssumptionCache *AC, 4645 const Instruction *CxtI, 4646 const DominatorTree *DT) { 4647 // If LHS and RHS each have at least two sign bits, the subtraction 4648 // cannot overflow. 4649 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4650 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4651 return OverflowResult::NeverOverflows; 4652 4653 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4654 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4655 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4656 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4657 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4658 } 4659 4660 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4661 const DominatorTree &DT) { 4662 SmallVector<const BranchInst *, 2> GuardingBranches; 4663 SmallVector<const ExtractValueInst *, 2> Results; 4664 4665 for (const User *U : WO->users()) { 4666 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4667 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4668 4669 if (EVI->getIndices()[0] == 0) 4670 Results.push_back(EVI); 4671 else { 4672 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4673 4674 for (const auto *U : EVI->users()) 4675 if (const auto *B = dyn_cast<BranchInst>(U)) { 4676 assert(B->isConditional() && "How else is it using an i1?"); 4677 GuardingBranches.push_back(B); 4678 } 4679 } 4680 } else { 4681 // We are using the aggregate directly in a way we don't want to analyze 4682 // here (storing it to a global, say). 4683 return false; 4684 } 4685 } 4686 4687 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4688 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4689 if (!NoWrapEdge.isSingleEdge()) 4690 return false; 4691 4692 // Check if all users of the add are provably no-wrap. 4693 for (const auto *Result : Results) { 4694 // If the extractvalue itself is not executed on overflow, the we don't 4695 // need to check each use separately, since domination is transitive. 4696 if (DT.dominates(NoWrapEdge, Result->getParent())) 4697 continue; 4698 4699 for (auto &RU : Result->uses()) 4700 if (!DT.dominates(NoWrapEdge, RU)) 4701 return false; 4702 } 4703 4704 return true; 4705 }; 4706 4707 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4708 } 4709 4710 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4711 // See whether I has flags that may create poison 4712 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4713 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4714 return true; 4715 } 4716 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4717 if (ExactOp->isExact()) 4718 return true; 4719 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4720 auto FMF = FP->getFastMathFlags(); 4721 if (FMF.noNaNs() || FMF.noInfs()) 4722 return true; 4723 } 4724 4725 unsigned Opcode = Op->getOpcode(); 4726 4727 // Check whether opcode is a poison/undef-generating operation 4728 switch (Opcode) { 4729 case Instruction::Shl: 4730 case Instruction::AShr: 4731 case Instruction::LShr: { 4732 // Shifts return poison if shiftwidth is larger than the bitwidth. 4733 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4734 SmallVector<Constant *, 4> ShiftAmounts; 4735 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4736 unsigned NumElts = FVTy->getNumElements(); 4737 for (unsigned i = 0; i < NumElts; ++i) 4738 ShiftAmounts.push_back(C->getAggregateElement(i)); 4739 } else if (isa<ScalableVectorType>(C->getType())) 4740 return true; // Can't tell, just return true to be safe 4741 else 4742 ShiftAmounts.push_back(C); 4743 4744 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4745 auto *CI = dyn_cast<ConstantInt>(C); 4746 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4747 }); 4748 return !Safe; 4749 } 4750 return true; 4751 } 4752 case Instruction::FPToSI: 4753 case Instruction::FPToUI: 4754 // fptosi/ui yields poison if the resulting value does not fit in the 4755 // destination type. 4756 return true; 4757 case Instruction::Call: 4758 case Instruction::CallBr: 4759 case Instruction::Invoke: { 4760 const auto *CB = cast<CallBase>(Op); 4761 return !CB->hasRetAttr(Attribute::NoUndef); 4762 } 4763 case Instruction::InsertElement: 4764 case Instruction::ExtractElement: { 4765 // If index exceeds the length of the vector, it returns poison 4766 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4767 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4768 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4769 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4770 return true; 4771 return false; 4772 } 4773 case Instruction::ShuffleVector: { 4774 // shufflevector may return undef. 4775 if (PoisonOnly) 4776 return false; 4777 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4778 ? cast<ConstantExpr>(Op)->getShuffleMask() 4779 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4780 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4781 } 4782 case Instruction::FNeg: 4783 case Instruction::PHI: 4784 case Instruction::Select: 4785 case Instruction::URem: 4786 case Instruction::SRem: 4787 case Instruction::ExtractValue: 4788 case Instruction::InsertValue: 4789 case Instruction::Freeze: 4790 case Instruction::ICmp: 4791 case Instruction::FCmp: 4792 return false; 4793 case Instruction::GetElementPtr: { 4794 const auto *GEP = cast<GEPOperator>(Op); 4795 return GEP->isInBounds(); 4796 } 4797 default: { 4798 const auto *CE = dyn_cast<ConstantExpr>(Op); 4799 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4800 return false; 4801 else if (Instruction::isBinaryOp(Opcode)) 4802 return false; 4803 // Be conservative and return true. 4804 return true; 4805 } 4806 } 4807 } 4808 4809 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4810 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4811 } 4812 4813 bool llvm::canCreatePoison(const Operator *Op) { 4814 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4815 } 4816 4817 static bool programUndefinedIfUndefOrPoison(const Value *V, 4818 bool PoisonOnly); 4819 4820 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4821 AssumptionCache *AC, 4822 const Instruction *CtxI, 4823 const DominatorTree *DT, 4824 unsigned Depth, bool PoisonOnly) { 4825 if (Depth >= MaxAnalysisRecursionDepth) 4826 return false; 4827 4828 if (isa<MetadataAsValue>(V)) 4829 return false; 4830 4831 if (const auto *A = dyn_cast<Argument>(V)) { 4832 if (A->hasAttribute(Attribute::NoUndef)) 4833 return true; 4834 } 4835 4836 if (auto *C = dyn_cast<Constant>(V)) { 4837 if (isa<UndefValue>(C)) 4838 return PoisonOnly; 4839 4840 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4841 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4842 return true; 4843 4844 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4845 return (PoisonOnly || !C->containsUndefElement()) && 4846 !C->containsConstantExpression(); 4847 } 4848 4849 // Strip cast operations from a pointer value. 4850 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4851 // inbounds with zero offset. To guarantee that the result isn't poison, the 4852 // stripped pointer is checked as it has to be pointing into an allocated 4853 // object or be null `null` to ensure `inbounds` getelement pointers with a 4854 // zero offset could not produce poison. 4855 // It can strip off addrspacecast that do not change bit representation as 4856 // well. We believe that such addrspacecast is equivalent to no-op. 4857 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4858 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4859 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4860 return true; 4861 4862 auto OpCheck = [&](const Value *V) { 4863 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4864 PoisonOnly); 4865 }; 4866 4867 if (auto *Opr = dyn_cast<Operator>(V)) { 4868 // If the value is a freeze instruction, then it can never 4869 // be undef or poison. 4870 if (isa<FreezeInst>(V)) 4871 return true; 4872 4873 if (const auto *CB = dyn_cast<CallBase>(V)) { 4874 if (CB->hasRetAttr(Attribute::NoUndef)) 4875 return true; 4876 } 4877 4878 if (const auto *PN = dyn_cast<PHINode>(V)) { 4879 unsigned Num = PN->getNumIncomingValues(); 4880 bool IsWellDefined = true; 4881 for (unsigned i = 0; i < Num; ++i) { 4882 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4883 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4884 DT, Depth + 1, PoisonOnly)) { 4885 IsWellDefined = false; 4886 break; 4887 } 4888 } 4889 if (IsWellDefined) 4890 return true; 4891 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4892 return true; 4893 } 4894 4895 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4896 return true; 4897 4898 // CxtI may be null or a cloned instruction. 4899 if (!CtxI || !CtxI->getParent() || !DT) 4900 return false; 4901 4902 auto *DNode = DT->getNode(CtxI->getParent()); 4903 if (!DNode) 4904 // Unreachable block 4905 return false; 4906 4907 // If V is used as a branch condition before reaching CtxI, V cannot be 4908 // undef or poison. 