1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GetElementPtrTypeIterator.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <cstring>
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 const unsigned MaxDepth = 6;
44 
45 /// Enable an experimental feature to leverage information about dominating
46 /// conditions to compute known bits.  The individual options below control how
47 /// hard we search.  The defaults are chosen to be fairly aggressive.  If you
48 /// run into compile time problems when testing, scale them back and report
49 /// your findings.
50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
51                                          cl::Hidden, cl::init(false));
52 
53 // This is expensive, so we only do it for the top level query value.
54 // (TODO: evaluate cost vs profit, consider higher thresholds)
55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
56                                                cl::Hidden, cl::init(1));
57 
58 /// How many dominating blocks should be scanned looking for dominating
59 /// conditions?
60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
61                                                    cl::Hidden,
62                                                    cl::init(20));
63 
64 // Controls the number of uses of the value searched for possible
65 // dominating comparisons.
66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
67                                               cl::Hidden, cl::init(20));
68 
69 // If true, don't consider only compares whose only use is a branch.
70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
71                                                cl::Hidden, cl::init(false));
72 
73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
74 /// 0). For vector types, returns the element type's bitwidth.
75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
76   if (unsigned BitWidth = Ty->getScalarSizeInBits())
77     return BitWidth;
78 
79   return DL.getPointerTypeSizeInBits(Ty);
80 }
81 
82 // Many of these functions have internal versions that take an assumption
83 // exclusion set. This is because of the potential for mutual recursion to
84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The
85 // classic case of this is assume(x = y), which will attempt to determine
86 // bits in x from bits in y, which will attempt to determine bits in y from
87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
91 
92 namespace {
93 // Simplifying using an assume can only be done in a particular control-flow
94 // context (the context instruction provides that context). If an assume and
95 // the context instruction are not in the same block then the DT helps in
96 // figuring out if we can use it.
97 struct Query {
98   ExclInvsSet ExclInvs;
99   const DataLayout &DL;
100   AssumptionCache *AC;
101   const Instruction *CxtI;
102   const DominatorTree *DT;
103 
104   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
105         const DominatorTree *DT)
106       : DL(DL), AC(AC), CxtI(CxtI), DT(DT) {}
107 
108   Query(const Query &Q, const Value *NewExcl)
109       : ExclInvs(Q.ExclInvs), DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
110     ExclInvs.insert(NewExcl);
111   }
112 };
113 } // end anonymous namespace
114 
115 // Given the provided Value and, potentially, a context instruction, return
116 // the preferred context instruction (if any).
117 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
118   // If we've been provided with a context instruction, then use that (provided
119   // it has been inserted).
120   if (CxtI && CxtI->getParent())
121     return CxtI;
122 
123   // If the value is really an already-inserted instruction, then use that.
124   CxtI = dyn_cast<Instruction>(V);
125   if (CxtI && CxtI->getParent())
126     return CxtI;
127 
128   return nullptr;
129 }
130 
131 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
132                              unsigned Depth, const Query &Q);
133 
134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
135                             const DataLayout &DL, unsigned Depth,
136                             AssumptionCache *AC, const Instruction *CxtI,
137                             const DominatorTree *DT) {
138   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
139                      Query(DL, AC, safeCxtI(V, CxtI), DT));
140 }
141 
142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
143                                AssumptionCache *AC, const Instruction *CxtI,
144                                const DominatorTree *DT) {
145   assert(LHS->getType() == RHS->getType() &&
146          "LHS and RHS should have the same type");
147   assert(LHS->getType()->isIntOrIntVectorTy() &&
148          "LHS and RHS should be integers");
149   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
150   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
151   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
152   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
153   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
154   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
155 }
156 
157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
158                            unsigned Depth, const Query &Q);
159 
160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
161                           const DataLayout &DL, unsigned Depth,
162                           AssumptionCache *AC, const Instruction *CxtI,
163                           const DominatorTree *DT) {
164   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
165                    Query(DL, AC, safeCxtI(V, CxtI), DT));
166 }
167 
168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
169                                    const Query &Q);
170 
171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
172                                   unsigned Depth, AssumptionCache *AC,
173                                   const Instruction *CxtI,
174                                   const DominatorTree *DT) {
175   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
176                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
177 }
178 
179 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
180 
181 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
182                           AssumptionCache *AC, const Instruction *CxtI,
183                           const DominatorTree *DT) {
184   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
185 }
186 
187 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
188                               AssumptionCache *AC, const Instruction *CxtI,
189                               const DominatorTree *DT) {
190   bool NonNegative, Negative;
191   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
192   return NonNegative;
193 }
194 
195 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
196 
197 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
198                           AssumptionCache *AC, const Instruction *CxtI,
199                           const DominatorTree *DT) {
200   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
201                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
202                                          DT));
203 }
204 
205 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
206                               const Query &Q);
207 
208 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
209                              unsigned Depth, AssumptionCache *AC,
210                              const Instruction *CxtI, const DominatorTree *DT) {
211   return ::MaskedValueIsZero(V, Mask, Depth,
212                              Query(DL, AC, safeCxtI(V, CxtI), DT));
213 }
214 
215 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
216 
217 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
218                                   unsigned Depth, AssumptionCache *AC,
219                                   const Instruction *CxtI,
220                                   const DominatorTree *DT) {
221   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
222 }
223 
224 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
225                                    APInt &KnownZero, APInt &KnownOne,
226                                    APInt &KnownZero2, APInt &KnownOne2,
227                                    unsigned Depth, const Query &Q) {
228   if (!Add) {
229     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
230       // We know that the top bits of C-X are clear if X contains less bits
231       // than C (i.e. no wrap-around can happen).  For example, 20-X is
232       // positive if we can prove that X is >= 0 and < 16.
233       if (!CLHS->getValue().isNegative()) {
234         unsigned BitWidth = KnownZero.getBitWidth();
235         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
236         // NLZ can't be BitWidth with no sign bit
237         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
238         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
239 
240         // If all of the MaskV bits are known to be zero, then we know the
241         // output top bits are zero, because we now know that the output is
242         // from [0-C].
243         if ((KnownZero2 & MaskV) == MaskV) {
244           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
245           // Top bits known zero.
246           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
247         }
248       }
249     }
250   }
251 
252   unsigned BitWidth = KnownZero.getBitWidth();
253 
254   // If an initial sequence of bits in the result is not needed, the
255   // corresponding bits in the operands are not needed.
256   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
257   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
258   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
259 
260   // Carry in a 1 for a subtract, rather than a 0.
261   APInt CarryIn(BitWidth, 0);
262   if (!Add) {
263     // Sum = LHS + ~RHS + 1
264     std::swap(KnownZero2, KnownOne2);
265     CarryIn.setBit(0);
266   }
267 
268   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
269   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
270 
271   // Compute known bits of the carry.
272   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
273   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
274 
275   // Compute set of known bits (where all three relevant bits are known).
276   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
277   APInt RHSKnown = KnownZero2 | KnownOne2;
278   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
279   APInt Known = LHSKnown & RHSKnown & CarryKnown;
280 
281   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
282          "known bits of sum differ");
283 
284   // Compute known bits of the result.
285   KnownZero = ~PossibleSumOne & Known;
286   KnownOne = PossibleSumOne & Known;
287 
288   // Are we still trying to solve for the sign bit?
289   if (!Known.isNegative()) {
290     if (NSW) {
291       // Adding two non-negative numbers, or subtracting a negative number from
292       // a non-negative one, can't wrap into negative.
293       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
294         KnownZero |= APInt::getSignBit(BitWidth);
295       // Adding two negative numbers, or subtracting a non-negative number from
296       // a negative one, can't wrap into non-negative.
297       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
298         KnownOne |= APInt::getSignBit(BitWidth);
299     }
300   }
301 }
302 
303 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
304                                 APInt &KnownZero, APInt &KnownOne,
305                                 APInt &KnownZero2, APInt &KnownOne2,
306                                 unsigned Depth, const Query &Q) {
307   unsigned BitWidth = KnownZero.getBitWidth();
308   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
309   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
310 
311   bool isKnownNegative = false;
312   bool isKnownNonNegative = false;
313   // If the multiplication is known not to overflow, compute the sign bit.
314   if (NSW) {
315     if (Op0 == Op1) {
316       // The product of a number with itself is non-negative.
317       isKnownNonNegative = true;
318     } else {
319       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
320       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
321       bool isKnownNegativeOp1 = KnownOne.isNegative();
322       bool isKnownNegativeOp0 = KnownOne2.isNegative();
323       // The product of two numbers with the same sign is non-negative.
324       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
325         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
326       // The product of a negative number and a non-negative number is either
327       // negative or zero.
328       if (!isKnownNonNegative)
329         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
330                            isKnownNonZero(Op0, Depth, Q)) ||
331                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
332                            isKnownNonZero(Op1, Depth, Q));
333     }
334   }
335 
336   // If low bits are zero in either operand, output low known-0 bits.
337   // Also compute a conservative estimate for high known-0 bits.
338   // More trickiness is possible, but this is sufficient for the
339   // interesting case of alignment computation.
340   KnownOne.clearAllBits();
341   unsigned TrailZ = KnownZero.countTrailingOnes() +
342                     KnownZero2.countTrailingOnes();
343   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
344                              KnownZero2.countLeadingOnes(),
345                              BitWidth) - BitWidth;
346 
347   TrailZ = std::min(TrailZ, BitWidth);
348   LeadZ = std::min(LeadZ, BitWidth);
349   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
350               APInt::getHighBitsSet(BitWidth, LeadZ);
351 
352   // Only make use of no-wrap flags if we failed to compute the sign bit
353   // directly.  This matters if the multiplication always overflows, in
354   // which case we prefer to follow the result of the direct computation,
355   // though as the program is invoking undefined behaviour we can choose
356   // whatever we like here.
357   if (isKnownNonNegative && !KnownOne.isNegative())
358     KnownZero.setBit(BitWidth - 1);
359   else if (isKnownNegative && !KnownZero.isNegative())
360     KnownOne.setBit(BitWidth - 1);
361 }
362 
363 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
364                                              APInt &KnownZero,
365                                              APInt &KnownOne) {
366   unsigned BitWidth = KnownZero.getBitWidth();
367   unsigned NumRanges = Ranges.getNumOperands() / 2;
368   assert(NumRanges >= 1);
369 
370   KnownZero.setAllBits();
371   KnownOne.setAllBits();
372 
373   for (unsigned i = 0; i < NumRanges; ++i) {
374     ConstantInt *Lower =
375         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
376     ConstantInt *Upper =
377         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
378     ConstantRange Range(Lower->getValue(), Upper->getValue());
379 
380     // The first CommonPrefixBits of all values in Range are equal.
381     unsigned CommonPrefixBits =
382         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
383 
384     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
385     KnownOne &= Range.getUnsignedMax() & Mask;
386     KnownZero &= ~Range.getUnsignedMax() & Mask;
387   }
388 }
389 
390 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
391   SmallVector<const Value *, 16> WorkSet(1, I);
392   SmallPtrSet<const Value *, 32> Visited;
393   SmallPtrSet<const Value *, 16> EphValues;
394 
395   // The instruction defining an assumption's condition itself is always
396   // considered ephemeral to that assumption (even if it has other
397   // non-ephemeral users). See r246696's test case for an example.
398   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
399     return true;
400 
401   while (!WorkSet.empty()) {
402     const Value *V = WorkSet.pop_back_val();
403     if (!Visited.insert(V).second)
404       continue;
405 
406     // If all uses of this value are ephemeral, then so is this value.
407     if (std::all_of(V->user_begin(), V->user_end(),
408                     [&](const User *U) { return EphValues.count(U); })) {
409       if (V == E)
410         return true;
411 
412       EphValues.insert(V);
413       if (const User *U = dyn_cast<User>(V))
414         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
415              J != JE; ++J) {
416           if (isSafeToSpeculativelyExecute(*J))
417             WorkSet.push_back(*J);
418         }
419     }
420   }
421 
422   return false;
423 }
424 
425 // Is this an intrinsic that cannot be speculated but also cannot trap?
426 static bool isAssumeLikeIntrinsic(const Instruction *I) {
427   if (const CallInst *CI = dyn_cast<CallInst>(I))
428     if (Function *F = CI->getCalledFunction())
429       switch (F->getIntrinsicID()) {
430       default: break;
431       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
432       case Intrinsic::assume:
433       case Intrinsic::dbg_declare:
434       case Intrinsic::dbg_value:
435       case Intrinsic::invariant_start:
436       case Intrinsic::invariant_end:
437       case Intrinsic::lifetime_start:
438       case Intrinsic::lifetime_end:
439       case Intrinsic::objectsize:
440       case Intrinsic::ptr_annotation:
441       case Intrinsic::var_annotation:
442         return true;
443       }
444 
445   return false;
446 }
447 
448 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
449                                     const DominatorTree *DT) {
450   Instruction *Inv = cast<Instruction>(V);
451 
452   // There are two restrictions on the use of an assume:
453   //  1. The assume must dominate the context (or the control flow must
454   //     reach the assume whenever it reaches the context).
455   //  2. The context must not be in the assume's set of ephemeral values
456   //     (otherwise we will use the assume to prove that the condition
457   //     feeding the assume is trivially true, thus causing the removal of
458   //     the assume).
459 
460   if (DT) {
461     if (DT->dominates(Inv, CxtI)) {
462       return true;
463     } else if (Inv->getParent() == CxtI->getParent()) {
464       // The context comes first, but they're both in the same block. Make sure
465       // there is nothing in between that might interrupt the control flow.
466       for (BasicBlock::const_iterator I =
467              std::next(BasicBlock::const_iterator(CxtI)),
468                                       IE(Inv); I != IE; ++I)
469         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
470           return false;
471 
472       return !isEphemeralValueOf(Inv, CxtI);
473     }
474 
475     return false;
476   }
477 
478   // When we don't have a DT, we do a limited search...
479   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
480     return true;
481   } else if (Inv->getParent() == CxtI->getParent()) {
482     // Search forward from the assume until we reach the context (or the end
483     // of the block); the common case is that the assume will come first.
