1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we had an important transformation (non-trivial unswitch) 88 // which introduced instances of branch on poison/undef to otherwise well 89 // defined programs. This issue has since been fixed, but the flag is 90 // temporarily retained to easily diagnose potential regressions. 91 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 92 cl::Hidden, cl::init(true)); 93 94 95 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 96 /// returns the element type's bitwidth. 97 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 98 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 99 return BitWidth; 100 101 return DL.getPointerTypeSizeInBits(Ty); 102 } 103 104 namespace { 105 106 // Simplifying using an assume can only be done in a particular control-flow 107 // context (the context instruction provides that context). If an assume and 108 // the context instruction are not in the same block then the DT helps in 109 // figuring out if we can use it. 110 struct Query { 111 const DataLayout &DL; 112 AssumptionCache *AC; 113 const Instruction *CxtI; 114 const DominatorTree *DT; 115 116 // Unlike the other analyses, this may be a nullptr because not all clients 117 // provide it currently. 118 OptimizationRemarkEmitter *ORE; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, bool UseInstrInfo, 125 OptimizationRemarkEmitter *ORE = nullptr) 126 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 127 }; 128 129 } // end anonymous namespace 130 131 // Given the provided Value and, potentially, a context instruction, return 132 // the preferred context instruction (if any). 133 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 134 // If we've been provided with a context instruction, then use that (provided 135 // it has been inserted). 136 if (CxtI && CxtI->getParent()) 137 return CxtI; 138 139 // If the value is really an already-inserted instruction, then use that. 140 CxtI = dyn_cast<Instruction>(V); 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 return nullptr; 145 } 146 147 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V1); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 CxtI = dyn_cast<Instruction>(V2); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 166 const APInt &DemandedElts, 167 APInt &DemandedLHS, APInt &DemandedRHS) { 168 // The length of scalable vectors is unknown at compile time, thus we 169 // cannot check their values 170 if (isa<ScalableVectorType>(Shuf->getType())) 171 return false; 172 173 int NumElts = 174 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 175 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 177 if (DemandedElts.isZero()) 178 return true; 179 // Simple case of a shuffle with zeroinitializer. 180 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 181 DemandedLHS.setBit(0); 182 return true; 183 } 184 for (int i = 0; i != NumMaskElts; ++i) { 185 if (!DemandedElts[i]) 186 continue; 187 int M = Shuf->getMaskValue(i); 188 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 189 190 // For undef elements, we don't know anything about the common state of 191 // the shuffle result. 192 if (M == -1) 193 return false; 194 if (M < NumElts) 195 DemandedLHS.setBit(M % NumElts); 196 else 197 DemandedRHS.setBit(M % NumElts); 198 } 199 200 return true; 201 } 202 203 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 204 KnownBits &Known, unsigned Depth, const Query &Q); 205 206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 207 const Query &Q) { 208 // FIXME: We currently have no way to represent the DemandedElts of a scalable 209 // vector 210 if (isa<ScalableVectorType>(V->getType())) { 211 Known.resetAll(); 212 return; 213 } 214 215 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 216 APInt DemandedElts = 217 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 218 computeKnownBits(V, DemandedElts, Known, Depth, Q); 219 } 220 221 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 222 const DataLayout &DL, unsigned Depth, 223 AssumptionCache *AC, const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 231 KnownBits &Known, const DataLayout &DL, 232 unsigned Depth, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 235 ::computeKnownBits(V, DemandedElts, Known, Depth, 236 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 237 } 238 239 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 240 unsigned Depth, const Query &Q); 241 242 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 243 const Query &Q); 244 245 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, 248 const DominatorTree *DT, 249 OptimizationRemarkEmitter *ORE, 250 bool UseInstrInfo) { 251 return ::computeKnownBits( 252 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 253 } 254 255 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 256 const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, 259 OptimizationRemarkEmitter *ORE, 260 bool UseInstrInfo) { 261 return ::computeKnownBits( 262 V, DemandedElts, Depth, 263 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 264 } 265 266 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 267 const DataLayout &DL, AssumptionCache *AC, 268 const Instruction *CxtI, const DominatorTree *DT, 269 bool UseInstrInfo) { 270 assert(LHS->getType() == RHS->getType() && 271 "LHS and RHS should have the same type"); 272 assert(LHS->getType()->isIntOrIntVectorTy() && 273 "LHS and RHS should be integers"); 274 // Look for an inverted mask: (X & ~M) op (Y & M). 275 { 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 } 284 285 // X op (Y & ~X) 286 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 287 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 288 return true; 289 290 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 291 // for constant Y. 292 Value *Y; 293 if (match(RHS, 294 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 295 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 296 return true; 297 298 // Look for: (A & B) op ~(A | B) 299 { 300 Value *A, *B; 301 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 302 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 303 return true; 304 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 305 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 306 return true; 307 } 308 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 309 KnownBits LHSKnown(IT->getBitWidth()); 310 KnownBits RHSKnown(IT->getBitWidth()); 311 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 312 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 314 } 315 316 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 317 return !I->user_empty() && all_of(I->users(), [](const User *U) { 318 ICmpInst::Predicate P; 319 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 320 }); 321 } 322 323 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 324 const Query &Q); 325 326 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 327 bool OrZero, unsigned Depth, 328 AssumptionCache *AC, const Instruction *CxtI, 329 const DominatorTree *DT, bool UseInstrInfo) { 330 return ::isKnownToBeAPowerOfTwo( 331 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 332 } 333 334 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 335 unsigned Depth, const Query &Q); 336 337 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 338 339 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 340 AssumptionCache *AC, const Instruction *CxtI, 341 const DominatorTree *DT, bool UseInstrInfo) { 342 return ::isKnownNonZero(V, Depth, 343 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 344 } 345 346 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 347 unsigned Depth, AssumptionCache *AC, 348 const Instruction *CxtI, const DominatorTree *DT, 349 bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNonNegative(); 353 } 354 355 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 356 AssumptionCache *AC, const Instruction *CxtI, 357 const DominatorTree *DT, bool UseInstrInfo) { 358 if (auto *CI = dyn_cast<ConstantInt>(V)) 359 return CI->getValue().isStrictlyPositive(); 360 361 // TODO: We'd doing two recursive queries here. We should factor this such 362 // that only a single query is needed. 363 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 364 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 365 } 366 367 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 368 AssumptionCache *AC, const Instruction *CxtI, 369 const DominatorTree *DT, bool UseInstrInfo) { 370 KnownBits Known = 371 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 372 return Known.isNegative(); 373 } 374 375 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 376 const Query &Q); 377 378 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 379 const DataLayout &DL, AssumptionCache *AC, 380 const Instruction *CxtI, const DominatorTree *DT, 381 bool UseInstrInfo) { 382 return ::isKnownNonEqual(V1, V2, 0, 383 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 384 UseInstrInfo, /*ORE=*/nullptr)); 385 } 386 387 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 388 const Query &Q); 389 390 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 391 const DataLayout &DL, unsigned Depth, 392 AssumptionCache *AC, const Instruction *CxtI, 393 const DominatorTree *DT, bool UseInstrInfo) { 394 return ::MaskedValueIsZero( 395 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 396 } 397 398 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 399 unsigned Depth, const Query &Q); 400 401 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 402 const Query &Q) { 403 // FIXME: We currently have no way to represent the DemandedElts of a scalable 404 // vector 405 if (isa<ScalableVectorType>(V->getType())) 406 return 1; 407 408 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 409 APInt DemandedElts = 410 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 411 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 412 } 413 414 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 415 unsigned Depth, AssumptionCache *AC, 416 const Instruction *CxtI, 417 const DominatorTree *DT, bool UseInstrInfo) { 418 return ::ComputeNumSignBits( 419 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 420 } 421 422 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 423 unsigned Depth, AssumptionCache *AC, 424 const Instruction *CxtI, 425 const DominatorTree *DT) { 426 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 427 return V->getType()->getScalarSizeInBits() - SignBits + 1; 428 } 429 430 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 431 bool NSW, const APInt &DemandedElts, 432 KnownBits &KnownOut, KnownBits &Known2, 433 unsigned Depth, const Query &Q) { 434 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 435 436 // If one operand is unknown and we have no nowrap information, 437 // the result will be unknown independently of the second operand. 438 if (KnownOut.isUnknown() && !NSW) 439 return; 440 441 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 442 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 443 } 444 445 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 446 const APInt &DemandedElts, KnownBits &Known, 447 KnownBits &Known2, unsigned Depth, 448 const Query &Q) { 449 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 450 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 451 452 bool isKnownNegative = false; 453 bool isKnownNonNegative = false; 454 // If the multiplication is known not to overflow, compute the sign bit. 455 if (NSW) { 456 if (Op0 == Op1) { 457 // The product of a number with itself is non-negative. 458 isKnownNonNegative = true; 459 } else { 460 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 461 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 462 bool isKnownNegativeOp1 = Known.isNegative(); 463 bool isKnownNegativeOp0 = Known2.isNegative(); 464 // The product of two numbers with the same sign is non-negative. 465 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 466 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 467 // The product of a negative number and a non-negative number is either 468 // negative or zero. 469 if (!isKnownNonNegative) 470 isKnownNegative = 471 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 472 Known2.isNonZero()) || 473 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 474 } 475 } 476 477 bool SelfMultiply = Op0 == Op1; 478 // TODO: SelfMultiply can be poison, but not undef. 479 if (SelfMultiply) 480 SelfMultiply &= 481 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 482 Known = KnownBits::mul(Known, Known2, SelfMultiply); 483 484 // Only make use of no-wrap flags if we failed to compute the sign bit 485 // directly. This matters if the multiplication always overflows, in 486 // which case we prefer to follow the result of the direct computation, 487 // though as the program is invoking undefined behaviour we can choose 488 // whatever we like here. 489 if (isKnownNonNegative && !Known.isNegative()) 490 Known.makeNonNegative(); 491 else if (isKnownNegative && !Known.isNonNegative()) 492 Known.makeNegative(); 493 } 494 495 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 496 KnownBits &Known) { 497 unsigned BitWidth = Known.getBitWidth(); 498 unsigned NumRanges = Ranges.getNumOperands() / 2; 499 assert(NumRanges >= 1); 500 501 Known.Zero.setAllBits(); 502 Known.One.setAllBits(); 503 504 for (unsigned i = 0; i < NumRanges; ++i) { 505 ConstantInt *Lower = 506 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 507 ConstantInt *Upper = 508 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 509 ConstantRange Range(Lower->getValue(), Upper->getValue()); 510 511 // The first CommonPrefixBits of all values in Range are equal. 512 unsigned CommonPrefixBits = 513 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 514 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 515 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 516 Known.One &= UnsignedMax & Mask; 517 Known.Zero &= ~UnsignedMax & Mask; 518 } 519 } 520 521 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 522 SmallVector<const Value *, 16> WorkSet(1, I); 523 SmallPtrSet<const Value *, 32> Visited; 524 SmallPtrSet<const Value *, 16> EphValues; 525 526 // The instruction defining an assumption's condition itself is always 527 // considered ephemeral to that assumption (even if it has other 528 // non-ephemeral users). See r246696's test case for an example. 529 if (is_contained(I->operands(), E)) 530 return true; 531 532 while (!WorkSet.empty()) { 533 const Value *V = WorkSet.pop_back_val(); 534 if (!Visited.insert(V).second) 535 continue; 536 537 // If all uses of this value are ephemeral, then so is this value. 538 if (llvm::all_of(V->users(), [&](const User *U) { 539 return EphValues.count(U); 540 })) { 541 if (V == E) 542 return true; 543 544 if (V == I || (isa<Instruction>(V) && 545 !cast<Instruction>(V)->mayHaveSideEffects() && 546 !cast<Instruction>(V)->isTerminator())) { 547 EphValues.insert(V); 548 if (const User *U = dyn_cast<User>(V)) 549 append_range(WorkSet, U->operands()); 550 } 551 } 552 } 553 554 return false; 555 } 556 557 // Is this an intrinsic that cannot be speculated but also cannot trap? 558 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 559 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 560 return CI->isAssumeLikeIntrinsic(); 561 562 return false; 563 } 564 565 bool llvm::isValidAssumeForContext(const Instruction *Inv, 566 const Instruction *CxtI, 567 const DominatorTree *DT) { 568 // There are two restrictions on the use of an assume: 569 // 1. The assume must dominate the context (or the control flow must 570 // reach the assume whenever it reaches the context). 571 // 2. The context must not be in the assume's set of ephemeral values 572 // (otherwise we will use the assume to prove that the condition 573 // feeding the assume is trivially true, thus causing the removal of 574 // the assume). 575 576 if (Inv->getParent() == CxtI->getParent()) { 577 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 578 // in the BB. 579 if (Inv->comesBefore(CxtI)) 580 return true; 581 582 // Don't let an assume affect itself - this would cause the problems 583 // `isEphemeralValueOf` is trying to prevent, and it would also make 584 // the loop below go out of bounds. 585 if (Inv == CxtI) 586 return false; 587 588 // The context comes first, but they're both in the same block. 589 // Make sure there is nothing in between that might interrupt 590 // the control flow, not even CxtI itself. 591 // We limit the scan distance between the assume and its context instruction 592 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 593 // it can be adjusted if needed (could be turned into a cl::opt). 594 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 595 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 596 return false; 597 598 return !isEphemeralValueOf(Inv, CxtI); 599 } 600 601 // Inv and CxtI are in different blocks. 602 if (DT) { 603 if (DT->dominates(Inv, CxtI)) 604 return true; 605 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 606 // We don't have a DT, but this trivially dominates. 607 return true; 608 } 609 610 return false; 611 } 612 613 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 614 // v u> y implies v != 0. 615 if (Pred == ICmpInst::ICMP_UGT) 616 return true; 617 618 // Special-case v != 0 to also handle v != null. 619 if (Pred == ICmpInst::ICMP_NE) 620 return match(RHS, m_Zero()); 621 622 // All other predicates - rely on generic ConstantRange handling. 623 const APInt *C; 624 if (!match(RHS, m_APInt(C))) 625 return false; 626 627 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 628 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 629 } 630 631 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return false; 636 637 if (Q.CxtI && V->getType()->isPointerTy()) { 638 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 639 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 640 V->getType()->getPointerAddressSpace())) 641 AttrKinds.push_back(Attribute::Dereferenceable); 642 643 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 644 return true; 645 } 646 647 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 648 if (!AssumeVH) 649 continue; 650 CallInst *I = cast<CallInst>(AssumeVH); 651 assert(I->getFunction() == Q.CxtI->getFunction() && 652 "Got assumption for the wrong function!"); 653 654 // Warning: This loop can end up being somewhat performance sensitive. 655 // We're running this loop for once for each value queried resulting in a 656 // runtime of ~O(#assumes * #values). 657 658 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 659 "must be an assume intrinsic"); 660 661 Value *RHS; 662 CmpInst::Predicate Pred; 663 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 664 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 665 return false; 666 667 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 668 return true; 669 } 670 671 return false; 672 } 673 674 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 675 unsigned Depth, const Query &Q) { 676 // Use of assumptions is context-sensitive. If we don't have a context, we 677 // cannot use them! 678 if (!Q.AC || !Q.CxtI) 679 return; 680 681 unsigned BitWidth = Known.getBitWidth(); 682 683 // Refine Known set if the pointer alignment is set by assume bundles. 684 if (V->getType()->isPointerTy()) { 685 if (RetainedKnowledge RK = getKnowledgeValidInContext( 686 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 687 if (isPowerOf2_64(RK.ArgValue)) 688 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 689 } 690 } 691 692 // Note that the patterns below need to be kept in sync with the code 693 // in AssumptionCache::updateAffectedValues. 694 695 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 696 if (!AssumeVH) 697 continue; 698 CallInst *I = cast<CallInst>(AssumeVH); 699 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 700 "Got assumption for the wrong function!"); 701 702 // Warning: This loop can end up being somewhat performance sensitive. 703 // We're running this loop for once for each value queried resulting in a 704 // runtime of ~O(#assumes * #values). 705 706 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 707 "must be an assume intrinsic"); 708 709 Value *Arg = I->getArgOperand(0); 710 711 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 712 assert(BitWidth == 1 && "assume operand is not i1?"); 713 Known.setAllOnes(); 714 return; 715 } 716 if (match(Arg, m_Not(m_Specific(V))) && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 assert(BitWidth == 1 && "assume operand is not i1?"); 719 Known.setAllZero(); 720 return; 721 } 722 723 // The remaining tests are all recursive, so bail out if we hit the limit. 724 if (Depth == MaxAnalysisRecursionDepth) 725 continue; 726 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 // We are attempting to compute known bits for the operands of an assume. 732 // Do not try to use other assumptions for those recursive calls because 733 // that can lead to mutual recursion and a compile-time explosion. 734 // An example of the mutual recursion: computeKnownBits can call 735 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 736 // and so on. 737 Query QueryNoAC = Q; 738 QueryNoAC.AC = nullptr; 739 740 // Note that ptrtoint may change the bitwidth. 741 Value *A, *B; 742 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 743 744 CmpInst::Predicate Pred; 745 uint64_t C; 746 switch (Cmp->getPredicate()) { 747 default: 748 break; 749 case ICmpInst::ICMP_EQ: 750 // assume(v = a) 751 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 753 KnownBits RHSKnown = 754 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 755 Known.Zero |= RHSKnown.Zero; 756 Known.One |= RHSKnown.One; 757 // assume(v & b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 763 KnownBits MaskKnown = 764 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 769 Known.One |= RHSKnown.One & MaskKnown.One; 770 // assume(~(v & b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 776 KnownBits MaskKnown = 777 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & MaskKnown.One; 782 Known.One |= RHSKnown.Zero & MaskKnown.One; 783 // assume(v | b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 // assume(~(v | b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 KnownBits BKnown = 803 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & BKnown.Zero; 808 Known.One |= RHSKnown.Zero & BKnown.Zero; 809 // assume(v ^ b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 KnownBits BKnown = 816 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 Known.Zero |= RHSKnown.One & BKnown.One; 824 Known.One |= RHSKnown.Zero & BKnown.One; 825 // assume(~(v ^ b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown = 830 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 831 KnownBits BKnown = 832 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 Known.Zero |= RHSKnown.One & BKnown.Zero; 838 Known.One |= RHSKnown.Zero & BKnown.Zero; 839 Known.Zero |= RHSKnown.Zero & BKnown.One; 840 Known.One |= RHSKnown.One & BKnown.One; 841 // assume(v << c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 847 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 RHSKnown.Zero.lshrInPlace(C); 851 Known.Zero |= RHSKnown.Zero; 852 RHSKnown.One.lshrInPlace(C); 853 Known.One |= RHSKnown.One; 854 // assume(~(v << c) = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown = 859 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 860 // For those bits in RHS that are known, we can propagate them inverted 861 // to known bits in V shifted to the right by C. 862 RHSKnown.One.lshrInPlace(C); 863 Known.Zero |= RHSKnown.One; 864 RHSKnown.Zero.lshrInPlace(C); 865 Known.One |= RHSKnown.Zero; 866 // assume(v >> c = a) 867 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 868 m_Value(A))) && 869 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 870 KnownBits RHSKnown = 871 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 872 // For those bits in RHS that are known, we can propagate them to known 873 // bits in V shifted to the right by C. 874 Known.Zero |= RHSKnown.Zero << C; 875 Known.One |= RHSKnown.One << C; 876 // assume(~(v >> c) = a) 877 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 878 m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 882 // For those bits in RHS that are known, we can propagate them inverted 883 // to known bits in V shifted to the right by C. 884 Known.Zero |= RHSKnown.One << C; 885 Known.One |= RHSKnown.Zero << C; 886 } 887 break; 888 case ICmpInst::ICMP_SGE: 889 // assume(v >=_s c) where c is non-negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNonNegative()) { 896 // We know that the sign bit is zero. 897 Known.makeNonNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SGT: 902 // assume(v >_s c) where c is at least -1. 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 909 // We know that the sign bit is zero. 910 Known.makeNonNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_SLE: 915 // assume(v <=_s c) where c is negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 if (RHSKnown.isNegative()) { 922 // We know that the sign bit is one. 923 Known.makeNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SLT: 928 // assume(v <_s c) where c is non-positive 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 933 934 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 935 // We know that the sign bit is one. 936 Known.makeNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_ULE: 941 // assume(v <=_u c) 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown = 945 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 946 947 // Whatever high bits in c are zero are known to be zero. 948 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 949 } 950 break; 951 case ICmpInst::ICMP_ULT: 952 // assume(v <_u c) 953 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 954 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 955 KnownBits RHSKnown = 956 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 957 958 // If the RHS is known zero, then this assumption must be wrong (nothing 959 // is unsigned less than zero). Signal a conflict and get out of here. 960 if (RHSKnown.isZero()) { 961 Known.Zero.setAllBits(); 962 Known.One.setAllBits(); 963 break; 964 } 965 966 // Whatever high bits in c are zero are known to be zero (if c is a power 967 // of 2, then one more). 968 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 969 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 970 else 971 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 972 } 973 break; 974 } 975 } 976 977 // If assumptions conflict with each other or previous known bits, then we 978 // have a logical fallacy. It's possible that the assumption is not reachable, 979 // so this isn't a real bug. On the other hand, the program may have undefined 980 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 981 // clear out the known bits, try to warn the user, and hope for the best. 982 if (Known.Zero.intersects(Known.One)) { 983 Known.resetAll(); 984 985 if (Q.ORE) 986 Q.ORE->emit([&]() { 987 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 988 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 989 CxtI) 990 << "Detected conflicting code assumptions. Program may " 991 "have undefined behavior, or compiler may have " 992 "internal error."; 993 }); 994 } 995 } 996 997 /// Compute known bits from a shift operator, including those with a 998 /// non-constant shift amount. Known is the output of this function. Known2 is a 999 /// pre-allocated temporary with the same bit width as Known and on return 1000 /// contains the known bit of the shift value source. KF is an 1001 /// operator-specific function that, given the known-bits and a shift amount, 1002 /// compute the implied known-bits of the shift operator's result respectively 1003 /// for that shift amount. The results from calling KF are conservatively 1004 /// combined for all permitted shift amounts. 1005 static void computeKnownBitsFromShiftOperator( 1006 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1007 KnownBits &Known2, unsigned Depth, const Query &Q, 1008 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 1009 unsigned BitWidth = Known.getBitWidth(); 1010 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1011 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1012 1013 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1014 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1015 // limit value (which implies all bits are known). 1016 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1017 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1018 bool ShiftAmtIsConstant = Known.isConstant(); 1019 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1020 1021 if (ShiftAmtIsConstant) { 1022 Known = KF(Known2, Known); 1023 1024 // If the known bits conflict, this must be an overflowing left shift, so 1025 // the shift result is poison. We can return anything we want. Choose 0 for 1026 // the best folding opportunity. 1027 if (Known.hasConflict()) 1028 Known.setAllZero(); 1029 1030 return; 1031 } 1032 1033 // If the shift amount could be greater than or equal to the bit-width of the 1034 // LHS, the value could be poison, but bail out because the check below is 1035 // expensive. 1036 // TODO: Should we just carry on? 1037 if (MaxShiftAmtIsOutOfRange) { 1038 Known.resetAll(); 1039 return; 1040 } 1041 1042 // It would be more-clearly correct to use the two temporaries for this 1043 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1044 Known.resetAll(); 1045 1046 // If we know the shifter operand is nonzero, we can sometimes infer more 1047 // known bits. However this is expensive to compute, so be lazy about it and 1048 // only compute it when absolutely necessary. 1049 Optional<bool> ShifterOperandIsNonZero; 1050 1051 // Early exit if we can't constrain any well-defined shift amount. 1052 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1053 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1054 ShifterOperandIsNonZero = 1055 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1056 if (!*ShifterOperandIsNonZero) 1057 return; 1058 } 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1063 // Combine the shifted known input bits only for those shift amounts 1064 // compatible with its known constraints. 