4909 // br V, BB1, BB2 4910 // BB1: 4911 // CtxI ; V cannot be undef or poison here 4912 auto *Dominator = DNode->getIDom(); 4913 while (Dominator) { 4914 auto *TI = Dominator->getBlock()->getTerminator(); 4915 4916 Value *Cond = nullptr; 4917 if (auto BI = dyn_cast<BranchInst>(TI)) { 4918 if (BI->isConditional()) 4919 Cond = BI->getCondition(); 4920 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4921 Cond = SI->getCondition(); 4922 } 4923 4924 if (Cond) { 4925 if (Cond == V) 4926 return true; 4927 else if (PoisonOnly && isa<Operator>(Cond)) { 4928 // For poison, we can analyze further 4929 auto *Opr = cast<Operator>(Cond); 4930 if (propagatesPoison(Opr) && 4931 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4932 return true; 4933 } 4934 } 4935 4936 Dominator = Dominator->getIDom(); 4937 } 4938 4939 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4940 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4941 return true; 4942 4943 return false; 4944 } 4945 4946 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4947 const Instruction *CtxI, 4948 const DominatorTree *DT, 4949 unsigned Depth) { 4950 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4951 } 4952 4953 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4954 const Instruction *CtxI, 4955 const DominatorTree *DT, unsigned Depth) { 4956 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4957 } 4958 4959 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4960 const DataLayout &DL, 4961 AssumptionCache *AC, 4962 const Instruction *CxtI, 4963 const DominatorTree *DT) { 4964 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4965 Add, DL, AC, CxtI, DT); 4966 } 4967 4968 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4969 const Value *RHS, 4970 const DataLayout &DL, 4971 AssumptionCache *AC, 4972 const Instruction *CxtI, 4973 const DominatorTree *DT) { 4974 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4975 } 4976 4977 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4978 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4979 // of time because it's possible for another thread to interfere with it for an 4980 // arbitrary length of time, but programs aren't allowed to rely on that. 4981 4982 // If there is no successor, then execution can't transfer to it. 4983 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4984 return !CRI->unwindsToCaller(); 4985 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4986 return !CatchSwitch->unwindsToCaller(); 4987 if (isa<ResumeInst>(I)) 4988 return false; 4989 if (isa<ReturnInst>(I)) 4990 return false; 4991 if (isa<UnreachableInst>(I)) 4992 return false; 4993 4994 // Calls can throw, or contain an infinite loop, or kill the process. 4995 if (const auto *CB = dyn_cast<CallBase>(I)) { 4996 // Call sites that throw have implicit non-local control flow. 4997 if (!CB->doesNotThrow()) 4998 return false; 4999 5000 // A function which doens't throw and has "willreturn" attribute will 5001 // always return. 5002 if (CB->hasFnAttr(Attribute::WillReturn)) 5003 return true; 5004 5005 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5006 // etc. and thus not return. However, LLVM already assumes that 5007 // 5008 // - Thread exiting actions are modeled as writes to memory invisible to 5009 // the program. 5010 // 5011 // - Loops that don't have side effects (side effects are volatile/atomic 5012 // stores and IO) always terminate (see http://llvm.org/PR965). 5013 // Furthermore IO itself is also modeled as writes to memory invisible to 5014 // the program. 5015 // 5016 // We rely on those assumptions here, and use the memory effects of the call 5017 // target as a proxy for checking that it always returns. 5018 5019 // FIXME: This isn't aggressive enough; a call which only writes to a global 5020 // is guaranteed to return. 5021 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5022 } 5023 5024 // Other instructions return normally. 5025 return true; 5026 } 5027 5028 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5029 // TODO: This is slightly conservative for invoke instruction since exiting 5030 // via an exception *is* normal control for them. 5031 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5032 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5033 return false; 5034 return true; 5035 } 5036 5037 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5038 const Loop *L) { 5039 // The loop header is guaranteed to be executed for every iteration. 5040 // 5041 // FIXME: Relax this constraint to cover all basic blocks that are 5042 // guaranteed to be executed at every iteration. 5043 if (I->getParent() != L->getHeader()) return false; 5044 5045 for (const Instruction &LI : *L->getHeader()) { 5046 if (&LI == I) return true; 5047 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5048 } 5049 llvm_unreachable("Instruction not contained in its own parent basic block."); 5050 } 5051 5052 bool llvm::propagatesPoison(const Operator *I) { 5053 switch (I->getOpcode()) { 5054 case Instruction::Freeze: 5055 case Instruction::Select: 5056 case Instruction::PHI: 5057 case Instruction::Call: 5058 case Instruction::Invoke: 5059 return false; 5060 case Instruction::ICmp: 5061 case Instruction::FCmp: 5062 case Instruction::GetElementPtr: 5063 return true; 5064 default: 5065 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5066 return true; 5067 5068 // Be conservative and return false. 5069 return false; 5070 } 5071 } 5072 5073 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5074 SmallPtrSetImpl<const Value *> &Operands) { 5075 switch (I->getOpcode()) { 5076 case Instruction::Store: 5077 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5078 break; 5079 5080 case Instruction::Load: 5081 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5082 break; 5083 5084 case Instruction::AtomicCmpXchg: 5085 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5086 break; 5087 5088 case Instruction::AtomicRMW: 5089 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5090 break; 5091 5092 case Instruction::UDiv: 5093 case Instruction::SDiv: 5094 case Instruction::URem: 5095 case Instruction::SRem: 5096 Operands.insert(I->getOperand(1)); 5097 break; 5098 5099 case Instruction::Call: 5100 case Instruction::Invoke: { 5101 const CallBase *CB = cast<CallBase>(I); 5102 if (CB->isIndirectCall()) 5103 Operands.insert(CB->getCalledOperand()); 5104 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5105 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5106 Operands.insert(CB->getArgOperand(i)); 5107 } 5108 break; 5109 } 5110 5111 default: 5112 break; 5113 } 5114 } 5115 5116 bool llvm::mustTriggerUB(const Instruction *I, 5117 const SmallSet<const Value *, 16>& KnownPoison) { 5118 SmallPtrSet<const Value *, 4> NonPoisonOps; 5119 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5120 5121 for (const auto *V : NonPoisonOps) 5122 if (KnownPoison.count(V)) 5123 return true; 5124 5125 return false; 5126 } 5127 5128 static bool programUndefinedIfUndefOrPoison(const Value *V, 5129 bool PoisonOnly) { 5130 // We currently only look for uses of values within the same basic 5131 // block, as that makes it easier to guarantee that the uses will be 5132 // executed given that Inst is executed. 5133 // 5134 // FIXME: Expand this to consider uses beyond the same basic block. To do 5135 // this, look out for the distinction between post-dominance and strong 5136 // post-dominance. 5137 const BasicBlock *BB = nullptr; 5138 BasicBlock::const_iterator Begin; 5139 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5140 BB = Inst->getParent(); 5141 Begin = Inst->getIterator(); 5142 Begin++; 5143 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5144 BB = &Arg->getParent()->getEntryBlock(); 5145 Begin = BB->begin(); 5146 } else { 5147 return false; 5148 } 5149 5150 BasicBlock::const_iterator End = BB->end(); 5151 5152 if (!PoisonOnly) { 5153 // Be conservative & just check whether a value is passed to a noundef 5154 // argument. 5155 // Instructions that raise UB with a poison operand are well-defined 5156 // or have unclear semantics when the input is partially undef. 