484     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
485          IE = Inv->getParent()->end(); I != IE; ++I)
486       if (&*I == CxtI)
487         return true;
488 
489     // The context must come first...
490     for (BasicBlock::const_iterator I =
491            std::next(BasicBlock::const_iterator(CxtI)),
492                                     IE(Inv); I != IE; ++I)
493       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
494         return false;
495 
496     return !isEphemeralValueOf(Inv, CxtI);
497   }
498 
499   return false;
500 }
501 
502 bool llvm::isValidAssumeForContext(const Instruction *I,
503                                    const Instruction *CxtI,
504                                    const DominatorTree *DT) {
505   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
506 }
507 
508 template<typename LHS, typename RHS>
509 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
510                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
511 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
512   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
513 }
514 
515 template<typename LHS, typename RHS>
516 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
517                         BinaryOp_match<RHS, LHS, Instruction::And>>
518 m_c_And(const LHS &L, const RHS &R) {
519   return m_CombineOr(m_And(L, R), m_And(R, L));
520 }
521 
522 template<typename LHS, typename RHS>
523 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
524                         BinaryOp_match<RHS, LHS, Instruction::Or>>
525 m_c_Or(const LHS &L, const RHS &R) {
526   return m_CombineOr(m_Or(L, R), m_Or(R, L));
527 }
528 
529 template<typename LHS, typename RHS>
530 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
531                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
532 m_c_Xor(const LHS &L, const RHS &R) {
533   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
534 }
535 
536 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
537 /// true (at the context instruction.)  This is mostly a utility function for
538 /// the prototype dominating conditions reasoning below.
539 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
540                                               APInt &KnownZero,
541                                               APInt &KnownOne,
542                                               unsigned Depth, const Query &Q) {
543   Value *LHS = Cmp->getOperand(0);
544   Value *RHS = Cmp->getOperand(1);
545   // TODO: We could potentially be more aggressive here.  This would be worth
546   // evaluating.  If we can, explore commoning this code with the assume
547   // handling logic.
548   if (LHS != V && RHS != V)
549     return;
550 
551   const unsigned BitWidth = KnownZero.getBitWidth();
552 
553   switch (Cmp->getPredicate()) {
554   default:
555     // We know nothing from this condition
556     break;
557   // TODO: implement unsigned bound from below (known one bits)
558   // TODO: common condition check implementations with assumes
559   // TODO: implement other patterns from assume (e.g. V & B == A)
560   case ICmpInst::ICMP_SGT:
561     if (LHS == V) {
562       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
563       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
564       if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
565         // We know that the sign bit is zero.
566         KnownZero |= APInt::getSignBit(BitWidth);
567       }
568     }
569     break;
570   case ICmpInst::ICMP_EQ:
571     {
572       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
573       if (LHS == V)
574         computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
575       else if (RHS == V)
576         computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
577       else
578         llvm_unreachable("missing use?");
579       KnownZero |= KnownZeroTemp;
580       KnownOne |= KnownOneTemp;
581     }
582     break;
583   case ICmpInst::ICMP_ULE:
584     if (LHS == V) {
585       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
586       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
587       // The known zero bits carry over
588       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
589       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
590     }
591     break;
592   case ICmpInst::ICMP_ULT:
593     if (LHS == V) {
594       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
595       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
596       // Whatever high bits in rhs are zero are known to be zero (if rhs is a
597       // power of 2, then one more).
598       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
599       if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
600         SignBits++;
601       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602     }
603     break;
604   };
605 }
606 
607 /// Compute known bits in 'V' from conditions which are known to be true along
608 /// all paths leading to the context instruction.  In particular, look for
609 /// cases where one branch of an interesting condition dominates the context
610 /// instruction.  This does not do general dataflow.
611 /// NOTE: This code is EXPERIMENTAL and currently off by default.
612 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
613                                                     APInt &KnownOne,
614                                                     unsigned Depth,
615                                                     const Query &Q) {
616   // Need both the dominator tree and the query location to do anything useful
617   if (!Q.DT || !Q.CxtI)
618     return;
619   Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
620   // The context instruction might be in a statically unreachable block.  If
621   // so, asking dominator queries may yield suprising results.  (e.g. the block
622   // may not have a dom tree node)
623   if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
624     return;
625 
626   // Avoid useless work
627   if (auto VI = dyn_cast<Instruction>(V))
628     if (VI->getParent() == Cxt->getParent())
629       return;
630 
631   // Note: We currently implement two options.  It's not clear which of these
632   // will survive long term, we need data for that.
633   // Option 1 - Try walking the dominator tree looking for conditions which
634   // might apply.  This works well for local conditions (loop guards, etc..),
635   // but not as well for things far from the context instruction (presuming a
636   // low max blocks explored).  If we can set an high enough limit, this would
637   // be all we need.
638   // Option 2 - We restrict out search to those conditions which are uses of
639   // the value we're interested in.  This is independent of dom structure,
640   // but is slightly less powerful without looking through lots of use chains.
641   // It does handle conditions far from the context instruction (e.g. early
642   // function exits on entry) really well though.
643 
644   // Option 1 - Search the dom tree
645   unsigned NumBlocksExplored = 0;
646   BasicBlock *Current = Cxt->getParent();
647   while (true) {
648     // Stop searching if we've gone too far up the chain
649     if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
650       break;
651     NumBlocksExplored++;
652 
653     if (!Q.DT->getNode(Current)->getIDom())
654       break;
655     Current = Q.DT->getNode(Current)->getIDom()->getBlock();
656     if (!Current)
657       // found function entry
658       break;
659 
660     BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
661     if (!BI || BI->isUnconditional())
662       continue;
663     ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
664     if (!Cmp)
665       continue;
666 
667     // We're looking for conditions that are guaranteed to hold at the context
668     // instruction.  Finding a condition where one path dominates the context
669     // isn't enough because both the true and false cases could merge before
670     // the context instruction we're actually interested in.  Instead, we need
671     // to ensure that the taken *edge* dominates the context instruction.  We
672     // know that the edge must be reachable since we started from a reachable
673     // block.
674     BasicBlock *BB0 = BI->getSuccessor(0);
675     BasicBlockEdge Edge(BI->getParent(), BB0);
676     if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
677       continue;
678 
679     computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
680   }
681 
682   // Option 2 - Search the other uses of V
683   unsigned NumUsesExplored = 0;
684   for (auto U : V->users()) {
685     // Avoid massive lists
686     if (NumUsesExplored >= DomConditionsMaxUses)
687       break;
688     NumUsesExplored++;
689     // Consider only compare instructions uniquely controlling a branch
690     ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
691     if (!Cmp)
692       continue;
693 
694     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
695       continue;
696 
697     for (auto *CmpU : Cmp->users()) {
698       BranchInst *BI = dyn_cast<BranchInst>(CmpU);
699       if (!BI || BI->isUnconditional())
700         continue;
701       // We're looking for conditions that are guaranteed to hold at the
702       // context instruction.  Finding a condition where one path dominates
703       // the context isn't enough because both the true and false cases could
704       // merge before the context instruction we're actually interested in.
705       // Instead, we need to ensure that the taken *edge* dominates the context
706       // instruction.
707       BasicBlock *BB0 = BI->getSuccessor(0);
708       BasicBlockEdge Edge(BI->getParent(), BB0);
709       if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
710         continue;
711 
712       computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
713     }
714   }
715 }
716 
717 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
718                                        APInt &KnownOne, unsigned Depth,
719                                        const Query &Q) {
720   // Use of assumptions is context-sensitive. If we don't have a context, we
721   // cannot use them!
722   if (!Q.AC || !Q.CxtI)
723     return;
724 
725   unsigned BitWidth = KnownZero.getBitWidth();
726 
727   for (auto &AssumeVH : Q.AC->assumptions()) {
728     if (!AssumeVH)
729       continue;
730     CallInst *I = cast<CallInst>(AssumeVH);
731     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
732            "Got assumption for the wrong function!");
733     if (Q.ExclInvs.count(I))
734       continue;
735 
736     // Warning: This loop can end up being somewhat performance sensetive.
737     // We're running this loop for once for each value queried resulting in a
738     // runtime of ~O(#assumes * #values).
739 
740     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
741            "must be an assume intrinsic");
742 
743     Value *Arg = I->getArgOperand(0);
744 
745     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
746       assert(BitWidth == 1 && "assume operand is not i1?");
747       KnownZero.clearAllBits();
748       KnownOne.setAllBits();
749       return;
750     }
751 
752     // The remaining tests are all recursive, so bail out if we hit the limit.
753     if (Depth == MaxDepth)
754       continue;
755 
756     Value *A, *B;
757     auto m_V = m_CombineOr(m_Specific(V),
758                            m_CombineOr(m_PtrToInt(m_Specific(V)),
759                            m_BitCast(m_Specific(V))));
760 
761     CmpInst::Predicate Pred;
762     ConstantInt *C;
763     // assume(v = a)
764     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
765         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
766       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
767       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
768       KnownZero |= RHSKnownZero;
769       KnownOne  |= RHSKnownOne;
770     // assume(v & b = a)
771     } else if (match(Arg,
772                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
773                Pred == ICmpInst::ICMP_EQ &&
774                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
776       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
777       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
778       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
779 
780       // For those bits in the mask that are known to be one, we can propagate
781       // known bits from the RHS to V.
782       KnownZero |= RHSKnownZero & MaskKnownOne;
783       KnownOne  |= RHSKnownOne  & MaskKnownOne;
784     // assume(~(v & b) = a)
785     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
786                                    m_Value(A))) &&
787                Pred == ICmpInst::ICMP_EQ &&
788                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
789       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
790       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
791       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
792       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
793 
794       // For those bits in the mask that are known to be one, we can propagate
795       // inverted known bits from the RHS to V.
796       KnownZero |= RHSKnownOne  & MaskKnownOne;
797       KnownOne  |= RHSKnownZero & MaskKnownOne;
798     // assume(v | b = a)
799     } else if (match(Arg,
800                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
801                Pred == ICmpInst::ICMP_EQ &&
802                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
804       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
805       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
806       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
807 
808       // For those bits in B that are known to be zero, we can propagate known
809       // bits from the RHS to V.
810       KnownZero |= RHSKnownZero & BKnownZero;
811       KnownOne  |= RHSKnownOne  & BKnownZero;
812     // assume(~(v | b) = a)
813     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
814                                    m_Value(A))) &&
815                Pred == ICmpInst::ICMP_EQ &&
816                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
817       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
818       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
819       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
820       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
821 
822       // For those bits in B that are known to be zero, we can propagate
823       // inverted known bits from the RHS to V.
824       KnownZero |= RHSKnownOne  & BKnownZero;
825       KnownOne  |= RHSKnownZero & BKnownZero;
826     // assume(v ^ b = a)
827     } else if (match(Arg,
828                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
829                Pred == ICmpInst::ICMP_EQ &&
830                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
831       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
832       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
833       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
834       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
835 
836       // For those bits in B that are known to be zero, we can propagate known
837       // bits from the RHS to V. For those bits in B that are known to be one,
838       // we can propagate inverted known bits from the RHS to V.
839       KnownZero |= RHSKnownZero & BKnownZero;
840       KnownOne  |= RHSKnownOne  & BKnownZero;
841       KnownZero |= RHSKnownOne  & BKnownOne;
842       KnownOne  |= RHSKnownZero & BKnownOne;
843     // assume(~(v ^ b) = a)
844     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
845                                    m_Value(A))) &&
846                Pred == ICmpInst::ICMP_EQ &&
847                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
848       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
849       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
850       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
851       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
852 
853       // For those bits in B that are known to be zero, we can propagate
854       // inverted known bits from the RHS to V. For those bits in B that are
855       // known to be one, we can propagate known bits from the RHS to V.
856       KnownZero |= RHSKnownOne  & BKnownZero;
857       KnownOne  |= RHSKnownZero & BKnownZero;
858       KnownZero |= RHSKnownZero & BKnownOne;
859       KnownOne  |= RHSKnownOne  & BKnownOne;
860     // assume(v << c = a)
861     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
862                                    m_Value(A))) &&
863                Pred == ICmpInst::ICMP_EQ &&
864                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
865       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
866       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
867       // For those bits in RHS that are known, we can propagate them to known
868       // bits in V shifted to the right by C.
869       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
870       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
871     // assume(~(v << c) = a)
872     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
873                                    m_Value(A))) &&
874                Pred == ICmpInst::ICMP_EQ &&
875                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
876       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
877       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
878       // For those bits in RHS that are known, we can propagate them inverted
879       // to known bits in V shifted to the right by C.
880       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
881       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
882     // assume(v >> c = a)
883     } else if (match(Arg,
884                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
885                                                 m_AShr(m_V, m_ConstantInt(C))),
886                               m_Value(A))) &&
887                Pred == ICmpInst::ICMP_EQ &&
888                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
889       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
890       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
891       // For those bits in RHS that are known, we can propagate them to known
892       // bits in V shifted to the right by C.
893       KnownZero |= RHSKnownZero << C->getZExtValue();
894       KnownOne  |= RHSKnownOne  << C->getZExtValue();
895     // assume(~(v >> c) = a)
896     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
897                                              m_LShr(m_V, m_ConstantInt(C)),
898                                              m_AShr(m_V, m_ConstantInt(C)))),
899                                    m_Value(A))) &&
900                Pred == ICmpInst::ICMP_EQ &&
901                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
902       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
903       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
904       // For those bits in RHS that are known, we can propagate them inverted
905       // to known bits in V shifted to the right by C.
906       KnownZero |= RHSKnownOne  << C->getZExtValue();
907       KnownOne  |= RHSKnownZero << C->getZExtValue();
908     // assume(v >=_s c) where c is non-negative
909     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
910                Pred == ICmpInst::ICMP_SGE &&
911                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
912       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
913       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
914 
915       if (RHSKnownZero.isNegative()) {
916         // We know that the sign bit is zero.
917         KnownZero |= APInt::getSignBit(BitWidth);
918       }
919     // assume(v >_s c) where c is at least -1.
920     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
921                Pred == ICmpInst::ICMP_SGT &&
922                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
923       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
924       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
925 
926       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
927         // We know that the sign bit is zero.