1065 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1066 continue; 1067 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1068 continue; 1069 // If we know the shifter is nonzero, we may be able to infer more known 1070 // bits. This check is sunk down as far as possible to avoid the expensive 1071 // call to isKnownNonZero if the cheaper checks above fail. 1072 if (ShiftAmt == 0) { 1073 if (!ShifterOperandIsNonZero) 1074 ShifterOperandIsNonZero = 1075 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1076 if (*ShifterOperandIsNonZero) 1077 continue; 1078 } 1079 1080 Known = KnownBits::commonBits( 1081 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1082 } 1083 1084 // If the known bits conflict, the result is poison. Return a 0 and hope the 1085 // caller can further optimize that. 1086 if (Known.hasConflict()) 1087 Known.setAllZero(); 1088 } 1089 1090 static void computeKnownBitsFromOperator(const Operator *I, 1091 const APInt &DemandedElts, 1092 KnownBits &Known, unsigned Depth, 1093 const Query &Q) { 1094 unsigned BitWidth = Known.getBitWidth(); 1095 1096 KnownBits Known2(BitWidth); 1097 switch (I->getOpcode()) { 1098 default: break; 1099 case Instruction::Load: 1100 if (MDNode *MD = 1101 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1102 computeKnownBitsFromRangeMetadata(*MD, Known); 1103 break; 1104 case Instruction::And: { 1105 // If either the LHS or the RHS are Zero, the result is zero. 1106 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known &= Known2; 1110 1111 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1112 // here we handle the more general case of adding any odd number by 1113 // matching the form add(x, add(x, y)) where y is odd. 1114 // TODO: This could be generalized to clearing any bit set in y where the 1115 // following bit is known to be unset in y. 1116 Value *X = nullptr, *Y = nullptr; 1117 if (!Known.Zero[0] && !Known.One[0] && 1118 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1119 Known2.resetAll(); 1120 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1121 if (Known2.countMinTrailingOnes() > 0) 1122 Known.Zero.setBit(0); 1123 } 1124 break; 1125 } 1126 case Instruction::Or: 1127 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1128 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1129 1130 Known |= Known2; 1131 break; 1132 case Instruction::Xor: 1133 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1135 1136 Known ^= Known2; 1137 break; 1138 case Instruction::Mul: { 1139 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1140 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1141 Known, Known2, Depth, Q); 1142 break; 1143 } 1144 case Instruction::UDiv: { 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1147 Known = KnownBits::udiv(Known, Known2); 1148 break; 1149 } 1150 case Instruction::Select: { 1151 const Value *LHS = nullptr, *RHS = nullptr; 1152 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1153 if (SelectPatternResult::isMinOrMax(SPF)) { 1154 computeKnownBits(RHS, Known, Depth + 1, Q); 1155 computeKnownBits(LHS, Known2, Depth + 1, Q); 1156 switch (SPF) { 1157 default: 1158 llvm_unreachable("Unhandled select pattern flavor!"); 1159 case SPF_SMAX: 1160 Known = KnownBits::smax(Known, Known2); 1161 break; 1162 case SPF_SMIN: 1163 Known = KnownBits::smin(Known, Known2); 1164 break; 1165 case SPF_UMAX: 1166 Known = KnownBits::umax(Known, Known2); 1167 break; 1168 case SPF_UMIN: 1169 Known = KnownBits::umin(Known, Known2); 1170 break; 1171 } 1172 break; 1173 } 1174 1175 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1176 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1177 1178 // Only known if known in both the LHS and RHS. 1179 Known = KnownBits::commonBits(Known, Known2); 1180 1181 if (SPF == SPF_ABS) { 1182 // RHS from matchSelectPattern returns the negation part of abs pattern. 1183 // If the negate has an NSW flag we can assume the sign bit of the result 1184 // will be 0 because that makes abs(INT_MIN) undefined. 1185 if (match(RHS, m_Neg(m_Specific(LHS))) && 1186 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1187 Known.Zero.setSignBit(); 1188 } 1189 1190 break; 1191 } 1192 case Instruction::FPTrunc: 1193 case Instruction::FPExt: 1194 case Instruction::FPToUI: 1195 case Instruction::FPToSI: 1196 case Instruction::SIToFP: 1197 case Instruction::UIToFP: 1198 break; // Can't work with floating point. 1199 case Instruction::PtrToInt: 1200 case Instruction::IntToPtr: 1201 // Fall through and handle them the same as zext/trunc. 1202 LLVM_FALLTHROUGH; 1203 case Instruction::ZExt: 1204 case Instruction::Trunc: { 1205 Type *SrcTy = I->getOperand(0)->getType(); 1206 1207 unsigned SrcBitWidth; 1208 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1209 // which fall through here. 1210 Type *ScalarTy = SrcTy->getScalarType(); 1211 SrcBitWidth = ScalarTy->isPointerTy() ? 1212 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1213 Q.DL.getTypeSizeInBits(ScalarTy); 1214 1215 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1216 Known = Known.anyextOrTrunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 Known = Known.zextOrTrunc(BitWidth); 1219 break; 1220 } 1221 case Instruction::BitCast: { 1222 Type *SrcTy = I->getOperand(0)->getType(); 1223 if (SrcTy->isIntOrPtrTy() && 1224 // TODO: For now, not handling conversions like: 1225 // (bitcast i64 %x to <2 x i32>) 1226 !I->getType()->isVectorTy()) { 1227 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1228 break; 1229 } 1230 1231 // Handle cast from vector integer type to scalar or vector integer. 1232 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1233 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1234 !I->getType()->isIntOrIntVectorTy()) 1235 break; 1236 1237 // Look through a cast from narrow vector elements to wider type. 1238 // Examples: v4i32 -> v2i64, v3i8 -> v24 1239 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1240 if (BitWidth % SubBitWidth == 0) { 1241 // Known bits are automatically intersected across demanded elements of a 1242 // vector. So for example, if a bit is computed as known zero, it must be 1243 // zero across all demanded elements of the vector. 1244 // 1245 // For this bitcast, each demanded element of the output is sub-divided 1246 // across a set of smaller vector elements in the source vector. To get 1247 // the known bits for an entire element of the output, compute the known 1248 // bits for each sub-element sequentially. This is done by shifting the 1249 // one-set-bit demanded elements parameter across the sub-elements for 1250 // consecutive calls to computeKnownBits. We are using the demanded 1251 // elements parameter as a mask operator. 1252 // 1253 // The known bits of each sub-element are then inserted into place 1254 // (dependent on endian) to form the full result of known bits. 1255 unsigned NumElts = DemandedElts.getBitWidth(); 1256 unsigned SubScale = BitWidth / SubBitWidth; 1257 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1258 for (unsigned i = 0; i != NumElts; ++i) { 1259 if (DemandedElts[i]) 1260 SubDemandedElts.setBit(i * SubScale); 1261 } 1262 1263 KnownBits KnownSrc(SubBitWidth); 1264 for (unsigned i = 0; i != SubScale; ++i) { 1265 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1266 Depth + 1, Q); 1267 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1268 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1269 } 1270 } 1271 break; 1272 } 1273 case Instruction::SExt: { 1274 // Compute the bits in the result that are not present in the input. 1275 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1276 1277 Known = Known.trunc(SrcBitWidth); 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 // If the sign bit of the input is known set or clear, then we know the 1280 // top bits of the result. 1281 Known = Known.sext(BitWidth); 1282 break; 1283 } 1284 case Instruction::Shl: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1287 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1288 // If this shift has "nsw" keyword, then the result is either a poison 1289 // value or has the same sign bit as the first operand. 1290 if (NSW) { 1291 if (KnownVal.Zero.isSignBitSet()) 1292 Result.Zero.setSignBit(); 1293 if (KnownVal.One.isSignBitSet()) 1294 Result.One.setSignBit(); 1295 } 1296 return Result; 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 // Trailing zeros of a right-shifted constant never decrease. 1301 const APInt *C; 1302 if (match(I->getOperand(0), m_APInt(C))) 1303 Known.Zero.setLowBits(C->countTrailingZeros()); 1304 break; 1305 } 1306 case Instruction::LShr: { 1307 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1308 return KnownBits::lshr(KnownVal, KnownAmt); 1309 }; 1310 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1311 KF); 1312 // Leading zeros of a left-shifted constant never decrease. 1313 const APInt *C; 1314 if (match(I->getOperand(0), m_APInt(C))) 1315 Known.Zero.setHighBits(C->countLeadingZeros()); 1316 break; 1317 } 1318 case Instruction::AShr: { 1319 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1320 return KnownBits::ashr(KnownVal, KnownAmt); 1321 }; 1322 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1323 KF); 1324 break; 1325 } 1326 case Instruction::Sub: { 1327 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1328 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1329 DemandedElts, Known, Known2, Depth, Q); 1330 break; 1331 } 1332 case Instruction::Add: { 1333 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1334 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1335 DemandedElts, Known, Known2, Depth, Q); 1336 break; 1337 } 1338 case Instruction::SRem: 1339 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1340 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1341 Known = KnownBits::srem(Known, Known2); 1342 break; 1343 1344 case Instruction::URem: 1345 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1346 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1347 Known = KnownBits::urem(Known, Known2); 1348 break; 1349 case Instruction::Alloca: 1350 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1351 break; 1352 case Instruction::GetElementPtr: { 1353 // Analyze all of the subscripts of this getelementptr instruction 1354 // to determine if we can prove known low zero bits. 1355 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1356 // Accumulate the constant indices in a separate variable 1357 // to minimize the number of calls to computeForAddSub. 1358 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1359 1360 gep_type_iterator GTI = gep_type_begin(I); 1361 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1362 // TrailZ can only become smaller, short-circuit if we hit zero. 1363 if (Known.isUnknown()) 1364 break; 1365 1366 Value *Index = I->getOperand(i); 1367 1368 // Handle case when index is zero. 1369 Constant *CIndex = dyn_cast<Constant>(Index); 1370 if (CIndex && CIndex->isZeroValue()) 1371 continue; 1372 1373 if (StructType *STy = GTI.getStructTypeOrNull()) { 1374 // Handle struct member offset arithmetic. 1375 1376 assert(CIndex && 1377 "Access to structure field must be known at compile time"); 1378 1379 if (CIndex->getType()->isVectorTy()) 1380 Index = CIndex->getSplatValue(); 1381 1382 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1383 const StructLayout *SL = Q.DL.getStructLayout(STy); 1384 uint64_t Offset = SL->getElementOffset(Idx); 1385 AccConstIndices += Offset; 1386 continue; 1387 } 1388 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 Known.resetAll(); 1393 break; 1394 } 1395 1396 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1397 KnownBits IndexBits(IndexBitWidth); 1398 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1399 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1400 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1401 KnownBits ScalingFactor(IndexBitWidth); 1402 // Multiply by current sizeof type. 1403 // &A[i] == A + i * sizeof(*A[i]). 1404 if (IndexTypeSize.isScalable()) { 1405 // For scalable types the only thing we know about sizeof is 1406 // that this is a multiple of the minimum size. 1407 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1408 } else if (IndexBits.isConstant()) { 1409 APInt IndexConst = IndexBits.getConstant(); 1410 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1411 IndexConst *= ScalingFactor; 1412 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1413 continue; 1414 } else { 1415 ScalingFactor = 1416 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1417 } 1418 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1419 1420 // If the offsets have a different width from the pointer, according 1421 // to the language reference we need to sign-extend or truncate them 1422 // to the width of the pointer. 1423 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1424 1425 // Note that inbounds does *not* guarantee nsw for the addition, as only 1426 // the offset is signed, while the base address is unsigned. 1427 Known = KnownBits::computeForAddSub( 1428 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1429 } 1430 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1431 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1432 Known = KnownBits::computeForAddSub( 1433 /*Add=*/true, /*NSW=*/false, Known, Index); 1434 } 1435 break; 1436 } 1437 case Instruction::PHI: { 1438 const PHINode *P = cast<PHINode>(I); 1439 BinaryOperator *BO = nullptr; 1440 Value *R = nullptr, *L = nullptr; 1441 if (matchSimpleRecurrence(P, BO, R, L)) { 1442 // Handle the case of a simple two-predecessor recurrence PHI. 1443 // There's a lot more that could theoretically be done here, but 1444 // this is sufficient to catch some interesting cases. 1445 unsigned Opcode = BO->getOpcode(); 1446 1447 // If this is a shift recurrence, we know the bits being shifted in. 1448 // We can combine that with information about the start value of the 1449 // recurrence to conclude facts about the result. 1450 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1451 Opcode == Instruction::Shl) && 1452 BO->getOperand(0) == I) { 1453 1454 // We have matched a recurrence of the form: 1455 // %iv = [R, %entry], [%iv.next, %backedge] 1456 // %iv.next = shift_op %iv, L 1457 1458 // Recurse with the phi context to avoid concern about whether facts 1459 // inferred hold at original context instruction. TODO: It may be 1460 // correct to use the original context. IF warranted, explore and 1461 // add sufficient tests to cover. 1462 Query RecQ = Q; 1463 RecQ.CxtI = P; 1464 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1465 switch (Opcode) { 1466 case Instruction::Shl: 1467 // A shl recurrence will only increase the tailing zeros 1468 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1469 break; 1470 case Instruction::LShr: 1471 // A lshr recurrence will preserve the leading zeros of the 1472 // start value 1473 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1474 break; 1475 case Instruction::AShr: 1476 // An ashr recurrence will extend the initial sign bit 1477 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1478 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1479 break; 1480 }; 1481 } 1482 1483 // Check for operations that have the property that if 1484 // both their operands have low zero bits, the result 1485 // will have low zero bits. 1486 if (Opcode == Instruction::Add || 1487 Opcode == Instruction::Sub || 1488 Opcode == Instruction::And || 1489 Opcode == Instruction::Or || 1490 Opcode == Instruction::Mul) { 1491 // Change the context instruction to the "edge" that flows into the 1492 // phi. This is important because that is where the value is actually 1493 // "evaluated" even though it is used later somewhere else. (see also 1494 // D69571). 1495 Query RecQ = Q; 1496 1497 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1498 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1499 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1500 1501 // Ok, we have a PHI of the form L op= R. Check for low 1502 // zero bits. 1503 RecQ.CxtI = RInst; 1504 computeKnownBits(R, Known2, Depth + 1, RecQ); 1505 1506 // We need to take the minimum number of known bits 1507 KnownBits Known3(BitWidth); 1508 RecQ.CxtI = LInst; 1509 computeKnownBits(L, Known3, Depth + 1, RecQ); 1510 1511 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1512 Known3.countMinTrailingZeros())); 1513 1514 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1515 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1516 // If initial value of recurrence is nonnegative, and we are adding 1517 // a nonnegative number with nsw, the result can only be nonnegative 1518 // or poison value regardless of the number of times we execute the 1519 // add in phi recurrence. If initial value is negative and we are 1520 // adding a negative number with nsw, the result can only be 1521 // negative or poison value. Similar arguments apply to sub and mul. 1522 // 1523 // (add non-negative, non-negative) --> non-negative 1524 // (add negative, negative) --> negative 1525 if (Opcode == Instruction::Add) { 1526 if (Known2.isNonNegative() && Known3.isNonNegative()) 1527 Known.makeNonNegative(); 1528 else if (Known2.isNegative() && Known3.isNegative()) 1529 Known.makeNegative(); 1530 } 1531 1532 // (sub nsw non-negative, negative) --> non-negative 1533 // (sub nsw negative, non-negative) --> negative 1534 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1535 if (Known2.isNonNegative() && Known3.isNegative()) 1536 Known.makeNonNegative(); 1537 else if (Known2.isNegative() && Known3.isNonNegative()) 1538 Known.makeNegative(); 1539 } 1540 1541 // (mul nsw non-negative, non-negative) --> non-negative 1542 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1543 Known3.isNonNegative()) 1544 Known.makeNonNegative(); 1545 } 1546 1547 break; 1548 } 1549 } 1550 1551 // Unreachable blocks may have zero-operand PHI nodes. 1552 if (P->getNumIncomingValues() == 0) 1553 break; 1554 1555 // Otherwise take the unions of the known bit sets of the operands, 1556 // taking conservative care to avoid excessive recursion. 1557 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1558 // Skip if every incoming value references to ourself. 1559 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1560 break; 1561 1562 Known.Zero.setAllBits(); 1563 Known.One.setAllBits(); 1564 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1565 Value *IncValue = P->getIncomingValue(u); 1566 // Skip direct self references. 1567 if (IncValue == P) continue; 1568 1569 // Change the context instruction to the "edge" that flows into the 1570 // phi. This is important because that is where the value is actually 1571 // "evaluated" even though it is used later somewhere else. (see also 1572 // D69571). 1573 Query RecQ = Q; 1574 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1575 1576 Known2 = KnownBits(BitWidth); 1577 // Recurse, but cap the recursion to one level, because we don't 1578 // want to waste time spinning around in loops. 1579 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1580 Known = KnownBits::commonBits(Known, Known2); 1581 // If all bits have been ruled out, there's no need to check 1582 // more operands. 1583 if (Known.isUnknown()) 1584 break; 1585 } 1586 } 1587 break; 1588 } 1589 case Instruction::Call: 1590 case Instruction::Invoke: 1591 // If range metadata is attached to this call, set known bits from that, 1592 // and then intersect with known bits based on other properties of the 1593 // function. 1594 if (MDNode *MD = 1595 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1596 computeKnownBitsFromRangeMetadata(*MD, Known); 1597 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1598 computeKnownBits(RV, Known2, Depth + 1, Q); 1599 Known.Zero |= Known2.Zero; 1600 Known.One |= Known2.One; 1601 } 1602 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1603 switch (II->getIntrinsicID()) { 1604 default: break; 1605 case Intrinsic::abs: { 1606 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1607 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1608 Known = Known2.abs(IntMinIsPoison); 1609 break; 1610 } 1611 case Intrinsic::bitreverse: 1612 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1613 Known.Zero |= Known2.Zero.reverseBits(); 1614 Known.One |= Known2.One.reverseBits(); 1615 break; 1616 case Intrinsic::bswap: 1617 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1618 Known.Zero |= Known2.Zero.byteSwap(); 1619 Known.One |= Known2.One.byteSwap(); 1620 break; 1621 case Intrinsic::ctlz: { 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 // If we have a known 1, its position is our upper bound. 1624 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1625 // If this call is poison for 0 input, the result will be less than 2^n. 1626 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1627 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1628 unsigned LowBits = Log2_32(PossibleLZ)+1; 1629 Known.Zero.setBitsFrom(LowBits); 1630 break; 1631 } 1632 case Intrinsic::cttz: { 1633 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1634 // If we have a known 1, its position is our upper bound. 1635 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1636 // If this call is poison for 0 input, the result will be less than 2^n. 1637 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1638 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1639 unsigned LowBits = Log2_32(PossibleTZ)+1; 1640 Known.Zero.setBitsFrom(LowBits); 1641 break; 1642 } 1643 case Intrinsic::ctpop: { 1644 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1645 // We can bound the space the count needs. Also, bits known to be zero 1646 // can't contribute to the population. 1647 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1648 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1649 Known.Zero.setBitsFrom(LowBits); 1650 // TODO: we could bound KnownOne using the lower bound on the number 1651 // of bits which might be set provided by popcnt KnownOne2. 1652 break; 1653 } 1654 case Intrinsic::fshr: 1655 case Intrinsic::fshl: { 1656 const APInt *SA; 1657 if (!match(I->getOperand(2), m_APInt(SA))) 1658 break; 1659 1660 // Normalize to funnel shift left. 1661 uint64_t ShiftAmt = SA->urem(BitWidth); 1662 if (II->getIntrinsicID() == Intrinsic::fshr) 1663 ShiftAmt = BitWidth - ShiftAmt; 1664 1665 KnownBits Known3(BitWidth); 1666 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1667 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1668 1669 Known.Zero = 1670 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1671 Known.One = 1672 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1673 break; 1674 } 1675 case Intrinsic::uadd_sat: 1676 case Intrinsic::usub_sat: { 1677 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 1681 // Add: Leading ones of either operand are preserved. 1682 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1683 // as leading zeros in the result. 1684 unsigned LeadingKnown; 1685 if (IsAdd) 1686 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1687 Known2.countMinLeadingOnes()); 1688 else 1689 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1690 Known2.countMinLeadingOnes()); 1691 1692 Known = KnownBits::computeForAddSub( 1693 IsAdd, /* NSW */ false, Known, Known2); 1694 1695 // We select between the operation result and all-ones/zero 1696 // respectively, so we can preserve known ones/zeros. 1697 if (IsAdd) { 1698 Known.One.setHighBits(LeadingKnown); 1699 Known.Zero.clearAllBits(); 1700 } else { 1701 Known.Zero.setHighBits(LeadingKnown); 1702 Known.One.clearAllBits(); 1703 } 1704 break; 1705 } 1706 case Intrinsic::umin: 1707 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1708 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1709 Known = KnownBits::umin(Known, Known2); 1710 break; 1711 case Intrinsic::umax: 1712 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1713 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1714 Known = KnownBits::umax(Known, Known2); 1715 break; 1716 case Intrinsic::smin: 1717 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1718 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1719 Known = KnownBits::smin(Known, Known2); 1720 break; 1721 case Intrinsic::smax: 1722 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1723 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1724 Known = KnownBits::smax(Known, Known2); 1725 break; 1726 case Intrinsic::x86_sse42_crc32_64_64: 1727 Known.Zero.setBitsFrom(32); 1728 break; 1729 case Intrinsic::riscv_vsetvli: 1730 case Intrinsic::riscv_vsetvlimax: 1731 // Assume that VL output is positive and would fit in an int32_t. 1732 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1733 if (BitWidth >= 32) 1734 Known.Zero.setBitsFrom(31); 1735 break; 1736 case Intrinsic::vscale: { 1737 if (!II->getParent() || !II->getFunction() || 1738 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1739 break; 1740 1741 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1742 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1743 1744 if (!VScaleMax) 1745 break; 1746 1747 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1748 1749 // If vscale min = max then we know the exact value at compile time 1750 // and hence we know the exact bits. 1751 if (VScaleMin == VScaleMax) { 1752 Known.One = VScaleMin; 1753 Known.Zero = VScaleMin; 1754 Known.Zero.flipAllBits(); 1755 break; 1756 } 1757 1758 unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax); 1759 if (FirstZeroHighBit < BitWidth) 1760 Known.Zero.setBitsFrom(FirstZeroHighBit); 1761 1762 break; 1763 } 1764 } 1765 } 1766 break; 1767 case Instruction::ShuffleVector: { 1768 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1769 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1770 if (!Shuf) { 1771 Known.resetAll(); 1772 return; 1773 } 1774 // For undef elements, we don't know anything about the common state of 1775 // the shuffle result. 1776 APInt DemandedLHS, DemandedRHS; 1777 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1778 Known.resetAll(); 1779 return; 1780 } 1781 Known.One.setAllBits(); 1782 Known.Zero.setAllBits(); 1783 if (!!DemandedLHS) { 1784 const Value *LHS = Shuf->getOperand(0); 1785 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1786 // If we don't know any bits, early out. 1787 if (Known.isUnknown()) 1788 break; 1789 } 1790 if (!!DemandedRHS) { 1791 const Value *RHS = Shuf->getOperand(1); 1792 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1793 Known = KnownBits::commonBits(Known, Known2); 1794 } 1795 break; 1796 } 1797 case Instruction::InsertElement: { 1798 const Value *Vec = I->getOperand(0); 1799 const Value *Elt = I->getOperand(1); 1800 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1801 // Early out if the index is non-constant or out-of-range. 1802 unsigned NumElts = DemandedElts.getBitWidth(); 1803 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1804 Known.resetAll(); 1805 return; 1806 } 1807 Known.One.setAllBits(); 1808 Known.Zero.setAllBits(); 1809 unsigned EltIdx = CIdx->getZExtValue(); 1810 // Do we demand the inserted element? 1811 if (DemandedElts[EltIdx]) { 1812 computeKnownBits(Elt, Known, Depth + 1, Q); 1813 // If we don't know any bits, early out. 1814 if (Known.isUnknown()) 1815 break; 1816 } 1817 // We don't need the base vector element that has been inserted. 1818 APInt DemandedVecElts = DemandedElts; 1819 DemandedVecElts.clearBit(EltIdx); 1820 if (!!DemandedVecElts) { 1821 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1822 Known = KnownBits::commonBits(Known, Known2); 1823 } 1824 break; 1825 } 1826 case Instruction::ExtractElement: { 1827 // Look through extract element. If the index is non-constant or 1828 // out-of-range demand all elements, otherwise just the extracted element. 1829 const Value *Vec = I->getOperand(0); 1830 const Value *Idx = I->getOperand(1); 1831 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1832 if (isa<ScalableVectorType>(Vec->getType())) { 1833 // FIXME: there's probably *something* we can do with scalable vectors 1834 Known.resetAll(); 1835 break; 1836 } 1837 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1838 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1839 if (CIdx && CIdx->getValue().ult(NumElts)) 1840 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1841 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1842 break; 1843 } 1844 case Instruction::ExtractValue: 1845 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1846 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1847 if (EVI->getNumIndices() != 1) break; 1848 if (EVI->getIndices()[0] == 0) { 1849 switch (II->getIntrinsicID()) { 1850 default: break; 1851 case Intrinsic::uadd_with_overflow: 1852 case Intrinsic::sadd_with_overflow: 1853 computeKnownBitsAddSub(true, II->getArgOperand(0), 1854 II->getArgOperand(1), false, DemandedElts, 1855 Known, Known2, Depth, Q); 1856 break; 1857 case Intrinsic::usub_with_overflow: 1858 case Intrinsic::ssub_with_overflow: 1859 computeKnownBitsAddSub(false, II->getArgOperand(0), 1860 II->getArgOperand(1), false, DemandedElts, 1861 Known, Known2, Depth, Q); 1862 break; 1863 case Intrinsic::umul_with_overflow: 1864 case Intrinsic::smul_with_overflow: 1865 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1866 DemandedElts, Known, Known2, Depth, Q); 1867 break; 1868 } 1869 } 1870 } 1871 break; 1872 case Instruction::Freeze: 1873 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1874 Depth + 1)) 1875 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1876 break; 1877 } 1878 } 1879 1880 /// Determine which bits of V are known to be either zero or one and return 1881 /// them. 1882 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1883 unsigned Depth, const Query &Q) { 1884 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1885 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1886 return Known; 1887 } 1888 1889 /// Determine which bits of V are known to be either zero or one and return 1890 /// them. 1891 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1892 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1893 computeKnownBits(V, Known, Depth, Q); 1894 return Known; 1895 } 1896 1897 /// Determine which bits of V are known to be either zero or one and return 1898 /// them in the Known bit set. 1899 /// 1900 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1901 /// we cannot optimize based on the assumption that it is zero without changing 1902 /// it to be an explicit zero. If we don't change it to zero, other code could 1903 /// optimized based on the contradictory assumption that it is non-zero. 1904 /// Because instcombine aggressively folds operations with undef args anyway, 1905 /// this won't lose us code quality. 1906 /// 1907 /// This function is defined on values with integer type, values with pointer 1908 /// type, and vectors of integers. In the case 1909 /// where V is a vector, known zero, and known one values are the 1910 /// same width as the vector element, and the bit is set only if it is true 1911 /// for all of the demanded elements in the vector specified by DemandedElts. 1912 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1913 KnownBits &Known, unsigned Depth, const Query &Q) { 1914 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1915 // No demanded elts or V is a scalable vector, better to assume we don't 1916 // know anything. 1917 Known.resetAll(); 1918 return; 1919 } 1920 1921 assert(V && "No Value?"); 1922 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1923 1924 #ifndef NDEBUG 1925 Type *Ty = V->getType(); 1926 unsigned BitWidth = Known.getBitWidth(); 1927 1928 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1929 "Not integer or pointer type!"); 1930 1931 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1932 assert( 1933 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1934 "DemandedElt width should equal the fixed vector number of elements"); 1935 } else { 1936 assert(DemandedElts == APInt(1, 1) && 1937 "DemandedElt width should be 1 for scalars"); 1938 } 1939 1940 Type *ScalarTy = Ty->getScalarType(); 1941 if (ScalarTy->isPointerTy()) { 1942 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1943 "V and Known should have same BitWidth"); 1944 } else { 1945 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1946 "V and Known should have same BitWidth"); 1947 } 1948 #endif 1949 1950 const APInt *C; 1951 if (match(V, m_APInt(C))) { 1952 // We know all of the bits for a scalar constant or a splat vector constant! 1953 Known = KnownBits::makeConstant(*C); 1954 return; 1955 } 1956 // Null and aggregate-zero are all-zeros. 1957 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1958 Known.setAllZero(); 1959 return; 1960 } 1961 // Handle a constant vector by taking the intersection of the known bits of 1962 // each element. 