5157 // For example, 'udiv x, (undef | 1)' isn't UB. 5158 5159 for (auto &I : make_range(Begin, End)) { 5160 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5161 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5162 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5163 CB->getArgOperand(i) == V) 5164 return true; 5165 } 5166 } 5167 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5168 break; 5169 } 5170 return false; 5171 } 5172 5173 // Set of instructions that we have proved will yield poison if Inst 5174 // does. 5175 SmallSet<const Value *, 16> YieldsPoison; 5176 SmallSet<const BasicBlock *, 4> Visited; 5177 5178 YieldsPoison.insert(V); 5179 auto Propagate = [&](const User *User) { 5180 if (propagatesPoison(cast<Operator>(User))) 5181 YieldsPoison.insert(User); 5182 }; 5183 for_each(V->users(), Propagate); 5184 Visited.insert(BB); 5185 5186 unsigned Iter = 0; 5187 while (Iter++ < MaxAnalysisRecursionDepth) { 5188 for (auto &I : make_range(Begin, End)) { 5189 if (mustTriggerUB(&I, YieldsPoison)) 5190 return true; 5191 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5192 return false; 5193 5194 // Mark poison that propagates from I through uses of I. 5195 if (YieldsPoison.count(&I)) 5196 for_each(I.users(), Propagate); 5197 } 5198 5199 if (auto *NextBB = BB->getSingleSuccessor()) { 5200 if (Visited.insert(NextBB).second) { 5201 BB = NextBB; 5202 Begin = BB->getFirstNonPHI()->getIterator(); 5203 End = BB->end(); 5204 continue; 5205 } 5206 } 5207 5208 break; 5209 } 5210 return false; 5211 } 5212 5213 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5214 return ::programUndefinedIfUndefOrPoison(Inst, false); 5215 } 5216 5217 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5218 return ::programUndefinedIfUndefOrPoison(Inst, true); 5219 } 5220 5221 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5222 if (FMF.noNaNs()) 5223 return true; 5224 5225 if (auto *C = dyn_cast<ConstantFP>(V)) 5226 return !C->isNaN(); 5227 5228 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5229 if (!C->getElementType()->isFloatingPointTy()) 5230 return false; 5231 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5232 if (C->getElementAsAPFloat(I).isNaN()) 5233 return false; 5234 } 5235 return true; 5236 } 5237 5238 if (isa<ConstantAggregateZero>(V)) 5239 return true; 5240 5241 return false; 5242 } 5243 5244 static bool isKnownNonZero(const Value *V) { 5245 if (auto *C = dyn_cast<ConstantFP>(V)) 5246 return !C->isZero(); 5247 5248 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5249 if (!C->getElementType()->isFloatingPointTy()) 5250 return false; 5251 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5252 if (C->getElementAsAPFloat(I).isZero()) 5253 return false; 5254 } 5255 return true; 5256 } 5257 5258 return false; 5259 } 5260 5261 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5262 /// Given non-min/max outer cmp/select from the clamp pattern this 5263 /// function recognizes if it can be substitued by a "canonical" min/max 5264 /// pattern. 5265 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5266 Value *CmpLHS, Value *CmpRHS, 5267 Value *TrueVal, Value *FalseVal, 5268 Value *&LHS, Value *&RHS) { 5269 // Try to match 5270 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5271 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5272 // and return description of the outer Max/Min. 5273 5274 // First, check if select has inverse order: 5275 if (CmpRHS == FalseVal) { 5276 std::swap(TrueVal, FalseVal); 5277 Pred = CmpInst::getInversePredicate(Pred); 5278 } 5279 5280 // Assume success now. If there's no match, callers should not use these anyway. 5281 LHS = TrueVal; 5282 RHS = FalseVal; 5283 5284 const APFloat *FC1; 5285 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5286 return {SPF_UNKNOWN, SPNB_NA, false}; 5287 5288 const APFloat *FC2; 5289 switch (Pred) { 5290 case CmpInst::FCMP_OLT: 5291 case CmpInst::FCMP_OLE: 5292 case CmpInst::FCMP_ULT: 5293 case CmpInst::FCMP_ULE: 5294 if (match(FalseVal, 5295 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5296 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5297 *FC1 < *FC2) 5298 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5299 break; 5300 case CmpInst::FCMP_OGT: 5301 case CmpInst::FCMP_OGE: 5302 case CmpInst::FCMP_UGT: 5303 case CmpInst::FCMP_UGE: 5304 if (match(FalseVal, 5305 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5306 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5307 *FC1 > *FC2) 5308 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5309 break; 5310 default: 5311 break; 5312 } 5313 5314 return {SPF_UNKNOWN, SPNB_NA, false}; 5315 } 5316 5317 /// Recognize variations of: 5318 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5319 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5320 Value *CmpLHS, Value *CmpRHS, 5321 Value *TrueVal, Value *FalseVal) { 5322 // Swap the select operands and predicate to match the patterns below. 5323 if (CmpRHS != TrueVal) { 5324 Pred = ICmpInst::getSwappedPredicate(Pred); 5325 std::swap(TrueVal, FalseVal); 5326 } 5327 const APInt *C1; 5328 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5329 const APInt *C2; 5330 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5331 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5332 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5333 return {SPF_SMAX, SPNB_NA, false}; 5334 5335 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5336 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5337 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5338 return {SPF_SMIN, SPNB_NA, false}; 5339 5340 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5341 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5342 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5343 return {SPF_UMAX, SPNB_NA, false}; 5344 5345 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5346 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5347 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5348 return {SPF_UMIN, SPNB_NA, false}; 5349 } 5350 return {SPF_UNKNOWN, SPNB_NA, false}; 5351 } 5352 5353 /// Recognize variations of: 5354 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5355 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5356 Value *CmpLHS, Value *CmpRHS, 5357 Value *TVal, Value *FVal, 5358 unsigned Depth) { 5359 // TODO: Allow FP min/max with nnan/nsz. 5360 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5361 5362 Value *A = nullptr, *B = nullptr; 5363 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5364 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5365 return {SPF_UNKNOWN, SPNB_NA, false}; 5366 5367 Value *C = nullptr, *D = nullptr; 5368 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5369 if (L.Flavor != R.Flavor) 5370 return {SPF_UNKNOWN, SPNB_NA, false}; 5371 5372 // We have something like: x Pred y ? min(a, b) : min(c, d). 5373 // Try to match the compare to the min/max operations of the select operands. 5374 // First, make sure we have the right compare predicate. 5375 switch (L.Flavor) { 5376 case SPF_SMIN: 5377 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5378 Pred = ICmpInst::getSwappedPredicate(Pred); 5379 std::swap(CmpLHS, CmpRHS); 5380 } 5381 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5382 break; 5383 return {SPF_UNKNOWN, SPNB_NA, false}; 5384 case SPF_SMAX: 5385 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5386 Pred = ICmpInst::getSwappedPredicate(Pred); 5387 std::swap(CmpLHS, CmpRHS); 5388 } 5389 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5390 break; 5391 return {SPF_UNKNOWN, SPNB_NA, false}; 5392 case SPF_UMIN: 5393 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5394 Pred = ICmpInst::getSwappedPredicate(Pred); 5395 std::swap(CmpLHS, CmpRHS); 5396 } 5397 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5398 break; 5399 return {SPF_UNKNOWN, SPNB_NA, false}; 5400 case SPF_UMAX: 5401 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5402 Pred = ICmpInst::getSwappedPredicate(Pred); 5403 std::swap(CmpLHS, CmpRHS); 5404 } 5405 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5406 break; 5407 return {SPF_UNKNOWN, SPNB_NA, false}; 5408 default: 5409 return {SPF_UNKNOWN, SPNB_NA, false}; 5410 } 5411 5412 // If there is a common operand in the already matched min/max and the other 5413 // min/max operands match the compare operands (either directly or inverted), 5414 // then this is min/max of the same flavor. 5415 5416 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5417 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5418 if (D == B) { 5419 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5420 match(A, m_Not(m_Specific(CmpRHS))))) 5421 return {L.Flavor, SPNB_NA, false}; 5422 } 5423 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5424 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5425 if (C == B) { 5426 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5427 match(A, m_Not(m_Specific(CmpRHS))))) 5428 return {L.Flavor, SPNB_NA, false}; 5429 } 5430 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5431 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5432 if (D == A) { 5433 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5434 match(B, m_Not(m_Specific(CmpRHS))))) 5435 return {L.Flavor, SPNB_NA, false}; 5436 } 5437 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5438 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5439 if (C == A) { 5440 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5441 match(B, m_Not(m_Specific(CmpRHS))))) 5442 return {L.Flavor, SPNB_NA, false}; 5443 } 5444 5445 return {SPF_UNKNOWN, SPNB_NA, false}; 5446 } 5447 5448 /// If the input value is the result of a 'not' op, constant integer, or vector 5449 /// splat of a constant integer, return the bitwise-not source value. 