928         KnownZero |= APInt::getSignBit(BitWidth);
929       }
930     // assume(v <=_s c) where c is negative
931     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
932                Pred == ICmpInst::ICMP_SLE &&
933                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
934       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
935       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
936 
937       if (RHSKnownOne.isNegative()) {
938         // We know that the sign bit is one.
939         KnownOne |= APInt::getSignBit(BitWidth);
940       }
941     // assume(v <_s c) where c is non-positive
942     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
943                Pred == ICmpInst::ICMP_SLT &&
944                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
945       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
946       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
947 
948       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
949         // We know that the sign bit is one.
950         KnownOne |= APInt::getSignBit(BitWidth);
951       }
952     // assume(v <=_u c)
953     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
954                Pred == ICmpInst::ICMP_ULE &&
955                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
956       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
957       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
958 
959       // Whatever high bits in c are zero are known to be zero.
960       KnownZero |=
961         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
962     // assume(v <_u c)
963     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
964                Pred == ICmpInst::ICMP_ULT &&
965                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
966       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
967       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
968 
969       // Whatever high bits in c are zero are known to be zero (if c is a power
970       // of 2, then one more).
971       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
972         KnownZero |=
973           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
974       else
975         KnownZero |=
976           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
977     }
978   }
979 }
980 
981 // Compute known bits from a shift operator, including those with a
982 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
983 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
984 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
985 // functors that, given the known-zero or known-one bits respectively, and a
986 // shift amount, compute the implied known-zero or known-one bits of the shift
987 // operator's result respectively for that shift amount. The results from calling
988 // KZF and KOF are conservatively combined for all permitted shift amounts.
989 template <typename KZFunctor, typename KOFunctor>
990 static void computeKnownBitsFromShiftOperator(Operator *I,
991               APInt &KnownZero, APInt &KnownOne,
992               APInt &KnownZero2, APInt &KnownOne2,
993               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
994   unsigned BitWidth = KnownZero.getBitWidth();
995 
996   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
997     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
998 
999     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1000     KnownZero = KZF(KnownZero, ShiftAmt);
1001     KnownOne  = KOF(KnownOne, ShiftAmt);
1002     return;
1003   }
1004 
1005   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1006 
1007   // Note: We cannot use KnownZero.getLimitedValue() here, because if
1008   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1009   // limit value (which implies all bits are known).
1010   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1011   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1012 
1013   // It would be more-clearly correct to use the two temporaries for this
1014   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1015   KnownZero.clearAllBits(), KnownOne.clearAllBits();
1016 
1017   // If we know the shifter operand is nonzero, we can sometimes infer more
1018   // known bits. However this is expensive to compute, so be lazy about it and
1019   // only compute it when absolutely necessary.
1020   Optional<bool> ShifterOperandIsNonZero;
1021 
1022   // Early exit if we can't constrain any well-defined shift amount.
1023   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1024     ShifterOperandIsNonZero =
1025         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1026     if (!*ShifterOperandIsNonZero)
1027       return;
1028   }
1029 
1030   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1031 
1032   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1033   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1034     // Combine the shifted known input bits only for those shift amounts
1035     // compatible with its known constraints.
1036     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1037       continue;
1038     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1039       continue;
1040     // If we know the shifter is nonzero, we may be able to infer more known
1041     // bits. This check is sunk down as far as possible to avoid the expensive
1042     // call to isKnownNonZero if the cheaper checks above fail.
1043     if (ShiftAmt == 0) {
1044       if (!ShifterOperandIsNonZero.hasValue())
1045         ShifterOperandIsNonZero =
1046             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1047       if (*ShifterOperandIsNonZero)
1048         continue;
1049     }
1050 
1051     KnownZero &= KZF(KnownZero2, ShiftAmt);
1052     KnownOne  &= KOF(KnownOne2, ShiftAmt);
1053   }
1054 
1055   // If there are no compatible shift amounts, then we've proven that the shift
1056   // amount must be >= the BitWidth, and the result is undefined. We could
1057   // return anything we'd like, but we need to make sure the sets of known bits
1058   // stay disjoint (it should be better for some other code to actually
1059   // propagate the undef than to pick a value here using known bits).
1060   if ((KnownZero & KnownOne) != 0)
1061     KnownZero.clearAllBits(), KnownOne.clearAllBits();
1062 }
1063 
1064 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1065                                          APInt &KnownOne, unsigned Depth,
1066                                          const Query &Q) {
1067   unsigned BitWidth = KnownZero.getBitWidth();
1068 
1069   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
1070   switch (I->getOpcode()) {
1071   default: break;
1072   case Instruction::Load:
1073     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
1074       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1075     break;
1076   case Instruction::And: {
1077     // If either the LHS or the RHS are Zero, the result is zero.
1078     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1079     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1080 
1081     // Output known-1 bits are only known if set in both the LHS & RHS.
1082     KnownOne &= KnownOne2;
1083     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1084     KnownZero |= KnownZero2;
1085 
1086     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1087     // here we handle the more general case of adding any odd number by
1088     // matching the form add(x, add(x, y)) where y is odd.
1089     // TODO: This could be generalized to clearing any bit set in y where the
1090     // following bit is known to be unset in y.
1091     Value *Y = nullptr;
1092     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1093                                       m_Value(Y))) ||
1094         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1095                                       m_Value(Y)))) {
1096       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
1097       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
1098       if (KnownOne3.countTrailingOnes() > 0)
1099         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1100     }
1101     break;
1102   }
1103   case Instruction::Or: {
1104     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1105     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1106 
1107     // Output known-0 bits are only known if clear in both the LHS & RHS.
1108     KnownZero &= KnownZero2;
1109     // Output known-1 are known to be set if set in either the LHS | RHS.
1110     KnownOne |= KnownOne2;
1111     break;
1112   }
1113   case Instruction::Xor: {
1114     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1115     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1116 
1117     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1118     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1119     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1120     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1121     KnownZero = KnownZeroOut;
1122     break;
1123   }
1124   case Instruction::Mul: {
1125     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1126     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1127                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
1128     break;
1129   }
1130   case Instruction::UDiv: {
1131     // For the purposes of computing leading zeros we can conservatively
1132     // treat a udiv as a logical right shift by the power of 2 known to
1133     // be less than the denominator.
1134     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1135     unsigned LeadZ = KnownZero2.countLeadingOnes();
1136 
1137     KnownOne2.clearAllBits();
1138     KnownZero2.clearAllBits();
1139     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1140     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1141     if (RHSUnknownLeadingOnes != BitWidth)
1142       LeadZ = std::min(BitWidth,
1143                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1144 
1145     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1146     break;
1147   }
1148   case Instruction::Select:
1149     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1150     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1151 
1152     // Only known if known in both the LHS and RHS.
1153     KnownOne &= KnownOne2;
1154     KnownZero &= KnownZero2;
1155     break;
1156   case Instruction::FPTrunc:
1157   case Instruction::FPExt:
1158   case Instruction::FPToUI:
1159   case Instruction::FPToSI:
1160   case Instruction::SIToFP:
1161   case Instruction::UIToFP:
1162     break; // Can't work with floating point.
1163   case Instruction::PtrToInt:
1164   case Instruction::IntToPtr:
1165   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1166     // FALL THROUGH and handle them the same as zext/trunc.
1167   case Instruction::ZExt:
1168   case Instruction::Trunc: {
1169     Type *SrcTy = I->getOperand(0)->getType();
1170 
1171     unsigned SrcBitWidth;
1172     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1173     // which fall through here.
1174     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1175 
1176     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1177     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1178     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1179     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1180     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1181     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1182     // Any top bits are known to be zero.
1183     if (BitWidth > SrcBitWidth)
1184       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1185     break;
1186   }
1187   case Instruction::BitCast: {
1188     Type *SrcTy = I->getOperand(0)->getType();
1189     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1190          SrcTy->isFloatingPointTy()) &&
1191         // TODO: For now, not handling conversions like:
1192         // (bitcast i64 %x to <2 x i32>)
1193         !I->getType()->isVectorTy()) {
1194       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1195       break;
1196     }
1197     break;
1198   }
1199   case Instruction::SExt: {
1200     // Compute the bits in the result that are not present in the input.
1201     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1202 
1203     KnownZero = KnownZero.trunc(SrcBitWidth);
1204     KnownOne = KnownOne.trunc(SrcBitWidth);
1205     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1206     KnownZero = KnownZero.zext(BitWidth);
1207     KnownOne = KnownOne.zext(BitWidth);
1208 
1209     // If the sign bit of the input is known set or clear, then we know the
1210     // top bits of the result.
1211     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1212       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1213     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1214       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1215     break;
1216   }
1217   case Instruction::Shl: {
1218     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1219     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1220       return (KnownZero << ShiftAmt) |
1221              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1222     };
1223 
1224     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1225       return KnownOne << ShiftAmt;
1226     };
1227 
1228     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1229                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1230                                       KOF);
1231     break;
1232   }
1233   case Instruction::LShr: {
1234     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1235     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1236       return APIntOps::lshr(KnownZero, ShiftAmt) |
1237              // High bits known zero.
1238              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1239     };
1240 
1241     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1242       return APIntOps::lshr(KnownOne, ShiftAmt);
1243     };
1244 
1245     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1246                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1247                                       KOF);
1248     break;
1249   }
1250   case Instruction::AShr: {
1251     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1252     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1253       return APIntOps::ashr(KnownZero, ShiftAmt);
1254     };
1255 
1256     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1257       return APIntOps::ashr(KnownOne, ShiftAmt);
1258     };
1259 
1260     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1261                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1262                                       KOF);
1263     break;
1264   }
1265   case Instruction::Sub: {
1266     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1267     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1268                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1269                            Q);
1270     break;
1271   }
1272   case Instruction::Add: {
1273     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1274     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1275                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1276                            Q);
1277     break;
1278   }
1279   case Instruction::SRem:
1280     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1281       APInt RA = Rem->getValue().abs();
1282       if (RA.isPowerOf2()) {
1283         APInt LowBits = RA - 1;
1284         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1285                          Q);
1286 
1287         // The low bits of the first operand are unchanged by the srem.
1288         KnownZero = KnownZero2 & LowBits;
1289         KnownOne = KnownOne2 & LowBits;
1290 
1291         // If the first operand is non-negative or has all low bits zero, then
1292         // the upper bits are all zero.
1293         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1294           KnownZero |= ~LowBits;
1295 
1296         // If the first operand is negative and not all low bits are zero, then
1297         // the upper bits are all one.
1298         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1299           KnownOne |= ~LowBits;
1300 
1301         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1302       }
1303     }
1304 
1305     // The sign bit is the LHS's sign bit, except when the result of the
1306     // remainder is zero.
1307     if (KnownZero.isNonNegative()) {
1308       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1309       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1310                        Q);
1311       // If it's known zero, our sign bit is also zero.
1312       if (LHSKnownZero.isNegative())
1313         KnownZero.setBit(BitWidth - 1);
1314     }
1315 
1316     break;
1317   case Instruction::URem: {
1318     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1319       APInt RA = Rem->getValue();
1320       if (RA.isPowerOf2()) {
1321         APInt LowBits = (RA - 1);
1322         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1323         KnownZero |= ~LowBits;
1324         KnownOne &= LowBits;
1325         break;
1326       }
1327     }
1328 
1329     // Since the result is less than or equal to either operand, any leading
1330     // zero bits in either operand must also exist in the result.
1331     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1332     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1333 
1334     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1335                                 KnownZero2.countLeadingOnes());
1336     KnownOne.clearAllBits();
1337     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1338     break;
1339   }
1340 
1341   case Instruction::Alloca: {
1342     AllocaInst *AI = cast<AllocaInst>(I);
1343     unsigned Align = AI->getAlignment();
1344     if (Align == 0)
1345       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1346 
1347     if (Align > 0)
1348       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1349     break;
1350   }
1351   case Instruction::GetElementPtr: {
1352     // Analyze all of the subscripts of this getelementptr instruction
1353     // to determine if we can prove known low zero bits.
1354     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1355     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1356                      Q);
1357     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1358 
1359     gep_type_iterator GTI = gep_type_begin(I);
1360     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1361       Value *Index = I->getOperand(i);
1362       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1363         // Handle struct member offset arithmetic.
1364 
1365         // Handle case when index is vector zeroinitializer
1366         Constant *CIndex = cast<Constant>(Index);
1367         if (CIndex->isZeroValue())
1368           continue;
1369 
1370         if (CIndex->getType()->isVectorTy())
1371           Index = CIndex->getSplatValue();
1372 
1373         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1374         const StructLayout *SL = Q.DL.getStructLayout(STy);
1375         uint64_t Offset = SL->getElementOffset(Idx);
1376         TrailZ = std::min<unsigned>(TrailZ,
1377                                     countTrailingZeros(Offset));
1378       } else {
1379         // Handle array index arithmetic.
1380         Type *IndexedTy = GTI.getIndexedType();
1381         if (!IndexedTy->isSized()) {
1382           TrailZ = 0;
1383           break;
1384         }
1385         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1386         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1387         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1388         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1389         TrailZ = std::min(TrailZ,
1390                           unsigned(countTrailingZeros(TypeSize) +
1391                                    LocalKnownZero.countTrailingOnes()));
1392       }
1393     }
1394 
1395     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1396     break;
1397   }
1398   case Instruction::PHI: {
1399     PHINode *P = cast<PHINode>(I);
1400     // Handle the case of a simple two-predecessor recurrence PHI.
1401     // There's a lot more that could theoretically be done here, but
1402     // this is sufficient to catch some interesting cases.
1403     if (P->getNumIncomingValues() == 2) {
1404       for (unsigned i = 0; i != 2; ++i) {
1405         Value *L = P->getIncomingValue(i);
1406         Value *R = P->getIncomingValue(!i);
1407         Operator *LU = dyn_cast<Operator>(L);
1408         if (!LU)
1409           continue;
1410         unsigned Opcode = LU->getOpcode();
1411         // Check for operations that have the property that if
1412         // both their operands have low zero bits, the result
1413         // will have low zero bits.