1963 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1964 // We know that CDV must be a vector of integers. Take the intersection of 1965 // each element. 1966 Known.Zero.setAllBits(); Known.One.setAllBits(); 1967 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1968 if (!DemandedElts[i]) 1969 continue; 1970 APInt Elt = CDV->getElementAsAPInt(i); 1971 Known.Zero &= ~Elt; 1972 Known.One &= Elt; 1973 } 1974 return; 1975 } 1976 1977 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1978 // We know that CV must be a vector of integers. Take the intersection of 1979 // each element. 1980 Known.Zero.setAllBits(); Known.One.setAllBits(); 1981 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1982 if (!DemandedElts[i]) 1983 continue; 1984 Constant *Element = CV->getAggregateElement(i); 1985 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1986 if (!ElementCI) { 1987 Known.resetAll(); 1988 return; 1989 } 1990 const APInt &Elt = ElementCI->getValue(); 1991 Known.Zero &= ~Elt; 1992 Known.One &= Elt; 1993 } 1994 return; 1995 } 1996 1997 // Start out not knowing anything. 1998 Known.resetAll(); 1999 2000 // We can't imply anything about undefs. 2001 if (isa<UndefValue>(V)) 2002 return; 2003 2004 // There's no point in looking through other users of ConstantData for 2005 // assumptions. Confirm that we've handled them all. 2006 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2007 2008 // All recursive calls that increase depth must come after this. 2009 if (Depth == MaxAnalysisRecursionDepth) 2010 return; 2011 2012 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2013 // the bits of its aliasee. 2014 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2015 if (!GA->isInterposable()) 2016 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2017 return; 2018 } 2019 2020 if (const Operator *I = dyn_cast<Operator>(V)) 2021 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2022 2023 // Aligned pointers have trailing zeros - refine Known.Zero set 2024 if (isa<PointerType>(V->getType())) { 2025 Align Alignment = V->getPointerAlignment(Q.DL); 2026 Known.Zero.setLowBits(Log2(Alignment)); 2027 } 2028 2029 // computeKnownBitsFromAssume strictly refines Known. 2030 // Therefore, we run them after computeKnownBitsFromOperator. 2031 2032 // Check whether a nearby assume intrinsic can determine some known bits. 2033 computeKnownBitsFromAssume(V, Known, Depth, Q); 2034 2035 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2036 } 2037 2038 /// Try to detect a recurrence that the value of the induction variable is 2039 /// always a power of two (or zero). 2040 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, 2041 unsigned Depth, Query &Q) { 2042 BinaryOperator *BO = nullptr; 2043 Value *Start = nullptr, *Step = nullptr; 2044 if (!matchSimpleRecurrence(PN, BO, Start, Step)) 2045 return false; 2046 2047 // Initial value must be a power of two. 2048 for (const Use &U : PN->operands()) { 2049 if (U.get() == Start) { 2050 // Initial value comes from a different BB, need to adjust context 2051 // instruction for analysis. 2052 Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2053 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) 2054 return false; 2055 } 2056 } 2057 2058 // Except for Mul, the induction variable must be on the left side of the 2059 // increment expression, otherwise its value can be arbitrary. 2060 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) 2061 return false; 2062 2063 Q.CxtI = BO->getParent()->getTerminator(); 2064 switch (BO->getOpcode()) { 2065 case Instruction::Mul: 2066 // Power of two is closed under multiplication. 2067 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || 2068 Q.IIQ.hasNoSignedWrap(BO)) && 2069 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); 2070 case Instruction::SDiv: 2071 // Start value must not be signmask for signed division, so simply being a 2072 // power of two is not sufficient, and it has to be a constant. 2073 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2074 return false; 2075 LLVM_FALLTHROUGH; 2076 case Instruction::UDiv: 2077 // Divisor must be a power of two. 2078 // If OrZero is false, cannot guarantee induction variable is non-zero after 2079 // division, same for Shr, unless it is exact division. 2080 return (OrZero || Q.IIQ.isExact(BO)) && 2081 isKnownToBeAPowerOfTwo(Step, false, Depth, Q); 2082 case Instruction::Shl: 2083 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); 2084 case Instruction::AShr: 2085 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2086 return false; 2087 LLVM_FALLTHROUGH; 2088 case Instruction::LShr: 2089 return OrZero || Q.IIQ.isExact(BO); 2090 default: 2091 return false; 2092 } 2093 } 2094 2095 /// Return true if the given value is known to have exactly one 2096 /// bit set when defined. For vectors return true if every element is known to 2097 /// be a power of two when defined. Supports values with integer or pointer 2098 /// types and vectors of integers. 2099 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2100 const Query &Q) { 2101 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2102 2103 // Attempt to match against constants. 2104 if (OrZero && match(V, m_Power2OrZero())) 2105 return true; 2106 if (match(V, m_Power2())) 2107 return true; 2108 2109 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2110 // it is shifted off the end then the result is undefined. 2111 if (match(V, m_Shl(m_One(), m_Value()))) 2112 return true; 2113 2114 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2115 // the bottom. If it is shifted off the bottom then the result is undefined. 2116 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2117 return true; 2118 2119 // The remaining tests are all recursive, so bail out if we hit the limit. 2120 if (Depth++ == MaxAnalysisRecursionDepth) 2121 return false; 2122 2123 Value *X = nullptr, *Y = nullptr; 2124 // A shift left or a logical shift right of a power of two is a power of two 2125 // or zero. 2126 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2127 match(V, m_LShr(m_Value(X), m_Value())))) 2128 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2129 2130 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2131 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2132 2133 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2134 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2135 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2136 2137 // Peek through min/max. 2138 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2139 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2140 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2141 } 2142 2143 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2144 // A power of two and'd with anything is a power of two or zero. 2145 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2146 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2147 return true; 2148 // X & (-X) is always a power of two or zero. 2149 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2150 return true; 2151 return false; 2152 } 2153 2154 // Adding a power-of-two or zero to the same power-of-two or zero yields 2155 // either the original power-of-two, a larger power-of-two or zero. 2156 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2157 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2158 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2159 Q.IIQ.hasNoSignedWrap(VOBO)) { 2160 if (match(X, m_And(m_Specific(Y), m_Value())) || 2161 match(X, m_And(m_Value(), m_Specific(Y)))) 2162 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2163 return true; 2164 if (match(Y, m_And(m_Specific(X), m_Value())) || 2165 match(Y, m_And(m_Value(), m_Specific(X)))) 2166 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2167 return true; 2168 2169 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2170 KnownBits LHSBits(BitWidth); 2171 computeKnownBits(X, LHSBits, Depth, Q); 2172 2173 KnownBits RHSBits(BitWidth); 2174 computeKnownBits(Y, RHSBits, Depth, Q); 2175 // If i8 V is a power of two or zero: 2176 // ZeroBits: 1 1 1 0 1 1 1 1 2177 // ~ZeroBits: 0 0 0 1 0 0 0 0 2178 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2179 // If OrZero isn't set, we cannot give back a zero result. 2180 // Make sure either the LHS or RHS has a bit set. 2181 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2182 return true; 2183 } 2184 } 2185 2186 // A PHI node is power of two if all incoming values are power of two, or if 2187 // it is an induction variable where in each step its value is a power of two. 2188 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2189 Query RecQ = Q; 2190 2191 // Check if it is an induction variable and always power of two. 2192 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) 2193 return true; 2194 2195 // Recursively check all incoming values. Limit recursion to 2 levels, so 2196 // that search complexity is limited to number of operands^2. 2197 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2198 return llvm::all_of(PN->operands(), [&](const Use &U) { 2199 // Value is power of 2 if it is coming from PHI node itself by induction. 2200 if (U.get() == PN) 2201 return true; 2202 2203 // Change the context instruction to the incoming block where it is 2204 // evaluated. 2205 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2206 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2207 }); 2208 } 2209 2210 // An exact divide or right shift can only shift off zero bits, so the result 2211 // is a power of two only if the first operand is a power of two and not 2212 // copying a sign bit (sdiv int_min, 2). 2213 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2214 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2215 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2216 Depth, Q); 2217 } 2218 2219 return false; 2220 } 2221 2222 /// Test whether a GEP's result is known to be non-null. 2223 /// 2224 /// Uses properties inherent in a GEP to try to determine whether it is known 2225 /// to be non-null. 2226 /// 2227 /// Currently this routine does not support vector GEPs. 2228 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2229 const Query &Q) { 2230 const Function *F = nullptr; 2231 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2232 F = I->getFunction(); 2233 2234 if (!GEP->isInBounds() || 2235 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2236 return false; 2237 2238 // FIXME: Support vector-GEPs. 2239 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2240 2241 // If the base pointer is non-null, we cannot walk to a null address with an 2242 // inbounds GEP in address space zero. 2243 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2244 return true; 2245 2246 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2247 // If so, then the GEP cannot produce a null pointer, as doing so would 2248 // inherently violate the inbounds contract within address space zero. 2249 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2250 GTI != GTE; ++GTI) { 2251 // Struct types are easy -- they must always be indexed by a constant. 2252 if (StructType *STy = GTI.getStructTypeOrNull()) { 2253 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2254 unsigned ElementIdx = OpC->getZExtValue(); 2255 const StructLayout *SL = Q.DL.getStructLayout(STy); 2256 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2257 if (ElementOffset > 0) 2258 return true; 2259 continue; 2260 } 2261 2262 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2263 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2264 continue; 2265 2266 // Fast path the constant operand case both for efficiency and so we don't 2267 // increment Depth when just zipping down an all-constant GEP. 2268 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2269 if (!OpC->isZero()) 2270 return true; 2271 continue; 2272 } 2273 2274 // We post-increment Depth here because while isKnownNonZero increments it 2275 // as well, when we pop back up that increment won't persist. We don't want 2276 // to recurse 10k times just because we have 10k GEP operands. We don't 2277 // bail completely out because we want to handle constant GEPs regardless 2278 // of depth. 2279 if (Depth++ >= MaxAnalysisRecursionDepth) 2280 continue; 2281 2282 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2283 return true; 2284 } 2285 2286 return false; 2287 } 2288 2289 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2290 const Instruction *CtxI, 2291 const DominatorTree *DT) { 2292 if (isa<Constant>(V)) 2293 return false; 2294 2295 if (!CtxI || !DT) 2296 return false; 2297 2298 unsigned NumUsesExplored = 0; 2299 for (auto *U : V->users()) { 2300 // Avoid massive lists 2301 if (NumUsesExplored >= DomConditionsMaxUses) 2302 break; 2303 NumUsesExplored++; 2304 2305 // If the value is used as an argument to a call or invoke, then argument 2306 // attributes may provide an answer about null-ness. 2307 if (const auto *CB = dyn_cast<CallBase>(U)) 2308 if (auto *CalledFunc = CB->getCalledFunction()) 2309 for (const Argument &Arg : CalledFunc->args()) 2310 if (CB->getArgOperand(Arg.getArgNo()) == V && 2311 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2312 DT->dominates(CB, CtxI)) 2313 return true; 2314 2315 // If the value is used as a load/store, then the pointer must be non null. 2316 if (V == getLoadStorePointerOperand(U)) { 2317 const Instruction *I = cast<Instruction>(U); 2318 if (!NullPointerIsDefined(I->getFunction(), 2319 V->getType()->getPointerAddressSpace()) && 2320 DT->dominates(I, CtxI)) 2321 return true; 2322 } 2323 2324 // Consider only compare instructions uniquely controlling a branch 2325 Value *RHS; 2326 CmpInst::Predicate Pred; 2327 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2328 continue; 2329 2330 bool NonNullIfTrue; 2331 if (cmpExcludesZero(Pred, RHS)) 2332 NonNullIfTrue = true; 2333 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2334 NonNullIfTrue = false; 2335 else 2336 continue; 2337 2338 SmallVector<const User *, 4> WorkList; 2339 SmallPtrSet<const User *, 4> Visited; 2340 for (auto *CmpU : U->users()) { 2341 assert(WorkList.empty() && "Should be!"); 2342 if (Visited.insert(CmpU).second) 2343 WorkList.push_back(CmpU); 2344 2345 while (!WorkList.empty()) { 2346 auto *Curr = WorkList.pop_back_val(); 2347 2348 // If a user is an AND, add all its users to the work list. We only 2349 // propagate "pred != null" condition through AND because it is only 2350 // correct to assume that all conditions of AND are met in true branch. 2351 // TODO: Support similar logic of OR and EQ predicate? 2352 if (NonNullIfTrue) 2353 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2354 for (auto *CurrU : Curr->users()) 2355 if (Visited.insert(CurrU).second) 2356 WorkList.push_back(CurrU); 2357 continue; 2358 } 2359 2360 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2361 assert(BI->isConditional() && "uses a comparison!"); 2362 2363 BasicBlock *NonNullSuccessor = 2364 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2365 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2366 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2367 return true; 2368 } else if (NonNullIfTrue && isGuard(Curr) && 2369 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2370 return true; 2371 } 2372 } 2373 } 2374 } 2375 2376 return false; 2377 } 2378 2379 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2380 /// ensure that the value it's attached to is never Value? 'RangeType' is 2381 /// is the type of the value described by the range. 2382 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2383 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2384 assert(NumRanges >= 1); 2385 for (unsigned i = 0; i < NumRanges; ++i) { 2386 ConstantInt *Lower = 2387 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2388 ConstantInt *Upper = 2389 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2390 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2391 if (Range.contains(Value)) 2392 return false; 2393 } 2394 return true; 2395 } 2396 2397 /// Try to detect a recurrence that monotonically increases/decreases from a 2398 /// non-zero starting value. These are common as induction variables. 2399 static bool isNonZeroRecurrence(const PHINode *PN) { 2400 BinaryOperator *BO = nullptr; 2401 Value *Start = nullptr, *Step = nullptr; 2402 const APInt *StartC, *StepC; 2403 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2404 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2405 return false; 2406 2407 switch (BO->getOpcode()) { 2408 case Instruction::Add: 2409 // Starting from non-zero and stepping away from zero can never wrap back 2410 // to zero. 2411 return BO->hasNoUnsignedWrap() || 2412 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2413 StartC->isNegative() == StepC->isNegative()); 2414 case Instruction::Mul: 2415 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2416 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2417 case Instruction::Shl: 2418 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2419 case Instruction::AShr: 2420 case Instruction::LShr: 2421 return BO->isExact(); 2422 default: 2423 return false; 2424 } 2425 } 2426 2427 /// Return true if the given value is known to be non-zero when defined. For 2428 /// vectors, return true if every demanded element is known to be non-zero when 2429 /// defined. For pointers, if the context instruction and dominator tree are 2430 /// specified, perform context-sensitive analysis and return true if the 2431 /// pointer couldn't possibly be null at the specified instruction. 2432 /// Supports values with integer or pointer type and vectors of integers. 2433 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2434 const Query &Q) { 2435 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2436 // vector 2437 if (isa<ScalableVectorType>(V->getType())) 2438 return false; 2439 2440 if (auto *C = dyn_cast<Constant>(V)) { 2441 if (C->isNullValue()) 2442 return false; 2443 if (isa<ConstantInt>(C)) 2444 // Must be non-zero due to null test above. 2445 return true; 2446 2447 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2448 // See the comment for IntToPtr/PtrToInt instructions below. 2449 if (CE->getOpcode() == Instruction::IntToPtr || 2450 CE->getOpcode() == Instruction::PtrToInt) 2451 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2452 .getFixedSize() <= 2453 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2454 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2455 } 2456 2457 // For constant vectors, check that all elements are undefined or known 2458 // non-zero to determine that the whole vector is known non-zero. 2459 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2460 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2461 if (!DemandedElts[i]) 2462 continue; 2463 Constant *Elt = C->getAggregateElement(i); 2464 if (!Elt || Elt->isNullValue()) 2465 return false; 2466 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2467 return false; 2468 } 2469 return true; 2470 } 2471 2472 // A global variable in address space 0 is non null unless extern weak 2473 // or an absolute symbol reference. Other address spaces may have null as a 2474 // valid address for a global, so we can't assume anything. 2475 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2476 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2477 GV->getType()->getAddressSpace() == 0) 2478 return true; 2479 } else 2480 return false; 2481 } 2482 2483 if (auto *I = dyn_cast<Instruction>(V)) { 2484 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2485 // If the possible ranges don't contain zero, then the value is 2486 // definitely non-zero. 2487 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2488 const APInt ZeroValue(Ty->getBitWidth(), 0); 2489 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2490 return true; 2491 } 2492 } 2493 } 2494 2495 if (isKnownNonZeroFromAssume(V, Q)) 2496 return true; 2497 2498 // Some of the tests below are recursive, so bail out if we hit the limit. 2499 if (Depth++ >= MaxAnalysisRecursionDepth) 2500 return false; 2501 2502 // Check for pointer simplifications. 2503 2504 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2505 // Alloca never returns null, malloc might. 2506 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2507 return true; 2508 2509 // A byval, inalloca may not be null in a non-default addres space. A 2510 // nonnull argument is assumed never 0. 2511 if (const Argument *A = dyn_cast<Argument>(V)) { 2512 if (((A->hasPassPointeeByValueCopyAttr() && 2513 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2514 A->hasNonNullAttr())) 2515 return true; 2516 } 2517 2518 // A Load tagged with nonnull metadata is never null. 2519 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2520 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2521 return true; 2522 2523 if (const auto *Call = dyn_cast<CallBase>(V)) { 2524 if (Call->isReturnNonNull()) 2525 return true; 2526 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2527 return isKnownNonZero(RP, Depth, Q); 2528 } 2529 } 2530 2531 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2532 return true; 2533 2534 // Check for recursive pointer simplifications. 2535 if (V->getType()->isPointerTy()) { 2536 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2537 // do not alter the value, or at least not the nullness property of the 2538 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2539 // 2540 // Note that we have to take special care to avoid looking through 2541 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2542 // as casts that can alter the value, e.g., AddrSpaceCasts. 2543 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2544 return isGEPKnownNonNull(GEP, Depth, Q); 2545 2546 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2547 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2548 2549 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2550 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2551 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2552 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2553 } 2554 2555 // Similar to int2ptr above, we can look through ptr2int here if the cast 2556 // is a no-op or an extend and not a truncate. 2557 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2558 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2559 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2560 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2561 2562 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2563 2564 // X | Y != 0 if X != 0 or Y != 0. 2565 Value *X = nullptr, *Y = nullptr; 2566 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2567 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2568 isKnownNonZero(Y, DemandedElts, Depth, Q); 2569 2570 // ext X != 0 if X != 0. 2571 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2572 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2573 2574 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2575 // if the lowest bit is shifted off the end. 2576 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2577 // shl nuw can't remove any non-zero bits. 2578 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2579 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2580 return isKnownNonZero(X, Depth, Q); 2581 2582 KnownBits Known(BitWidth); 2583 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2584 if (Known.One[0]) 2585 return true; 2586 } 2587 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2588 // defined if the sign bit is shifted off the end. 2589 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2590 // shr exact can only shift out zero bits. 2591 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2592 if (BO->isExact()) 2593 return isKnownNonZero(X, Depth, Q); 2594 2595 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2596 if (Known.isNegative()) 2597 return true; 2598 2599 // If the shifter operand is a constant, and all of the bits shifted 2600 // out are known to be zero, and X is known non-zero then at least one 2601 // non-zero bit must remain. 2602 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2603 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2604 // Is there a known one in the portion not shifted out? 2605 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2606 return true; 2607 // Are all the bits to be shifted out known zero? 2608 if (Known.countMinTrailingZeros() >= ShiftVal) 2609 return isKnownNonZero(X, DemandedElts, Depth, Q); 2610 } 2611 } 2612 // div exact can only produce a zero if the dividend is zero. 2613 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2614 return isKnownNonZero(X, DemandedElts, Depth, Q); 2615 } 2616 // X + Y. 2617 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2618 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2619 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2620 2621 // If X and Y are both non-negative (as signed values) then their sum is not 2622 // zero unless both X and Y are zero. 2623 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2624 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2625 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2626 return true; 2627 2628 // If X and Y are both negative (as signed values) then their sum is not 2629 // zero unless both X and Y equal INT_MIN. 2630 if (XKnown.isNegative() && YKnown.isNegative()) { 2631 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2632 // The sign bit of X is set. If some other bit is set then X is not equal 2633 // to INT_MIN. 2634 if (XKnown.One.intersects(Mask)) 2635 return true; 2636 // The sign bit of Y is set. If some other bit is set then Y is not equal 2637 // to INT_MIN. 2638 if (YKnown.One.intersects(Mask)) 2639 return true; 2640 } 2641 2642 // The sum of a non-negative number and a power of two is not zero. 2643 if (XKnown.isNonNegative() && 2644 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2645 return true; 2646 if (YKnown.isNonNegative() && 2647 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2648 return true; 2649 } 2650 // X * Y. 2651 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2652 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2653 // If X and Y are non-zero then so is X * Y as long as the multiplication 2654 // does not overflow. 2655 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2656 isKnownNonZero(X, DemandedElts, Depth, Q) && 2657 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2658 return true; 2659 } 2660 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2661 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2662 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2663 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2664 return true; 2665 } 2666 // PHI 2667 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2668 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2669 return true; 2670 2671 // Check if all incoming values are non-zero using recursion. 2672 Query RecQ = Q; 2673 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2674 return llvm::all_of(PN->operands(), [&](const Use &U) { 2675 if (U.get() == PN) 2676 return true; 2677 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2678 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2679 }); 2680 } 2681 // ExtractElement 2682 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2683 const Value *Vec = EEI->getVectorOperand(); 2684 const Value *Idx = EEI->getIndexOperand(); 2685 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2686 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2687 unsigned NumElts = VecTy->getNumElements(); 2688 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2689 if (CIdx && CIdx->getValue().ult(NumElts)) 2690 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2691 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2692 } 2693 } 2694 // Freeze 2695 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2696 auto *Op = FI->getOperand(0); 2697 if (isKnownNonZero(Op, Depth, Q) && 2698 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2699 return true; 2700 } 2701 2702 KnownBits Known(BitWidth); 2703 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2704 return Known.One != 0; 2705 } 2706 2707 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2708 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2709 // vector 2710 if (isa<ScalableVectorType>(V->getType())) 2711 return false; 2712 2713 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2714 APInt DemandedElts = 2715 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2716 return isKnownNonZero(V, DemandedElts, Depth, Q); 2717 } 2718 2719 /// If the pair of operators are the same invertible function, return the 2720 /// the operands of the function corresponding to each input. Otherwise, 2721 /// return None. An invertible function is one that is 1-to-1 and maps 2722 /// every input value to exactly one output value. This is equivalent to 2723 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2724 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2725 static Optional<std::pair<Value*, Value*>> 2726 getInvertibleOperands(const Operator *Op1, 2727 const Operator *Op2) { 2728 if (Op1->getOpcode() != Op2->getOpcode()) 2729 return None; 2730 2731 auto getOperands = [&](unsigned OpNum) -> auto { 2732 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2733 }; 2734 2735 switch (Op1->getOpcode()) { 2736 default: 2737 break; 2738 case Instruction::Add: 2739 case Instruction::Sub: 2740 if (Op1->getOperand(0) == Op2->getOperand(0)) 2741 return getOperands(1); 2742 if (Op1->getOperand(1) == Op2->getOperand(1)) 2743 return getOperands(0); 2744 break; 2745 case Instruction::Mul: { 2746 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2747 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2748 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2749 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2750 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2751 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2752 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2753 break; 2754 2755 // Assume operand order has been canonicalized 2756 if (Op1->getOperand(1) == Op2->getOperand(1) && 2757 isa<ConstantInt>(Op1->getOperand(1)) && 2758 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2759 return getOperands(0); 2760 break; 2761 } 2762 case Instruction::Shl: { 2763 // Same as multiplies, with the difference that we don't need to check 2764 // for a non-zero multiply. Shifts always multiply by non-zero. 2765 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2766 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2767 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2768 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2769 break; 2770 2771 if (Op1->getOperand(1) == Op2->getOperand(1)) 2772 return getOperands(0); 2773 break; 2774 } 2775 case Instruction::AShr: 2776 case Instruction::LShr: { 2777 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2778 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2779 if (!PEO1->isExact() || !PEO2->isExact()) 2780 break; 2781 2782 if (Op1->getOperand(1) == Op2->getOperand(1)) 2783 return getOperands(0); 2784 break; 2785 } 2786 case Instruction::SExt: 2787 case Instruction::ZExt: 2788 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2789 return getOperands(0); 2790 break; 2791 case Instruction::PHI: { 2792 const PHINode *PN1 = cast<PHINode>(Op1); 2793 const PHINode *PN2 = cast<PHINode>(Op2); 2794 2795 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2796 // are a single invertible function of the start values? Note that repeated 2797 // application of an invertible function is also invertible 2798 BinaryOperator *BO1 = nullptr; 2799 Value *Start1 = nullptr, *Step1 = nullptr; 2800 BinaryOperator *BO2 = nullptr; 2801 Value *Start2 = nullptr, *Step2 = nullptr; 2802 if (PN1->getParent() != PN2->getParent() || 2803 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2804 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2805 break; 2806 2807 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2808 cast<Operator>(BO2)); 2809 if (!Values) 2810 break; 2811 2812 // We have to be careful of mutually defined recurrences here. Ex: 2813 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2814 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2815 // The invertibility of these is complicated, and not worth reasoning 2816 // about (yet?). 