5450 /// TODO: This could be extended to handle non-splat vector integer constants. 5451 static Value *getNotValue(Value *V) { 5452 Value *NotV; 5453 if (match(V, m_Not(m_Value(NotV)))) 5454 return NotV; 5455 5456 const APInt *C; 5457 if (match(V, m_APInt(C))) 5458 return ConstantInt::get(V->getType(), ~(*C)); 5459 5460 return nullptr; 5461 } 5462 5463 /// Match non-obvious integer minimum and maximum sequences. 5464 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5465 Value *CmpLHS, Value *CmpRHS, 5466 Value *TrueVal, Value *FalseVal, 5467 Value *&LHS, Value *&RHS, 5468 unsigned Depth) { 5469 // Assume success. If there's no match, callers should not use these anyway. 5470 LHS = TrueVal; 5471 RHS = FalseVal; 5472 5473 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5474 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5475 return SPR; 5476 5477 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5478 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5479 return SPR; 5480 5481 // Look through 'not' ops to find disguised min/max. 5482 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5483 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5484 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5485 switch (Pred) { 5486 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5487 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5488 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5489 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5490 default: break; 5491 } 5492 } 5493 5494 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5495 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5496 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5497 switch (Pred) { 5498 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5499 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5500 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5501 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5502 default: break; 5503 } 5504 } 5505 5506 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5507 return {SPF_UNKNOWN, SPNB_NA, false}; 5508 5509 // Z = X -nsw Y 5510 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5511 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5512 if (match(TrueVal, m_Zero()) && 5513 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5514 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5515 5516 // Z = X -nsw Y 5517 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5518 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5519 if (match(FalseVal, m_Zero()) && 5520 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5521 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5522 5523 const APInt *C1; 5524 if (!match(CmpRHS, m_APInt(C1))) 5525 return {SPF_UNKNOWN, SPNB_NA, false}; 5526 5527 // An unsigned min/max can be written with a signed compare. 5528 const APInt *C2; 5529 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5530 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5531 // Is the sign bit set? 5532 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5533 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5534 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5535 C2->isMaxSignedValue()) 5536 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5537 5538 // Is the sign bit clear? 5539 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5540 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5541 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5542 C2->isMinSignedValue()) 5543 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5544 } 5545 5546 return {SPF_UNKNOWN, SPNB_NA, false}; 5547 } 5548 5549 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5550 assert(X && Y && "Invalid operand"); 5551 5552 // X = sub (0, Y) || X = sub nsw (0, Y) 5553 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5554 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5555 return true; 5556 5557 // Y = sub (0, X) || Y = sub nsw (0, X) 5558 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5559 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5560 return true; 5561 5562 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5563 Value *A, *B; 5564 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5565 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5566 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5567 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5568 } 5569 5570 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5571 FastMathFlags FMF, 5572 Value *CmpLHS, Value *CmpRHS, 5573 Value *TrueVal, Value *FalseVal, 5574 Value *&LHS, Value *&RHS, 5575 unsigned Depth) { 5576 if (CmpInst::isFPPredicate(Pred)) { 5577 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5578 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5579 // purpose of identifying min/max. Disregard vector constants with undefined 5580 // elements because those can not be back-propagated for analysis. 5581 Value *OutputZeroVal = nullptr; 5582 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5583 !cast<Constant>(TrueVal)->containsUndefElement()) 5584 OutputZeroVal = TrueVal; 5585 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5586 !cast<Constant>(FalseVal)->containsUndefElement()) 5587 OutputZeroVal = FalseVal; 5588 5589 if (OutputZeroVal) { 5590 if (match(CmpLHS, m_AnyZeroFP())) 5591 CmpLHS = OutputZeroVal; 5592 if (match(CmpRHS, m_AnyZeroFP())) 5593 CmpRHS = OutputZeroVal; 5594 } 5595 } 5596 5597 LHS = CmpLHS; 5598 RHS = CmpRHS; 5599 5600 // Signed zero may return inconsistent results between implementations. 5601 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5602 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5603 // Therefore, we behave conservatively and only proceed if at least one of the 5604 // operands is known to not be zero or if we don't care about signed zero. 5605 switch (Pred) { 5606 default: break; 5607 // FIXME: Include OGT/OLT/UGT/ULT. 5608 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5609 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5610 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5611 !isKnownNonZero(CmpRHS)) 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 } 5614 5615 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5616 bool Ordered = false; 5617 5618 // When given one NaN and one non-NaN input: 5619 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5620 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5621 // ordered comparison fails), which could be NaN or non-NaN. 5622 // so here we discover exactly what NaN behavior is required/accepted. 5623 if (CmpInst::isFPPredicate(Pred)) { 5624 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5625 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5626 5627 if (LHSSafe && RHSSafe) { 5628 // Both operands are known non-NaN. 5629 NaNBehavior = SPNB_RETURNS_ANY; 5630 } else if (CmpInst::isOrdered(Pred)) { 5631 // An ordered comparison will return false when given a NaN, so it 5632 // returns the RHS. 5633 Ordered = true; 5634 if (LHSSafe) 5635 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5636 NaNBehavior = SPNB_RETURNS_NAN; 5637 else if (RHSSafe) 5638 NaNBehavior = SPNB_RETURNS_OTHER; 5639 else 5640 // Completely unsafe. 5641 return {SPF_UNKNOWN, SPNB_NA, false}; 5642 } else { 5643 Ordered = false; 5644 // An unordered comparison will return true when given a NaN, so it 5645 // returns the LHS. 5646 if (LHSSafe) 5647 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5648 NaNBehavior = SPNB_RETURNS_OTHER; 5649 else if (RHSSafe) 5650 NaNBehavior = SPNB_RETURNS_NAN; 5651 else 5652 // Completely unsafe. 5653 return {SPF_UNKNOWN, SPNB_NA, false}; 5654 } 5655 } 5656 5657 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5658 std::swap(CmpLHS, CmpRHS); 5659 Pred = CmpInst::getSwappedPredicate(Pred); 5660 if (NaNBehavior == SPNB_RETURNS_NAN) 5661 NaNBehavior = SPNB_RETURNS_OTHER; 5662 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5663 NaNBehavior = SPNB_RETURNS_NAN; 5664 Ordered = !Ordered; 5665 } 5666 5667 // ([if]cmp X, Y) ? X : Y 5668 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5669 switch (Pred) { 5670 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5671 case ICmpInst::ICMP_UGT: 5672 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5673 case ICmpInst::ICMP_SGT: 5674 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5675 case ICmpInst::ICMP_ULT: 5676 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5677 case ICmpInst::ICMP_SLT: 5678 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5679 case FCmpInst::FCMP_UGT: 5680 case FCmpInst::FCMP_UGE: 5681 case FCmpInst::FCMP_OGT: 5682 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5683 case FCmpInst::FCMP_ULT: 5684 case FCmpInst::FCMP_ULE: 5685 case FCmpInst::FCMP_OLT: 5686 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5687 } 5688 } 5689 5690 if (isKnownNegation(TrueVal, FalseVal)) { 5691 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5692 // match against either LHS or sext(LHS). 