1414         if (Opcode == Instruction::Add ||
1415             Opcode == Instruction::Sub ||
1416             Opcode == Instruction::And ||
1417             Opcode == Instruction::Or ||
1418             Opcode == Instruction::Mul) {
1419           Value *LL = LU->getOperand(0);
1420           Value *LR = LU->getOperand(1);
1421           // Find a recurrence.
1422           if (LL == I)
1423             L = LR;
1424           else if (LR == I)
1425             L = LL;
1426           else
1427             break;
1428           // Ok, we have a PHI of the form L op= R. Check for low
1429           // zero bits.
1430           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1431 
1432           // We need to take the minimum number of known bits
1433           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1434           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1435 
1436           KnownZero = APInt::getLowBitsSet(BitWidth,
1437                                            std::min(KnownZero2.countTrailingOnes(),
1438                                                     KnownZero3.countTrailingOnes()));
1439           break;
1440         }
1441       }
1442     }
1443 
1444     // Unreachable blocks may have zero-operand PHI nodes.
1445     if (P->getNumIncomingValues() == 0)
1446       break;
1447 
1448     // Otherwise take the unions of the known bit sets of the operands,
1449     // taking conservative care to avoid excessive recursion.
1450     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1451       // Skip if every incoming value references to ourself.
1452       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1453         break;
1454 
1455       KnownZero = APInt::getAllOnesValue(BitWidth);
1456       KnownOne = APInt::getAllOnesValue(BitWidth);
1457       for (Value *IncValue : P->incoming_values()) {
1458         // Skip direct self references.
1459         if (IncValue == P) continue;
1460 
1461         KnownZero2 = APInt(BitWidth, 0);
1462         KnownOne2 = APInt(BitWidth, 0);
1463         // Recurse, but cap the recursion to one level, because we don't
1464         // want to waste time spinning around in loops.
1465         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1466         KnownZero &= KnownZero2;
1467         KnownOne &= KnownOne2;
1468         // If all bits have been ruled out, there's no need to check
1469         // more operands.
1470         if (!KnownZero && !KnownOne)
1471           break;
1472       }
1473     }
1474     break;
1475   }
1476   case Instruction::Call:
1477   case Instruction::Invoke:
1478     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1479       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1480     // If a range metadata is attached to this IntrinsicInst, intersect the
1481     // explicit range specified by the metadata and the implicit range of
1482     // the intrinsic.
1483     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1484       switch (II->getIntrinsicID()) {
1485       default: break;
1486       case Intrinsic::bswap:
1487         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1488         KnownZero |= KnownZero2.byteSwap();
1489         KnownOne |= KnownOne2.byteSwap();
1490         break;
1491       case Intrinsic::ctlz:
1492       case Intrinsic::cttz: {
1493         unsigned LowBits = Log2_32(BitWidth)+1;
1494         // If this call is undefined for 0, the result will be less than 2^n.
1495         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1496           LowBits -= 1;
1497         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1498         break;
1499       }
1500       case Intrinsic::ctpop: {
1501         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1502         // We can bound the space the count needs.  Also, bits known to be zero
1503         // can't contribute to the population.
1504         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1505         unsigned LeadingZeros =
1506           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1507         assert(LeadingZeros <= BitWidth);
1508         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1509         KnownOne &= ~KnownZero;
1510         // TODO: we could bound KnownOne using the lower bound on the number
1511         // of bits which might be set provided by popcnt KnownOne2.
1512         break;
1513       }
1514       case Intrinsic::fabs: {
1515         Type *Ty = II->getType();
1516         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1517         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1518         break;
1519       }
1520       case Intrinsic::x86_sse42_crc32_64_64:
1521         KnownZero |= APInt::getHighBitsSet(64, 32);
1522         break;
1523       }
1524     }
1525     break;
1526   case Instruction::ExtractValue:
1527     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1528       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1529       if (EVI->getNumIndices() != 1) break;
1530       if (EVI->getIndices()[0] == 0) {
1531         switch (II->getIntrinsicID()) {
1532         default: break;
1533         case Intrinsic::uadd_with_overflow:
1534         case Intrinsic::sadd_with_overflow:
1535           computeKnownBitsAddSub(true, II->getArgOperand(0),
1536                                  II->getArgOperand(1), false, KnownZero,
1537                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1538           break;
1539         case Intrinsic::usub_with_overflow:
1540         case Intrinsic::ssub_with_overflow:
1541           computeKnownBitsAddSub(false, II->getArgOperand(0),
1542                                  II->getArgOperand(1), false, KnownZero,
1543                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1544           break;
1545         case Intrinsic::umul_with_overflow:
1546         case Intrinsic::smul_with_overflow:
1547           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1548                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1549                               Q);
1550           break;
1551         }
1552       }
1553     }
1554   }
1555 }
1556 
1557 static unsigned getAlignment(const Value *V, const DataLayout &DL) {
1558   unsigned Align = 0;
1559   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1560     Align = GO->getAlignment();
1561     if (Align == 0) {
1562       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1563         Type *ObjectType = GVar->getValueType();
1564         if (ObjectType->isSized()) {
1565           // If the object is defined in the current Module, we'll be giving
1566           // it the preferred alignment. Otherwise, we have to assume that it
1567           // may only have the minimum ABI alignment.
1568           if (GVar->isStrongDefinitionForLinker())
1569             Align = DL.getPreferredAlignment(GVar);
1570           else
1571             Align = DL.getABITypeAlignment(ObjectType);
1572         }
1573       }
1574     }
1575   } else if (const Argument *A = dyn_cast<Argument>(V)) {
1576     Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1577 
1578     if (!Align && A->hasStructRetAttr()) {
1579       // An sret parameter has at least the ABI alignment of the return type.
1580       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1581       if (EltTy->isSized())
1582         Align = DL.getABITypeAlignment(EltTy);
1583     }
1584   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1585     Align = AI->getAlignment();
1586   else if (auto CS = ImmutableCallSite(V))
1587     Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1588   else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1589     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1590       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1591       Align = CI->getLimitedValue();
1592     }
1593 
1594   return Align;
1595 }
1596 
1597 /// Determine which bits of V are known to be either zero or one and return
1598 /// them in the KnownZero/KnownOne bit sets.
1599 ///
1600 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1601 /// we cannot optimize based on the assumption that it is zero without changing
1602 /// it to be an explicit zero.  If we don't change it to zero, other code could
1603 /// optimized based on the contradictory assumption that it is non-zero.
1604 /// Because instcombine aggressively folds operations with undef args anyway,
1605 /// this won't lose us code quality.
1606 ///
1607 /// This function is defined on values with integer type, values with pointer
1608 /// type, and vectors of integers.  In the case
1609 /// where V is a vector, known zero, and known one values are the
1610 /// same width as the vector element, and the bit is set only if it is true
1611 /// for all of the elements in the vector.
1612 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1613                       unsigned Depth, const Query &Q) {
1614   assert(V && "No Value?");
1615   assert(Depth <= MaxDepth && "Limit Search Depth");
1616   unsigned BitWidth = KnownZero.getBitWidth();
1617 
1618   assert((V->getType()->isIntOrIntVectorTy() ||
1619           V->getType()->isFPOrFPVectorTy() ||
1620           V->getType()->getScalarType()->isPointerTy()) &&
1621          "Not integer, floating point, or pointer type!");
1622   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1623          (!V->getType()->isIntOrIntVectorTy() ||
1624           V->getType()->getScalarSizeInBits() == BitWidth) &&
1625          KnownZero.getBitWidth() == BitWidth &&
1626          KnownOne.getBitWidth() == BitWidth &&
1627          "V, KnownOne and KnownZero should have same BitWidth");
1628 
1629   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1630     // We know all of the bits for a constant!
1631     KnownOne = CI->getValue();
1632     KnownZero = ~KnownOne;
1633     return;
1634   }
1635   // Null and aggregate-zero are all-zeros.
1636   if (isa<ConstantPointerNull>(V) ||
1637       isa<ConstantAggregateZero>(V)) {
1638     KnownOne.clearAllBits();
1639     KnownZero = APInt::getAllOnesValue(BitWidth);
1640     return;
1641   }
1642   // Handle a constant vector by taking the intersection of the known bits of
1643   // each element.  There is no real need to handle ConstantVector here, because
1644   // we don't handle undef in any particularly useful way.
1645   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1646     // We know that CDS must be a vector of integers. Take the intersection of
1647     // each element.
1648     KnownZero.setAllBits(); KnownOne.setAllBits();
1649     APInt Elt(KnownZero.getBitWidth(), 0);
1650     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651       Elt = CDS->getElementAsInteger(i);
1652       KnownZero &= ~Elt;
1653       KnownOne &= Elt;
1654     }
1655     return;
1656   }
1657 
1658   // Start out not knowing anything.
1659   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1660 
1661   // Limit search depth.
1662   // All recursive calls that increase depth must come after this.
1663   if (Depth == MaxDepth)
1664     return;
1665 
1666   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1667   // the bits of its aliasee.
1668   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1669     if (!GA->mayBeOverridden())
1670       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1671     return;
1672   }
1673 
1674   if (Operator *I = dyn_cast<Operator>(V))
1675     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1676 
1677   // Aligned pointers have trailing zeros - refine KnownZero set
1678   if (V->getType()->isPointerTy()) {
1679     unsigned Align = getAlignment(V, Q.DL);
1680     if (Align)
1681       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1682   }
1683 
1684   // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1685   // strictly refines KnownZero and KnownOne. Therefore, we run them after
1686   // computeKnownBitsFromOperator.
1687 
1688   // Check whether a nearby assume intrinsic can determine some known bits.
1689   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1690 
1691   // Check whether there's a dominating condition which implies something about
1692   // this value at the given context.
1693   if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1694     computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
1695 
1696   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1697 }
1698 
1699 /// Determine whether the sign bit is known to be zero or one.
1700 /// Convenience wrapper around computeKnownBits.
1701 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1702                     unsigned Depth, const Query &Q) {
1703   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1704   if (!BitWidth) {
1705     KnownZero = false;
1706     KnownOne = false;
1707     return;
1708   }
1709   APInt ZeroBits(BitWidth, 0);
1710   APInt OneBits(BitWidth, 0);
1711   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1712   KnownOne = OneBits[BitWidth - 1];
1713   KnownZero = ZeroBits[BitWidth - 1];
1714 }
1715 
1716 /// Return true if the given value is known to have exactly one
1717 /// bit set when defined. For vectors return true if every element is known to
1718 /// be a power of two when defined. Supports values with integer or pointer
1719 /// types and vectors of integers.
1720 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1721                             const Query &Q) {
1722   if (Constant *C = dyn_cast<Constant>(V)) {
1723     if (C->isNullValue())
1724       return OrZero;
1725     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1726       return CI->getValue().isPowerOf2();
1727     // TODO: Handle vector constants.
1728   }
1729 
1730   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1731   // it is shifted off the end then the result is undefined.
1732   if (match(V, m_Shl(m_One(), m_Value())))
1733     return true;
1734 
1735   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1736   // bottom.  If it is shifted off the bottom then the result is undefined.
1737   if (match(V, m_LShr(m_SignBit(), m_Value())))
1738     return true;
1739 
1740   // The remaining tests are all recursive, so bail out if we hit the limit.
1741   if (Depth++ == MaxDepth)
1742     return false;
1743 
1744   Value *X = nullptr, *Y = nullptr;
1745   // A shift left or a logical shift right of a power of two is a power of two
1746   // or zero.
1747   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1748                  match(V, m_LShr(m_Value(X), m_Value()))))
1749     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1750 
1751   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1752     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1753 
1754   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1755     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1756            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1757 
1758   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1759     // A power of two and'd with anything is a power of two or zero.
1760     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1761         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1762       return true;
1763     // X & (-X) is always a power of two or zero.
1764     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1765       return true;
1766     return false;
1767   }
1768 
1769   // Adding a power-of-two or zero to the same power-of-two or zero yields
1770   // either the original power-of-two, a larger power-of-two or zero.
1771   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1773     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1774       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1775           match(X, m_And(m_Value(), m_Specific(Y))))
1776         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1777           return true;
1778       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1779           match(Y, m_And(m_Value(), m_Specific(X))))
1780         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1781           return true;
1782 
1783       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1784       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1785       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1786 
1787       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1788       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1789       // If i8 V is a power of two or zero:
1790       //  ZeroBits: 1 1 1 0 1 1 1 1
1791       // ~ZeroBits: 0 0 0 1 0 0 0 0
1792       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1793         // If OrZero isn't set, we cannot give back a zero result.
1794         // Make sure either the LHS or RHS has a bit set.
1795         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1796           return true;
1797     }
1798   }
1799 
1800   // An exact divide or right shift can only shift off zero bits, so the result
1801   // is a power of two only if the first operand is a power of two and not
1802   // copying a sign bit (sdiv int_min, 2).
1803   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1804       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1805     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1806                                   Depth, Q);
1807   }
1808 
1809   return false;
1810 }
1811 
1812 /// \brief Test whether a GEP's result is known to be non-null.
1813 ///
1814 /// Uses properties inherent in a GEP to try to determine whether it is known
1815 /// to be non-null.
1816 ///
1817 /// Currently this routine does not support vector GEPs.
1818 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1819                               const Query &Q) {
1820   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1821     return false;
1822 
1823   // FIXME: Support vector-GEPs.
1824   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1825 
1826   // If the base pointer is non-null, we cannot walk to a null address with an
1827   // inbounds GEP in address space zero.
1828   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1829     return true;
1830 
1831   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1832   // If so, then the GEP cannot produce a null pointer, as doing so would
1833   // inherently violate the inbounds contract within address space zero.
1834   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1835        GTI != GTE; ++GTI) {
1836     // Struct types are easy -- they must always be indexed by a constant.
1837     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1838       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1839       unsigned ElementIdx = OpC->getZExtValue();
1840       const StructLayout *SL = Q.DL.getStructLayout(STy);
1841       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1842       if (ElementOffset > 0)
1843         return true;
1844       continue;
1845     }
1846 
1847     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1848     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1849       continue;
1850 
1851     // Fast path the constant operand case both for efficiency and so we don't
1852     // increment Depth when just zipping down an all-constant GEP.