2817 if (Values->first != PN1 || Values->second != PN2) 2818 break; 2819 2820 return std::make_pair(Start1, Start2); 2821 } 2822 } 2823 return None; 2824 } 2825 2826 /// Return true if V2 == V1 + X, where X is known non-zero. 2827 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2828 const Query &Q) { 2829 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2830 if (!BO || BO->getOpcode() != Instruction::Add) 2831 return false; 2832 Value *Op = nullptr; 2833 if (V2 == BO->getOperand(0)) 2834 Op = BO->getOperand(1); 2835 else if (V2 == BO->getOperand(1)) 2836 Op = BO->getOperand(0); 2837 else 2838 return false; 2839 return isKnownNonZero(Op, Depth + 1, Q); 2840 } 2841 2842 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2843 /// the multiplication is nuw or nsw. 2844 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2845 const Query &Q) { 2846 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2847 const APInt *C; 2848 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2849 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2850 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2851 } 2852 return false; 2853 } 2854 2855 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2856 /// the shift is nuw or nsw. 2857 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2858 const Query &Q) { 2859 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2860 const APInt *C; 2861 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2862 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2863 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2864 } 2865 return false; 2866 } 2867 2868 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2869 unsigned Depth, const Query &Q) { 2870 // Check two PHIs are in same block. 2871 if (PN1->getParent() != PN2->getParent()) 2872 return false; 2873 2874 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2875 bool UsedFullRecursion = false; 2876 for (const BasicBlock *IncomBB : PN1->blocks()) { 2877 if (!VisitedBBs.insert(IncomBB).second) 2878 continue; // Don't reprocess blocks that we have dealt with already. 2879 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2880 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2881 const APInt *C1, *C2; 2882 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2883 continue; 2884 2885 // Only one pair of phi operands is allowed for full recursion. 2886 if (UsedFullRecursion) 2887 return false; 2888 2889 Query RecQ = Q; 2890 RecQ.CxtI = IncomBB->getTerminator(); 2891 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2892 return false; 2893 UsedFullRecursion = true; 2894 } 2895 return true; 2896 } 2897 2898 /// Return true if it is known that V1 != V2. 2899 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2900 const Query &Q) { 2901 if (V1 == V2) 2902 return false; 2903 if (V1->getType() != V2->getType()) 2904 // We can't look through casts yet. 2905 return false; 2906 2907 if (Depth >= MaxAnalysisRecursionDepth) 2908 return false; 2909 2910 // See if we can recurse through (exactly one of) our operands. This 2911 // requires our operation be 1-to-1 and map every input value to exactly 2912 // one output value. Such an operation is invertible. 2913 auto *O1 = dyn_cast<Operator>(V1); 2914 auto *O2 = dyn_cast<Operator>(V2); 2915 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2916 if (auto Values = getInvertibleOperands(O1, O2)) 2917 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2918 2919 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2920 const PHINode *PN2 = cast<PHINode>(V2); 2921 // FIXME: This is missing a generalization to handle the case where one is 2922 // a PHI and another one isn't. 2923 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2924 return true; 2925 }; 2926 } 2927 2928 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2929 return true; 2930 2931 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2932 return true; 2933 2934 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2935 return true; 2936 2937 if (V1->getType()->isIntOrIntVectorTy()) { 2938 // Are any known bits in V1 contradictory to known bits in V2? If V1 2939 // has a known zero where V2 has a known one, they must not be equal. 2940 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2941 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2942 2943 if (Known1.Zero.intersects(Known2.One) || 2944 Known2.Zero.intersects(Known1.One)) 2945 return true; 2946 } 2947 return false; 2948 } 2949 2950 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2951 /// simplify operations downstream. Mask is known to be zero for bits that V 2952 /// cannot have. 2953 /// 2954 /// This function is defined on values with integer type, values with pointer 2955 /// type, and vectors of integers. In the case 2956 /// where V is a vector, the mask, known zero, and known one values are the 2957 /// same width as the vector element, and the bit is set only if it is true 2958 /// for all of the elements in the vector. 2959 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2960 const Query &Q) { 2961 KnownBits Known(Mask.getBitWidth()); 2962 computeKnownBits(V, Known, Depth, Q); 2963 return Mask.isSubsetOf(Known.Zero); 2964 } 2965 2966 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2967 // Returns the input and lower/upper bounds. 2968 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2969 const APInt *&CLow, const APInt *&CHigh) { 2970 assert(isa<Operator>(Select) && 2971 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2972 "Input should be a Select!"); 2973 2974 const Value *LHS = nullptr, *RHS = nullptr; 2975 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2976 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2977 return false; 2978 2979 if (!match(RHS, m_APInt(CLow))) 2980 return false; 2981 2982 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2983 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2984 if (getInverseMinMaxFlavor(SPF) != SPF2) 2985 return false; 2986 2987 if (!match(RHS2, m_APInt(CHigh))) 2988 return false; 2989 2990 if (SPF == SPF_SMIN) 2991 std::swap(CLow, CHigh); 2992 2993 In = LHS2; 2994 return CLow->sle(*CHigh); 2995 } 2996 2997 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2998 const APInt *&CLow, 2999 const APInt *&CHigh) { 3000 assert((II->getIntrinsicID() == Intrinsic::smin || 3001 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 3002 3003 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 3004 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 3005 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 3006 !match(II->getArgOperand(1), m_APInt(CLow)) || 3007 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 3008 return false; 3009 3010 if (II->getIntrinsicID() == Intrinsic::smin) 3011 std::swap(CLow, CHigh); 3012 return CLow->sle(*CHigh); 3013 } 3014 3015 /// For vector constants, loop over the elements and find the constant with the 3016 /// minimum number of sign bits. Return 0 if the value is not a vector constant 3017 /// or if any element was not analyzed; otherwise, return the count for the 3018 /// element with the minimum number of sign bits. 3019 static unsigned computeNumSignBitsVectorConstant(const Value *V, 3020 const APInt &DemandedElts, 3021 unsigned TyBits) { 3022 const auto *CV = dyn_cast<Constant>(V); 3023 if (!CV || !isa<FixedVectorType>(CV->getType())) 3024 return 0; 3025 3026 unsigned MinSignBits = TyBits; 3027 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 3028 for (unsigned i = 0; i != NumElts; ++i) { 3029 if (!DemandedElts[i]) 3030 continue; 3031 // If we find a non-ConstantInt, bail out. 3032 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 3033 if (!Elt) 3034 return 0; 3035 3036 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 3037 } 3038 3039 return MinSignBits; 3040 } 3041 3042 static unsigned ComputeNumSignBitsImpl(const Value *V, 3043 const APInt &DemandedElts, 3044 unsigned Depth, const Query &Q); 3045 3046 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 3047 unsigned Depth, const Query &Q) { 3048 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 3049 assert(Result > 0 && "At least one sign bit needs to be present!"); 3050 return Result; 3051 } 3052 3053 /// Return the number of times the sign bit of the register is replicated into 3054 /// the other bits. We know that at least 1 bit is always equal to the sign bit 3055 /// (itself), but other cases can give us information. For example, immediately 3056 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 3057 /// other, so we return 3. For vectors, return the number of sign bits for the 3058 /// vector element with the minimum number of known sign bits of the demanded 3059 /// elements in the vector specified by DemandedElts. 3060 static unsigned ComputeNumSignBitsImpl(const Value *V, 3061 const APInt &DemandedElts, 3062 unsigned Depth, const Query &Q) { 3063 Type *Ty = V->getType(); 3064 3065 // FIXME: We currently have no way to represent the DemandedElts of a scalable 3066 // vector 3067 if (isa<ScalableVectorType>(Ty)) 3068 return 1; 3069 3070 #ifndef NDEBUG 3071 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3072 3073 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3074 assert( 3075 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3076 "DemandedElt width should equal the fixed vector number of elements"); 3077 } else { 3078 assert(DemandedElts == APInt(1, 1) && 3079 "DemandedElt width should be 1 for scalars"); 3080 } 3081 #endif 3082 3083 // We return the minimum number of sign bits that are guaranteed to be present 3084 // in V, so for undef we have to conservatively return 1. We don't have the 3085 // same behavior for poison though -- that's a FIXME today. 3086 3087 Type *ScalarTy = Ty->getScalarType(); 3088 unsigned TyBits = ScalarTy->isPointerTy() ? 3089 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3090 Q.DL.getTypeSizeInBits(ScalarTy); 3091 3092 unsigned Tmp, Tmp2; 3093 unsigned FirstAnswer = 1; 3094 3095 // Note that ConstantInt is handled by the general computeKnownBits case 3096 // below. 3097 3098 if (Depth == MaxAnalysisRecursionDepth) 3099 return 1; 3100 3101 if (auto *U = dyn_cast<Operator>(V)) { 3102 switch (Operator::getOpcode(V)) { 3103 default: break; 3104 case Instruction::SExt: 3105 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3106 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3107 3108 case Instruction::SDiv: { 3109 const APInt *Denominator; 3110 // sdiv X, C -> adds log(C) sign bits. 3111 if (match(U->getOperand(1), m_APInt(Denominator))) { 3112 3113 // Ignore non-positive denominator. 3114 if (!Denominator->isStrictlyPositive()) 3115 break; 3116 3117 // Calculate the incoming numerator bits. 3118 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3119 3120 // Add floor(log(C)) bits to the numerator bits. 3121 return std::min(TyBits, NumBits + Denominator->logBase2()); 3122 } 3123 break; 3124 } 3125 3126 case Instruction::SRem: { 3127 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3128 3129 const APInt *Denominator; 3130 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3131 // positive constant. This let us put a lower bound on the number of sign 3132 // bits. 3133 if (match(U->getOperand(1), m_APInt(Denominator))) { 3134 3135 // Ignore non-positive denominator. 3136 if (Denominator->isStrictlyPositive()) { 3137 // Calculate the leading sign bit constraints by examining the 3138 // denominator. Given that the denominator is positive, there are two 3139 // cases: 3140 // 3141 // 1. The numerator is positive. The result range is [0,C) and 3142 // [0,C) u< (1 << ceilLogBase2(C)). 3143 // 3144 // 2. The numerator is negative. Then the result range is (-C,0] and 3145 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3146 // 3147 // Thus a lower bound on the number of sign bits is `TyBits - 3148 // ceilLogBase2(C)`. 3149 3150 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3151 Tmp = std::max(Tmp, ResBits); 3152 } 3153 } 3154 return Tmp; 3155 } 3156 3157 case Instruction::AShr: { 3158 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3159 // ashr X, C -> adds C sign bits. Vectors too. 3160 const APInt *ShAmt; 3161 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3162 if (ShAmt->uge(TyBits)) 3163 break; // Bad shift. 3164 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3165 Tmp += ShAmtLimited; 3166 if (Tmp > TyBits) Tmp = TyBits; 3167 } 3168 return Tmp; 3169 } 3170 case Instruction::Shl: { 3171 const APInt *ShAmt; 3172 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3173 // shl destroys sign bits. 3174 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3175 if (ShAmt->uge(TyBits) || // Bad shift. 3176 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3177 Tmp2 = ShAmt->getZExtValue(); 3178 return Tmp - Tmp2; 3179 } 3180 break; 3181 } 3182 case Instruction::And: 3183 case Instruction::Or: 3184 case Instruction::Xor: // NOT is handled here. 3185 // Logical binary ops preserve the number of sign bits at the worst. 3186 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3187 if (Tmp != 1) { 3188 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3189 FirstAnswer = std::min(Tmp, Tmp2); 3190 // We computed what we know about the sign bits as our first 3191 // answer. Now proceed to the generic code that uses 3192 // computeKnownBits, and pick whichever answer is better. 3193 } 3194 break; 3195 3196 case Instruction::Select: { 3197 // If we have a clamp pattern, we know that the number of sign bits will 3198 // be the minimum of the clamp min/max range. 3199 const Value *X; 3200 const APInt *CLow, *CHigh; 3201 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3202 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3203 3204 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3205 if (Tmp == 1) break; 3206 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3207 return std::min(Tmp, Tmp2); 3208 } 3209 3210 case Instruction::Add: 3211 // Add can have at most one carry bit. Thus we know that the output 3212 // is, at worst, one more bit than the inputs. 3213 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3214 if (Tmp == 1) break; 3215 3216 // Special case decrementing a value (ADD X, -1): 3217 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3218 if (CRHS->isAllOnesValue()) { 3219 KnownBits Known(TyBits); 3220 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3221 3222 // If the input is known to be 0 or 1, the output is 0/-1, which is 3223 // all sign bits set. 3224 if ((Known.Zero | 1).isAllOnes()) 3225 return TyBits; 3226 3227 // If we are subtracting one from a positive number, there is no carry 3228 // out of the result. 3229 if (Known.isNonNegative()) 3230 return Tmp; 3231 } 3232 3233 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3234 if (Tmp2 == 1) break; 3235 return std::min(Tmp, Tmp2) - 1; 3236 3237 case Instruction::Sub: 3238 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3239 if (Tmp2 == 1) break; 3240 3241 // Handle NEG. 3242 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3243 if (CLHS->isNullValue()) { 3244 KnownBits Known(TyBits); 3245 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3246 // If the input is known to be 0 or 1, the output is 0/-1, which is 3247 // all sign bits set. 3248 if ((Known.Zero | 1).isAllOnes()) 3249 return TyBits; 3250 3251 // If the input is known to be positive (the sign bit is known clear), 3252 // the output of the NEG has the same number of sign bits as the 3253 // input. 3254 if (Known.isNonNegative()) 3255 return Tmp2; 3256 3257 // Otherwise, we treat this like a SUB. 3258 } 3259 3260 // Sub can have at most one carry bit. Thus we know that the output 3261 // is, at worst, one more bit than the inputs. 3262 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3263 if (Tmp == 1) break; 3264 return std::min(Tmp, Tmp2) - 1; 3265 3266 case Instruction::Mul: { 3267 // The output of the Mul can be at most twice the valid bits in the 3268 // inputs. 3269 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3270 if (SignBitsOp0 == 1) break; 3271 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3272 if (SignBitsOp1 == 1) break; 3273 unsigned OutValidBits = 3274 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3275 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3276 } 3277 3278 case Instruction::PHI: { 3279 const PHINode *PN = cast<PHINode>(U); 3280 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3281 // Don't analyze large in-degree PHIs. 3282 if (NumIncomingValues > 4) break; 3283 // Unreachable blocks may have zero-operand PHI nodes. 3284 if (NumIncomingValues == 0) break; 3285 3286 // Take the minimum of all incoming values. This can't infinitely loop 3287 // because of our depth threshold. 3288 Query RecQ = Q; 3289 Tmp = TyBits; 3290 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3291 if (Tmp == 1) return Tmp; 3292 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3293 Tmp = std::min( 3294 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3295 } 3296 return Tmp; 3297 } 3298 3299 case Instruction::Trunc: 3300 // FIXME: it's tricky to do anything useful for this, but it is an 3301 // important case for targets like X86. 3302 break; 3303 3304 case Instruction::ExtractElement: 3305 // Look through extract element. At the moment we keep this simple and 3306 // skip tracking the specific element. But at least we might find 3307 // information valid for all elements of the vector (for example if vector 3308 // is sign extended, shifted, etc). 3309 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3310 3311 case Instruction::ShuffleVector: { 3312 // Collect the minimum number of sign bits that are shared by every vector 3313 // element referenced by the shuffle. 3314 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3315 if (!Shuf) { 3316 // FIXME: Add support for shufflevector constant expressions. 3317 return 1; 3318 } 3319 APInt DemandedLHS, DemandedRHS; 3320 // For undef elements, we don't know anything about the common state of 3321 // the shuffle result. 3322 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3323 return 1; 3324 Tmp = std::numeric_limits<unsigned>::max(); 3325 if (!!DemandedLHS) { 3326 const Value *LHS = Shuf->getOperand(0); 3327 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3328 } 3329 // If we don't know anything, early out and try computeKnownBits 3330 // fall-back. 3331 if (Tmp == 1) 3332 break; 3333 if (!!DemandedRHS) { 3334 const Value *RHS = Shuf->getOperand(1); 3335 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3336 Tmp = std::min(Tmp, Tmp2); 3337 } 3338 // If we don't know anything, early out and try computeKnownBits 3339 // fall-back. 3340 if (Tmp == 1) 3341 break; 3342 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3343 return Tmp; 3344 } 3345 case Instruction::Call: { 3346 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3347 switch (II->getIntrinsicID()) { 3348 default: break; 3349 case Intrinsic::abs: 3350 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3351 if (Tmp == 1) break; 3352 3353 // Absolute value reduces number of sign bits by at most 1. 3354 return Tmp - 1; 3355 case Intrinsic::smin: 3356 case Intrinsic::smax: { 3357 const APInt *CLow, *CHigh; 3358 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3359 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3360 } 3361 } 3362 } 3363 } 3364 } 3365 } 3366 3367 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3368 // use this information. 3369 3370 // If we can examine all elements of a vector constant successfully, we're 3371 // done (we can't do any better than that). If not, keep trying. 3372 if (unsigned VecSignBits = 3373 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3374 return VecSignBits; 3375 3376 KnownBits Known(TyBits); 3377 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3378 3379 // If we know that the sign bit is either zero or one, determine the number of 3380 // identical bits in the top of the input value. 3381 return std::max(FirstAnswer, Known.countMinSignBits()); 3382 } 3383 3384 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3385 const TargetLibraryInfo *TLI) { 3386 const Function *F = CB.getCalledFunction(); 3387 if (!F) 3388 return Intrinsic::not_intrinsic; 3389 3390 if (F->isIntrinsic()) 3391 return F->getIntrinsicID(); 3392 3393 // We are going to infer semantics of a library function based on mapping it 3394 // to an LLVM intrinsic. Check that the library function is available from 3395 // this callbase and in this environment. 3396 LibFunc Func; 3397 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3398 !CB.onlyReadsMemory()) 3399 return Intrinsic::not_intrinsic; 3400 3401 switch (Func) { 3402 default: 3403 break; 3404 case LibFunc_sin: 3405 case LibFunc_sinf: 3406 case LibFunc_sinl: 3407 return Intrinsic::sin; 3408 case LibFunc_cos: 3409 case LibFunc_cosf: 3410 case LibFunc_cosl: 3411 return Intrinsic::cos; 3412 case LibFunc_exp: 3413 case LibFunc_expf: 3414 case LibFunc_expl: 3415 return Intrinsic::exp; 3416 case LibFunc_exp2: 3417 case LibFunc_exp2f: 3418 case LibFunc_exp2l: 3419 return Intrinsic::exp2; 3420 case LibFunc_log: 3421 case LibFunc_logf: 3422 case LibFunc_logl: 3423 return Intrinsic::log; 3424 case LibFunc_log10: 3425 case LibFunc_log10f: 3426 case LibFunc_log10l: 3427 return Intrinsic::log10; 3428 case LibFunc_log2: 3429 case LibFunc_log2f: 3430 case LibFunc_log2l: 3431 return Intrinsic::log2; 3432 case LibFunc_fabs: 3433 case LibFunc_fabsf: 3434 case LibFunc_fabsl: 3435 return Intrinsic::fabs; 3436 case LibFunc_fmin: 3437 case LibFunc_fminf: 3438 case LibFunc_fminl: 3439 return Intrinsic::minnum; 3440 case LibFunc_fmax: 3441 case LibFunc_fmaxf: 3442 case LibFunc_fmaxl: 3443 return Intrinsic::maxnum; 3444 case LibFunc_copysign: 3445 case LibFunc_copysignf: 3446 case LibFunc_copysignl: 3447 return Intrinsic::copysign; 3448 case LibFunc_floor: 3449 case LibFunc_floorf: 3450 case LibFunc_floorl: 3451 return Intrinsic::floor; 3452 case LibFunc_ceil: 3453 case LibFunc_ceilf: 3454 case LibFunc_ceill: 3455 return Intrinsic::ceil; 3456 case LibFunc_trunc: 3457 case LibFunc_truncf: 3458 case LibFunc_truncl: 3459 return Intrinsic::trunc; 3460 case LibFunc_rint: 3461 case LibFunc_rintf: 3462 case LibFunc_rintl: 3463 return Intrinsic::rint; 3464 case LibFunc_nearbyint: 3465 case LibFunc_nearbyintf: 3466 case LibFunc_nearbyintl: 3467 return Intrinsic::nearbyint; 3468 case LibFunc_round: 3469 case LibFunc_roundf: 3470 case LibFunc_roundl: 3471 return Intrinsic::round; 3472 case LibFunc_roundeven: 3473 case LibFunc_roundevenf: 3474 case LibFunc_roundevenl: 3475 return Intrinsic::roundeven; 3476 case LibFunc_pow: 3477 case LibFunc_powf: 3478 case LibFunc_powl: 3479 return Intrinsic::pow; 3480 case LibFunc_sqrt: 3481 case LibFunc_sqrtf: 3482 case LibFunc_sqrtl: 3483 return Intrinsic::sqrt; 3484 } 3485 3486 return Intrinsic::not_intrinsic; 3487 } 3488 3489 /// Return true if we can prove that the specified FP value is never equal to 3490 /// -0.0. 3491 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3492 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3493 /// the same as +0.0 in floating-point ops. 3494 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3495 unsigned Depth) { 3496 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3497 return !CFP->getValueAPF().isNegZero(); 3498 3499 if (Depth == MaxAnalysisRecursionDepth) 3500 return false; 3501 3502 auto *Op = dyn_cast<Operator>(V); 3503 if (!Op) 3504 return false; 3505 3506 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3507 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3508 return true; 3509 3510 // sitofp and uitofp turn into +0.0 for zero. 3511 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3512 return true; 3513 3514 if (auto *Call = dyn_cast<CallInst>(Op)) { 3515 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3516 switch (IID) { 3517 default: 3518 break; 3519 // sqrt(-0.0) = -0.0, no other negative results are possible. 3520 case Intrinsic::sqrt: 3521 case Intrinsic::canonicalize: 3522 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3523 case Intrinsic::experimental_constrained_sqrt: { 3524 // NOTE: This rounding mode restriction may be too strict. 3525 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3526 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3527 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3528 else 3529 return false; 3530 } 3531 // fabs(x) != -0.0 3532 case Intrinsic::fabs: 3533 return true; 3534 // sitofp and uitofp turn into +0.0 for zero. 3535 case Intrinsic::experimental_constrained_sitofp: 3536 case Intrinsic::experimental_constrained_uitofp: 3537 return true; 3538 } 3539 } 3540 3541 return false; 3542 } 3543 3544 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3545 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3546 /// bit despite comparing equal. 3547 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3548 const TargetLibraryInfo *TLI, 3549 bool SignBitOnly, 3550 unsigned Depth) { 3551 // TODO: This function does not do the right thing when SignBitOnly is true 3552 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3553 // which flips the sign bits of NaNs. See 3554 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3555 3556 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3557 return !CFP->getValueAPF().isNegative() || 3558 (!SignBitOnly && CFP->getValueAPF().isZero()); 3559 } 3560 3561 // Handle vector of constants. 3562 if (auto *CV = dyn_cast<Constant>(V)) { 3563 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3564 unsigned NumElts = CVFVTy->getNumElements(); 3565 for (unsigned i = 0; i != NumElts; ++i) { 3566 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3567 if (!CFP) 3568 return false; 3569 if (CFP->getValueAPF().isNegative() && 3570 (SignBitOnly || !CFP->getValueAPF().isZero())) 3571 return false; 3572 } 3573 3574 // All non-negative ConstantFPs. 3575 return true; 3576 } 3577 } 3578 3579 if (Depth == MaxAnalysisRecursionDepth) 3580 return false; 3581 3582 const Operator *I = dyn_cast<Operator>(V); 3583 if (!I) 3584 return false; 3585 3586 switch (I->getOpcode()) { 3587 default: 3588 break; 3589 // Unsigned integers are always nonnegative. 3590 case Instruction::UIToFP: 3591 return true; 3592 case Instruction::FMul: 3593 case Instruction::FDiv: 3594 // X * X is always non-negative or a NaN. 3595 // X / X is always exactly 1.0 or a NaN. 3596 if (I->getOperand(0) == I->getOperand(1) && 3597 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3598 return true; 3599 3600 LLVM_FALLTHROUGH; 3601 case Instruction::FAdd: 3602 case Instruction::FRem: 3603 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3604 Depth + 1) && 3605 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3606 Depth + 1); 3607 case Instruction::Select: 3608 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3609 Depth + 1) && 3610 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3611 Depth + 1); 3612 case Instruction::FPExt: 3613 case Instruction::FPTrunc: 3614 // Widening/narrowing never change sign. 3615 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3616 Depth + 1); 3617 case Instruction::ExtractElement: 3618 // Look through extract element. At the moment we keep this simple and skip 3619 // tracking the specific element. But at least we might find information 3620 // valid for all elements of the vector. 3621 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3622 Depth + 1); 3623 case Instruction::Call: 3624 const auto *CI = cast<CallInst>(I); 3625 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3626 switch (IID) { 3627 default: 3628 break; 3629 case Intrinsic::maxnum: { 3630 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3631 auto isPositiveNum = [&](Value *V) { 3632 if (SignBitOnly) { 3633 // With SignBitOnly, this is tricky because the result of 3634 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3635 // a constant strictly greater than 0.0. 3636 const APFloat *C; 3637 return match(V, m_APFloat(C)) && 3638 *C > APFloat::getZero(C->getSemantics()); 3639 } 3640 3641 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3642 // maxnum can't be ordered-less-than-zero. 3643 return isKnownNeverNaN(V, TLI) && 3644 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3645 }; 3646 3647 // TODO: This could be improved. We could also check that neither operand 3648 // has its sign bit set (and at least 1 is not-NAN?). 3649 return isPositiveNum(V0) || isPositiveNum(V1); 3650 } 3651 3652 case Intrinsic::maximum: 3653 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3654 Depth + 1) || 3655 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3656 Depth + 1); 3657 case Intrinsic::minnum: 3658 case Intrinsic::minimum: 3659 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3660 Depth + 1) && 3661 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3662 Depth + 1); 3663 case Intrinsic::exp: 3664 case Intrinsic::exp2: 3665 case Intrinsic::fabs: 3666 return true; 3667 3668 case Intrinsic::sqrt: 3669 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3670 if (!SignBitOnly) 3671 return true; 3672 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3673 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3674 3675 case Intrinsic::powi: 3676 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3677 // powi(x,n) is non-negative if n is even. 3678 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3679 return true; 3680 } 3681 // TODO: This is not correct. Given that exp is an integer, here are the 3682 // ways that pow can return a negative value: 3683 // 3684 // pow(x, exp) --> negative if exp is odd and x is negative. 3685 // pow(-0, exp) --> -inf if exp is negative odd. 3686 // pow(-0, exp) --> -0 if exp is positive odd. 3687 // pow(-inf, exp) --> -0 if exp is negative odd. 3688 // pow(-inf, exp) --> -inf if exp is positive odd. 3689 // 3690 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3691 // but we must return false if x == -0. Unfortunately we do not currently 3692 // have a way of expressing this constraint. See details in 3693 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3694 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3695 Depth + 1); 3696 3697 case Intrinsic::fma: 3698 case Intrinsic::fmuladd: 3699 // x*x+y is non-negative if y is non-negative. 