5693 auto MaybeSExtCmpLHS = 5694 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5695 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5696 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5697 if (match(TrueVal, MaybeSExtCmpLHS)) { 5698 // Set the return values. If the compare uses the negated value (-X >s 0), 5699 // swap the return values because the negated value is always 'RHS'. 5700 LHS = TrueVal; 5701 RHS = FalseVal; 5702 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5703 std::swap(LHS, RHS); 5704 5705 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5706 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5707 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5708 return {SPF_ABS, SPNB_NA, false}; 5709 5710 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5711 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5712 return {SPF_ABS, SPNB_NA, false}; 5713 5714 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5715 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5716 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5717 return {SPF_NABS, SPNB_NA, false}; 5718 } 5719 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5720 // Set the return values. If the compare uses the negated value (-X >s 0), 5721 // swap the return values because the negated value is always 'RHS'. 5722 LHS = FalseVal; 5723 RHS = TrueVal; 5724 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5725 std::swap(LHS, RHS); 5726 5727 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5728 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5729 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5730 return {SPF_NABS, SPNB_NA, false}; 5731 5732 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5733 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5734 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5735 return {SPF_ABS, SPNB_NA, false}; 5736 } 5737 } 5738 5739 if (CmpInst::isIntPredicate(Pred)) 5740 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5741 5742 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5743 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5744 // semantics than minNum. Be conservative in such case. 5745 if (NaNBehavior != SPNB_RETURNS_ANY || 5746 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5747 !isKnownNonZero(CmpRHS))) 5748 return {SPF_UNKNOWN, SPNB_NA, false}; 5749 5750 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5751 } 5752 5753 /// Helps to match a select pattern in case of a type mismatch. 5754 /// 5755 /// The function processes the case when type of true and false values of a 5756 /// select instruction differs from type of the cmp instruction operands because 5757 /// of a cast instruction. The function checks if it is legal to move the cast 5758 /// operation after "select". If yes, it returns the new second value of 5759 /// "select" (with the assumption that cast is moved): 5760 /// 1. As operand of cast instruction when both values of "select" are same cast 5761 /// instructions. 5762 /// 2. As restored constant (by applying reverse cast operation) when the first 5763 /// value of the "select" is a cast operation and the second value is a 5764 /// constant. 5765 /// NOTE: We return only the new second value because the first value could be 5766 /// accessed as operand of cast instruction. 5767 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5768 Instruction::CastOps *CastOp) { 5769 auto *Cast1 = dyn_cast<CastInst>(V1); 5770 if (!Cast1) 5771 return nullptr; 5772 5773 *CastOp = Cast1->getOpcode(); 5774 Type *SrcTy = Cast1->getSrcTy(); 5775 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5776 // If V1 and V2 are both the same cast from the same type, look through V1. 5777 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5778 return Cast2->getOperand(0); 5779 return nullptr; 5780 } 5781 5782 auto *C = dyn_cast<Constant>(V2); 5783 if (!C) 5784 return nullptr; 5785 5786 Constant *CastedTo = nullptr; 5787 switch (*CastOp) { 5788 case Instruction::ZExt: 5789 if (CmpI->isUnsigned()) 5790 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5791 break; 5792 case Instruction::SExt: 5793 if (CmpI->isSigned()) 5794 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5795 break; 5796 case Instruction::Trunc: 5797 Constant *CmpConst; 5798 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5799 CmpConst->getType() == SrcTy) { 5800 // Here we have the following case: 5801 // 5802 // %cond = cmp iN %x, CmpConst 5803 // %tr = trunc iN %x to iK 5804 // %narrowsel = select i1 %cond, iK %t, iK C 5805 // 5806 // We can always move trunc after select operation: 5807 // 5808 // %cond = cmp iN %x, CmpConst 5809 // %widesel = select i1 %cond, iN %x, iN CmpConst 5810 // %tr = trunc iN %widesel to iK 5811 // 5812 // Note that C could be extended in any way because we don't care about 5813 // upper bits after truncation. It can't be abs pattern, because it would 5814 // look like: 5815 // 5816 // select i1 %cond, x, -x. 5817 // 5818 // So only min/max pattern could be matched. Such match requires widened C 5819 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5820 // CmpConst == C is checked below. 5821 CastedTo = CmpConst; 5822 } else { 5823 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5824 } 5825 break; 5826 case Instruction::FPTrunc: 5827 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5828 break; 5829 case Instruction::FPExt: 5830 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5831 break; 5832 case Instruction::FPToUI: 5833 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5834 break; 5835 case Instruction::FPToSI: 5836 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5837 break; 5838 case Instruction::UIToFP: 5839 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5840 break; 5841 case Instruction::SIToFP: 5842 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5843 break; 5844 default: 5845 break; 5846 } 5847 5848 if (!CastedTo) 5849 return nullptr; 5850 5851 // Make sure the cast doesn't lose any information. 5852 Constant *CastedBack = 5853 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5854 if (CastedBack != C) 5855 return nullptr; 5856 5857 return CastedTo; 5858 } 5859 5860 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5861 Instruction::CastOps *CastOp, 5862 unsigned Depth) { 5863 if (Depth >= MaxAnalysisRecursionDepth) 5864 return {SPF_UNKNOWN, SPNB_NA, false}; 5865 5866 SelectInst *SI = dyn_cast<SelectInst>(V); 5867 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5868 5869 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5870 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5871 5872 Value *TrueVal = SI->getTrueValue(); 5873 Value *FalseVal = SI->getFalseValue(); 5874 5875 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5876 CastOp, Depth); 5877 } 5878 5879 SelectPatternResult llvm::matchDecomposedSelectPattern( 5880 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5881 Instruction::CastOps *CastOp, unsigned Depth) { 5882 CmpInst::Predicate Pred = CmpI->getPredicate(); 5883 Value *CmpLHS = CmpI->getOperand(0); 5884 Value *CmpRHS = CmpI->getOperand(1); 5885 FastMathFlags FMF; 5886 if (isa<FPMathOperator>(CmpI)) 5887 FMF = CmpI->getFastMathFlags(); 5888 5889 // Bail out early. 5890 if (CmpI->isEquality()) 5891 return {SPF_UNKNOWN, SPNB_NA, false}; 5892 5893 // Deal with type mismatches. 5894 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5895 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5896 // If this is a potential fmin/fmax with a cast to integer, then ignore 5897 // -0.0 because there is no corresponding integer value. 5898 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5899 FMF.setNoSignedZeros(); 5900 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5901 cast<CastInst>(TrueVal)->getOperand(0), C, 5902 LHS, RHS, Depth); 5903 } 5904 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5905 // If this is a potential fmin/fmax with a cast to integer, then ignore 5906 // -0.0 because there is no corresponding integer value. 