1853     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1854       if (!OpC->isZero())
1855         return true;
1856       continue;
1857     }
1858 
1859     // We post-increment Depth here because while isKnownNonZero increments it
1860     // as well, when we pop back up that increment won't persist. We don't want
1861     // to recurse 10k times just because we have 10k GEP operands. We don't
1862     // bail completely out because we want to handle constant GEPs regardless
1863     // of depth.
1864     if (Depth++ >= MaxDepth)
1865       continue;
1866 
1867     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1868       return true;
1869   }
1870 
1871   return false;
1872 }
1873 
1874 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1875 /// ensure that the value it's attached to is never Value?  'RangeType' is
1876 /// is the type of the value described by the range.
1877 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1878                                        const APInt& Value) {
1879   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1880   assert(NumRanges >= 1);
1881   for (unsigned i = 0; i < NumRanges; ++i) {
1882     ConstantInt *Lower =
1883         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1884     ConstantInt *Upper =
1885         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1886     ConstantRange Range(Lower->getValue(), Upper->getValue());
1887     if (Range.contains(Value))
1888       return false;
1889   }
1890   return true;
1891 }
1892 
1893 /// Return true if the given value is known to be non-zero when defined.
1894 /// For vectors return true if every element is known to be non-zero when
1895 /// defined. Supports values with integer or pointer type and vectors of
1896 /// integers.
1897 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1898   if (Constant *C = dyn_cast<Constant>(V)) {
1899     if (C->isNullValue())
1900       return false;
1901     if (isa<ConstantInt>(C))
1902       // Must be non-zero due to null test above.
1903       return true;
1904     // TODO: Handle vectors
1905     return false;
1906   }
1907 
1908   if (Instruction* I = dyn_cast<Instruction>(V)) {
1909     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1910       // If the possible ranges don't contain zero, then the value is
1911       // definitely non-zero.
1912       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1913         const APInt ZeroValue(Ty->getBitWidth(), 0);
1914         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1915           return true;
1916       }
1917     }
1918   }
1919 
1920   // The remaining tests are all recursive, so bail out if we hit the limit.
1921   if (Depth++ >= MaxDepth)
1922     return false;
1923 
1924   // Check for pointer simplifications.
1925   if (V->getType()->isPointerTy()) {
1926     if (isKnownNonNull(V))
1927       return true;
1928     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1929       if (isGEPKnownNonNull(GEP, Depth, Q))
1930         return true;
1931   }
1932 
1933   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1934 
1935   // X | Y != 0 if X != 0 or Y != 0.
1936   Value *X = nullptr, *Y = nullptr;
1937   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1938     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1939 
1940   // ext X != 0 if X != 0.
1941   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1942     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1943 
1944   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1945   // if the lowest bit is shifted off the end.
1946   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1947     // shl nuw can't remove any non-zero bits.
1948     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1949     if (BO->hasNoUnsignedWrap())
1950       return isKnownNonZero(X, Depth, Q);
1951 
1952     APInt KnownZero(BitWidth, 0);
1953     APInt KnownOne(BitWidth, 0);
1954     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1955     if (KnownOne[0])
1956       return true;
1957   }
1958   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1959   // defined if the sign bit is shifted off the end.
1960   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1961     // shr exact can only shift out zero bits.
1962     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1963     if (BO->isExact())
1964       return isKnownNonZero(X, Depth, Q);
1965 
1966     bool XKnownNonNegative, XKnownNegative;
1967     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1968     if (XKnownNegative)
1969       return true;
1970 
1971     // If the shifter operand is a constant, and all of the bits shifted
1972     // out are known to be zero, and X is known non-zero then at least one
1973     // non-zero bit must remain.
1974     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1975       APInt KnownZero(BitWidth, 0);
1976       APInt KnownOne(BitWidth, 0);
1977       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1978 
1979       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1980       // Is there a known one in the portion not shifted out?
1981       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1982         return true;
1983       // Are all the bits to be shifted out known zero?
1984       if (KnownZero.countTrailingOnes() >= ShiftVal)
1985         return isKnownNonZero(X, Depth, Q);
1986     }
1987   }
1988   // div exact can only produce a zero if the dividend is zero.
1989   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1990     return isKnownNonZero(X, Depth, Q);
1991   }
1992   // X + Y.
1993   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1994     bool XKnownNonNegative, XKnownNegative;
1995     bool YKnownNonNegative, YKnownNegative;
1996     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1997     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1998 
1999     // If X and Y are both non-negative (as signed values) then their sum is not
2000     // zero unless both X and Y are zero.
2001     if (XKnownNonNegative && YKnownNonNegative)
2002       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2003         return true;
2004 
2005     // If X and Y are both negative (as signed values) then their sum is not
2006     // zero unless both X and Y equal INT_MIN.
2007     if (BitWidth && XKnownNegative && YKnownNegative) {
2008       APInt KnownZero(BitWidth, 0);
2009       APInt KnownOne(BitWidth, 0);
2010       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2011       // The sign bit of X is set.  If some other bit is set then X is not equal
2012       // to INT_MIN.
2013       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
2014       if ((KnownOne & Mask) != 0)
2015         return true;
2016       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2017       // to INT_MIN.
2018       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
2019       if ((KnownOne & Mask) != 0)
2020         return true;
2021     }
2022 
2023     // The sum of a non-negative number and a power of two is not zero.
2024     if (XKnownNonNegative &&
2025         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2026       return true;
2027     if (YKnownNonNegative &&
2028         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2029       return true;
2030   }
2031   // X * Y.
2032   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2033     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2034     // If X and Y are non-zero then so is X * Y as long as the multiplication
2035     // does not overflow.
2036     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
2037         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2038       return true;
2039   }
2040   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2041   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2042     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2043         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2044       return true;
2045   }
2046   // PHI
2047   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2048     // Try and detect a recurrence that monotonically increases from a
2049     // starting value, as these are common as induction variables.
2050     if (PN->getNumIncomingValues() == 2) {
2051       Value *Start = PN->getIncomingValue(0);
2052       Value *Induction = PN->getIncomingValue(1);
2053       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2054         std::swap(Start, Induction);
2055       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2056         if (!C->isZero() && !C->isNegative()) {
2057           ConstantInt *X;
2058           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2059                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2060               !X->isNegative())
2061             return true;
2062         }
2063       }
2064     }
2065   }
2066 
2067   if (!BitWidth) return false;
2068   APInt KnownZero(BitWidth, 0);
2069   APInt KnownOne(BitWidth, 0);
2070   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2071   return KnownOne != 0;
2072 }
2073 
2074 /// Return true if V2 == V1 + X, where X is known non-zero.
2075 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
2076   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2077   if (!BO || BO->getOpcode() != Instruction::Add)
2078     return false;
2079   Value *Op = nullptr;
2080   if (V2 == BO->getOperand(0))
2081     Op = BO->getOperand(1);
2082   else if (V2 == BO->getOperand(1))
2083     Op = BO->getOperand(0);
2084   else
2085     return false;
2086   return isKnownNonZero(Op, 0, Q);
2087 }
2088 
2089 /// Return true if it is known that V1 != V2.
2090 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
2091   if (V1->getType()->isVectorTy() || V1 == V2)
2092     return false;
2093   if (V1->getType() != V2->getType())
2094     // We can't look through casts yet.
2095     return false;
2096   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2097     return true;
2098 
2099   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2100     // Are any known bits in V1 contradictory to known bits in V2? If V1
2101     // has a known zero where V2 has a known one, they must not be equal.
2102     auto BitWidth = Ty->getBitWidth();
2103     APInt KnownZero1(BitWidth, 0);
2104     APInt KnownOne1(BitWidth, 0);
2105     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2106     APInt KnownZero2(BitWidth, 0);
2107     APInt KnownOne2(BitWidth, 0);
2108     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2109 
2110     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2111     if (OppositeBits.getBoolValue())
2112       return true;
2113   }
2114   return false;
2115 }
2116 
2117 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2118 /// simplify operations downstream. Mask is known to be zero for bits that V
2119 /// cannot have.
2120 ///
2121 /// This function is defined on values with integer type, values with pointer
2122 /// type, and vectors of integers.  In the case
2123 /// where V is a vector, the mask, known zero, and known one values are the
2124 /// same width as the vector element, and the bit is set only if it is true
2125 /// for all of the elements in the vector.
2126 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2127                        const Query &Q) {
2128   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2129   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2130   return (KnownZero & Mask) == Mask;
2131 }
2132 
2133 
2134 
2135 /// Return the number of times the sign bit of the register is replicated into
2136 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2137 /// (itself), but other cases can give us information. For example, immediately
2138 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2139 /// other, so we return 3.
2140 ///
2141 /// 'Op' must have a scalar integer type.
2142 ///
2143 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2144   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2145   unsigned Tmp, Tmp2;
2146   unsigned FirstAnswer = 1;
2147 
2148   // Note that ConstantInt is handled by the general computeKnownBits case
2149   // below.
2150 
2151   if (Depth == 6)
2152     return 1;  // Limit search depth.
2153 
2154   Operator *U = dyn_cast<Operator>(V);
2155   switch (Operator::getOpcode(V)) {
2156   default: break;
2157   case Instruction::SExt:
2158     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2159     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2160 
2161   case Instruction::SDiv: {
2162     const APInt *Denominator;
2163     // sdiv X, C -> adds log(C) sign bits.
2164     if (match(U->getOperand(1), m_APInt(Denominator))) {
2165 
2166       // Ignore non-positive denominator.
2167       if (!Denominator->isStrictlyPositive())
2168         break;
2169 
2170       // Calculate the incoming numerator bits.
2171       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2172 
2173       // Add floor(log(C)) bits to the numerator bits.
2174       return std::min(TyBits, NumBits + Denominator->logBase2());
2175     }
2176     break;
2177   }
2178 
2179   case Instruction::SRem: {
2180     const APInt *Denominator;
2181     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2182     // positive constant.  This let us put a lower bound on the number of sign
2183     // bits.
2184     if (match(U->getOperand(1), m_APInt(Denominator))) {
2185 
2186       // Ignore non-positive denominator.
2187       if (!Denominator->isStrictlyPositive())
2188         break;
2189 
2190       // Calculate the incoming numerator bits. SRem by a positive constant
2191       // can't lower the number of sign bits.
2192       unsigned NumrBits =
2193           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2194 
2195       // Calculate the leading sign bit constraints by examining the
2196       // denominator.  Given that the denominator is positive, there are two
2197       // cases:
2198       //
2199       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2200       //     (1 << ceilLogBase2(C)).
2201       //
2202       //  2. the numerator is negative.  Then the result range is (-C,0] and
2203       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2204       //
2205       // Thus a lower bound on the number of sign bits is `TyBits -
2206       // ceilLogBase2(C)`.
2207 
2208       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2209       return std::max(NumrBits, ResBits);
2210     }
2211     break;
2212   }
2213 
2214   case Instruction::AShr: {
2215     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2216     // ashr X, C   -> adds C sign bits.  Vectors too.
2217     const APInt *ShAmt;
2218     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2219       Tmp += ShAmt->getZExtValue();
2220       if (Tmp > TyBits) Tmp = TyBits;
2221     }
2222     return Tmp;
2223   }
2224   case Instruction::Shl: {
2225     const APInt *ShAmt;
2226     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2227       // shl destroys sign bits.
2228       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2229       Tmp2 = ShAmt->getZExtValue();
2230       if (Tmp2 >= TyBits ||      // Bad shift.
2231           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2232       return Tmp - Tmp2;
2233     }
2234     break;
2235   }
2236   case Instruction::And:
2237   case Instruction::Or:
2238   case Instruction::Xor:    // NOT is handled here.
2239     // Logical binary ops preserve the number of sign bits at the worst.
2240     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2241     if (Tmp != 1) {
2242       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2243       FirstAnswer = std::min(Tmp, Tmp2);
2244       // We computed what we know about the sign bits as our first
2245       // answer. Now proceed to the generic code that uses
2246       // computeKnownBits, and pick whichever answer is better.
2247     }
2248     break;
2249 
2250   case Instruction::Select:
2251     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2252     if (Tmp == 1) return 1;  // Early out.
2253     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2254     return std::min(Tmp, Tmp2);
2255 
2256   case Instruction::Add:
2257     // Add can have at most one carry bit.  Thus we know that the output
2258     // is, at worst, one more bit than the inputs.
2259     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2260     if (Tmp == 1) return 1;  // Early out.
2261 
2262     // Special case decrementing a value (ADD X, -1):
2263     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2264       if (CRHS->isAllOnesValue()) {
2265         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2266         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2267 
2268         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2269         // sign bits set.
2270         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2271           return TyBits;
2272 
2273         // If we are subtracting one from a positive number, there is no carry
2274         // out of the result.
2275         if (KnownZero.isNegative())
2276           return Tmp;
2277       }
2278 
2279     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2280     if (Tmp2 == 1) return 1;
2281     return std::min(Tmp, Tmp2)-1;
2282 
2283   case Instruction::Sub:
2284     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2285     if (Tmp2 == 1) return 1;
2286 
2287     // Handle NEG.
2288     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2289       if (CLHS->isNullValue()) {
2290         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2291         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2292         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2293         // sign bits set.
2294         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2295           return TyBits;
2296 
2297         // If the input is known to be positive (the sign bit is known clear),
2298         // the output of the NEG has the same number of sign bits as the input.
2299         if (KnownZero.isNegative())
2300           return Tmp2;
2301 
2302         // Otherwise, we treat this like a SUB.
2303       }
2304 
2305     // Sub can have at most one carry bit.  Thus we know that the output
2306     // is, at worst, one more bit than the inputs.
2307     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2308     if (Tmp == 1) return 1;  // Early out.
2309     return std::min(Tmp, Tmp2)-1;
2310 
2311   case Instruction::PHI: {
2312     PHINode *PN = cast<PHINode>(U);
2313     unsigned NumIncomingValues = PN->getNumIncomingValues();
2314     // Don't analyze large in-degree PHIs.
2315     if (NumIncomingValues > 4) break;
2316     // Unreachable blocks may have zero-operand PHI nodes.
2317     if (NumIncomingValues == 0) break;
2318 
2319     // Take the minimum of all incoming values.  This can't infinitely loop
2320     // because of our depth threshold.