3700 return I->getOperand(0) == I->getOperand(1) && 3701 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3702 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3703 Depth + 1); 3704 } 3705 break; 3706 } 3707 return false; 3708 } 3709 3710 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3711 const TargetLibraryInfo *TLI) { 3712 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3713 } 3714 3715 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3716 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3717 } 3718 3719 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3720 unsigned Depth) { 3721 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3722 3723 // If we're told that infinities won't happen, assume they won't. 3724 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3725 if (FPMathOp->hasNoInfs()) 3726 return true; 3727 3728 // Handle scalar constants. 3729 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3730 return !CFP->isInfinity(); 3731 3732 if (Depth == MaxAnalysisRecursionDepth) 3733 return false; 3734 3735 if (auto *Inst = dyn_cast<Instruction>(V)) { 3736 switch (Inst->getOpcode()) { 3737 case Instruction::Select: { 3738 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3739 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3740 } 3741 case Instruction::SIToFP: 3742 case Instruction::UIToFP: { 3743 // Get width of largest magnitude integer (remove a bit if signed). 3744 // This still works for a signed minimum value because the largest FP 3745 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3746 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3747 if (Inst->getOpcode() == Instruction::SIToFP) 3748 --IntSize; 3749 3750 // If the exponent of the largest finite FP value can hold the largest 3751 // integer, the result of the cast must be finite. 3752 Type *FPTy = Inst->getType()->getScalarType(); 3753 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3754 } 3755 default: 3756 break; 3757 } 3758 } 3759 3760 // try to handle fixed width vector constants 3761 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3762 if (VFVTy && isa<Constant>(V)) { 3763 // For vectors, verify that each element is not infinity. 3764 unsigned NumElts = VFVTy->getNumElements(); 3765 for (unsigned i = 0; i != NumElts; ++i) { 3766 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3767 if (!Elt) 3768 return false; 3769 if (isa<UndefValue>(Elt)) 3770 continue; 3771 auto *CElt = dyn_cast<ConstantFP>(Elt); 3772 if (!CElt || CElt->isInfinity()) 3773 return false; 3774 } 3775 // All elements were confirmed non-infinity or undefined. 3776 return true; 3777 } 3778 3779 // was not able to prove that V never contains infinity 3780 return false; 3781 } 3782 3783 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3784 unsigned Depth) { 3785 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3786 3787 // If we're told that NaNs won't happen, assume they won't. 3788 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3789 if (FPMathOp->hasNoNaNs()) 3790 return true; 3791 3792 // Handle scalar constants. 3793 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3794 return !CFP->isNaN(); 3795 3796 if (Depth == MaxAnalysisRecursionDepth) 3797 return false; 3798 3799 if (auto *Inst = dyn_cast<Instruction>(V)) { 3800 switch (Inst->getOpcode()) { 3801 case Instruction::FAdd: 3802 case Instruction::FSub: 3803 // Adding positive and negative infinity produces NaN. 3804 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3805 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3806 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3807 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3808 3809 case Instruction::FMul: 3810 // Zero multiplied with infinity produces NaN. 3811 // FIXME: If neither side can be zero fmul never produces NaN. 3812 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3813 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3814 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3815 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3816 3817 case Instruction::FDiv: 3818 case Instruction::FRem: 3819 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3820 return false; 3821 3822 case Instruction::Select: { 3823 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3824 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3825 } 3826 case Instruction::SIToFP: 3827 case Instruction::UIToFP: 3828 return true; 3829 case Instruction::FPTrunc: 3830 case Instruction::FPExt: 3831 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3832 default: 3833 break; 3834 } 3835 } 3836 3837 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3838 switch (II->getIntrinsicID()) { 3839 case Intrinsic::canonicalize: 3840 case Intrinsic::fabs: 3841 case Intrinsic::copysign: 3842 case Intrinsic::exp: 3843 case Intrinsic::exp2: 3844 case Intrinsic::floor: 3845 case Intrinsic::ceil: 3846 case Intrinsic::trunc: 3847 case Intrinsic::rint: 3848 case Intrinsic::nearbyint: 3849 case Intrinsic::round: 3850 case Intrinsic::roundeven: 3851 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3852 case Intrinsic::sqrt: 3853 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3854 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3855 case Intrinsic::minnum: 3856 case Intrinsic::maxnum: 3857 // If either operand is not NaN, the result is not NaN. 3858 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3859 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3860 default: 3861 return false; 3862 } 3863 } 3864 3865 // Try to handle fixed width vector constants 3866 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3867 if (VFVTy && isa<Constant>(V)) { 3868 // For vectors, verify that each element is not NaN. 3869 unsigned NumElts = VFVTy->getNumElements(); 3870 for (unsigned i = 0; i != NumElts; ++i) { 3871 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3872 if (!Elt) 3873 return false; 3874 if (isa<UndefValue>(Elt)) 3875 continue; 3876 auto *CElt = dyn_cast<ConstantFP>(Elt); 3877 if (!CElt || CElt->isNaN()) 3878 return false; 3879 } 3880 // All elements were confirmed not-NaN or undefined. 3881 return true; 3882 } 3883 3884 // Was not able to prove that V never contains NaN 3885 return false; 3886 } 3887 3888 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3889 3890 // All byte-wide stores are splatable, even of arbitrary variables. 3891 if (V->getType()->isIntegerTy(8)) 3892 return V; 3893 3894 LLVMContext &Ctx = V->getContext(); 3895 3896 // Undef don't care. 3897 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3898 if (isa<UndefValue>(V)) 3899 return UndefInt8; 3900 3901 // Return Undef for zero-sized type. 3902 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3903 return UndefInt8; 3904 3905 Constant *C = dyn_cast<Constant>(V); 3906 if (!C) { 3907 // Conceptually, we could handle things like: 3908 // %a = zext i8 %X to i16 3909 // %b = shl i16 %a, 8 3910 // %c = or i16 %a, %b 3911 // but until there is an example that actually needs this, it doesn't seem 3912 // worth worrying about. 3913 return nullptr; 3914 } 3915 3916 // Handle 'null' ConstantArrayZero etc. 3917 if (C->isNullValue()) 3918 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3919 3920 // Constant floating-point values can be handled as integer values if the 3921 // corresponding integer value is "byteable". An important case is 0.0. 3922 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3923 Type *Ty = nullptr; 3924 if (CFP->getType()->isHalfTy()) 3925 Ty = Type::getInt16Ty(Ctx); 3926 else if (CFP->getType()->isFloatTy()) 3927 Ty = Type::getInt32Ty(Ctx); 3928 else if (CFP->getType()->isDoubleTy()) 3929 Ty = Type::getInt64Ty(Ctx); 3930 // Don't handle long double formats, which have strange constraints. 3931 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3932 : nullptr; 3933 } 3934 3935 // We can handle constant integers that are multiple of 8 bits. 3936 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3937 if (CI->getBitWidth() % 8 == 0) { 3938 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3939 if (!CI->getValue().isSplat(8)) 3940 return nullptr; 3941 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3942 } 3943 } 3944 3945 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3946 if (CE->getOpcode() == Instruction::IntToPtr) { 3947 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3948 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3949 return isBytewiseValue( 3950 ConstantExpr::getIntegerCast(CE->getOperand(0), 3951 Type::getIntNTy(Ctx, BitWidth), false), 3952 DL); 3953 } 3954 } 3955 } 3956 3957 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3958 if (LHS == RHS) 3959 return LHS; 3960 if (!LHS || !RHS) 3961 return nullptr; 3962 if (LHS == UndefInt8) 3963 return RHS; 3964 if (RHS == UndefInt8) 3965 return LHS; 3966 return nullptr; 3967 }; 3968 3969 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3970 Value *Val = UndefInt8; 3971 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3972 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3973 return nullptr; 3974 return Val; 3975 } 3976 3977 if (isa<ConstantAggregate>(C)) { 3978 Value *Val = UndefInt8; 3979 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3980 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3981 return nullptr; 3982 return Val; 3983 } 3984 3985 // Don't try to handle the handful of other constants. 3986 return nullptr; 3987 } 3988 3989 // This is the recursive version of BuildSubAggregate. It takes a few different 3990 // arguments. Idxs is the index within the nested struct From that we are 3991 // looking at now (which is of type IndexedType). IdxSkip is the number of 3992 // indices from Idxs that should be left out when inserting into the resulting 3993 // struct. To is the result struct built so far, new insertvalue instructions 3994 // build on that. 3995 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3996 SmallVectorImpl<unsigned> &Idxs, 3997 unsigned IdxSkip, 3998 Instruction *InsertBefore) { 3999 StructType *STy = dyn_cast<StructType>(IndexedType); 4000 if (STy) { 4001 // Save the original To argument so we can modify it 4002 Value *OrigTo = To; 4003 // General case, the type indexed by Idxs is a struct 4004 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4005 // Process each struct element recursively 4006 Idxs.push_back(i); 4007 Value *PrevTo = To; 4008 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 4009 InsertBefore); 4010 Idxs.pop_back(); 4011 if (!To) { 4012 // Couldn't find any inserted value for this index? Cleanup 4013 while (PrevTo != OrigTo) { 4014 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 4015 PrevTo = Del->getAggregateOperand(); 4016 Del->eraseFromParent(); 4017 } 4018 // Stop processing elements 4019 break; 4020 } 4021 } 4022 // If we successfully found a value for each of our subaggregates 4023 if (To) 4024 return To; 4025 } 4026 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 4027 // the struct's elements had a value that was inserted directly. In the latter 4028 // case, perhaps we can't determine each of the subelements individually, but 4029 // we might be able to find the complete struct somewhere. 4030 4031 // Find the value that is at that particular spot 4032 Value *V = FindInsertedValue(From, Idxs); 4033 4034 if (!V) 4035 return nullptr; 4036 4037 // Insert the value in the new (sub) aggregate 4038 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 4039 "tmp", InsertBefore); 4040 } 4041 4042 // This helper takes a nested struct and extracts a part of it (which is again a 4043 // struct) into a new value. For example, given the struct: 4044 // { a, { b, { c, d }, e } } 4045 // and the indices "1, 1" this returns 4046 // { c, d }. 4047 // 4048 // It does this by inserting an insertvalue for each element in the resulting 4049 // struct, as opposed to just inserting a single struct. This will only work if 4050 // each of the elements of the substruct are known (ie, inserted into From by an 4051 // insertvalue instruction somewhere). 4052 // 4053 // All inserted insertvalue instructions are inserted before InsertBefore 4054 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4055 Instruction *InsertBefore) { 4056 assert(InsertBefore && "Must have someplace to insert!"); 4057 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4058 idx_range); 4059 Value *To = UndefValue::get(IndexedType); 4060 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4061 unsigned IdxSkip = Idxs.size(); 4062 4063 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4064 } 4065 4066 /// Given an aggregate and a sequence of indices, see if the scalar value 4067 /// indexed is already around as a register, for example if it was inserted 4068 /// directly into the aggregate. 4069 /// 4070 /// If InsertBefore is not null, this function will duplicate (modified) 4071 /// insertvalues when a part of a nested struct is extracted. 4072 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4073 Instruction *InsertBefore) { 4074 // Nothing to index? Just return V then (this is useful at the end of our 4075 // recursion). 4076 if (idx_range.empty()) 4077 return V; 4078 // We have indices, so V should have an indexable type. 4079 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4080 "Not looking at a struct or array?"); 4081 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4082 "Invalid indices for type?"); 4083 4084 if (Constant *C = dyn_cast<Constant>(V)) { 4085 C = C->getAggregateElement(idx_range[0]); 4086 if (!C) return nullptr; 4087 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4088 } 4089 4090 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4091 // Loop the indices for the insertvalue instruction in parallel with the 4092 // requested indices 4093 const unsigned *req_idx = idx_range.begin(); 4094 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4095 i != e; ++i, ++req_idx) { 4096 if (req_idx == idx_range.end()) { 4097 // We can't handle this without inserting insertvalues 4098 if (!InsertBefore) 4099 return nullptr; 4100 4101 // The requested index identifies a part of a nested aggregate. Handle 4102 // this specially. For example, 4103 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4104 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4105 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4106 // This can be changed into 4107 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4108 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4109 // which allows the unused 0,0 element from the nested struct to be 4110 // removed. 4111 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4112 InsertBefore); 4113 } 4114 4115 // This insert value inserts something else than what we are looking for. 4116 // See if the (aggregate) value inserted into has the value we are 4117 // looking for, then. 4118 if (*req_idx != *i) 4119 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4120 InsertBefore); 4121 } 4122 // If we end up here, the indices of the insertvalue match with those 4123 // requested (though possibly only partially). Now we recursively look at 4124 // the inserted value, passing any remaining indices. 4125 return FindInsertedValue(I->getInsertedValueOperand(), 4126 makeArrayRef(req_idx, idx_range.end()), 4127 InsertBefore); 4128 } 4129 4130 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4131 // If we're extracting a value from an aggregate that was extracted from 4132 // something else, we can extract from that something else directly instead. 4133 // However, we will need to chain I's indices with the requested indices. 4134 4135 // Calculate the number of indices required 4136 unsigned size = I->getNumIndices() + idx_range.size(); 4137 // Allocate some space to put the new indices in 4138 SmallVector<unsigned, 5> Idxs; 4139 Idxs.reserve(size); 4140 // Add indices from the extract value instruction 4141 Idxs.append(I->idx_begin(), I->idx_end()); 4142 4143 // Add requested indices 4144 Idxs.append(idx_range.begin(), idx_range.end()); 4145 4146 assert(Idxs.size() == size 4147 && "Number of indices added not correct?"); 4148 4149 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4150 } 4151 // Otherwise, we don't know (such as, extracting from a function return value 4152 // or load instruction) 4153 return nullptr; 4154 } 4155 4156 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4157 unsigned CharSize) { 4158 // Make sure the GEP has exactly three arguments. 4159 if (GEP->getNumOperands() != 3) 4160 return false; 4161 4162 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4163 // CharSize. 4164 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4165 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4166 return false; 4167 4168 // Check to make sure that the first operand of the GEP is an integer and 4169 // has value 0 so that we are sure we're indexing into the initializer. 4170 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4171 if (!FirstIdx || !FirstIdx->isZero()) 4172 return false; 4173 4174 return true; 4175 } 4176 4177 bool llvm::getConstantDataArrayInfo(const Value *V, 4178 ConstantDataArraySlice &Slice, 4179 unsigned ElementSize, uint64_t Offset) { 4180 assert(V); 4181 4182 // Look through bitcast instructions and geps. 4183 V = V->stripPointerCasts(); 4184 4185 // If the value is a GEP instruction or constant expression, treat it as an 4186 // offset. 4187 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4188 // The GEP operator should be based on a pointer to string constant, and is 4189 // indexing into the string constant. 4190 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4191 return false; 4192 4193 // If the second index isn't a ConstantInt, then this is a variable index 4194 // into the array. If this occurs, we can't say anything meaningful about 4195 // the string. 4196 uint64_t StartIdx = 0; 4197 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4198 StartIdx = CI->getZExtValue(); 4199 else 4200 return false; 4201 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4202 StartIdx + Offset); 4203 } 4204 4205 // The GEP instruction, constant or instruction, must reference a global 4206 // variable that is a constant and is initialized. The referenced constant 4207 // initializer is the array that we'll use for optimization. 4208 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4209 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4210 return false; 4211 4212 const ConstantDataArray *Array; 4213 ArrayType *ArrayTy; 4214 if (GV->getInitializer()->isNullValue()) { 4215 Type *GVTy = GV->getValueType(); 4216 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4217 // A zeroinitializer for the array; there is no ConstantDataArray. 4218 Array = nullptr; 4219 } else { 4220 const DataLayout &DL = GV->getParent()->getDataLayout(); 4221 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4222 uint64_t Length = SizeInBytes / (ElementSize / 8); 4223 if (Length <= Offset) 4224 return false; 4225 4226 Slice.Array = nullptr; 4227 Slice.Offset = 0; 4228 Slice.Length = Length - Offset; 4229 return true; 4230 } 4231 } else { 4232 // This must be a ConstantDataArray. 4233 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4234 if (!Array) 4235 return false; 4236 ArrayTy = Array->getType(); 4237 } 4238 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4239 return false; 4240 4241 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4242 if (Offset > NumElts) 4243 return false; 4244 4245 Slice.Array = Array; 4246 Slice.Offset = Offset; 4247 Slice.Length = NumElts - Offset; 4248 return true; 4249 } 4250 4251 /// This function computes the length of a null-terminated C string pointed to 4252 /// by V. If successful, it returns true and returns the string in Str. 4253 /// If unsuccessful, it returns false. 4254 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4255 uint64_t Offset, bool TrimAtNul) { 4256 ConstantDataArraySlice Slice; 4257 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4258 return false; 4259 4260 if (Slice.Array == nullptr) { 4261 if (TrimAtNul) { 4262 Str = StringRef(); 4263 return true; 4264 } 4265 if (Slice.Length == 1) { 4266 Str = StringRef("", 1); 4267 return true; 4268 } 4269 // We cannot instantiate a StringRef as we do not have an appropriate string 4270 // of 0s at hand. 4271 return false; 4272 } 4273 4274 // Start out with the entire array in the StringRef. 4275 Str = Slice.Array->getAsString(); 4276 // Skip over 'offset' bytes. 4277 Str = Str.substr(Slice.Offset); 4278 4279 if (TrimAtNul) { 4280 // Trim off the \0 and anything after it. If the array is not nul 4281 // terminated, we just return the whole end of string. The client may know 4282 // some other way that the string is length-bound. 4283 Str = Str.substr(0, Str.find('\0')); 4284 } 4285 return true; 4286 } 4287 4288 // These next two are very similar to the above, but also look through PHI 4289 // nodes. 4290 // TODO: See if we can integrate these two together. 4291 4292 /// If we can compute the length of the string pointed to by 4293 /// the specified pointer, return 'len+1'. If we can't, return 0. 4294 static uint64_t GetStringLengthH(const Value *V, 4295 SmallPtrSetImpl<const PHINode*> &PHIs, 4296 unsigned CharSize) { 4297 // Look through noop bitcast instructions. 4298 V = V->stripPointerCasts(); 4299 4300 // If this is a PHI node, there are two cases: either we have already seen it 4301 // or we haven't. 4302 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4303 if (!PHIs.insert(PN).second) 4304 return ~0ULL; // already in the set. 4305 4306 // If it was new, see if all the input strings are the same length. 4307 uint64_t LenSoFar = ~0ULL; 4308 for (Value *IncValue : PN->incoming_values()) { 4309 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4310 if (Len == 0) return 0; // Unknown length -> unknown. 4311 4312 if (Len == ~0ULL) continue; 4313 4314 if (Len != LenSoFar && LenSoFar != ~0ULL) 4315 return 0; // Disagree -> unknown. 4316 LenSoFar = Len; 4317 } 4318 4319 // Success, all agree. 4320 return LenSoFar; 4321 } 4322 4323 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4324 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4325 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4326 if (Len1 == 0) return 0; 4327 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4328 if (Len2 == 0) return 0; 4329 if (Len1 == ~0ULL) return Len2; 4330 if (Len2 == ~0ULL) return Len1; 4331 if (Len1 != Len2) return 0; 4332 return Len1; 4333 } 4334 4335 // Otherwise, see if we can read the string. 4336 ConstantDataArraySlice Slice; 4337 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4338 return 0; 4339 4340 if (Slice.Array == nullptr) 4341 return 1; 4342 4343 // Search for nul characters 4344 unsigned NullIndex = 0; 4345 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4346 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4347 break; 4348 } 4349 4350 return NullIndex + 1; 4351 } 4352 4353 /// If we can compute the length of the string pointed to by 4354 /// the specified pointer, return 'len+1'. If we can't, return 0. 4355 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4356 if (!V->getType()->isPointerTy()) 4357 return 0; 4358 4359 SmallPtrSet<const PHINode*, 32> PHIs; 4360 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4361 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4362 // an empty string as a length. 4363 return Len == ~0ULL ? 1 : Len; 4364 } 4365 4366 const Value * 4367 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4368 bool MustPreserveNullness) { 4369 assert(Call && 4370 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4371 if (const Value *RV = Call->getReturnedArgOperand()) 4372 return RV; 4373 // This can be used only as a aliasing property. 4374 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4375 Call, MustPreserveNullness)) 4376 return Call->getArgOperand(0); 4377 return nullptr; 4378 } 4379 4380 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4381 const CallBase *Call, bool MustPreserveNullness) { 4382 switch (Call->getIntrinsicID()) { 4383 case Intrinsic::launder_invariant_group: 4384 case Intrinsic::strip_invariant_group: 4385 case Intrinsic::aarch64_irg: 4386 case Intrinsic::aarch64_tagp: 4387 return true; 4388 case Intrinsic::ptrmask: 4389 return !MustPreserveNullness; 4390 default: 4391 return false; 4392 } 4393 } 4394 4395 /// \p PN defines a loop-variant pointer to an object. Check if the 4396 /// previous iteration of the loop was referring to the same object as \p PN. 4397 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4398 const LoopInfo *LI) { 4399 // Find the loop-defined value. 4400 Loop *L = LI->getLoopFor(PN->getParent()); 4401 if (PN->getNumIncomingValues() != 2) 4402 return true; 4403 4404 // Find the value from previous iteration. 4405 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4406 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4407 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4408 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4409 return true; 4410 4411 // If a new pointer is loaded in the loop, the pointer references a different 4412 // object in every iteration. E.g.: 4413 // for (i) 4414 // int *p = a[i]; 4415 // ... 4416 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4417 if (!L->isLoopInvariant(Load->getPointerOperand())) 4418 return false; 4419 return true; 4420 } 4421 4422 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4423 if (!V->getType()->isPointerTy()) 4424 return V; 4425 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4426 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4427 V = GEP->getPointerOperand(); 4428 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4429 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4430 V = cast<Operator>(V)->getOperand(0); 4431 if (!V->getType()->isPointerTy()) 4432 return V; 4433 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4434 if (GA->isInterposable()) 4435 return V; 4436 V = GA->getAliasee(); 4437 } else { 4438 if (auto *PHI = dyn_cast<PHINode>(V)) { 4439 // Look through single-arg phi nodes created by LCSSA. 4440 if (PHI->getNumIncomingValues() == 1) { 4441 V = PHI->getIncomingValue(0); 4442 continue; 4443 } 4444 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4445 // CaptureTracking can know about special capturing properties of some 4446 // intrinsics like launder.invariant.group, that can't be expressed with 4447 // the attributes, but have properties like returning aliasing pointer. 4448 // Because some analysis may assume that nocaptured pointer is not 4449 // returned from some special intrinsic (because function would have to 4450 // be marked with returns attribute), it is crucial to use this function 4451 // because it should be in sync with CaptureTracking. Not using it may 4452 // cause weird miscompilations where 2 aliasing pointers are assumed to 4453 // noalias. 4454 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4455 V = RP; 4456 continue; 4457 } 4458 } 4459 4460 return V; 4461 } 4462 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4463 } 4464 return V; 4465 } 4466 4467 void llvm::getUnderlyingObjects(const Value *V, 4468 SmallVectorImpl<const Value *> &Objects, 4469 LoopInfo *LI, unsigned MaxLookup) { 4470 SmallPtrSet<const Value *, 4> Visited; 4471 SmallVector<const Value *, 4> Worklist; 4472 Worklist.push_back(V); 4473 do { 4474 const Value *P = Worklist.pop_back_val(); 4475 P = getUnderlyingObject(P, MaxLookup); 4476 4477 if (!Visited.insert(P).second) 4478 continue; 4479 4480 if (auto *SI = dyn_cast<SelectInst>(P)) { 4481 Worklist.push_back(SI->getTrueValue()); 4482 Worklist.push_back(SI->getFalseValue()); 4483 continue; 4484 } 4485 4486 if (auto *PN = dyn_cast<PHINode>(P)) { 4487 // If this PHI changes the underlying object in every iteration of the 4488 // loop, don't look through it. Consider: 4489 // int **A; 4490 // for (i) { 4491 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4492 // Curr = A[i]; 4493 // *Prev, *Curr; 4494 // 4495 // Prev is tracking Curr one iteration behind so they refer to different 4496 // underlying objects. 4497 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4498 isSameUnderlyingObjectInLoop(PN, LI)) 4499 append_range(Worklist, PN->incoming_values()); 4500 continue; 4501 } 4502 4503 Objects.push_back(P); 4504 } while (!Worklist.empty()); 4505 } 4506 4507 /// This is the function that does the work of looking through basic 4508 /// ptrtoint+arithmetic+inttoptr sequences. 4509 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4510 do { 4511 if (const Operator *U = dyn_cast<Operator>(V)) { 4512 // If we find a ptrtoint, we can transfer control back to the 4513 // regular getUnderlyingObjectFromInt. 4514 if (U->getOpcode() == Instruction::PtrToInt) 4515 return U->getOperand(0); 4516 // If we find an add of a constant, a multiplied value, or a phi, it's 4517 // likely that the other operand will lead us to the base 4518 // object. We don't have to worry about the case where the 4519 // object address is somehow being computed by the multiply, 4520 // because our callers only care when the result is an 4521 // identifiable object. 4522 if (U->getOpcode() != Instruction::Add || 4523 (!isa<ConstantInt>(U->getOperand(1)) && 4524 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4525 !isa<PHINode>(U->getOperand(1)))) 4526 return V; 4527 V = U->getOperand(0); 4528 } else { 4529 return V; 4530 } 4531 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4532 } while (true); 4533 } 4534 4535 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4536 /// ptrtoint+arithmetic+inttoptr sequences. 4537 /// It returns false if unidentified object is found in getUnderlyingObjects. 4538 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4539 SmallVectorImpl<Value *> &Objects) { 4540 SmallPtrSet<const Value *, 16> Visited; 4541 SmallVector<const Value *, 4> Working(1, V); 4542 do { 4543 V = Working.pop_back_val(); 4544 4545 SmallVector<const Value *, 4> Objs; 4546 getUnderlyingObjects(V, Objs); 4547 4548 for (const Value *V : Objs) { 4549 if (!Visited.insert(V).second) 4550 continue; 4551 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4552 const Value *O = 4553 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4554 if (O->getType()->isPointerTy()) { 4555 Working.push_back(O); 4556 continue; 4557 } 4558 } 4559 // If getUnderlyingObjects fails to find an identifiable object, 4560 // getUnderlyingObjectsForCodeGen also fails for safety. 4561 if (!isIdentifiedObject(V)) { 4562 Objects.clear(); 4563 return false; 4564 } 4565 Objects.push_back(const_cast<Value *>(V)); 4566 } 4567 } while (!Working.empty()); 4568 return true; 4569 } 4570 4571 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4572 AllocaInst *Result = nullptr; 4573 SmallPtrSet<Value *, 4> Visited; 4574 SmallVector<Value *, 4> Worklist; 4575 4576 auto AddWork = [&](Value *V) { 4577 if (Visited.insert(V).second) 4578 Worklist.push_back(V); 4579 }; 4580 4581 AddWork(V); 4582 do { 4583 V = Worklist.pop_back_val(); 4584 assert(Visited.count(V)); 4585 4586 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4587 if (Result && Result != AI) 4588 return nullptr; 4589 Result = AI; 4590 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4591 AddWork(CI->getOperand(0)); 4592 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4593 for (Value *IncValue : PN->incoming_values()) 4594 AddWork(IncValue); 4595 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4596 AddWork(SI->getTrueValue()); 4597 AddWork(SI->getFalseValue()); 4598 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4599 if (OffsetZero && !GEP->hasAllZeroIndices()) 4600 return nullptr; 4601 AddWork(GEP->getPointerOperand()); 4602 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4603 Value *Returned = CB->getReturnedArgOperand(); 4604 if (Returned) 4605 AddWork(Returned); 4606 else 4607 return nullptr; 4608 } else { 4609 return nullptr; 4610 } 4611 } while (!Worklist.empty()); 4612 4613 return Result; 4614 } 4615 4616 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4617 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4618 for (const User *U : V->users()) { 4619 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4620 if (!II) 4621 return false; 4622 4623 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4624 continue; 4625 4626 if (AllowDroppable && II->isDroppable()) 4627 continue; 4628 4629 return false; 4630 } 4631 return true; 4632 } 4633 4634 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4635 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4636 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4637 } 4638 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4639 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4640 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4641 } 4642 4643 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4644 if (!LI.isUnordered()) 4645 return true; 4646 const Function &F = *LI.getFunction(); 4647 // Speculative load may create a race that did not exist in the source. 