5907 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5908 FMF.setNoSignedZeros(); 5909 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5910 C, cast<CastInst>(FalseVal)->getOperand(0), 5911 LHS, RHS, Depth); 5912 } 5913 } 5914 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5915 LHS, RHS, Depth); 5916 } 5917 5918 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5919 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5920 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5921 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5922 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5923 if (SPF == SPF_FMINNUM) 5924 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5925 if (SPF == SPF_FMAXNUM) 5926 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5927 llvm_unreachable("unhandled!"); 5928 } 5929 5930 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5931 if (SPF == SPF_SMIN) return SPF_SMAX; 5932 if (SPF == SPF_UMIN) return SPF_UMAX; 5933 if (SPF == SPF_SMAX) return SPF_SMIN; 5934 if (SPF == SPF_UMAX) return SPF_UMIN; 5935 llvm_unreachable("unhandled!"); 5936 } 5937 5938 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5939 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5940 } 5941 5942 /// Return true if "icmp Pred LHS RHS" is always true. 5943 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5944 const Value *RHS, const DataLayout &DL, 5945 unsigned Depth) { 5946 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5947 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5948 return true; 5949 5950 switch (Pred) { 5951 default: 5952 return false; 5953 5954 case CmpInst::ICMP_SLE: { 5955 const APInt *C; 5956 5957 // LHS s<= LHS +_{nsw} C if C >= 0 5958 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5959 return !C->isNegative(); 5960 return false; 5961 } 5962 5963 case CmpInst::ICMP_ULE: { 5964 const APInt *C; 5965 5966 // LHS u<= LHS +_{nuw} C for any C 5967 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5968 return true; 5969 5970 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5971 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5972 const Value *&X, 5973 const APInt *&CA, const APInt *&CB) { 5974 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5975 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5976 return true; 5977 5978 // If X & C == 0 then (X | C) == X +_{nuw} C 5979 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5980 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5981 KnownBits Known(CA->getBitWidth()); 5982 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5983 /*CxtI*/ nullptr, /*DT*/ nullptr); 5984 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5985 return true; 5986 } 5987 5988 return false; 5989 }; 5990 5991 const Value *X; 5992 const APInt *CLHS, *CRHS; 5993 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5994 return CLHS->ule(*CRHS); 5995 5996 return false; 5997 } 5998 } 5999 } 6000 6001 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6002 /// ALHS ARHS" is true. Otherwise, return None. 6003 static Optional<bool> 6004 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6005 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6006 const DataLayout &DL, unsigned Depth) { 6007 switch (Pred) { 6008 default: 6009 return None; 6010 6011 case CmpInst::ICMP_SLT: 6012 case CmpInst::ICMP_SLE: 6013 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6014 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6015 return true; 6016 return None; 6017 6018 case CmpInst::ICMP_ULT: 6019 case CmpInst::ICMP_ULE: 6020 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6021 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6022 return true; 6023 return None; 6024 } 6025 } 6026 6027 /// Return true if the operands of the two compares match. IsSwappedOps is true 6028 /// when the operands match, but are swapped. 6029 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6030 const Value *BLHS, const Value *BRHS, 6031 bool &IsSwappedOps) { 6032 6033 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6034 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6035 return IsMatchingOps || IsSwappedOps; 6036 } 6037 6038 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6039 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6040 /// Otherwise, return None if we can't infer anything. 6041 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6042 CmpInst::Predicate BPred, 6043 bool AreSwappedOps) { 6044 // Canonicalize the predicate as if the operands were not commuted. 6045 if (AreSwappedOps) 6046 BPred = ICmpInst::getSwappedPredicate(BPred); 6047 6048 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6049 return true; 6050 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6051 return false; 6052 6053 return None; 6054 } 6055 6056 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6057 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6058 /// Otherwise, return None if we can't infer anything. 6059 static Optional<bool> 6060 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6061 const ConstantInt *C1, 6062 CmpInst::Predicate BPred, 6063 const ConstantInt *C2) { 6064 ConstantRange DomCR = 6065 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6066 ConstantRange CR = 6067 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6068 ConstantRange Intersection = DomCR.intersectWith(CR); 6069 ConstantRange Difference = DomCR.difference(CR); 6070 if (Intersection.isEmptySet()) 6071 return false; 6072 if (Difference.isEmptySet()) 6073 return true; 6074 return None; 6075 } 6076 6077 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6078 /// false. Otherwise, return None if we can't infer anything. 6079 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6080 CmpInst::Predicate BPred, 6081 const Value *BLHS, const Value *BRHS, 6082 const DataLayout &DL, bool LHSIsTrue, 6083 unsigned Depth) { 6084 Value *ALHS = LHS->getOperand(0); 6085 Value *ARHS = LHS->getOperand(1); 6086 6087 // The rest of the logic assumes the LHS condition is true. If that's not the 6088 // case, invert the predicate to make it so. 6089 CmpInst::Predicate APred = 6090 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6091 6092 // Can we infer anything when the two compares have matching operands? 6093 bool AreSwappedOps; 6094 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6095 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6096 APred, BPred, AreSwappedOps)) 6097 return Implication; 6098 // No amount of additional analysis will infer the second condition, so 6099 // early exit. 6100 return None; 6101 } 6102 6103 // Can we infer anything when the LHS operands match and the RHS operands are 6104 // constants (not necessarily matching)? 6105 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6106 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6107 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6108 return Implication; 6109 // No amount of additional analysis will infer the second condition, so 6110 // early exit. 6111 return None; 6112 } 6113 6114 if (APred == BPred) 6115 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6116 return None; 6117 } 6118 6119 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6120 /// false. Otherwise, return None if we can't infer anything. We expect the 6121 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6122 static Optional<bool> 6123 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6124 const Value *RHSOp0, const Value *RHSOp1, 6125 6126 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6127 // The LHS must be an 'or' or an 'and' instruction. 6128 assert((LHS->getOpcode() == Instruction::And || 6129 LHS->getOpcode() == Instruction::Or) && 6130 "Expected LHS to be 'and' or 'or'."); 6131 6132 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6133 6134 // If the result of an 'or' is false, then we know both legs of the 'or' are 6135 // false. Similarly, if the result of an 'and' is true, then we know both 6136 // legs of the 'and' are true. 6137 Value *ALHS, *ARHS; 6138 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6139 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6140 // FIXME: Make this non-recursion. 6141 if (Optional<bool> Implication = isImpliedCondition( 6142 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6143 return Implication; 6144 if (Optional<bool> Implication = isImpliedCondition( 6145 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6146 return Implication; 6147 return None; 6148 } 6149 return None; 6150 } 6151 6152 Optional<bool> 6153 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6154 const Value *RHSOp0, const Value *RHSOp1, 6155 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6156 // Bail out when we hit the limit. 6157 if (Depth == MaxAnalysisRecursionDepth) 6158 return None; 6159 6160 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6161 // example. 6162 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6163 return None; 6164 6165 Type *OpTy = LHS->getType(); 6166 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6167 6168 // FIXME: Extending the code below to handle vectors. 6169 if (OpTy->isVectorTy()) 6170 return None; 6171 6172 assert(OpTy->isIntegerTy(1) && "implied by above"); 6173 6174 // Both LHS and RHS are icmps. 