2321     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2322     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2323       if (Tmp == 1) return Tmp;
2324       Tmp = std::min(
2325           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2326     }
2327     return Tmp;
2328   }
2329 
2330   case Instruction::Trunc:
2331     // FIXME: it's tricky to do anything useful for this, but it is an important
2332     // case for targets like X86.
2333     break;
2334   }
2335 
2336   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2337   // use this information.
2338   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2339   APInt Mask;
2340   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2341 
2342   if (KnownZero.isNegative()) {        // sign bit is 0
2343     Mask = KnownZero;
2344   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2345     Mask = KnownOne;
2346   } else {
2347     // Nothing known.
2348     return FirstAnswer;
2349   }
2350 
2351   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2352   // the number of identical bits in the top of the input value.
2353   Mask = ~Mask;
2354   Mask <<= Mask.getBitWidth()-TyBits;
2355   // Return # leading zeros.  We use 'min' here in case Val was zero before
2356   // shifting.  We don't want to return '64' as for an i32 "0".
2357   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2358 }
2359 
2360 /// This function computes the integer multiple of Base that equals V.
2361 /// If successful, it returns true and returns the multiple in
2362 /// Multiple. If unsuccessful, it returns false. It looks
2363 /// through SExt instructions only if LookThroughSExt is true.
2364 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2365                            bool LookThroughSExt, unsigned Depth) {
2366   const unsigned MaxDepth = 6;
2367 
2368   assert(V && "No Value?");
2369   assert(Depth <= MaxDepth && "Limit Search Depth");
2370   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2371 
2372   Type *T = V->getType();
2373 
2374   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2375 
2376   if (Base == 0)
2377     return false;
2378 
2379   if (Base == 1) {
2380     Multiple = V;
2381     return true;
2382   }
2383 
2384   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2385   Constant *BaseVal = ConstantInt::get(T, Base);
2386   if (CO && CO == BaseVal) {
2387     // Multiple is 1.
2388     Multiple = ConstantInt::get(T, 1);
2389     return true;
2390   }
2391 
2392   if (CI && CI->getZExtValue() % Base == 0) {
2393     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2394     return true;
2395   }
2396 
2397   if (Depth == MaxDepth) return false;  // Limit search depth.
2398 
2399   Operator *I = dyn_cast<Operator>(V);
2400   if (!I) return false;
2401 
2402   switch (I->getOpcode()) {
2403   default: break;
2404   case Instruction::SExt:
2405     if (!LookThroughSExt) return false;
2406     // otherwise fall through to ZExt
2407   case Instruction::ZExt:
2408     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2409                            LookThroughSExt, Depth+1);
2410   case Instruction::Shl:
2411   case Instruction::Mul: {
2412     Value *Op0 = I->getOperand(0);
2413     Value *Op1 = I->getOperand(1);
2414 
2415     if (I->getOpcode() == Instruction::Shl) {
2416       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2417       if (!Op1CI) return false;
2418       // Turn Op0 << Op1 into Op0 * 2^Op1
2419       APInt Op1Int = Op1CI->getValue();
2420       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2421       APInt API(Op1Int.getBitWidth(), 0);
2422       API.setBit(BitToSet);
2423       Op1 = ConstantInt::get(V->getContext(), API);
2424     }
2425 
2426     Value *Mul0 = nullptr;
2427     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2428       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2429         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2430           if (Op1C->getType()->getPrimitiveSizeInBits() <
2431               MulC->getType()->getPrimitiveSizeInBits())
2432             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2433           if (Op1C->getType()->getPrimitiveSizeInBits() >
2434               MulC->getType()->getPrimitiveSizeInBits())
2435             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2436 
2437           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2438           Multiple = ConstantExpr::getMul(MulC, Op1C);
2439           return true;
2440         }
2441 
2442       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2443         if (Mul0CI->getValue() == 1) {
2444           // V == Base * Op1, so return Op1
2445           Multiple = Op1;
2446           return true;
2447         }
2448     }
2449 
2450     Value *Mul1 = nullptr;
2451     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2452       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2453         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2454           if (Op0C->getType()->getPrimitiveSizeInBits() <
2455               MulC->getType()->getPrimitiveSizeInBits())
2456             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2457           if (Op0C->getType()->getPrimitiveSizeInBits() >
2458               MulC->getType()->getPrimitiveSizeInBits())
2459             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2460 
2461           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2462           Multiple = ConstantExpr::getMul(MulC, Op0C);
2463           return true;
2464         }
2465 
2466       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2467         if (Mul1CI->getValue() == 1) {
2468           // V == Base * Op0, so return Op0
2469           Multiple = Op0;
2470           return true;
2471         }
2472     }
2473   }
2474   }
2475 
2476   // We could not determine if V is a multiple of Base.
2477   return false;
2478 }
2479 
2480 /// Return true if we can prove that the specified FP value is never equal to
2481 /// -0.0.
2482 ///
2483 /// NOTE: this function will need to be revisited when we support non-default
2484 /// rounding modes!
2485 ///
2486 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2487   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2488     return !CFP->getValueAPF().isNegZero();
2489 
2490   // FIXME: Magic number! At the least, this should be given a name because it's
2491   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2492   // expose it as a parameter, so it can be used for testing / experimenting.
2493   if (Depth == 6)
2494     return false;  // Limit search depth.
2495 
2496   const Operator *I = dyn_cast<Operator>(V);
2497   if (!I) return false;
2498 
2499   // Check if the nsz fast-math flag is set
2500   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2501     if (FPO->hasNoSignedZeros())
2502       return true;
2503 
2504   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2505   if (I->getOpcode() == Instruction::FAdd)
2506     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2507       if (CFP->isNullValue())
2508         return true;
2509 
2510   // sitofp and uitofp turn into +0.0 for zero.
2511   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2512     return true;
2513 
2514   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2515     // sqrt(-0.0) = -0.0, no other negative results are possible.
2516     if (II->getIntrinsicID() == Intrinsic::sqrt)
2517       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
2518 
2519   if (const CallInst *CI = dyn_cast<CallInst>(I))
2520     if (const Function *F = CI->getCalledFunction()) {
2521       if (F->isDeclaration()) {
2522         // abs(x) != -0.0
2523         if (F->getName() == "abs") return true;
2524         // fabs[lf](x) != -0.0
2525         if (F->getName() == "fabs") return true;
2526         if (F->getName() == "fabsf") return true;
2527         if (F->getName() == "fabsl") return true;
2528         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2529             F->getName() == "sqrtl")
2530           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
2531       }
2532     }
2533 
2534   return false;
2535 }
2536 
2537 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2538   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2539     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2540 
2541   // FIXME: Magic number! At the least, this should be given a name because it's
2542   // used similarly in CannotBeNegativeZero(). A better fix may be to
2543   // expose it as a parameter, so it can be used for testing / experimenting.
2544   if (Depth == 6)
2545     return false;  // Limit search depth.
2546 
2547   const Operator *I = dyn_cast<Operator>(V);
2548   if (!I) return false;
2549 
2550   switch (I->getOpcode()) {
2551   default: break;
2552   // Unsigned integers are always nonnegative.
2553   case Instruction::UIToFP:
2554     return true;
2555   case Instruction::FMul:
2556     // x*x is always non-negative or a NaN.
2557     if (I->getOperand(0) == I->getOperand(1))
2558       return true;
2559     // Fall through
2560   case Instruction::FAdd:
2561   case Instruction::FDiv:
2562   case Instruction::FRem:
2563     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2564            CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2565   case Instruction::Select:
2566     return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2567            CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2568   case Instruction::FPExt:
2569   case Instruction::FPTrunc:
2570     // Widening/narrowing never change sign.
2571     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2572   case Instruction::Call:
2573     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2574       switch (II->getIntrinsicID()) {
2575       default: break;
2576       case Intrinsic::maxnum:
2577         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2578                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2579       case Intrinsic::minnum:
2580         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2581                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2582       case Intrinsic::exp:
2583       case Intrinsic::exp2:
2584       case Intrinsic::fabs:
2585       case Intrinsic::sqrt:
2586         return true;
2587       case Intrinsic::powi:
2588         if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2589           // powi(x,n) is non-negative if n is even.
2590           if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2591             return true;
2592         }
2593         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2594       case Intrinsic::fma:
2595       case Intrinsic::fmuladd:
2596         // x*x+y is non-negative if y is non-negative.
2597         return I->getOperand(0) == I->getOperand(1) &&
2598                CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2599       }
2600     break;
2601   }
2602   return false;
2603 }
2604 
2605 /// If the specified value can be set by repeating the same byte in memory,
2606 /// return the i8 value that it is represented with.  This is
2607 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2608 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2609 /// byte store (e.g. i16 0x1234), return null.
2610 Value *llvm::isBytewiseValue(Value *V) {
2611   // All byte-wide stores are splatable, even of arbitrary variables.
2612   if (V->getType()->isIntegerTy(8)) return V;
2613 
2614   // Handle 'null' ConstantArrayZero etc.
2615   if (Constant *C = dyn_cast<Constant>(V))
2616     if (C->isNullValue())
2617       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2618 
2619   // Constant float and double values can be handled as integer values if the
2620   // corresponding integer value is "byteable".  An important case is 0.0.
2621   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2622     if (CFP->getType()->isFloatTy())
2623       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2624     if (CFP->getType()->isDoubleTy())
2625       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2626     // Don't handle long double formats, which have strange constraints.
2627   }
2628 
2629   // We can handle constant integers that are multiple of 8 bits.
2630   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2631     if (CI->getBitWidth() % 8 == 0) {
2632       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2633 
2634       if (!CI->getValue().isSplat(8))
2635         return nullptr;
2636       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2637     }
2638   }
2639 
2640   // A ConstantDataArray/Vector is splatable if all its members are equal and
2641   // also splatable.
2642   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2643     Value *Elt = CA->getElementAsConstant(0);
2644     Value *Val = isBytewiseValue(Elt);
2645     if (!Val)
2646       return nullptr;
2647 
2648     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2649       if (CA->getElementAsConstant(I) != Elt)
2650         return nullptr;
2651 
2652     return Val;
2653   }
2654 
2655   // Conceptually, we could handle things like:
2656   //   %a = zext i8 %X to i16
2657   //   %b = shl i16 %a, 8
2658   //   %c = or i16 %a, %b
2659   // but until there is an example that actually needs this, it doesn't seem
2660   // worth worrying about.
2661   return nullptr;
2662 }
2663 
2664 
2665 // This is the recursive version of BuildSubAggregate. It takes a few different
2666 // arguments. Idxs is the index within the nested struct From that we are
2667 // looking at now (which is of type IndexedType). IdxSkip is the number of
2668 // indices from Idxs that should be left out when inserting into the resulting
2669 // struct. To is the result struct built so far, new insertvalue instructions
2670 // build on that.
2671 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2672                                 SmallVectorImpl<unsigned> &Idxs,
2673                                 unsigned IdxSkip,
2674                                 Instruction *InsertBefore) {
2675   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2676   if (STy) {
2677     // Save the original To argument so we can modify it
2678     Value *OrigTo = To;
2679     // General case, the type indexed by Idxs is a struct
2680     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2681       // Process each struct element recursively
2682       Idxs.push_back(i);
2683       Value *PrevTo = To;
2684       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2685                              InsertBefore);
2686       Idxs.pop_back();
2687       if (!To) {
2688         // Couldn't find any inserted value for this index? Cleanup
2689         while (PrevTo != OrigTo) {
2690           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2691           PrevTo = Del->getAggregateOperand();
2692           Del->eraseFromParent();
2693         }
2694         // Stop processing elements
2695         break;
2696       }
2697     }
2698     // If we successfully found a value for each of our subaggregates
2699     if (To)
2700       return To;
2701   }
2702   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2703   // the struct's elements had a value that was inserted directly. In the latter
2704   // case, perhaps we can't determine each of the subelements individually, but
2705   // we might be able to find the complete struct somewhere.
2706 
2707   // Find the value that is at that particular spot
2708   Value *V = FindInsertedValue(From, Idxs);
2709 
2710   if (!V)
2711     return nullptr;
2712 
2713   // Insert the value in the new (sub) aggregrate
2714   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2715                                        "tmp", InsertBefore);
2716 }
2717 
2718 // This helper takes a nested struct and extracts a part of it (which is again a
2719 // struct) into a new value. For example, given the struct:
2720 // { a, { b, { c, d }, e } }
2721 // and the indices "1, 1" this returns
2722 // { c, d }.
2723 //
2724 // It does this by inserting an insertvalue for each element in the resulting
2725 // struct, as opposed to just inserting a single struct. This will only work if
2726 // each of the elements of the substruct are known (ie, inserted into From by an
2727 // insertvalue instruction somewhere).
2728 //
2729 // All inserted insertvalue instructions are inserted before InsertBefore
2730 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2731                                 Instruction *InsertBefore) {
2732   assert(InsertBefore && "Must have someplace to insert!");
2733   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2734                                                              idx_range);
2735   Value *To = UndefValue::get(IndexedType);
2736   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2737   unsigned IdxSkip = Idxs.size();
2738 
2739   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2740 }
2741 
2742 /// Given an aggregrate and an sequence of indices, see if
2743 /// the scalar value indexed is already around as a register, for example if it
2744 /// were inserted directly into the aggregrate.
2745 ///
2746 /// If InsertBefore is not null, this function will duplicate (modified)
2747 /// insertvalues when a part of a nested struct is extracted.
2748 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2749                                Instruction *InsertBefore) {
2750   // Nothing to index? Just return V then (this is useful at the end of our
2751   // recursion).
2752   if (idx_range.empty())
2753     return V;
2754   // We have indices, so V should have an indexable type.
2755   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2756          "Not looking at a struct or array?");
2757   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2758          "Invalid indices for type?");
2759 
2760   if (Constant *C = dyn_cast<Constant>(V)) {
2761     C = C->getAggregateElement(idx_range[0]);
2762     if (!C) return nullptr;
2763     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2764   }
2765 
2766   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2767     // Loop the indices for the insertvalue instruction in parallel with the
2768     // requested indices
2769     const unsigned *req_idx = idx_range.begin();
2770     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2771          i != e; ++i, ++req_idx) {
2772       if (req_idx == idx_range.end()) {
2773         // We can't handle this without inserting insertvalues
2774         if (!InsertBefore)
2775           return nullptr;
2776 
2777         // The requested index identifies a part of a nested aggregate. Handle
2778         // this specially. For example,
2779         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2780         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2781         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2782         // This can be changed into
2783         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2784         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2785         // which allows the unused 0,0 element from the nested struct to be
2786         // removed.