4648 return F.hasFnAttribute(Attribute::SanitizeThread) || 4649 // Speculative load may load data from dirty regions. 4650 F.hasFnAttribute(Attribute::SanitizeAddress) || 4651 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4652 } 4653 4654 4655 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4656 const Instruction *CtxI, 4657 const DominatorTree *DT, 4658 const TargetLibraryInfo *TLI) { 4659 const Operator *Inst = dyn_cast<Operator>(V); 4660 if (!Inst) 4661 return false; 4662 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI); 4663 } 4664 4665 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, 4666 const Operator *Inst, 4667 const Instruction *CtxI, 4668 const DominatorTree *DT, 4669 const TargetLibraryInfo *TLI) { 4670 #ifndef NDEBUG 4671 if (Inst->getOpcode() != Opcode) { 4672 // Check that the operands are actually compatible with the Opcode override. 4673 auto hasEqualReturnAndLeadingOperandTypes = 4674 [](const Operator *Inst, unsigned NumLeadingOperands) { 4675 if (Inst->getNumOperands() < NumLeadingOperands) 4676 return false; 4677 const Type *ExpectedType = Inst->getType(); 4678 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 4679 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 4680 return false; 4681 return true; 4682 }; 4683 assert(!Instruction::isBinaryOp(Opcode) || 4684 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 4685 assert(!Instruction::isUnaryOp(Opcode) || 4686 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 4687 } 4688 #endif 4689 4690 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4691 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4692 if (C->canTrap()) 4693 return false; 4694 4695 switch (Opcode) { 4696 default: 4697 return true; 4698 case Instruction::UDiv: 4699 case Instruction::URem: { 4700 // x / y is undefined if y == 0. 4701 const APInt *V; 4702 if (match(Inst->getOperand(1), m_APInt(V))) 4703 return *V != 0; 4704 return false; 4705 } 4706 case Instruction::SDiv: 4707 case Instruction::SRem: { 4708 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4709 const APInt *Numerator, *Denominator; 4710 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4711 return false; 4712 // We cannot hoist this division if the denominator is 0. 4713 if (*Denominator == 0) 4714 return false; 4715 // It's safe to hoist if the denominator is not 0 or -1. 4716 if (!Denominator->isAllOnes()) 4717 return true; 4718 // At this point we know that the denominator is -1. It is safe to hoist as 4719 // long we know that the numerator is not INT_MIN. 4720 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4721 return !Numerator->isMinSignedValue(); 4722 // The numerator *might* be MinSignedValue. 4723 return false; 4724 } 4725 case Instruction::Load: { 4726 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 4727 if (!LI) 4728 return false; 4729 if (mustSuppressSpeculation(*LI)) 4730 return false; 4731 const DataLayout &DL = LI->getModule()->getDataLayout(); 4732 return isDereferenceableAndAlignedPointer( 4733 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4734 TLI); 4735 } 4736 case Instruction::Call: { 4737 auto *CI = dyn_cast<const CallInst>(Inst); 4738 if (!CI) 4739 return false; 4740 const Function *Callee = CI->getCalledFunction(); 4741 4742 // The called function could have undefined behavior or side-effects, even 4743 // if marked readnone nounwind. 4744 return Callee && Callee->isSpeculatable(); 4745 } 4746 case Instruction::VAArg: 4747 case Instruction::Alloca: 4748 case Instruction::Invoke: 4749 case Instruction::CallBr: 4750 case Instruction::PHI: 4751 case Instruction::Store: 4752 case Instruction::Ret: 4753 case Instruction::Br: 4754 case Instruction::IndirectBr: 4755 case Instruction::Switch: 4756 case Instruction::Unreachable: 4757 case Instruction::Fence: 4758 case Instruction::AtomicRMW: 4759 case Instruction::AtomicCmpXchg: 4760 case Instruction::LandingPad: 4761 case Instruction::Resume: 4762 case Instruction::CatchSwitch: 4763 case Instruction::CatchPad: 4764 case Instruction::CatchRet: 4765 case Instruction::CleanupPad: 4766 case Instruction::CleanupRet: 4767 return false; // Misc instructions which have effects 4768 } 4769 } 4770 4771 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4772 if (I.mayReadOrWriteMemory()) 4773 // Memory dependency possible 4774 return true; 4775 if (!isSafeToSpeculativelyExecute(&I)) 4776 // Can't move above a maythrow call or infinite loop. Or if an 4777 // inalloca alloca, above a stacksave call. 4778 return true; 4779 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4780 // 1) Can't reorder two inf-loop calls, even if readonly 4781 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4782 // safe to speculative execute. (Inverse of above) 4783 return true; 4784 return false; 4785 } 4786 4787 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4788 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4789 switch (OR) { 4790 case ConstantRange::OverflowResult::MayOverflow: 4791 return OverflowResult::MayOverflow; 4792 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4793 return OverflowResult::AlwaysOverflowsLow; 4794 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4795 return OverflowResult::AlwaysOverflowsHigh; 4796 case ConstantRange::OverflowResult::NeverOverflows: 4797 return OverflowResult::NeverOverflows; 4798 } 4799 llvm_unreachable("Unknown OverflowResult"); 4800 } 4801 4802 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4803 static ConstantRange computeConstantRangeIncludingKnownBits( 4804 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4805 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4806 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4807 KnownBits Known = computeKnownBits( 4808 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4809 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4810 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4811 ConstantRange::PreferredRangeType RangeType = 4812 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4813 return CR1.intersectWith(CR2, RangeType); 4814 } 4815 4816 OverflowResult llvm::computeOverflowForUnsignedMul( 4817 const Value *LHS, const Value *RHS, const DataLayout &DL, 4818 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4819 bool UseInstrInfo) { 4820 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4821 nullptr, UseInstrInfo); 4822 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4823 nullptr, UseInstrInfo); 4824 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4825 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4826 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4827 } 4828 4829 OverflowResult 4830 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4831 const DataLayout &DL, AssumptionCache *AC, 4832 const Instruction *CxtI, 4833 const DominatorTree *DT, bool UseInstrInfo) { 4834 // Multiplying n * m significant bits yields a result of n + m significant 4835 // bits. If the total number of significant bits does not exceed the 4836 // result bit width (minus 1), there is no overflow. 4837 // This means if we have enough leading sign bits in the operands 4838 // we can guarantee that the result does not overflow. 4839 // Ref: "Hacker's Delight" by Henry Warren 4840 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4841 4842 // Note that underestimating the number of sign bits gives a more 4843 // conservative answer. 4844 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4845 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4846 4847 // First handle the easy case: if we have enough sign bits there's 4848 // definitely no overflow. 4849 if (SignBits > BitWidth + 1) 4850 return OverflowResult::NeverOverflows; 4851 4852 // There are two ambiguous cases where there can be no overflow: 4853 // SignBits == BitWidth + 1 and 4854 // SignBits == BitWidth 4855 // The second case is difficult to check, therefore we only handle the 4856 // first case. 4857 if (SignBits == BitWidth + 1) { 4858 // It overflows only when both arguments are negative and the true 4859 // product is exactly the minimum negative number. 4860 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4861 // For simplicity we just check if at least one side is not negative. 4862 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4863 nullptr, UseInstrInfo); 4864 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4865 nullptr, UseInstrInfo); 4866 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4867 return OverflowResult::NeverOverflows; 4868 } 4869 return OverflowResult::MayOverflow; 4870 } 4871 4872 OverflowResult llvm::computeOverflowForUnsignedAdd( 4873 const Value *LHS, const Value *RHS, const DataLayout &DL, 4874 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4875 bool UseInstrInfo) { 4876 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4877 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4878 nullptr, UseInstrInfo); 4879 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4880 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4881 nullptr, UseInstrInfo); 4882 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4883 } 4884 4885 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4886 const Value *RHS, 4887 const AddOperator *Add, 4888 const DataLayout &DL, 4889 AssumptionCache *AC, 4890 const Instruction *CxtI, 4891 const DominatorTree *DT) { 4892 if (Add && Add->hasNoSignedWrap()) { 4893 return OverflowResult::NeverOverflows; 4894 } 4895 4896 // If LHS and RHS each have at least two sign bits, the addition will look 4897 // like 4898 // 4899 // XX..... + 4900 // YY..... 4901 // 4902 // If the carry into the most significant position is 0, X and Y can't both 4903 // be 1 and therefore the carry out of the addition is also 0. 4904 // 4905 // If the carry into the most significant position is 1, X and Y can't both 4906 // be 0 and therefore the carry out of the addition is also 1. 4907 // 4908 // Since the carry into the most significant position is always equal to 4909 // the carry out of the addition, there is no signed overflow. 4910 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4911 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4912 return OverflowResult::NeverOverflows; 4913 4914 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4915 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4916 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4917 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4918 OverflowResult OR = 4919 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4920 if (OR != OverflowResult::MayOverflow) 4921 return OR; 4922 4923 // The remaining code needs Add to be available. Early returns if not so. 4924 if (!Add) 4925 return OverflowResult::MayOverflow; 4926 4927 // If the sign of Add is the same as at least one of the operands, this add 4928 // CANNOT overflow. If this can be determined from the known bits of the 4929 // operands the above signedAddMayOverflow() check will have already done so. 4930 // The only other way to improve on the known bits is from an assumption, so 4931 // call computeKnownBitsFromAssume() directly. 4932 bool LHSOrRHSKnownNonNegative = 4933 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4934 bool LHSOrRHSKnownNegative = 4935 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4936 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4937 KnownBits AddKnown(LHSRange.getBitWidth()); 4938 computeKnownBitsFromAssume( 4939 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4940 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4941 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4942 return OverflowResult::NeverOverflows; 4943 } 4944 4945 return OverflowResult::MayOverflow; 4946 } 4947 4948 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4949 const Value *RHS, 4950 const DataLayout &DL, 4951 AssumptionCache *AC, 4952 const Instruction *CxtI, 4953 const DominatorTree *DT) { 4954 // X - (X % ?) 4955 // The remainder of a value can't have greater magnitude than itself, 4956 // so the subtraction can't overflow. 4957 4958 // X - (X -nuw ?) 4959 // In the minimal case, this would simplify to "?", so there's no subtract 4960 // at all. But if this analysis is used to peek through casts, for example, 4961 // then determining no-overflow may allow other transforms. 4962 4963 // TODO: There are other patterns like this. 4964 // See simplifyICmpWithBinOpOnLHS() for candidates. 4965 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) || 4966 match(RHS, m_NUWSub(m_Specific(LHS), m_Value()))) 4967 if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4968 return OverflowResult::NeverOverflows; 4969 4970 // Checking for conditions implied by dominating conditions may be expensive. 4971 // Limit it to usub_with_overflow calls for now. 4972 if (match(CxtI, 4973 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4974 if (auto C = 4975 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4976 if (*C) 4977 return OverflowResult::NeverOverflows; 4978 return OverflowResult::AlwaysOverflowsLow; 4979 } 4980 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4981 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4982 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4983 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4984 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4985 } 4986 4987 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4988 const Value *RHS, 4989 const DataLayout &DL, 4990 AssumptionCache *AC, 4991 const Instruction *CxtI, 4992 const DominatorTree *DT) { 4993 // X - (X % ?) 4994 // The remainder of a value can't have greater magnitude than itself, 4995 // so the subtraction can't overflow. 4996 4997 // X - (X -nsw ?) 4998 // In the minimal case, this would simplify to "?", so there's no subtract 4999 // at all. But if this analysis is used to peek through casts, for example, 5000 // then determining no-overflow may allow other transforms. 5001 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) || 5002 match(RHS, m_NSWSub(m_Specific(LHS), m_Value()))) 5003 if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 5004 return OverflowResult::NeverOverflows; 5005 5006 // If LHS and RHS each have at least two sign bits, the subtraction 5007 // cannot overflow. 5008 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 5009 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 5010 return OverflowResult::NeverOverflows; 5011 5012 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5013 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5014 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5015 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5016 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 5017 } 5018 5019 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 5020 const DominatorTree &DT) { 5021 SmallVector<const BranchInst *, 2> GuardingBranches; 5022 SmallVector<const ExtractValueInst *, 2> Results; 5023 5024 for (const User *U : WO->users()) { 5025 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 5026 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 5027 5028 if (EVI->getIndices()[0] == 0) 5029 Results.push_back(EVI); 5030 else { 5031 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 5032 5033 for (const auto *U : EVI->users()) 5034 if (const auto *B = dyn_cast<BranchInst>(U)) { 5035 assert(B->isConditional() && "How else is it using an i1?"); 5036 GuardingBranches.push_back(B); 5037 } 5038 } 5039 } else { 5040 // We are using the aggregate directly in a way we don't want to analyze 5041 // here (storing it to a global, say). 5042 return false; 5043 } 5044 } 5045 5046 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 5047 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 5048 if (!NoWrapEdge.isSingleEdge()) 5049 return false; 5050 5051 // Check if all users of the add are provably no-wrap. 5052 for (const auto *Result : Results) { 5053 // If the extractvalue itself is not executed on overflow, the we don't 5054 // need to check each use separately, since domination is transitive. 5055 if (DT.dominates(NoWrapEdge, Result->getParent())) 5056 continue; 5057 5058 for (auto &RU : Result->uses()) 5059 if (!DT.dominates(NoWrapEdge, RU)) 5060 return false; 5061 } 5062 5063 return true; 5064 }; 5065 5066 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 5067 } 5068 5069 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 5070 bool ConsiderFlags) { 5071 5072 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 5073 return true; 5074 5075 unsigned Opcode = Op->getOpcode(); 5076 5077 // Check whether opcode is a poison/undef-generating operation 5078 switch (Opcode) { 5079 case Instruction::Shl: 5080 case Instruction::AShr: 5081 case Instruction::LShr: { 5082 // Shifts return poison if shiftwidth is larger than the bitwidth. 5083 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 5084 SmallVector<Constant *, 4> ShiftAmounts; 5085 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 5086 unsigned NumElts = FVTy->getNumElements(); 5087 for (unsigned i = 0; i < NumElts; ++i) 5088 ShiftAmounts.push_back(C->getAggregateElement(i)); 5089 } else if (isa<ScalableVectorType>(C->getType())) 5090 return true; // Can't tell, just return true to be safe 5091 else 5092 ShiftAmounts.push_back(C); 5093 5094 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 5095 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5096 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5097 }); 5098 return !Safe; 5099 } 5100 return true; 5101 } 5102 case Instruction::FPToSI: 5103 case Instruction::FPToUI: 5104 // fptosi/ui yields poison if the resulting value does not fit in the 5105 // destination type. 5106 return true; 5107 case Instruction::Call: 5108 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5109 switch (II->getIntrinsicID()) { 5110 // TODO: Add more intrinsics. 5111 case Intrinsic::ctpop: 5112 case Intrinsic::sadd_with_overflow: 5113 case Intrinsic::ssub_with_overflow: 5114 case Intrinsic::smul_with_overflow: 5115 case Intrinsic::uadd_with_overflow: 5116 case Intrinsic::usub_with_overflow: 5117 case Intrinsic::umul_with_overflow: 5118 return false; 5119 } 5120 } 5121 LLVM_FALLTHROUGH; 5122 case Instruction::CallBr: 5123 case Instruction::Invoke: { 5124 const auto *CB = cast<CallBase>(Op); 5125 return !CB->hasRetAttr(Attribute::NoUndef); 5126 } 5127 case Instruction::InsertElement: 5128 case Instruction::ExtractElement: { 5129 // If index exceeds the length of the vector, it returns poison 5130 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5131 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5132 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5133 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5134 return true; 5135 return false; 5136 } 5137 case Instruction::ShuffleVector: { 5138 // shufflevector may return undef. 5139 if (PoisonOnly) 5140 return false; 5141 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5142 ? cast<ConstantExpr>(Op)->getShuffleMask() 5143 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5144 return is_contained(Mask, UndefMaskElem); 5145 } 5146 case Instruction::FNeg: 5147 case Instruction::PHI: 5148 case Instruction::Select: 5149 case Instruction::URem: 5150 case Instruction::SRem: 5151 case Instruction::ExtractValue: 5152 case Instruction::InsertValue: 5153 case Instruction::Freeze: 5154 case Instruction::ICmp: 5155 case Instruction::FCmp: 5156 return false; 5157 case Instruction::GetElementPtr: 5158 // inbounds is handled above 5159 // TODO: what about inrange on constexpr? 5160 return false; 5161 default: { 5162 const auto *CE = dyn_cast<ConstantExpr>(Op); 5163 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5164 return false; 5165 else if (Instruction::isBinaryOp(Opcode)) 5166 return false; 5167 // Be conservative and return true. 5168 return true; 5169 } 5170 } 5171 } 5172 5173 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5174 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5175 } 5176 5177 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5178 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5179 } 5180 5181 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5182 const Value *V, unsigned Depth) { 5183 if (ValAssumedPoison == V) 5184 return true; 5185 5186 const unsigned MaxDepth = 2; 5187 if (Depth >= MaxDepth) 5188 return false; 5189 5190 if (const auto *I = dyn_cast<Instruction>(V)) { 5191 if (propagatesPoison(cast<Operator>(I))) 5192 return any_of(I->operands(), [=](const Value *Op) { 5193 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5194 }); 5195 5196 // 'select ValAssumedPoison, _, _' is poison. 5197 if (const auto *SI = dyn_cast<SelectInst>(I)) 5198 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5199 Depth + 1); 5200 // V = extractvalue V0, idx 5201 // V2 = extractvalue V0, idx2 5202 // V0's elements are all poison or not. (e.g., add_with_overflow) 5203 const WithOverflowInst *II; 5204 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5205 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5206 llvm::is_contained(II->args(), ValAssumedPoison))) 5207 return true; 5208 } 5209 return false; 5210 } 5211 5212 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5213 unsigned Depth) { 5214 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5215 return true; 5216 5217 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5218 return true; 5219 5220 const unsigned MaxDepth = 2; 5221 if (Depth >= MaxDepth) 5222 return false; 5223 5224 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5225 if (I && !canCreatePoison(cast<Operator>(I))) { 5226 return all_of(I->operands(), [=](const Value *Op) { 5227 return impliesPoison(Op, V, Depth + 1); 5228 }); 5229 } 5230 return false; 5231 } 5232 5233 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5234 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5235 } 5236 5237 static bool programUndefinedIfUndefOrPoison(const Value *V, 5238 bool PoisonOnly); 5239 5240 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5241 AssumptionCache *AC, 5242 const Instruction *CtxI, 5243 const DominatorTree *DT, 5244 unsigned Depth, bool PoisonOnly) { 5245 if (Depth >= MaxAnalysisRecursionDepth) 5246 return false; 5247 5248 if (isa<MetadataAsValue>(V)) 5249 return false; 5250 5251 if (const auto *A = dyn_cast<Argument>(V)) { 5252 if (A->hasAttribute(Attribute::NoUndef)) 5253 return true; 5254 } 5255 5256 if (auto *C = dyn_cast<Constant>(V)) { 5257 if (isa<UndefValue>(C)) 5258 return PoisonOnly && !isa<PoisonValue>(C); 5259 5260 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5261 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5262 return true; 5263 5264 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5265 return (PoisonOnly ? !C->containsPoisonElement() 5266 : !C->containsUndefOrPoisonElement()) && 5267 !C->containsConstantExpression(); 5268 } 5269 5270 // Strip cast operations from a pointer value. 5271 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5272 // inbounds with zero offset. To guarantee that the result isn't poison, the 5273 // stripped pointer is checked as it has to be pointing into an allocated 5274 // object or be null `null` to ensure `inbounds` getelement pointers with a 5275 // zero offset could not produce poison. 5276 // It can strip off addrspacecast that do not change bit representation as 5277 // well. We believe that such addrspacecast is equivalent to no-op. 5278 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5279 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5280 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5281 return true; 5282 5283 auto OpCheck = [&](const Value *V) { 5284 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5285 PoisonOnly); 5286 }; 5287 5288 if (auto *Opr = dyn_cast<Operator>(V)) { 5289 // If the value is a freeze instruction, then it can never 5290 // be undef or poison. 5291 if (isa<FreezeInst>(V)) 5292 return true; 5293 5294 if (const auto *CB = dyn_cast<CallBase>(V)) { 5295 if (CB->hasRetAttr(Attribute::NoUndef)) 5296 return true; 5297 } 5298 5299 if (const auto *PN = dyn_cast<PHINode>(V)) { 5300 unsigned Num = PN->getNumIncomingValues(); 5301 bool IsWellDefined = true; 5302 for (unsigned i = 0; i < Num; ++i) { 5303 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5304 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5305 DT, Depth + 1, PoisonOnly)) { 5306 IsWellDefined = false; 5307 break; 5308 } 5309 } 5310 if (IsWellDefined) 5311 return true; 5312 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5313 return true; 5314 } 5315 5316 if (auto *I = dyn_cast<LoadInst>(V)) 5317 if (I->hasMetadata(LLVMContext::MD_noundef) || 5318 I->hasMetadata(LLVMContext::MD_dereferenceable) || 5319 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 5320 return true; 5321 5322 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5323 return true; 5324 5325 // CxtI may be null or a cloned instruction. 5326 if (!CtxI || !CtxI->getParent() || !DT) 5327 return false; 5328 5329 auto *DNode = DT->getNode(CtxI->getParent()); 5330 if (!DNode) 5331 // Unreachable block 5332 return false; 5333 5334 // If V is used as a branch condition before reaching CtxI, V cannot be 5335 // undef or poison. 5336 // br V, BB1, BB2 5337 // BB1: 5338 // CtxI ; V cannot be undef or poison here 5339 auto *Dominator = DNode->getIDom(); 5340 while (Dominator) { 5341 auto *TI = Dominator->getBlock()->getTerminator(); 5342 5343 Value *Cond = nullptr; 5344 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5345 if (BI->isConditional()) 5346 Cond = BI->getCondition(); 5347 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5348 Cond = SI->getCondition(); 5349 } 5350 5351 if (Cond) { 5352 if (Cond == V) 5353 return true; 5354 else if (PoisonOnly && isa<Operator>(Cond)) { 5355 // For poison, we can analyze further 5356 auto *Opr = cast<Operator>(Cond); 5357 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5358 return true; 5359 } 5360 } 5361 5362 Dominator = Dominator->getIDom(); 5363 } 5364 5365 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5366 return true; 5367 5368 return false; 5369 } 5370 5371 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5372 const Instruction *CtxI, 5373 const DominatorTree *DT, 5374 unsigned Depth) { 5375 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5376 } 5377 5378 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5379 const Instruction *CtxI, 5380 const DominatorTree *DT, unsigned Depth) { 5381 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5382 } 5383 5384 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5385 const DataLayout &DL, 5386 AssumptionCache *AC, 5387 const Instruction *CxtI, 5388 const DominatorTree *DT) { 5389 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5390 Add, DL, AC, CxtI, DT); 5391 } 5392 5393 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5394 const Value *RHS, 5395 const DataLayout &DL, 5396 AssumptionCache *AC, 5397 const Instruction *CxtI, 5398 const DominatorTree *DT) { 5399 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5400 } 5401 5402 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5403 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5404 // of time because it's possible for another thread to interfere with it for an 5405 // arbitrary length of time, but programs aren't allowed to rely on that. 5406 5407 // If there is no successor, then execution can't transfer to it. 5408 if (isa<ReturnInst>(I)) 5409 return false; 5410 if (isa<UnreachableInst>(I)) 5411 return false; 5412 5413 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5414 // Instruction::willReturn. 5415 // 5416 // FIXME: Move this check into Instruction::willReturn. 5417 if (isa<CatchPadInst>(I)) { 5418 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5419 default: 5420 // A catchpad may invoke exception object constructors and such, which 5421 // in some languages can be arbitrary code, so be conservative by default. 5422 return false; 5423 case EHPersonality::CoreCLR: 5424 // For CoreCLR, it just involves a type test. 5425 return true; 5426 } 5427 } 5428 5429 // An instruction that returns without throwing must transfer control flow 5430 // to a successor. 5431 return !I->mayThrow() && I->willReturn(); 5432 } 5433 5434 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5435 // TODO: This is slightly conservative for invoke instruction since exiting 5436 // via an exception *is* normal control for them. 5437 for (const Instruction &I : *BB) 5438 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5439 return false; 5440 return true; 5441 } 5442 5443 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5444 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5445 unsigned ScanLimit) { 5446 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5447 ScanLimit); 5448 } 5449 5450 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5451 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5452 assert(ScanLimit && "scan limit must be non-zero"); 5453 for (const Instruction &I : Range) { 5454 if (isa<DbgInfoIntrinsic>(I)) 5455 continue; 5456 if (--ScanLimit == 0) 5457 return false; 5458 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5459 return false; 5460 } 5461 return true; 5462 } 5463 5464 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5465 const Loop *L) { 5466 // The loop header is guaranteed to be executed for every iteration. 5467 // 5468 // FIXME: Relax this constraint to cover all basic blocks that are 5469 // guaranteed to be executed at every iteration. 5470 if (I->getParent() != L->getHeader()) return false; 5471 5472 for (const Instruction &LI : *L->getHeader()) { 5473 if (&LI == I) return true; 5474 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5475 } 5476 llvm_unreachable("Instruction not contained in its own parent basic block."); 5477 } 5478 5479 bool llvm::propagatesPoison(const Operator *I) { 5480 switch (I->getOpcode()) { 5481 case Instruction::Freeze: 5482 case Instruction::Select: 5483 case Instruction::PHI: 5484 case Instruction::Invoke: 5485 return false; 5486 case Instruction::Call: 5487 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5488 switch (II->getIntrinsicID()) { 5489 // TODO: Add more intrinsics. 5490 case Intrinsic::sadd_with_overflow: 5491 case Intrinsic::ssub_with_overflow: 5492 case Intrinsic::smul_with_overflow: 5493 case Intrinsic::uadd_with_overflow: 5494 case Intrinsic::usub_with_overflow: 5495 case Intrinsic::umul_with_overflow: 5496 // If an input is a vector containing a poison element, the 5497 // two output vectors (calculated results, overflow bits)' 5498 // corresponding lanes are poison. 