6175 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6176 if (LHSCmp) 6177 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6178 Depth); 6179 6180 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6181 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6182 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6183 if (LHSBO) { 6184 if ((LHSBO->getOpcode() == Instruction::And || 6185 LHSBO->getOpcode() == Instruction::Or)) 6186 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6187 Depth); 6188 } 6189 return None; 6190 } 6191 6192 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6193 const DataLayout &DL, bool LHSIsTrue, 6194 unsigned Depth) { 6195 // LHS ==> RHS by definition 6196 if (LHS == RHS) 6197 return LHSIsTrue; 6198 6199 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6200 if (RHSCmp) 6201 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6202 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6203 LHSIsTrue, Depth); 6204 return None; 6205 } 6206 6207 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6208 // condition dominating ContextI or nullptr, if no condition is found. 6209 static std::pair<Value *, bool> 6210 getDomPredecessorCondition(const Instruction *ContextI) { 6211 if (!ContextI || !ContextI->getParent()) 6212 return {nullptr, false}; 6213 6214 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6215 // dominator tree (eg, from a SimplifyQuery) instead? 6216 const BasicBlock *ContextBB = ContextI->getParent(); 6217 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6218 if (!PredBB) 6219 return {nullptr, false}; 6220 6221 // We need a conditional branch in the predecessor. 6222 Value *PredCond; 6223 BasicBlock *TrueBB, *FalseBB; 6224 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6225 return {nullptr, false}; 6226 6227 // The branch should get simplified. Don't bother simplifying this condition. 6228 if (TrueBB == FalseBB) 6229 return {nullptr, false}; 6230 6231 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6232 "Predecessor block does not point to successor?"); 6233 6234 // Is this condition implied by the predecessor condition? 6235 return {PredCond, TrueBB == ContextBB}; 6236 } 6237 6238 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6239 const Instruction *ContextI, 6240 const DataLayout &DL) { 6241 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6242 auto PredCond = getDomPredecessorCondition(ContextI); 6243 if (PredCond.first) 6244 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6245 return None; 6246 } 6247 6248 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6249 const Value *LHS, const Value *RHS, 6250 const Instruction *ContextI, 6251 const DataLayout &DL) { 6252 auto PredCond = getDomPredecessorCondition(ContextI); 6253 if (PredCond.first) 6254 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6255 PredCond.second); 6256 return None; 6257 } 6258 6259 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6260 APInt &Upper, const InstrInfoQuery &IIQ) { 6261 unsigned Width = Lower.getBitWidth(); 6262 const APInt *C; 6263 switch (BO.getOpcode()) { 6264 case Instruction::Add: 6265 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6266 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6267 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6268 // 'add nuw x, C' produces [C, UINT_MAX]. 6269 Lower = *C; 6270 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6271 if (C->isNegative()) { 6272 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6273 Lower = APInt::getSignedMinValue(Width); 6274 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6275 } else { 6276 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6277 Lower = APInt::getSignedMinValue(Width) + *C; 6278 Upper = APInt::getSignedMaxValue(Width) + 1; 6279 } 6280 } 6281 } 6282 break; 6283 6284 case Instruction::And: 6285 if (match(BO.getOperand(1), m_APInt(C))) 6286 // 'and x, C' produces [0, C]. 6287 Upper = *C + 1; 6288 break; 6289 6290 case Instruction::Or: 6291 if (match(BO.getOperand(1), m_APInt(C))) 6292 // 'or x, C' produces [C, UINT_MAX]. 6293 Lower = *C; 6294 break; 6295 6296 case Instruction::AShr: 6297 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6298 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6299 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6300 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6301 } else if (match(BO.getOperand(0), m_APInt(C))) { 6302 unsigned ShiftAmount = Width - 1; 6303 if (!C->isNullValue() && IIQ.isExact(&BO)) 6304 ShiftAmount = C->countTrailingZeros(); 6305 if (C->isNegative()) { 6306 // 'ashr C, x' produces [C, C >> (Width-1)] 6307 Lower = *C; 6308 Upper = C->ashr(ShiftAmount) + 1; 6309 } else { 6310 // 'ashr C, x' produces [C >> (Width-1), C] 6311 Lower = C->ashr(ShiftAmount); 6312 Upper = *C + 1; 6313 } 6314 } 6315 break; 6316 6317 case Instruction::LShr: 6318 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6319 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6320 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6321 } else if (match(BO.getOperand(0), m_APInt(C))) { 6322 // 'lshr C, x' produces [C >> (Width-1), C]. 6323 unsigned ShiftAmount = Width - 1; 6324 if (!C->isNullValue() && IIQ.isExact(&BO)) 6325 ShiftAmount = C->countTrailingZeros(); 6326 Lower = C->lshr(ShiftAmount); 6327 Upper = *C + 1; 6328 } 6329 break; 6330 6331 case Instruction::Shl: 6332 if (match(BO.getOperand(0), m_APInt(C))) { 6333 if (IIQ.hasNoUnsignedWrap(&BO)) { 6334 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6335 Lower = *C; 6336 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6337 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6338 if (C->isNegative()) { 6339 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6340 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6341 Lower = C->shl(ShiftAmount); 6342 Upper = *C + 1; 6343 } else { 6344 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6345 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6346 Lower = *C; 6347 Upper = C->shl(ShiftAmount) + 1; 6348 } 6349 } 6350 } 6351 break; 6352 6353 case Instruction::SDiv: 6354 if (match(BO.getOperand(1), m_APInt(C))) { 6355 APInt IntMin = APInt::getSignedMinValue(Width); 6356 APInt IntMax = APInt::getSignedMaxValue(Width); 6357 if (C->isAllOnesValue()) { 6358 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6359 // where C != -1 and C != 0 and C != 1 6360 Lower = IntMin + 1; 6361 Upper = IntMax + 1; 6362 } else if (C->countLeadingZeros() < Width - 1) { 6363 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6364 // where C != -1 and C != 0 and C != 1 6365 Lower = IntMin.sdiv(*C); 6366 Upper = IntMax.sdiv(*C); 6367 if (Lower.sgt(Upper)) 6368 std::swap(Lower, Upper); 6369 Upper = Upper + 1; 6370 assert(Upper != Lower && "Upper part of range has wrapped!"); 6371 } 6372 } else if (match(BO.getOperand(0), m_APInt(C))) { 6373 if (C->isMinSignedValue()) { 6374 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6375 Lower = *C; 6376 Upper = Lower.lshr(1) + 1; 6377 } else { 6378 // 'sdiv C, x' produces [-|C|, |C|]. 6379 Upper = C->abs() + 1; 6380 Lower = (-Upper) + 1; 6381 } 6382 } 6383 break; 6384 6385 case Instruction::UDiv: 6386 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6387 // 'udiv x, C' produces [0, UINT_MAX / C]. 6388 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6389 } else if (match(BO.getOperand(0), m_APInt(C))) { 6390 // 'udiv C, x' produces [0, C]. 6391 Upper = *C + 1; 6392 } 6393 break; 6394 6395 case Instruction::SRem: 6396 if (match(BO.getOperand(1), m_APInt(C))) { 6397 // 'srem x, C' produces (-|C|, |C|). 6398 Upper = C->abs(); 6399 Lower = (-Upper) + 1; 6400 } 6401 break; 6402 6403 case Instruction::URem: 6404 if (match(BO.getOperand(1), m_APInt(C))) 6405 // 'urem x, C' produces [0, C). 6406 Upper = *C; 6407 break; 6408 6409 default: 6410 break; 6411 } 6412 } 6413 6414 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6415 APInt &Upper) { 6416 unsigned Width = Lower.getBitWidth(); 6417 const APInt *C; 6418 switch (II.getIntrinsicID()) { 6419 case Intrinsic::uadd_sat: 6420 // uadd.sat(x, C) produces [C, UINT_MAX]. 6421 if (match(II.getOperand(0), m_APInt(C)) || 6422 match(II.getOperand(1), m_APInt(C))) 6423 Lower = *C; 6424 break; 6425 case Intrinsic::sadd_sat: 6426 if (match(II.getOperand(0), m_APInt(C)) || 6427 match(II.getOperand(1), m_APInt(C))) { 6428 if (C->isNegative()) { 6429 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6430 Lower = APInt::getSignedMinValue(Width); 6431 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6432 } else { 6433 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6434 Lower = APInt::getSignedMinValue(Width) + *C; 6435 Upper = APInt::getSignedMaxValue(Width) + 1; 6436 } 6437 } 6438 break; 6439 case Intrinsic::usub_sat: 6440 // usub.sat(C, x) produces [0, C]. 