2787         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2788                                  InsertBefore);
2789       }
2790 
2791       // This insert value inserts something else than what we are looking for.
2792       // See if the (aggregate) value inserted into has the value we are
2793       // looking for, then.
2794       if (*req_idx != *i)
2795         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2796                                  InsertBefore);
2797     }
2798     // If we end up here, the indices of the insertvalue match with those
2799     // requested (though possibly only partially). Now we recursively look at
2800     // the inserted value, passing any remaining indices.
2801     return FindInsertedValue(I->getInsertedValueOperand(),
2802                              makeArrayRef(req_idx, idx_range.end()),
2803                              InsertBefore);
2804   }
2805 
2806   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2807     // If we're extracting a value from an aggregate that was extracted from
2808     // something else, we can extract from that something else directly instead.
2809     // However, we will need to chain I's indices with the requested indices.
2810 
2811     // Calculate the number of indices required
2812     unsigned size = I->getNumIndices() + idx_range.size();
2813     // Allocate some space to put the new indices in
2814     SmallVector<unsigned, 5> Idxs;
2815     Idxs.reserve(size);
2816     // Add indices from the extract value instruction
2817     Idxs.append(I->idx_begin(), I->idx_end());
2818 
2819     // Add requested indices
2820     Idxs.append(idx_range.begin(), idx_range.end());
2821 
2822     assert(Idxs.size() == size
2823            && "Number of indices added not correct?");
2824 
2825     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2826   }
2827   // Otherwise, we don't know (such as, extracting from a function return value
2828   // or load instruction)
2829   return nullptr;
2830 }
2831 
2832 /// Analyze the specified pointer to see if it can be expressed as a base
2833 /// pointer plus a constant offset. Return the base and offset to the caller.
2834 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2835                                               const DataLayout &DL) {
2836   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2837   APInt ByteOffset(BitWidth, 0);
2838 
2839   // We walk up the defs but use a visited set to handle unreachable code. In
2840   // that case, we stop after accumulating the cycle once (not that it
2841   // matters).
2842   SmallPtrSet<Value *, 16> Visited;
2843   while (Visited.insert(Ptr).second) {
2844     if (Ptr->getType()->isVectorTy())
2845       break;
2846 
2847     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2848       APInt GEPOffset(BitWidth, 0);
2849       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2850         break;
2851 
2852       ByteOffset += GEPOffset;
2853 
2854       Ptr = GEP->getPointerOperand();
2855     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2856                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2857       Ptr = cast<Operator>(Ptr)->getOperand(0);
2858     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2859       if (GA->mayBeOverridden())
2860         break;
2861       Ptr = GA->getAliasee();
2862     } else {
2863       break;
2864     }
2865   }
2866   Offset = ByteOffset.getSExtValue();
2867   return Ptr;
2868 }
2869 
2870 
2871 /// This function computes the length of a null-terminated C string pointed to
2872 /// by V. If successful, it returns true and returns the string in Str.
2873 /// If unsuccessful, it returns false.
2874 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2875                                  uint64_t Offset, bool TrimAtNul) {
2876   assert(V);
2877 
2878   // Look through bitcast instructions and geps.
2879   V = V->stripPointerCasts();
2880 
2881   // If the value is a GEP instruction or constant expression, treat it as an
2882   // offset.
2883   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2884     // Make sure the GEP has exactly three arguments.
2885     if (GEP->getNumOperands() != 3)
2886       return false;
2887 
2888     // Make sure the index-ee is a pointer to array of i8.
2889     ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2890     if (!AT || !AT->getElementType()->isIntegerTy(8))
2891       return false;
2892 
2893     // Check to make sure that the first operand of the GEP is an integer and
2894     // has value 0 so that we are sure we're indexing into the initializer.
2895     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2896     if (!FirstIdx || !FirstIdx->isZero())
2897       return false;
2898 
2899     // If the second index isn't a ConstantInt, then this is a variable index
2900     // into the array.  If this occurs, we can't say anything meaningful about
2901     // the string.
2902     uint64_t StartIdx = 0;
2903     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2904       StartIdx = CI->getZExtValue();
2905     else
2906       return false;
2907     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2908                                  TrimAtNul);
2909   }
2910 
2911   // The GEP instruction, constant or instruction, must reference a global
2912   // variable that is a constant and is initialized. The referenced constant
2913   // initializer is the array that we'll use for optimization.
2914   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2915   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2916     return false;
2917 
2918   // Handle the all-zeros case
2919   if (GV->getInitializer()->isNullValue()) {
2920     // This is a degenerate case. The initializer is constant zero so the
2921     // length of the string must be zero.
2922     Str = "";
2923     return true;
2924   }
2925 
2926   // Must be a Constant Array
2927   const ConstantDataArray *Array =
2928     dyn_cast<ConstantDataArray>(GV->getInitializer());
2929   if (!Array || !Array->isString())
2930     return false;
2931 
2932   // Get the number of elements in the array
2933   uint64_t NumElts = Array->getType()->getArrayNumElements();
2934 
2935   // Start out with the entire array in the StringRef.
2936   Str = Array->getAsString();
2937 
2938   if (Offset > NumElts)
2939     return false;
2940 
2941   // Skip over 'offset' bytes.
2942   Str = Str.substr(Offset);
2943 
2944   if (TrimAtNul) {
2945     // Trim off the \0 and anything after it.  If the array is not nul
2946     // terminated, we just return the whole end of string.  The client may know
2947     // some other way that the string is length-bound.
2948     Str = Str.substr(0, Str.find('\0'));
2949   }
2950   return true;
2951 }
2952 
2953 // These next two are very similar to the above, but also look through PHI
2954 // nodes.
2955 // TODO: See if we can integrate these two together.
2956 
2957 /// If we can compute the length of the string pointed to by
2958 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2959 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2960   // Look through noop bitcast instructions.
2961   V = V->stripPointerCasts();
2962 
2963   // If this is a PHI node, there are two cases: either we have already seen it
2964   // or we haven't.
2965   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2966     if (!PHIs.insert(PN).second)
2967       return ~0ULL;  // already in the set.
2968 
2969     // If it was new, see if all the input strings are the same length.
2970     uint64_t LenSoFar = ~0ULL;
2971     for (Value *IncValue : PN->incoming_values()) {
2972       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2973       if (Len == 0) return 0; // Unknown length -> unknown.
2974 
2975       if (Len == ~0ULL) continue;
2976 
2977       if (Len != LenSoFar && LenSoFar != ~0ULL)
2978         return 0;    // Disagree -> unknown.
2979       LenSoFar = Len;
2980     }
2981 
2982     // Success, all agree.
2983     return LenSoFar;
2984   }
2985 
2986   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2987   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2988     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2989     if (Len1 == 0) return 0;
2990     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2991     if (Len2 == 0) return 0;
2992     if (Len1 == ~0ULL) return Len2;
2993     if (Len2 == ~0ULL) return Len1;
2994     if (Len1 != Len2) return 0;
2995     return Len1;
2996   }
2997 
2998   // Otherwise, see if we can read the string.
2999   StringRef StrData;
3000   if (!getConstantStringInfo(V, StrData))
3001     return 0;
3002 
3003   return StrData.size()+1;
3004 }
3005 
3006 /// If we can compute the length of the string pointed to by
3007 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3008 uint64_t llvm::GetStringLength(Value *V) {
3009   if (!V->getType()->isPointerTy()) return 0;
3010 
3011   SmallPtrSet<PHINode*, 32> PHIs;
3012   uint64_t Len = GetStringLengthH(V, PHIs);
3013   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3014   // an empty string as a length.
3015   return Len == ~0ULL ? 1 : Len;
3016 }
3017 
3018 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3019 /// previous iteration of the loop was referring to the same object as \p PN.
3020 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3021   // Find the loop-defined value.
3022   Loop *L = LI->getLoopFor(PN->getParent());
3023   if (PN->getNumIncomingValues() != 2)
3024     return true;
3025 
3026   // Find the value from previous iteration.
3027   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3028   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3029     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3030   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3031     return true;
3032 
3033   // If a new pointer is loaded in the loop, the pointer references a different
3034   // object in every iteration.  E.g.:
3035   //    for (i)
3036   //       int *p = a[i];
3037   //       ...
3038   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3039     if (!L->isLoopInvariant(Load->getPointerOperand()))
3040       return false;
3041   return true;
3042 }
3043 
3044 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3045                                  unsigned MaxLookup) {
3046   if (!V->getType()->isPointerTy())
3047     return V;
3048   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3049     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3050       V = GEP->getPointerOperand();
3051     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3052                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3053       V = cast<Operator>(V)->getOperand(0);
3054     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3055       if (GA->mayBeOverridden())
3056         return V;
3057       V = GA->getAliasee();
3058     } else {
3059       // See if InstructionSimplify knows any relevant tricks.
3060       if (Instruction *I = dyn_cast<Instruction>(V))
3061         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3062         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3063           V = Simplified;
3064           continue;
3065         }
3066 
3067       return V;
3068     }
3069     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3070   }
3071   return V;
3072 }
3073 
3074 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3075                                 const DataLayout &DL, LoopInfo *LI,
3076                                 unsigned MaxLookup) {
3077   SmallPtrSet<Value *, 4> Visited;
3078   SmallVector<Value *, 4> Worklist;
3079   Worklist.push_back(V);
3080   do {
3081     Value *P = Worklist.pop_back_val();
3082     P = GetUnderlyingObject(P, DL, MaxLookup);
3083 
3084     if (!Visited.insert(P).second)
3085       continue;
3086 
3087     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3088       Worklist.push_back(SI->getTrueValue());
3089       Worklist.push_back(SI->getFalseValue());
3090       continue;
3091     }
3092 
3093     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3094       // If this PHI changes the underlying object in every iteration of the
3095       // loop, don't look through it.  Consider:
3096       //   int **A;
3097       //   for (i) {
3098       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3099       //     Curr = A[i];
3100       //     *Prev, *Curr;
3101       //
3102       // Prev is tracking Curr one iteration behind so they refer to different
3103       // underlying objects.
3104       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3105           isSameUnderlyingObjectInLoop(PN, LI))
3106         for (Value *IncValue : PN->incoming_values())
3107           Worklist.push_back(IncValue);
3108       continue;
3109     }
3110 
3111     Objects.push_back(P);
3112   } while (!Worklist.empty());
3113 }
3114 
3115 /// Return true if the only users of this pointer are lifetime markers.
3116 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3117   for (const User *U : V->users()) {
3118     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3119     if (!II) return false;
3120 
3121     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3122         II->getIntrinsicID() != Intrinsic::lifetime_end)
3123       return false;
3124   }
3125   return true;
3126 }
3127 
3128 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
3129                                            Type *Ty, const DataLayout &DL,
3130                                            const Instruction *CtxI,
3131                                            const DominatorTree *DT,
3132                                            const TargetLibraryInfo *TLI) {
3133   assert(Offset.isNonNegative() && "offset can't be negative");
3134   assert(Ty->isSized() && "must be sized");
3135 
3136   APInt DerefBytes(Offset.getBitWidth(), 0);
3137   bool CheckForNonNull = false;
3138   if (const Argument *A = dyn_cast<Argument>(BV)) {
3139     DerefBytes = A->getDereferenceableBytes();
3140     if (!DerefBytes.getBoolValue()) {
3141       DerefBytes = A->getDereferenceableOrNullBytes();
3142       CheckForNonNull = true;
3143     }
3144   } else if (auto CS = ImmutableCallSite(BV)) {
3145     DerefBytes = CS.getDereferenceableBytes(0);
3146     if (!DerefBytes.getBoolValue()) {
3147       DerefBytes = CS.getDereferenceableOrNullBytes(0);
3148       CheckForNonNull = true;
3149     }
3150   } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3151     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3152       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3153       DerefBytes = CI->getLimitedValue();
3154     }
3155     if (!DerefBytes.getBoolValue()) {
3156       if (MDNode *MD =
3157               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3158         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3159         DerefBytes = CI->getLimitedValue();
3160       }
3161       CheckForNonNull = true;
3162     }
3163   }
3164 
3165   if (DerefBytes.getBoolValue())
3166     if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
3167       if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3168         return true;
3169 
3170   return false;
3171 }
3172 
3173 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3174                                            const Instruction *CtxI,
3175                                            const DominatorTree *DT,
3176                                            const TargetLibraryInfo *TLI) {
3177   Type *VTy = V->getType();
3178   Type *Ty = VTy->getPointerElementType();
3179   if (!Ty->isSized())
3180     return false;
3181 
3182   APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3183   return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
3184 }
3185 
3186 static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3187                       const DataLayout &DL) {
3188   APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
3189 
3190   if (!BaseAlign) {
3191     Type *Ty = Base->getType()->getPointerElementType();
3192     if (!Ty->isSized())
3193       return false;
3194     BaseAlign = DL.getABITypeAlignment(Ty);
3195   }
3196 
3197   APInt Alignment(Offset.getBitWidth(), Align);
3198 
3199   assert(Alignment.isPowerOf2() && "must be a power of 2!");
3200   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3201 }
3202 
3203 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3204   Type *Ty = Base->getType();
3205   assert(Ty->isSized() && "must be sized");
3206   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
3207   return isAligned(Base, Offset, Align, DL);
3208 }
3209 
3210 /// Test if V is always a pointer to allocated and suitably aligned memory for
3211 /// a simple load or store.
3212 static bool isDereferenceableAndAlignedPointer(
3213     const Value *V, unsigned Align, const DataLayout &DL,
3214     const Instruction *CtxI, const DominatorTree *DT,
3215     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
3216   // Note that it is not safe to speculate into a malloc'd region because
3217   // malloc may return null.
3218 
3219   // These are obviously ok if aligned.