5499 return true; 5500 case Intrinsic::ctpop: 5501 return true; 5502 } 5503 } 5504 return false; 5505 case Instruction::ICmp: 5506 case Instruction::FCmp: 5507 case Instruction::GetElementPtr: 5508 return true; 5509 default: 5510 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5511 return true; 5512 5513 // Be conservative and return false. 5514 return false; 5515 } 5516 } 5517 5518 void llvm::getGuaranteedWellDefinedOps( 5519 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5520 switch (I->getOpcode()) { 5521 case Instruction::Store: 5522 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5523 break; 5524 5525 case Instruction::Load: 5526 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5527 break; 5528 5529 // Since dereferenceable attribute imply noundef, atomic operations 5530 // also implicitly have noundef pointers too 5531 case Instruction::AtomicCmpXchg: 5532 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5533 break; 5534 5535 case Instruction::AtomicRMW: 5536 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5537 break; 5538 5539 case Instruction::Call: 5540 case Instruction::Invoke: { 5541 const CallBase *CB = cast<CallBase>(I); 5542 if (CB->isIndirectCall()) 5543 Operands.insert(CB->getCalledOperand()); 5544 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5545 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5546 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5547 Operands.insert(CB->getArgOperand(i)); 5548 } 5549 break; 5550 } 5551 case Instruction::Ret: 5552 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5553 Operands.insert(I->getOperand(0)); 5554 break; 5555 default: 5556 break; 5557 } 5558 } 5559 5560 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5561 SmallPtrSetImpl<const Value *> &Operands) { 5562 getGuaranteedWellDefinedOps(I, Operands); 5563 switch (I->getOpcode()) { 5564 // Divisors of these operations are allowed to be partially undef. 5565 case Instruction::UDiv: 5566 case Instruction::SDiv: 5567 case Instruction::URem: 5568 case Instruction::SRem: 5569 Operands.insert(I->getOperand(1)); 5570 break; 5571 case Instruction::Switch: 5572 if (BranchOnPoisonAsUB) 5573 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5574 break; 5575 case Instruction::Br: { 5576 auto *BR = cast<BranchInst>(I); 5577 if (BranchOnPoisonAsUB && BR->isConditional()) 5578 Operands.insert(BR->getCondition()); 5579 break; 5580 } 5581 default: 5582 break; 5583 } 5584 } 5585 5586 bool llvm::mustTriggerUB(const Instruction *I, 5587 const SmallSet<const Value *, 16>& KnownPoison) { 5588 SmallPtrSet<const Value *, 4> NonPoisonOps; 5589 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5590 5591 for (const auto *V : NonPoisonOps) 5592 if (KnownPoison.count(V)) 5593 return true; 5594 5595 return false; 5596 } 5597 5598 static bool programUndefinedIfUndefOrPoison(const Value *V, 5599 bool PoisonOnly) { 5600 // We currently only look for uses of values within the same basic 5601 // block, as that makes it easier to guarantee that the uses will be 5602 // executed given that Inst is executed. 5603 // 5604 // FIXME: Expand this to consider uses beyond the same basic block. To do 5605 // this, look out for the distinction between post-dominance and strong 5606 // post-dominance. 5607 const BasicBlock *BB = nullptr; 5608 BasicBlock::const_iterator Begin; 5609 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5610 BB = Inst->getParent(); 5611 Begin = Inst->getIterator(); 5612 Begin++; 5613 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5614 BB = &Arg->getParent()->getEntryBlock(); 5615 Begin = BB->begin(); 5616 } else { 5617 return false; 5618 } 5619 5620 // Limit number of instructions we look at, to avoid scanning through large 5621 // blocks. The current limit is chosen arbitrarily. 5622 unsigned ScanLimit = 32; 5623 BasicBlock::const_iterator End = BB->end(); 5624 5625 if (!PoisonOnly) { 5626 // Since undef does not propagate eagerly, be conservative & just check 5627 // whether a value is directly passed to an instruction that must take 5628 // well-defined operands. 5629 5630 for (auto &I : make_range(Begin, End)) { 5631 if (isa<DbgInfoIntrinsic>(I)) 5632 continue; 5633 if (--ScanLimit == 0) 5634 break; 5635 5636 SmallPtrSet<const Value *, 4> WellDefinedOps; 5637 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5638 if (WellDefinedOps.contains(V)) 5639 return true; 5640 5641 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5642 break; 5643 } 5644 return false; 5645 } 5646 5647 // Set of instructions that we have proved will yield poison if Inst 5648 // does. 5649 SmallSet<const Value *, 16> YieldsPoison; 5650 SmallSet<const BasicBlock *, 4> Visited; 5651 5652 YieldsPoison.insert(V); 5653 auto Propagate = [&](const User *User) { 5654 if (propagatesPoison(cast<Operator>(User))) 5655 YieldsPoison.insert(User); 5656 }; 5657 for_each(V->users(), Propagate); 5658 Visited.insert(BB); 5659 5660 while (true) { 5661 for (auto &I : make_range(Begin, End)) { 5662 if (isa<DbgInfoIntrinsic>(I)) 5663 continue; 5664 if (--ScanLimit == 0) 5665 return false; 5666 if (mustTriggerUB(&I, YieldsPoison)) 5667 return true; 5668 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5669 return false; 5670 5671 // Mark poison that propagates from I through uses of I. 5672 if (YieldsPoison.count(&I)) 5673 for_each(I.users(), Propagate); 5674 } 5675 5676 BB = BB->getSingleSuccessor(); 5677 if (!BB || !Visited.insert(BB).second) 5678 break; 5679 5680 Begin = BB->getFirstNonPHI()->getIterator(); 5681 End = BB->end(); 5682 } 5683 return false; 5684 } 5685 5686 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5687 return ::programUndefinedIfUndefOrPoison(Inst, false); 5688 } 5689 5690 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5691 return ::programUndefinedIfUndefOrPoison(Inst, true); 5692 } 5693 5694 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5695 if (FMF.noNaNs()) 5696 return true; 5697 5698 if (auto *C = dyn_cast<ConstantFP>(V)) 5699 return !C->isNaN(); 5700 5701 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5702 if (!C->getElementType()->isFloatingPointTy()) 5703 return false; 5704 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5705 if (C->getElementAsAPFloat(I).isNaN()) 5706 return false; 5707 } 5708 return true; 5709 } 5710 5711 if (isa<ConstantAggregateZero>(V)) 5712 return true; 5713 5714 return false; 5715 } 5716 5717 static bool isKnownNonZero(const Value *V) { 5718 if (auto *C = dyn_cast<ConstantFP>(V)) 5719 return !C->isZero(); 5720 5721 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5722 if (!C->getElementType()->isFloatingPointTy()) 5723 return false; 5724 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5725 if (C->getElementAsAPFloat(I).isZero()) 5726 return false; 5727 } 5728 return true; 5729 } 5730 5731 return false; 5732 } 5733 5734 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5735 /// Given non-min/max outer cmp/select from the clamp pattern this 5736 /// function recognizes if it can be substitued by a "canonical" min/max 5737 /// pattern. 5738 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5739 Value *CmpLHS, Value *CmpRHS, 5740 Value *TrueVal, Value *FalseVal, 5741 Value *&LHS, Value *&RHS) { 5742 // Try to match 5743 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5744 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5745 // and return description of the outer Max/Min. 5746 5747 // First, check if select has inverse order: 5748 if (CmpRHS == FalseVal) { 5749 std::swap(TrueVal, FalseVal); 5750 Pred = CmpInst::getInversePredicate(Pred); 5751 } 5752 5753 // Assume success now. If there's no match, callers should not use these anyway. 5754 LHS = TrueVal; 5755 RHS = FalseVal; 5756 5757 const APFloat *FC1; 5758 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5759 return {SPF_UNKNOWN, SPNB_NA, false}; 5760 5761 const APFloat *FC2; 5762 switch (Pred) { 5763 case CmpInst::FCMP_OLT: 5764 case CmpInst::FCMP_OLE: 5765 case CmpInst::FCMP_ULT: 5766 case CmpInst::FCMP_ULE: 5767 if (match(FalseVal, 5768 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5769 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5770 *FC1 < *FC2) 5771 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5772 break; 5773 case CmpInst::FCMP_OGT: 5774 case CmpInst::FCMP_OGE: 5775 case CmpInst::FCMP_UGT: 5776 case CmpInst::FCMP_UGE: 5777 if (match(FalseVal, 5778 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5779 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5780 *FC1 > *FC2) 5781 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5782 break; 5783 default: 5784 break; 5785 } 5786 5787 return {SPF_UNKNOWN, SPNB_NA, false}; 5788 } 5789 5790 /// Recognize variations of: 5791 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5792 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5793 Value *CmpLHS, Value *CmpRHS, 5794 Value *TrueVal, Value *FalseVal) { 5795 // Swap the select operands and predicate to match the patterns below. 5796 if (CmpRHS != TrueVal) { 5797 Pred = ICmpInst::getSwappedPredicate(Pred); 5798 std::swap(TrueVal, FalseVal); 5799 } 5800 const APInt *C1; 5801 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5802 const APInt *C2; 5803 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5804 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5805 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5806 return {SPF_SMAX, SPNB_NA, false}; 5807 5808 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5809 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5810 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5811 return {SPF_SMIN, SPNB_NA, false}; 5812 5813 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5814 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5815 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5816 return {SPF_UMAX, SPNB_NA, false}; 5817 5818 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5819 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5820 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5821 return {SPF_UMIN, SPNB_NA, false}; 5822 } 5823 return {SPF_UNKNOWN, SPNB_NA, false}; 5824 } 5825 5826 /// Recognize variations of: 5827 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5828 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5829 Value *CmpLHS, Value *CmpRHS, 5830 Value *TVal, Value *FVal, 5831 unsigned Depth) { 5832 // TODO: Allow FP min/max with nnan/nsz. 5833 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5834 5835 Value *A = nullptr, *B = nullptr; 5836 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5837 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5838 return {SPF_UNKNOWN, SPNB_NA, false}; 5839 5840 Value *C = nullptr, *D = nullptr; 5841 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5842 if (L.Flavor != R.Flavor) 5843 return {SPF_UNKNOWN, SPNB_NA, false}; 5844 5845 // We have something like: x Pred y ? min(a, b) : min(c, d). 5846 // Try to match the compare to the min/max operations of the select operands. 5847 // First, make sure we have the right compare predicate. 5848 switch (L.Flavor) { 5849 case SPF_SMIN: 5850 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5851 Pred = ICmpInst::getSwappedPredicate(Pred); 5852 std::swap(CmpLHS, CmpRHS); 5853 } 5854 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5855 break; 5856 return {SPF_UNKNOWN, SPNB_NA, false}; 5857 case SPF_SMAX: 5858 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5859 Pred = ICmpInst::getSwappedPredicate(Pred); 5860 std::swap(CmpLHS, CmpRHS); 5861 } 5862 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5863 break; 5864 return {SPF_UNKNOWN, SPNB_NA, false}; 5865 case SPF_UMIN: 5866 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5867 Pred = ICmpInst::getSwappedPredicate(Pred); 5868 std::swap(CmpLHS, CmpRHS); 5869 } 5870 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5871 break; 5872 return {SPF_UNKNOWN, SPNB_NA, false}; 5873 case SPF_UMAX: 5874 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5875 Pred = ICmpInst::getSwappedPredicate(Pred); 5876 std::swap(CmpLHS, CmpRHS); 5877 } 5878 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5879 break; 5880 return {SPF_UNKNOWN, SPNB_NA, false}; 5881 default: 5882 return {SPF_UNKNOWN, SPNB_NA, false}; 5883 } 5884 5885 // If there is a common operand in the already matched min/max and the other 5886 // min/max operands match the compare operands (either directly or inverted), 5887 // then this is min/max of the same flavor. 5888 5889 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5890 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5891 if (D == B) { 5892 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5893 match(A, m_Not(m_Specific(CmpRHS))))) 5894 return {L.Flavor, SPNB_NA, false}; 5895 } 5896 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5897 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5898 if (C == B) { 5899 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5900 match(A, m_Not(m_Specific(CmpRHS))))) 5901 return {L.Flavor, SPNB_NA, false}; 5902 } 5903 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5904 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5905 if (D == A) { 5906 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5907 match(B, m_Not(m_Specific(CmpRHS))))) 5908 return {L.Flavor, SPNB_NA, false}; 5909 } 5910 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5911 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5912 if (C == A) { 5913 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5914 match(B, m_Not(m_Specific(CmpRHS))))) 5915 return {L.Flavor, SPNB_NA, false}; 5916 } 5917 5918 return {SPF_UNKNOWN, SPNB_NA, false}; 5919 } 5920 5921 /// If the input value is the result of a 'not' op, constant integer, or vector 5922 /// splat of a constant integer, return the bitwise-not source value. 5923 /// TODO: This could be extended to handle non-splat vector integer constants. 5924 static Value *getNotValue(Value *V) { 5925 Value *NotV; 5926 if (match(V, m_Not(m_Value(NotV)))) 5927 return NotV; 5928 5929 const APInt *C; 5930 if (match(V, m_APInt(C))) 5931 return ConstantInt::get(V->getType(), ~(*C)); 5932 5933 return nullptr; 5934 } 5935 5936 /// Match non-obvious integer minimum and maximum sequences. 5937 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5938 Value *CmpLHS, Value *CmpRHS, 5939 Value *TrueVal, Value *FalseVal, 5940 Value *&LHS, Value *&RHS, 5941 unsigned Depth) { 5942 // Assume success. If there's no match, callers should not use these anyway. 5943 LHS = TrueVal; 5944 RHS = FalseVal; 5945 5946 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5947 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5948 return SPR; 5949 5950 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5951 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5952 return SPR; 5953 5954 // Look through 'not' ops to find disguised min/max. 5955 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5956 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5957 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5958 switch (Pred) { 5959 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5960 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5961 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5962 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5963 default: break; 5964 } 5965 } 5966 5967 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5968 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5969 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5970 switch (Pred) { 5971 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5972 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5973 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5974 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5975 default: break; 5976 } 5977 } 5978 5979 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5980 return {SPF_UNKNOWN, SPNB_NA, false}; 5981 5982 const APInt *C1; 5983 if (!match(CmpRHS, m_APInt(C1))) 5984 return {SPF_UNKNOWN, SPNB_NA, false}; 5985 5986 // An unsigned min/max can be written with a signed compare. 5987 const APInt *C2; 5988 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5989 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5990 // Is the sign bit set? 5991 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5992 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5993 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5994 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5995 5996 // Is the sign bit clear? 5997 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5998 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5999 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 6000 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 6001 } 6002 6003 return {SPF_UNKNOWN, SPNB_NA, false}; 6004 } 6005 6006 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 6007 assert(X && Y && "Invalid operand"); 6008 6009 // X = sub (0, Y) || X = sub nsw (0, Y) 6010 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 6011 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 6012 return true; 6013 6014 // Y = sub (0, X) || Y = sub nsw (0, X) 6015 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 6016 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 6017 return true; 6018 6019 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 6020 Value *A, *B; 6021 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 6022 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 6023 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 6024 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 6025 } 6026 6027 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 6028 FastMathFlags FMF, 6029 Value *CmpLHS, Value *CmpRHS, 6030 Value *TrueVal, Value *FalseVal, 6031 Value *&LHS, Value *&RHS, 6032 unsigned Depth) { 6033 if (CmpInst::isFPPredicate(Pred)) { 6034 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 6035 // 0.0 operand, set the compare's 0.0 operands to that same value for the 6036 // purpose of identifying min/max. Disregard vector constants with undefined 6037 // elements because those can not be back-propagated for analysis. 6038 Value *OutputZeroVal = nullptr; 6039 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 6040 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 6041 OutputZeroVal = TrueVal; 6042 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 6043 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 6044 OutputZeroVal = FalseVal; 6045 6046 if (OutputZeroVal) { 6047 if (match(CmpLHS, m_AnyZeroFP())) 6048 CmpLHS = OutputZeroVal; 6049 if (match(CmpRHS, m_AnyZeroFP())) 6050 CmpRHS = OutputZeroVal; 6051 } 6052 } 6053 6054 LHS = CmpLHS; 6055 RHS = CmpRHS; 6056 6057 // Signed zero may return inconsistent results between implementations. 6058 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 6059 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 6060 // Therefore, we behave conservatively and only proceed if at least one of the 6061 // operands is known to not be zero or if we don't care about signed zero. 6062 switch (Pred) { 6063 default: break; 6064 // FIXME: Include OGT/OLT/UGT/ULT. 6065 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 6066 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 6067 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6068 !isKnownNonZero(CmpRHS)) 6069 return {SPF_UNKNOWN, SPNB_NA, false}; 6070 } 6071 6072 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 6073 bool Ordered = false; 6074 6075 // When given one NaN and one non-NaN input: 6076 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 6077 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 6078 // ordered comparison fails), which could be NaN or non-NaN. 6079 // so here we discover exactly what NaN behavior is required/accepted. 6080 if (CmpInst::isFPPredicate(Pred)) { 6081 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 6082 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 6083 6084 if (LHSSafe && RHSSafe) { 6085 // Both operands are known non-NaN. 6086 NaNBehavior = SPNB_RETURNS_ANY; 6087 } else if (CmpInst::isOrdered(Pred)) { 6088 // An ordered comparison will return false when given a NaN, so it 6089 // returns the RHS. 6090 Ordered = true; 6091 if (LHSSafe) 6092 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6093 NaNBehavior = SPNB_RETURNS_NAN; 6094 else if (RHSSafe) 6095 NaNBehavior = SPNB_RETURNS_OTHER; 6096 else 6097 // Completely unsafe. 6098 return {SPF_UNKNOWN, SPNB_NA, false}; 6099 } else { 6100 Ordered = false; 6101 // An unordered comparison will return true when given a NaN, so it 6102 // returns the LHS. 6103 if (LHSSafe) 6104 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6105 NaNBehavior = SPNB_RETURNS_OTHER; 6106 else if (RHSSafe) 6107 NaNBehavior = SPNB_RETURNS_NAN; 6108 else 6109 // Completely unsafe. 6110 return {SPF_UNKNOWN, SPNB_NA, false}; 6111 } 6112 } 6113 6114 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6115 std::swap(CmpLHS, CmpRHS); 6116 Pred = CmpInst::getSwappedPredicate(Pred); 6117 if (NaNBehavior == SPNB_RETURNS_NAN) 6118 NaNBehavior = SPNB_RETURNS_OTHER; 6119 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6120 NaNBehavior = SPNB_RETURNS_NAN; 6121 Ordered = !Ordered; 6122 } 6123 6124 // ([if]cmp X, Y) ? X : Y 6125 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6126 switch (Pred) { 6127 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6128 case ICmpInst::ICMP_UGT: 6129 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6130 case ICmpInst::ICMP_SGT: 6131 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6132 case ICmpInst::ICMP_ULT: 6133 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6134 case ICmpInst::ICMP_SLT: 6135 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6136 case FCmpInst::FCMP_UGT: 6137 case FCmpInst::FCMP_UGE: 6138 case FCmpInst::FCMP_OGT: 6139 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6140 case FCmpInst::FCMP_ULT: 6141 case FCmpInst::FCMP_ULE: 6142 case FCmpInst::FCMP_OLT: 6143 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6144 } 6145 } 6146 6147 if (isKnownNegation(TrueVal, FalseVal)) { 6148 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6149 // match against either LHS or sext(LHS). 6150 auto MaybeSExtCmpLHS = 6151 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6152 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6153 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6154 if (match(TrueVal, MaybeSExtCmpLHS)) { 6155 // Set the return values. If the compare uses the negated value (-X >s 0), 6156 // swap the return values because the negated value is always 'RHS'. 6157 LHS = TrueVal; 6158 RHS = FalseVal; 6159 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6160 std::swap(LHS, RHS); 6161 6162 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6163 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6164 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6165 return {SPF_ABS, SPNB_NA, false}; 6166 6167 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6168 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6169 return {SPF_ABS, SPNB_NA, false}; 6170 6171 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6172 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6173 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6174 return {SPF_NABS, SPNB_NA, false}; 6175 } 6176 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6177 // Set the return values. If the compare uses the negated value (-X >s 0), 6178 // swap the return values because the negated value is always 'RHS'. 6179 LHS = FalseVal; 6180 RHS = TrueVal; 6181 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6182 std::swap(LHS, RHS); 6183 6184 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6185 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6186 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6187 return {SPF_NABS, SPNB_NA, false}; 6188 6189 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6190 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6191 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6192 return {SPF_ABS, SPNB_NA, false}; 6193 } 6194 } 6195 6196 if (CmpInst::isIntPredicate(Pred)) 6197 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6198 6199 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6200 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6201 // semantics than minNum. Be conservative in such case. 6202 if (NaNBehavior != SPNB_RETURNS_ANY || 6203 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6204 !isKnownNonZero(CmpRHS))) 6205 return {SPF_UNKNOWN, SPNB_NA, false}; 6206 6207 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6208 } 6209 6210 /// Helps to match a select pattern in case of a type mismatch. 6211 /// 6212 /// The function processes the case when type of true and false values of a 6213 /// select instruction differs from type of the cmp instruction operands because 6214 /// of a cast instruction. The function checks if it is legal to move the cast 6215 /// operation after "select". If yes, it returns the new second value of 6216 /// "select" (with the assumption that cast is moved): 6217 /// 1. As operand of cast instruction when both values of "select" are same cast 6218 /// instructions. 6219 /// 2. As restored constant (by applying reverse cast operation) when the first 6220 /// value of the "select" is a cast operation and the second value is a 6221 /// constant. 6222 /// NOTE: We return only the new second value because the first value could be 6223 /// accessed as operand of cast instruction. 6224 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6225 Instruction::CastOps *CastOp) { 6226 auto *Cast1 = dyn_cast<CastInst>(V1); 6227 if (!Cast1) 6228 return nullptr; 6229 6230 *CastOp = Cast1->getOpcode(); 6231 Type *SrcTy = Cast1->getSrcTy(); 6232 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6233 // If V1 and V2 are both the same cast from the same type, look through V1. 6234 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6235 return Cast2->getOperand(0); 6236 return nullptr; 6237 } 6238 6239 auto *C = dyn_cast<Constant>(V2); 6240 if (!C) 6241 return nullptr; 6242 6243 Constant *CastedTo = nullptr; 6244 switch (*CastOp) { 6245 case Instruction::ZExt: 6246 if (CmpI->isUnsigned()) 6247 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6248 break; 6249 case Instruction::SExt: 6250 if (CmpI->isSigned()) 6251 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6252 break; 6253 case Instruction::Trunc: 6254 Constant *CmpConst; 6255 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6256 CmpConst->getType() == SrcTy) { 6257 // Here we have the following case: 6258 // 6259 // %cond = cmp iN %x, CmpConst 6260 // %tr = trunc iN %x to iK 6261 // %narrowsel = select i1 %cond, iK %t, iK C 6262 // 6263 // We can always move trunc after select operation: 6264 // 6265 // %cond = cmp iN %x, CmpConst 6266 // %widesel = select i1 %cond, iN %x, iN CmpConst 6267 // %tr = trunc iN %widesel to iK 6268 // 6269 // Note that C could be extended in any way because we don't care about 6270 // upper bits after truncation. It can't be abs pattern, because it would 6271 // look like: 6272 // 6273 // select i1 %cond, x, -x. 6274 // 6275 // So only min/max pattern could be matched. Such match requires widened C 6276 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6277 // CmpConst == C is checked below. 6278 CastedTo = CmpConst; 6279 } else { 6280 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6281 } 6282 break; 6283 case Instruction::FPTrunc: 6284 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6285 break; 6286 case Instruction::FPExt: 6287 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6288 break; 6289 case Instruction::FPToUI: 6290 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6291 break; 6292 case Instruction::FPToSI: 6293 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6294 break; 6295 case Instruction::UIToFP: 6296 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6297 break; 6298 case Instruction::SIToFP: 6299 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6300 break; 6301 default: 6302 break; 6303 } 6304 6305 if (!CastedTo) 6306 return nullptr; 6307 6308 // Make sure the cast doesn't lose any information. 6309 Constant *CastedBack = 6310 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6311 if (CastedBack != C) 6312 return nullptr; 6313 6314 return CastedTo; 6315 } 6316 6317 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6318 Instruction::CastOps *CastOp, 6319 unsigned Depth) { 6320 if (Depth >= MaxAnalysisRecursionDepth) 6321 return {SPF_UNKNOWN, SPNB_NA, false}; 6322 6323 SelectInst *SI = dyn_cast<SelectInst>(V); 6324 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6325 6326 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6327 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6328 6329 Value *TrueVal = SI->getTrueValue(); 6330 Value *FalseVal = SI->getFalseValue(); 6331 6332 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6333 CastOp, Depth); 6334 } 6335 6336 SelectPatternResult llvm::matchDecomposedSelectPattern( 6337 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6338 Instruction::CastOps *CastOp, unsigned Depth) { 6339 CmpInst::Predicate Pred = CmpI->getPredicate(); 6340 Value *CmpLHS = CmpI->getOperand(0); 6341 Value *CmpRHS = CmpI->getOperand(1); 6342 FastMathFlags FMF; 6343 if (isa<FPMathOperator>(CmpI)) 6344 FMF = CmpI->getFastMathFlags(); 6345 6346 // Bail out early. 6347 if (CmpI->isEquality()) 6348 return {SPF_UNKNOWN, SPNB_NA, false}; 6349 6350 // Deal with type mismatches. 6351 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6352 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6353 // If this is a potential fmin/fmax with a cast to integer, then ignore 6354 // -0.0 because there is no corresponding integer value. 6355 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6356 FMF.setNoSignedZeros(); 6357 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6358 cast<CastInst>(TrueVal)->getOperand(0), C, 6359 LHS, RHS, Depth); 6360 } 6361 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6362 // If this is a potential fmin/fmax with a cast to integer, then ignore 6363 // -0.0 because there is no corresponding integer value. 6364 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6365 FMF.setNoSignedZeros(); 6366 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6367 C, cast<CastInst>(FalseVal)->getOperand(0), 6368 LHS, RHS, Depth); 6369 } 6370 } 6371 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6372 LHS, RHS, Depth); 6373 } 6374 6375 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6376 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6377 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6378 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6379 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6380 if (SPF == SPF_FMINNUM) 6381 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6382 if (SPF == SPF_FMAXNUM) 6383 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6384 llvm_unreachable("unhandled!"); 6385 } 6386 6387 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6388 if (SPF == SPF_SMIN) return SPF_SMAX; 6389 if (SPF == SPF_UMIN) return SPF_UMAX; 6390 if (SPF == SPF_SMAX) return SPF_SMIN; 6391 if (SPF == SPF_UMAX) return SPF_UMIN; 6392 llvm_unreachable("unhandled!"); 6393 } 6394 6395 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6396 switch (MinMaxID) { 6397 case Intrinsic::smax: return Intrinsic::smin; 6398 case Intrinsic::smin: return Intrinsic::smax; 6399 case Intrinsic::umax: return Intrinsic::umin; 6400 case Intrinsic::umin: return Intrinsic::umax; 6401 default: llvm_unreachable("Unexpected intrinsic"); 6402 } 6403 } 6404 6405 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6406 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6407 } 6408 6409 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6410 switch (SPF) { 6411 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6412 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6413 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6414 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6415 default: llvm_unreachable("Unexpected flavor"); 6416 } 6417 } 6418 6419 std::pair<Intrinsic::ID, bool> 6420 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6421 // Check if VL contains select instructions that can be folded into a min/max 6422 // vector intrinsic and return the intrinsic if it is possible. 