6441 if (match(II.getOperand(0), m_APInt(C))) 6442 Upper = *C + 1; 6443 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6444 else if (match(II.getOperand(1), m_APInt(C))) 6445 Upper = APInt::getMaxValue(Width) - *C + 1; 6446 break; 6447 case Intrinsic::ssub_sat: 6448 if (match(II.getOperand(0), m_APInt(C))) { 6449 if (C->isNegative()) { 6450 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6451 Lower = APInt::getSignedMinValue(Width); 6452 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6453 } else { 6454 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6455 Lower = *C - APInt::getSignedMaxValue(Width); 6456 Upper = APInt::getSignedMaxValue(Width) + 1; 6457 } 6458 } else if (match(II.getOperand(1), m_APInt(C))) { 6459 if (C->isNegative()) { 6460 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6461 Lower = APInt::getSignedMinValue(Width) - *C; 6462 Upper = APInt::getSignedMaxValue(Width) + 1; 6463 } else { 6464 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6465 Lower = APInt::getSignedMinValue(Width); 6466 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6467 } 6468 } 6469 break; 6470 case Intrinsic::umin: 6471 case Intrinsic::umax: 6472 case Intrinsic::smin: 6473 case Intrinsic::smax: 6474 if (!match(II.getOperand(0), m_APInt(C)) && 6475 !match(II.getOperand(1), m_APInt(C))) 6476 break; 6477 6478 switch (II.getIntrinsicID()) { 6479 case Intrinsic::umin: 6480 Upper = *C + 1; 6481 break; 6482 case Intrinsic::umax: 6483 Lower = *C; 6484 break; 6485 case Intrinsic::smin: 6486 Lower = APInt::getSignedMinValue(Width); 6487 Upper = *C + 1; 6488 break; 6489 case Intrinsic::smax: 6490 Lower = *C; 6491 Upper = APInt::getSignedMaxValue(Width) + 1; 6492 break; 6493 default: 6494 llvm_unreachable("Must be min/max intrinsic"); 6495 } 6496 break; 6497 case Intrinsic::abs: 6498 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6499 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6500 if (match(II.getOperand(1), m_One())) 6501 Upper = APInt::getSignedMaxValue(Width) + 1; 6502 else 6503 Upper = APInt::getSignedMinValue(Width) + 1; 6504 break; 6505 default: 6506 break; 6507 } 6508 } 6509 6510 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6511 APInt &Upper, const InstrInfoQuery &IIQ) { 6512 const Value *LHS = nullptr, *RHS = nullptr; 6513 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6514 if (R.Flavor == SPF_UNKNOWN) 6515 return; 6516 6517 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6518 6519 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6520 // If the negation part of the abs (in RHS) has the NSW flag, 6521 // then the result of abs(X) is [0..SIGNED_MAX], 6522 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6523 Lower = APInt::getNullValue(BitWidth); 6524 if (match(RHS, m_Neg(m_Specific(LHS))) && 6525 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6526 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6527 else 6528 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6529 return; 6530 } 6531 6532 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6533 // The result of -abs(X) is <= 0. 6534 Lower = APInt::getSignedMinValue(BitWidth); 6535 Upper = APInt(BitWidth, 1); 6536 return; 6537 } 6538 6539 const APInt *C; 6540 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6541 return; 6542 6543 switch (R.Flavor) { 6544 case SPF_UMIN: 6545 Upper = *C + 1; 6546 break; 6547 case SPF_UMAX: 6548 Lower = *C; 6549 break; 6550 case SPF_SMIN: 6551 Lower = APInt::getSignedMinValue(BitWidth); 6552 Upper = *C + 1; 6553 break; 6554 case SPF_SMAX: 6555 Lower = *C; 6556 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6557 break; 6558 default: 6559 break; 6560 } 6561 } 6562 6563 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6564 AssumptionCache *AC, 6565 const Instruction *CtxI, 6566 unsigned Depth) { 6567 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6568 6569 if (Depth == MaxAnalysisRecursionDepth) 6570 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6571 6572 const APInt *C; 6573 if (match(V, m_APInt(C))) 6574 return ConstantRange(*C); 6575 6576 InstrInfoQuery IIQ(UseInstrInfo); 6577 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6578 APInt Lower = APInt(BitWidth, 0); 6579 APInt Upper = APInt(BitWidth, 0); 6580 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6581 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6582 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6583 setLimitsForIntrinsic(*II, Lower, Upper); 6584 else if (auto *SI = dyn_cast<SelectInst>(V)) 6585 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6586 6587 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6588 6589 if (auto *I = dyn_cast<Instruction>(V)) 6590 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6591 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6592 6593 if (CtxI && AC) { 6594 // Try to restrict the range based on information from assumptions. 6595 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6596 if (!AssumeVH) 6597 continue; 6598 CallInst *I = cast<CallInst>(AssumeVH); 6599 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6600 "Got assumption for the wrong function!"); 6601 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6602 "must be an assume intrinsic"); 6603 6604 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6605 continue; 6606 Value *Arg = I->getArgOperand(0); 6607 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6608 // Currently we just use information from comparisons. 6609 if (!Cmp || Cmp->getOperand(0) != V) 6610 continue; 6611 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6612 AC, I, Depth + 1); 6613 CR = CR.intersectWith( 6614 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6615 } 6616 } 6617 6618 return CR; 6619 } 6620 6621 static Optional<int64_t> 6622 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6623 // Skip over the first indices. 6624 gep_type_iterator GTI = gep_type_begin(GEP); 6625 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6626 /*skip along*/; 6627 6628 // Compute the offset implied by the rest of the indices. 6629 int64_t Offset = 0; 6630 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6631 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6632 if (!OpC) 6633 return None; 6634 if (OpC->isZero()) 6635 continue; // No offset. 6636 6637 // Handle struct indices, which add their field offset to the pointer. 6638 if (StructType *STy = GTI.getStructTypeOrNull()) { 6639 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6640 continue; 6641 } 6642 6643 // Otherwise, we have a sequential type like an array or fixed-length 6644 // vector. Multiply the index by the ElementSize. 6645 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6646 if (Size.isScalable()) 6647 return None; 6648 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6649 } 6650 6651 return Offset; 6652 } 6653 6654 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6655 const DataLayout &DL) { 6656 Ptr1 = Ptr1->stripPointerCasts(); 6657 Ptr2 = Ptr2->stripPointerCasts(); 6658 6659 // Handle the trivial case first. 6660 if (Ptr1 == Ptr2) { 6661 return 0; 6662 } 6663 6664 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6665 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6666 6667 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6668 // as in "P" and "gep P, 1". 6669 // Also do this iteratively to handle the the following case: 6670 // Ptr_t1 = GEP Ptr1, c1 6671 // Ptr_t2 = GEP Ptr_t1, c2 6672 // Ptr2 = GEP Ptr_t2, c3 6673 // where we will return c1+c2+c3. 6674 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6675 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6676 // are the same, and return the difference between offsets. 6677 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6678 const Value *Ptr) -> Optional<int64_t> { 6679 const GEPOperator *GEP_T = GEP; 6680 int64_t OffsetVal = 0; 6681 bool HasSameBase = false; 6682 while (GEP_T) { 6683 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6684 if (!Offset) 6685 return None; 6686 OffsetVal += *Offset; 6687 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6688 if (Op0 == Ptr) { 6689 HasSameBase = true; 6690 break; 6691 } 6692 GEP_T = dyn_cast<GEPOperator>(Op0); 6693 } 6694 if (!HasSameBase) 6695 return None; 6696 return OffsetVal; 6697 }; 6698 6699 if (GEP1) { 6700 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6701 if (Offset) 6702 return -*Offset; 6703 } 6704 if (GEP2) { 6705 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6706 if (Offset) 6707 return Offset; 6708 } 6709 6710 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6711 // base. After that base, they may have some number of common (and 6712 // potentially variable) indices. After that they handle some constant 6713 // offset, which determines their offset from each other. At this point, we 6714 // handle no other case. 6715 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6716 return None; 6717 6718 // Skip any common indices and track the GEP types. 6719 unsigned Idx = 1; 6720 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6721 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6722 break; 6723 6724 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6725 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6726 if (!Offset1 || !Offset2) 6727 return None; 6728 return *Offset2 - *Offset1; 6729 } 6730