6423 // TODO: Support floating point min/max. 6424 bool AllCmpSingleUse = true; 6425 SelectPatternResult SelectPattern; 6426 SelectPattern.Flavor = SPF_UNKNOWN; 6427 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6428 Value *LHS, *RHS; 6429 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6430 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6431 CurrentPattern.Flavor == SPF_FMINNUM || 6432 CurrentPattern.Flavor == SPF_FMAXNUM || 6433 !I->getType()->isIntOrIntVectorTy()) 6434 return false; 6435 if (SelectPattern.Flavor != SPF_UNKNOWN && 6436 SelectPattern.Flavor != CurrentPattern.Flavor) 6437 return false; 6438 SelectPattern = CurrentPattern; 6439 AllCmpSingleUse &= 6440 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6441 return true; 6442 })) { 6443 switch (SelectPattern.Flavor) { 6444 case SPF_SMIN: 6445 return {Intrinsic::smin, AllCmpSingleUse}; 6446 case SPF_UMIN: 6447 return {Intrinsic::umin, AllCmpSingleUse}; 6448 case SPF_SMAX: 6449 return {Intrinsic::smax, AllCmpSingleUse}; 6450 case SPF_UMAX: 6451 return {Intrinsic::umax, AllCmpSingleUse}; 6452 default: 6453 llvm_unreachable("unexpected select pattern flavor"); 6454 } 6455 } 6456 return {Intrinsic::not_intrinsic, false}; 6457 } 6458 6459 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6460 Value *&Start, Value *&Step) { 6461 // Handle the case of a simple two-predecessor recurrence PHI. 6462 // There's a lot more that could theoretically be done here, but 6463 // this is sufficient to catch some interesting cases. 6464 if (P->getNumIncomingValues() != 2) 6465 return false; 6466 6467 for (unsigned i = 0; i != 2; ++i) { 6468 Value *L = P->getIncomingValue(i); 6469 Value *R = P->getIncomingValue(!i); 6470 Operator *LU = dyn_cast<Operator>(L); 6471 if (!LU) 6472 continue; 6473 unsigned Opcode = LU->getOpcode(); 6474 6475 switch (Opcode) { 6476 default: 6477 continue; 6478 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6479 case Instruction::LShr: 6480 case Instruction::AShr: 6481 case Instruction::Shl: 6482 case Instruction::Add: 6483 case Instruction::Sub: 6484 case Instruction::And: 6485 case Instruction::Or: 6486 case Instruction::Mul: { 6487 Value *LL = LU->getOperand(0); 6488 Value *LR = LU->getOperand(1); 6489 // Find a recurrence. 6490 if (LL == P) 6491 L = LR; 6492 else if (LR == P) 6493 L = LL; 6494 else 6495 continue; // Check for recurrence with L and R flipped. 6496 6497 break; // Match! 6498 } 6499 }; 6500 6501 // We have matched a recurrence of the form: 6502 // %iv = [R, %entry], [%iv.next, %backedge] 6503 // %iv.next = binop %iv, L 6504 // OR 6505 // %iv = [R, %entry], [%iv.next, %backedge] 6506 // %iv.next = binop L, %iv 6507 BO = cast<BinaryOperator>(LU); 6508 Start = R; 6509 Step = L; 6510 return true; 6511 } 6512 return false; 6513 } 6514 6515 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6516 Value *&Start, Value *&Step) { 6517 BinaryOperator *BO = nullptr; 6518 P = dyn_cast<PHINode>(I->getOperand(0)); 6519 if (!P) 6520 P = dyn_cast<PHINode>(I->getOperand(1)); 6521 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6522 } 6523 6524 /// Return true if "icmp Pred LHS RHS" is always true. 6525 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6526 const Value *RHS, const DataLayout &DL, 6527 unsigned Depth) { 6528 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6529 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6530 return true; 6531 6532 switch (Pred) { 6533 default: 6534 return false; 6535 6536 case CmpInst::ICMP_SLE: { 6537 const APInt *C; 6538 6539 // LHS s<= LHS +_{nsw} C if C >= 0 6540 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6541 return !C->isNegative(); 6542 return false; 6543 } 6544 6545 case CmpInst::ICMP_ULE: { 6546 const APInt *C; 6547 6548 // LHS u<= LHS +_{nuw} C for any C 6549 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6550 return true; 6551 6552 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6553 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6554 const Value *&X, 6555 const APInt *&CA, const APInt *&CB) { 6556 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6557 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6558 return true; 6559 6560 // If X & C == 0 then (X | C) == X +_{nuw} C 6561 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6562 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6563 KnownBits Known(CA->getBitWidth()); 6564 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6565 /*CxtI*/ nullptr, /*DT*/ nullptr); 6566 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6567 return true; 6568 } 6569 6570 return false; 6571 }; 6572 6573 const Value *X; 6574 const APInt *CLHS, *CRHS; 6575 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6576 return CLHS->ule(*CRHS); 6577 6578 return false; 6579 } 6580 } 6581 } 6582 6583 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6584 /// ALHS ARHS" is true. Otherwise, return None. 6585 static Optional<bool> 6586 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6587 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6588 const DataLayout &DL, unsigned Depth) { 6589 switch (Pred) { 6590 default: 6591 return None; 6592 6593 case CmpInst::ICMP_SLT: 6594 case CmpInst::ICMP_SLE: 6595 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6596 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6597 return true; 6598 return None; 6599 6600 case CmpInst::ICMP_ULT: 6601 case CmpInst::ICMP_ULE: 6602 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6603 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6604 return true; 6605 return None; 6606 } 6607 } 6608 6609 /// Return true if the operands of the two compares match. IsSwappedOps is true 6610 /// when the operands match, but are swapped. 6611 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6612 const Value *BLHS, const Value *BRHS, 6613 bool &IsSwappedOps) { 6614 6615 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6616 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6617 return IsMatchingOps || IsSwappedOps; 6618 } 6619 6620 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6621 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6622 /// Otherwise, return None if we can't infer anything. 6623 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6624 CmpInst::Predicate BPred, 6625 bool AreSwappedOps) { 6626 // Canonicalize the predicate as if the operands were not commuted. 6627 if (AreSwappedOps) 6628 BPred = ICmpInst::getSwappedPredicate(BPred); 6629 6630 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6631 return true; 6632 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6633 return false; 6634 6635 return None; 6636 } 6637 6638 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6639 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6640 /// Otherwise, return None if we can't infer anything. 6641 static Optional<bool> 6642 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6643 const ConstantInt *C1, 6644 CmpInst::Predicate BPred, 6645 const ConstantInt *C2) { 6646 ConstantRange DomCR = 6647 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6648 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6649 ConstantRange Intersection = DomCR.intersectWith(CR); 6650 ConstantRange Difference = DomCR.difference(CR); 6651 if (Intersection.isEmptySet()) 6652 return false; 6653 if (Difference.isEmptySet()) 6654 return true; 6655 return None; 6656 } 6657 6658 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6659 /// false. Otherwise, return None if we can't infer anything. 6660 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6661 CmpInst::Predicate BPred, 6662 const Value *BLHS, const Value *BRHS, 6663 const DataLayout &DL, bool LHSIsTrue, 6664 unsigned Depth) { 6665 Value *ALHS = LHS->getOperand(0); 6666 Value *ARHS = LHS->getOperand(1); 6667 6668 // The rest of the logic assumes the LHS condition is true. If that's not the 6669 // case, invert the predicate to make it so. 6670 CmpInst::Predicate APred = 6671 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6672 6673 // Can we infer anything when the two compares have matching operands? 6674 bool AreSwappedOps; 6675 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6676 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6677 APred, BPred, AreSwappedOps)) 6678 return Implication; 6679 // No amount of additional analysis will infer the second condition, so 6680 // early exit. 6681 return None; 6682 } 6683 6684 // Can we infer anything when the LHS operands match and the RHS operands are 6685 // constants (not necessarily matching)? 6686 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6687 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6688 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6689 return Implication; 6690 // No amount of additional analysis will infer the second condition, so 6691 // early exit. 6692 return None; 6693 } 6694 6695 if (APred == BPred) 6696 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6697 return None; 6698 } 6699 6700 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6701 /// false. Otherwise, return None if we can't infer anything. We expect the 6702 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6703 static Optional<bool> 6704 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6705 const Value *RHSOp0, const Value *RHSOp1, 6706 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6707 // The LHS must be an 'or', 'and', or a 'select' instruction. 6708 assert((LHS->getOpcode() == Instruction::And || 6709 LHS->getOpcode() == Instruction::Or || 6710 LHS->getOpcode() == Instruction::Select) && 6711 "Expected LHS to be 'and', 'or', or 'select'."); 6712 6713 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6714 6715 // If the result of an 'or' is false, then we know both legs of the 'or' are 6716 // false. Similarly, if the result of an 'and' is true, then we know both 6717 // legs of the 'and' are true. 6718 const Value *ALHS, *ARHS; 6719 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6720 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6721 // FIXME: Make this non-recursion. 6722 if (Optional<bool> Implication = isImpliedCondition( 6723 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6724 return Implication; 6725 if (Optional<bool> Implication = isImpliedCondition( 6726 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6727 return Implication; 6728 return None; 6729 } 6730 return None; 6731 } 6732 6733 Optional<bool> 6734 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6735 const Value *RHSOp0, const Value *RHSOp1, 6736 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6737 // Bail out when we hit the limit. 6738 if (Depth == MaxAnalysisRecursionDepth) 6739 return None; 6740 6741 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6742 // example. 6743 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6744 return None; 6745 6746 Type *OpTy = LHS->getType(); 6747 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6748 6749 // FIXME: Extending the code below to handle vectors. 6750 if (OpTy->isVectorTy()) 6751 return None; 6752 6753 assert(OpTy->isIntegerTy(1) && "implied by above"); 6754 6755 // Both LHS and RHS are icmps. 6756 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6757 if (LHSCmp) 6758 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6759 Depth); 6760 6761 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6762 /// the RHS to be an icmp. 6763 /// FIXME: Add support for and/or/select on the RHS. 6764 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6765 if ((LHSI->getOpcode() == Instruction::And || 6766 LHSI->getOpcode() == Instruction::Or || 6767 LHSI->getOpcode() == Instruction::Select)) 6768 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6769 Depth); 6770 } 6771 return None; 6772 } 6773 6774 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6775 const DataLayout &DL, bool LHSIsTrue, 6776 unsigned Depth) { 6777 // LHS ==> RHS by definition 6778 if (LHS == RHS) 6779 return LHSIsTrue; 6780 6781 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6782 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6783 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6784 LHSIsTrue, Depth); 6785 6786 if (Depth == MaxAnalysisRecursionDepth) 6787 return None; 6788 6789 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6790 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6791 const Value *RHS1, *RHS2; 6792 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6793 if (Optional<bool> Imp = 6794 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6795 if (*Imp == true) 6796 return true; 6797 if (Optional<bool> Imp = 6798 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6799 if (*Imp == true) 6800 return true; 6801 } 6802 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 6803 if (Optional<bool> Imp = 6804 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6805 if (*Imp == false) 6806 return false; 6807 if (Optional<bool> Imp = 6808 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6809 if (*Imp == false) 6810 return false; 6811 } 6812 6813 return None; 6814 } 6815 6816 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6817 // condition dominating ContextI or nullptr, if no condition is found. 6818 static std::pair<Value *, bool> 6819 getDomPredecessorCondition(const Instruction *ContextI) { 6820 if (!ContextI || !ContextI->getParent()) 6821 return {nullptr, false}; 6822 6823 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6824 // dominator tree (eg, from a SimplifyQuery) instead? 6825 const BasicBlock *ContextBB = ContextI->getParent(); 6826 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6827 if (!PredBB) 6828 return {nullptr, false}; 6829 6830 // We need a conditional branch in the predecessor. 6831 Value *PredCond; 6832 BasicBlock *TrueBB, *FalseBB; 6833 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6834 return {nullptr, false}; 6835 6836 // The branch should get simplified. Don't bother simplifying this condition. 6837 if (TrueBB == FalseBB) 6838 return {nullptr, false}; 6839 6840 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6841 "Predecessor block does not point to successor?"); 6842 6843 // Is this condition implied by the predecessor condition? 6844 return {PredCond, TrueBB == ContextBB}; 6845 } 6846 6847 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6848 const Instruction *ContextI, 6849 const DataLayout &DL) { 6850 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6851 auto PredCond = getDomPredecessorCondition(ContextI); 6852 if (PredCond.first) 6853 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6854 return None; 6855 } 6856 6857 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6858 const Value *LHS, const Value *RHS, 6859 const Instruction *ContextI, 6860 const DataLayout &DL) { 6861 auto PredCond = getDomPredecessorCondition(ContextI); 6862 if (PredCond.first) 6863 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6864 PredCond.second); 6865 return None; 6866 } 6867 6868 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6869 APInt &Upper, const InstrInfoQuery &IIQ, 6870 bool PreferSignedRange) { 6871 unsigned Width = Lower.getBitWidth(); 6872 const APInt *C; 6873 switch (BO.getOpcode()) { 6874 case Instruction::Add: 6875 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6876 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6877 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6878 6879 // If the caller expects a signed compare, then try to use a signed range. 6880 // Otherwise if both no-wraps are set, use the unsigned range because it 6881 // is never larger than the signed range. Example: 6882 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6883 if (PreferSignedRange && HasNSW && HasNUW) 6884 HasNUW = false; 6885 6886 if (HasNUW) { 6887 // 'add nuw x, C' produces [C, UINT_MAX]. 6888 Lower = *C; 6889 } else if (HasNSW) { 6890 if (C->isNegative()) { 6891 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6892 Lower = APInt::getSignedMinValue(Width); 6893 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6894 } else { 6895 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6896 Lower = APInt::getSignedMinValue(Width) + *C; 6897 Upper = APInt::getSignedMaxValue(Width) + 1; 6898 } 6899 } 6900 } 6901 break; 6902 6903 case Instruction::And: 6904 if (match(BO.getOperand(1), m_APInt(C))) 6905 // 'and x, C' produces [0, C]. 6906 Upper = *C + 1; 6907 break; 6908 6909 case Instruction::Or: 6910 if (match(BO.getOperand(1), m_APInt(C))) 6911 // 'or x, C' produces [C, UINT_MAX]. 6912 Lower = *C; 6913 break; 6914 6915 case Instruction::AShr: 6916 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6917 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6918 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6919 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6920 } else if (match(BO.getOperand(0), m_APInt(C))) { 6921 unsigned ShiftAmount = Width - 1; 6922 if (!C->isZero() && IIQ.isExact(&BO)) 6923 ShiftAmount = C->countTrailingZeros(); 6924 if (C->isNegative()) { 6925 // 'ashr C, x' produces [C, C >> (Width-1)] 6926 Lower = *C; 6927 Upper = C->ashr(ShiftAmount) + 1; 6928 } else { 6929 // 'ashr C, x' produces [C >> (Width-1), C] 6930 Lower = C->ashr(ShiftAmount); 6931 Upper = *C + 1; 6932 } 6933 } 6934 break; 6935 6936 case Instruction::LShr: 6937 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6938 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6939 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6940 } else if (match(BO.getOperand(0), m_APInt(C))) { 6941 // 'lshr C, x' produces [C >> (Width-1), C]. 6942 unsigned ShiftAmount = Width - 1; 6943 if (!C->isZero() && IIQ.isExact(&BO)) 6944 ShiftAmount = C->countTrailingZeros(); 6945 Lower = C->lshr(ShiftAmount); 6946 Upper = *C + 1; 6947 } 6948 break; 6949 6950 case Instruction::Shl: 6951 if (match(BO.getOperand(0), m_APInt(C))) { 6952 if (IIQ.hasNoUnsignedWrap(&BO)) { 6953 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6954 Lower = *C; 6955 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6956 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6957 if (C->isNegative()) { 6958 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6959 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6960 Lower = C->shl(ShiftAmount); 6961 Upper = *C + 1; 6962 } else { 6963 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6964 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6965 Lower = *C; 6966 Upper = C->shl(ShiftAmount) + 1; 6967 } 6968 } 6969 } 6970 break; 6971 6972 case Instruction::SDiv: 6973 if (match(BO.getOperand(1), m_APInt(C))) { 6974 APInt IntMin = APInt::getSignedMinValue(Width); 6975 APInt IntMax = APInt::getSignedMaxValue(Width); 6976 if (C->isAllOnes()) { 6977 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6978 // where C != -1 and C != 0 and C != 1 6979 Lower = IntMin + 1; 6980 Upper = IntMax + 1; 6981 } else if (C->countLeadingZeros() < Width - 1) { 6982 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6983 // where C != -1 and C != 0 and C != 1 6984 Lower = IntMin.sdiv(*C); 6985 Upper = IntMax.sdiv(*C); 6986 if (Lower.sgt(Upper)) 6987 std::swap(Lower, Upper); 6988 Upper = Upper + 1; 6989 assert(Upper != Lower && "Upper part of range has wrapped!"); 6990 } 6991 } else if (match(BO.getOperand(0), m_APInt(C))) { 6992 if (C->isMinSignedValue()) { 6993 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6994 Lower = *C; 6995 Upper = Lower.lshr(1) + 1; 6996 } else { 6997 // 'sdiv C, x' produces [-|C|, |C|]. 6998 Upper = C->abs() + 1; 6999 Lower = (-Upper) + 1; 7000 } 7001 } 7002 break; 7003 7004 case Instruction::UDiv: 7005 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 7006 // 'udiv x, C' produces [0, UINT_MAX / C]. 7007 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 7008 } else if (match(BO.getOperand(0), m_APInt(C))) { 7009 // 'udiv C, x' produces [0, C]. 7010 Upper = *C + 1; 7011 } 7012 break; 7013 7014 case Instruction::SRem: 7015 if (match(BO.getOperand(1), m_APInt(C))) { 7016 // 'srem x, C' produces (-|C|, |C|). 7017 Upper = C->abs(); 7018 Lower = (-Upper) + 1; 7019 } 7020 break; 7021 7022 case Instruction::URem: 7023 if (match(BO.getOperand(1), m_APInt(C))) 7024 // 'urem x, C' produces [0, C). 7025 Upper = *C; 7026 break; 7027 7028 default: 7029 break; 7030 } 7031 } 7032 7033 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 7034 APInt &Upper) { 7035 unsigned Width = Lower.getBitWidth(); 7036 const APInt *C; 7037 switch (II.getIntrinsicID()) { 7038 case Intrinsic::ctpop: 7039 case Intrinsic::ctlz: 7040 case Intrinsic::cttz: 7041 // Maximum of set/clear bits is the bit width. 7042 assert(Lower == 0 && "Expected lower bound to be zero"); 7043 Upper = Width + 1; 7044 break; 7045 case Intrinsic::uadd_sat: 7046 // uadd.sat(x, C) produces [C, UINT_MAX]. 7047 if (match(II.getOperand(0), m_APInt(C)) || 7048 match(II.getOperand(1), m_APInt(C))) 7049 Lower = *C; 7050 break; 7051 case Intrinsic::sadd_sat: 7052 if (match(II.getOperand(0), m_APInt(C)) || 7053 match(II.getOperand(1), m_APInt(C))) { 7054 if (C->isNegative()) { 7055 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 7056 Lower = APInt::getSignedMinValue(Width); 7057 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 7058 } else { 7059 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 7060 Lower = APInt::getSignedMinValue(Width) + *C; 7061 Upper = APInt::getSignedMaxValue(Width) + 1; 7062 } 7063 } 7064 break; 7065 case Intrinsic::usub_sat: 7066 // usub.sat(C, x) produces [0, C]. 7067 if (match(II.getOperand(0), m_APInt(C))) 7068 Upper = *C + 1; 7069 // usub.sat(x, C) produces [0, UINT_MAX - C]. 7070 else if (match(II.getOperand(1), m_APInt(C))) 7071 Upper = APInt::getMaxValue(Width) - *C + 1; 7072 break; 7073 case Intrinsic::ssub_sat: 7074 if (match(II.getOperand(0), m_APInt(C))) { 7075 if (C->isNegative()) { 7076 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 7077 Lower = APInt::getSignedMinValue(Width); 7078 Upper = *C - APInt::getSignedMinValue(Width) + 1; 7079 } else { 7080 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 7081 Lower = *C - APInt::getSignedMaxValue(Width); 7082 Upper = APInt::getSignedMaxValue(Width) + 1; 7083 } 7084 } else if (match(II.getOperand(1), m_APInt(C))) { 7085 if (C->isNegative()) { 7086 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 7087 Lower = APInt::getSignedMinValue(Width) - *C; 7088 Upper = APInt::getSignedMaxValue(Width) + 1; 7089 } else { 7090 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 7091 Lower = APInt::getSignedMinValue(Width); 7092 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 7093 } 7094 } 7095 break; 7096 case Intrinsic::umin: 7097 case Intrinsic::umax: 7098 case Intrinsic::smin: 7099 case Intrinsic::smax: 7100 if (!match(II.getOperand(0), m_APInt(C)) && 7101 !match(II.getOperand(1), m_APInt(C))) 7102 break; 7103 7104 switch (II.getIntrinsicID()) { 7105 case Intrinsic::umin: 7106 Upper = *C + 1; 7107 break; 7108 case Intrinsic::umax: 7109 Lower = *C; 7110 break; 7111 case Intrinsic::smin: 7112 Lower = APInt::getSignedMinValue(Width); 7113 Upper = *C + 1; 7114 break; 7115 case Intrinsic::smax: 7116 Lower = *C; 7117 Upper = APInt::getSignedMaxValue(Width) + 1; 7118 break; 7119 default: 7120 llvm_unreachable("Must be min/max intrinsic"); 7121 } 7122 break; 7123 case Intrinsic::abs: 7124 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7125 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7126 if (match(II.getOperand(1), m_One())) 7127 Upper = APInt::getSignedMaxValue(Width) + 1; 7128 else 7129 Upper = APInt::getSignedMinValue(Width) + 1; 7130 break; 7131 default: 7132 break; 7133 } 7134 } 7135 7136 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7137 APInt &Upper, const InstrInfoQuery &IIQ) { 7138 const Value *LHS = nullptr, *RHS = nullptr; 7139 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7140 if (R.Flavor == SPF_UNKNOWN) 7141 return; 7142 7143 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7144 7145 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7146 // If the negation part of the abs (in RHS) has the NSW flag, 7147 // then the result of abs(X) is [0..SIGNED_MAX], 7148 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7149 Lower = APInt::getZero(BitWidth); 7150 if (match(RHS, m_Neg(m_Specific(LHS))) && 7151 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7152 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7153 else 7154 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7155 return; 7156 } 7157 7158 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7159 // The result of -abs(X) is <= 0. 7160 Lower = APInt::getSignedMinValue(BitWidth); 7161 Upper = APInt(BitWidth, 1); 7162 return; 7163 } 7164 7165 const APInt *C; 7166 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7167 return; 7168 7169 switch (R.Flavor) { 7170 case SPF_UMIN: 7171 Upper = *C + 1; 7172 break; 7173 case SPF_UMAX: 7174 Lower = *C; 7175 break; 7176 case SPF_SMIN: 7177 Lower = APInt::getSignedMinValue(BitWidth); 7178 Upper = *C + 1; 7179 break; 7180 case SPF_SMAX: 7181 Lower = *C; 7182 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7183 break; 7184 default: 7185 break; 7186 } 7187 } 7188 7189 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7190 // The maximum representable value of a half is 65504. For floats the maximum 7191 // value is 3.4e38 which requires roughly 129 bits. 7192 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7193 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7194 return; 7195 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7196 Lower = APInt(BitWidth, -65504); 7197 Upper = APInt(BitWidth, 65505); 7198 } 7199 7200 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7201 // For a fptoui the lower limit is left as 0. 7202 Upper = APInt(BitWidth, 65505); 7203 } 7204 } 7205 7206 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7207 bool UseInstrInfo, AssumptionCache *AC, 7208 const Instruction *CtxI, 7209 const DominatorTree *DT, 7210 unsigned Depth) { 7211 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7212 7213 if (Depth == MaxAnalysisRecursionDepth) 7214 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7215 7216 const APInt *C; 7217 if (match(V, m_APInt(C))) 7218 return ConstantRange(*C); 7219 7220 InstrInfoQuery IIQ(UseInstrInfo); 7221 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7222 APInt Lower = APInt(BitWidth, 0); 7223 APInt Upper = APInt(BitWidth, 0); 7224 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7225 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7226 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7227 setLimitsForIntrinsic(*II, Lower, Upper); 7228 else if (auto *SI = dyn_cast<SelectInst>(V)) 7229 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7230 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7231 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7232 7233 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7234 7235 if (auto *I = dyn_cast<Instruction>(V)) 7236 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7237 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7238 7239 if (CtxI && AC) { 7240 // Try to restrict the range based on information from assumptions. 7241 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7242 if (!AssumeVH) 7243 continue; 7244 CallInst *I = cast<CallInst>(AssumeVH); 7245 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7246 "Got assumption for the wrong function!"); 7247 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7248 "must be an assume intrinsic"); 7249 7250 if (!isValidAssumeForContext(I, CtxI, DT)) 7251 continue; 7252 Value *Arg = I->getArgOperand(0); 7253 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7254 // Currently we just use information from comparisons. 7255 if (!Cmp || Cmp->getOperand(0) != V) 7256 continue; 7257 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7258 ConstantRange RHS = 7259 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7260 UseInstrInfo, AC, I, DT, Depth + 1); 7261 CR = CR.intersectWith( 7262 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7263 } 7264 } 7265 7266 return CR; 7267 } 7268 7269 static Optional<int64_t> 7270 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7271 // Skip over the first indices. 7272 gep_type_iterator GTI = gep_type_begin(GEP); 7273 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7274 /*skip along*/; 7275 7276 // Compute the offset implied by the rest of the indices. 7277 int64_t Offset = 0; 7278 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7279 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7280 if (!OpC) 7281 return None; 7282 if (OpC->isZero()) 7283 continue; // No offset. 7284 7285 // Handle struct indices, which add their field offset to the pointer. 7286 if (StructType *STy = GTI.getStructTypeOrNull()) { 7287 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7288 continue; 7289 } 7290 7291 // Otherwise, we have a sequential type like an array or fixed-length 7292 // vector. Multiply the index by the ElementSize. 7293 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7294 if (Size.isScalable()) 7295 return None; 7296 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7297 } 7298 7299 return Offset; 7300 } 7301 7302 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7303 const DataLayout &DL) { 7304 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7305 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7306 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7307 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7308 7309 // Handle the trivial case first. 7310 if (Ptr1 == Ptr2) 7311 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7312 7313 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7314 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7315 7316 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7317 // base. After that base, they may have some number of common (and 7318 // potentially variable) indices. After that they handle some constant 7319 // offset, which determines their offset from each other. At this point, we 7320 // handle no other case. 7321 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7322 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7323 return None; 7324 7325 // Skip any common indices and track the GEP types. 7326 unsigned Idx = 1; 7327 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7328 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7329 break; 7330 7331 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7332 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7333 if (!IOffset1 || !IOffset2) 7334 return None; 7335 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7336 Offset1.getSExtValue(); 7337 } 7338