3220   if (isa<AllocaInst>(V))
3221     return isAligned(V, Align, DL);
3222 
3223   // It's not always safe to follow a bitcast, for example:
3224   //   bitcast i8* (alloca i8) to i32*
3225   // would result in a 4-byte load from a 1-byte alloca. However,
3226   // if we're casting from a pointer from a type of larger size
3227   // to a type of smaller size (or the same size), and the alignment
3228   // is at least as large as for the resulting pointer type, then
3229   // we can look through the bitcast.
3230   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3231     Type *STy = BC->getSrcTy()->getPointerElementType(),
3232          *DTy = BC->getDestTy()->getPointerElementType();
3233     if (STy->isSized() && DTy->isSized() &&
3234         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3235         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
3236       return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3237                                                 CtxI, DT, TLI, Visited);
3238   }
3239 
3240   // Global variables which can't collapse to null are ok.
3241   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
3242     if (!GV->hasExternalWeakLinkage())
3243       return isAligned(V, Align, DL);
3244 
3245   // byval arguments are okay.
3246   if (const Argument *A = dyn_cast<Argument>(V))
3247     if (A->hasByValAttr())
3248       return isAligned(V, Align, DL);
3249 
3250   if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
3251     return isAligned(V, Align, DL);
3252 
3253   // For GEPs, determine if the indexing lands within the allocated object.
3254   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3255     Type *Ty = GEP->getResultElementType();
3256     const Value *Base = GEP->getPointerOperand();
3257 
3258     // Conservatively require that the base pointer be fully dereferenceable
3259     // and aligned.
3260     if (!Visited.insert(Base).second)
3261       return false;
3262     if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3263                                             Visited))
3264       return false;
3265 
3266     APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
3267     if (!GEP->accumulateConstantOffset(DL, Offset))
3268       return false;
3269 
3270     // Check if the load is within the bounds of the underlying object
3271     // and offset is aligned.
3272     uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3273     Type *BaseType = GEP->getSourceElementType();
3274     assert(isPowerOf2_32(Align) && "must be a power of 2!");
3275     return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3276            !(Offset & APInt(Offset.getBitWidth(), Align-1));
3277   }
3278 
3279   // For gc.relocate, look through relocations
3280   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3281     return isDereferenceableAndAlignedPointer(
3282         RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
3283 
3284   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
3285     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3286                                               CtxI, DT, TLI, Visited);
3287 
3288   // If we don't know, assume the worst.
3289   return false;
3290 }
3291 
3292 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3293                                               const DataLayout &DL,
3294                                               const Instruction *CtxI,
3295                                               const DominatorTree *DT,
3296                                               const TargetLibraryInfo *TLI) {
3297   // When dereferenceability information is provided by a dereferenceable
3298   // attribute, we know exactly how many bytes are dereferenceable. If we can
3299   // determine the exact offset to the attributed variable, we can use that
3300   // information here.
3301   Type *VTy = V->getType();
3302   Type *Ty = VTy->getPointerElementType();
3303 
3304   // Require ABI alignment for loads without alignment specification
3305   if (Align == 0)
3306     Align = DL.getABITypeAlignment(Ty);
3307 
3308   if (Ty->isSized()) {
3309     APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3310     const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
3311 
3312     if (Offset.isNonNegative())
3313       if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3314           isAligned(BV, Offset, Align, DL))
3315         return true;
3316   }
3317 
3318   SmallPtrSet<const Value *, 32> Visited;
3319   return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3320                                               Visited);
3321 }
3322 
3323 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3324                                     const Instruction *CtxI,
3325                                     const DominatorTree *DT,
3326                                     const TargetLibraryInfo *TLI) {
3327   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
3328 }
3329 
3330 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3331                                         const Instruction *CtxI,
3332                                         const DominatorTree *DT,
3333                                         const TargetLibraryInfo *TLI) {
3334   const Operator *Inst = dyn_cast<Operator>(V);
3335   if (!Inst)
3336     return false;
3337 
3338   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3339     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3340       if (C->canTrap())
3341         return false;
3342 
3343   switch (Inst->getOpcode()) {
3344   default:
3345     return true;
3346   case Instruction::UDiv:
3347   case Instruction::URem: {
3348     // x / y is undefined if y == 0.
3349     const APInt *V;
3350     if (match(Inst->getOperand(1), m_APInt(V)))
3351       return *V != 0;
3352     return false;
3353   }
3354   case Instruction::SDiv:
3355   case Instruction::SRem: {
3356     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3357     const APInt *Numerator, *Denominator;
3358     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3359       return false;
3360     // We cannot hoist this division if the denominator is 0.
3361     if (*Denominator == 0)
3362       return false;
3363     // It's safe to hoist if the denominator is not 0 or -1.
3364     if (*Denominator != -1)
3365       return true;
3366     // At this point we know that the denominator is -1.  It is safe to hoist as
3367     // long we know that the numerator is not INT_MIN.
3368     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3369       return !Numerator->isMinSignedValue();
3370     // The numerator *might* be MinSignedValue.
3371     return false;
3372   }
3373   case Instruction::Load: {
3374     const LoadInst *LI = cast<LoadInst>(Inst);
3375     if (!LI->isUnordered() ||
3376         // Speculative load may create a race that did not exist in the source.
3377         LI->getParent()->getParent()->hasFnAttribute(
3378             Attribute::SanitizeThread) ||
3379         // Speculative load may load data from dirty regions.
3380         LI->getParent()->getParent()->hasFnAttribute(
3381             Attribute::SanitizeAddress))
3382       return false;
3383     const DataLayout &DL = LI->getModule()->getDataLayout();
3384     return isDereferenceableAndAlignedPointer(
3385         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3386   }
3387   case Instruction::Call: {
3388     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3389       switch (II->getIntrinsicID()) {
3390       // These synthetic intrinsics have no side-effects and just mark
3391       // information about their operands.
3392       // FIXME: There are other no-op synthetic instructions that potentially
3393       // should be considered at least *safe* to speculate...
3394       case Intrinsic::dbg_declare:
3395       case Intrinsic::dbg_value:
3396         return true;
3397 
3398       case Intrinsic::bswap:
3399       case Intrinsic::ctlz:
3400       case Intrinsic::ctpop:
3401       case Intrinsic::cttz:
3402       case Intrinsic::objectsize:
3403       case Intrinsic::sadd_with_overflow:
3404       case Intrinsic::smul_with_overflow:
3405       case Intrinsic::ssub_with_overflow:
3406       case Intrinsic::uadd_with_overflow:
3407       case Intrinsic::umul_with_overflow:
3408       case Intrinsic::usub_with_overflow:
3409         return true;
3410       // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3411       // errno like libm sqrt would.
3412       case Intrinsic::sqrt:
3413       case Intrinsic::fma:
3414       case Intrinsic::fmuladd:
3415       case Intrinsic::fabs:
3416       case Intrinsic::minnum:
3417       case Intrinsic::maxnum:
3418         return true;
3419       // TODO: some fp intrinsics are marked as having the same error handling
3420       // as libm. They're safe to speculate when they won't error.
3421       // TODO: are convert_{from,to}_fp16 safe?
3422       // TODO: can we list target-specific intrinsics here?
3423       default: break;
3424       }
3425     }
3426     return false; // The called function could have undefined behavior or
3427                   // side-effects, even if marked readnone nounwind.
3428   }
3429   case Instruction::VAArg:
3430   case Instruction::Alloca:
3431   case Instruction::Invoke:
3432   case Instruction::PHI:
3433   case Instruction::Store:
3434   case Instruction::Ret:
3435   case Instruction::Br:
3436   case Instruction::IndirectBr:
3437   case Instruction::Switch:
3438   case Instruction::Unreachable:
3439   case Instruction::Fence:
3440   case Instruction::AtomicRMW:
3441   case Instruction::AtomicCmpXchg:
3442   case Instruction::LandingPad:
3443   case Instruction::Resume:
3444   case Instruction::CatchSwitch:
3445   case Instruction::CatchPad:
3446   case Instruction::CatchRet:
3447   case Instruction::CleanupPad:
3448   case Instruction::CleanupRet:
3449     return false; // Misc instructions which have effects
3450   }
3451 }
3452 
3453 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3454   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3455 }
3456 
3457 /// Return true if we know that the specified value is never null.
3458 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3459   assert(V->getType()->isPointerTy() && "V must be pointer type");
3460 
3461   // Alloca never returns null, malloc might.
3462   if (isa<AllocaInst>(V)) return true;
3463 
3464   // A byval, inalloca, or nonnull argument is never null.
3465   if (const Argument *A = dyn_cast<Argument>(V))
3466     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3467 
3468   // A global variable in address space 0 is non null unless extern weak.
3469   // Other address spaces may have null as a valid address for a global,
3470   // so we can't assume anything.
3471   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3472     return !GV->hasExternalWeakLinkage() &&
3473            GV->getType()->getAddressSpace() == 0;
3474 
3475   // A Load tagged w/nonnull metadata is never null.
3476   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3477     return LI->getMetadata(LLVMContext::MD_nonnull);
3478 
3479   if (auto CS = ImmutableCallSite(V))
3480     if (CS.isReturnNonNull())
3481       return true;
3482 
3483   return false;
3484 }
3485 
3486 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3487                                                   const Instruction *CtxI,
3488                                                   const DominatorTree *DT) {
3489   assert(V->getType()->isPointerTy() && "V must be pointer type");
3490 
3491   unsigned NumUsesExplored = 0;
3492   for (auto U : V->users()) {
3493     // Avoid massive lists
3494     if (NumUsesExplored >= DomConditionsMaxUses)
3495       break;
3496     NumUsesExplored++;
3497     // Consider only compare instructions uniquely controlling a branch
3498     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3499     if (!Cmp)
3500       continue;
3501 
3502     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3503       continue;
3504 
3505     for (auto *CmpU : Cmp->users()) {
3506       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3507       if (!BI)
3508         continue;
3509 
3510       assert(BI->isConditional() && "uses a comparison!");
3511 
3512       BasicBlock *NonNullSuccessor = nullptr;
3513       CmpInst::Predicate Pred;
3514 
3515       if (match(const_cast<ICmpInst*>(Cmp),
3516                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3517         if (Pred == ICmpInst::ICMP_EQ)
3518           NonNullSuccessor = BI->getSuccessor(1);
3519         else if (Pred == ICmpInst::ICMP_NE)
3520           NonNullSuccessor = BI->getSuccessor(0);
3521       }
3522 
3523       if (NonNullSuccessor) {
3524         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3525         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3526           return true;
3527       }
3528     }
3529   }
3530 
3531   return false;
3532 }
3533 
3534 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3535                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3536   if (isKnownNonNull(V, TLI))
3537     return true;
3538 
3539   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3540 }
3541 
3542 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3543                                                    const DataLayout &DL,
3544                                                    AssumptionCache *AC,
3545                                                    const Instruction *CxtI,
3546                                                    const DominatorTree *DT) {
3547   // Multiplying n * m significant bits yields a result of n + m significant
3548   // bits. If the total number of significant bits does not exceed the
3549   // result bit width (minus 1), there is no overflow.
3550   // This means if we have enough leading zero bits in the operands
3551   // we can guarantee that the result does not overflow.
3552   // Ref: "Hacker's Delight" by Henry Warren
3553   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3554   APInt LHSKnownZero(BitWidth, 0);
3555   APInt LHSKnownOne(BitWidth, 0);
3556   APInt RHSKnownZero(BitWidth, 0);
3557   APInt RHSKnownOne(BitWidth, 0);
3558   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3559                    DT);
3560   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3561                    DT);
3562   // Note that underestimating the number of zero bits gives a more
3563   // conservative answer.
3564   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3565                       RHSKnownZero.countLeadingOnes();
3566   // First handle the easy case: if we have enough zero bits there's
3567   // definitely no overflow.
3568   if (ZeroBits >= BitWidth)
3569     return OverflowResult::NeverOverflows;
3570 
3571   // Get the largest possible values for each operand.
3572   APInt LHSMax = ~LHSKnownZero;
3573   APInt RHSMax = ~RHSKnownZero;
3574 
3575   // We know the multiply operation doesn't overflow if the maximum values for
3576   // each operand will not overflow after we multiply them together.
3577   bool MaxOverflow;
3578   LHSMax.umul_ov(RHSMax, MaxOverflow);
3579   if (!MaxOverflow)
3580     return OverflowResult::NeverOverflows;
3581 
3582   // We know it always overflows if multiplying the smallest possible values for
3583   // the operands also results in overflow.
3584   bool MinOverflow;
3585   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3586   if (MinOverflow)
3587     return OverflowResult::AlwaysOverflows;
3588 
3589   return OverflowResult::MayOverflow;
3590 }
3591 
3592 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3593                                                    const DataLayout &DL,
3594                                                    AssumptionCache *AC,
3595                                                    const Instruction *CxtI,
3596                                                    const DominatorTree *DT) {
3597   bool LHSKnownNonNegative, LHSKnownNegative;
3598   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3599                  AC, CxtI, DT);
3600   if (LHSKnownNonNegative || LHSKnownNegative) {
3601     bool RHSKnownNonNegative, RHSKnownNegative;
3602     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3603                    AC, CxtI, DT);
3604 
3605     if (LHSKnownNegative && RHSKnownNegative) {
3606       // The sign bit is set in both cases: this MUST overflow.
3607       // Create a simple add instruction, and insert it into the struct.
3608       return OverflowResult::AlwaysOverflows;
3609     }
3610 
3611     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3612       // The sign bit is clear in both cases: this CANNOT overflow.
3613       // Create a simple add instruction, and insert it into the struct.
3614       return OverflowResult::NeverOverflows;
3615     }
3616   }
3617 
3618   return OverflowResult::MayOverflow;
3619 }
3620 
3621 static OverflowResult computeOverflowForSignedAdd(
3622     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3623     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3624   if (Add && Add->hasNoSignedWrap()) {
3625     return OverflowResult::NeverOverflows;
3626   }
3627 
3628   bool LHSKnownNonNegative, LHSKnownNegative;
3629   bool RHSKnownNonNegative, RHSKnownNegative;
3630   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3631                  AC, CxtI, DT);
3632   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3633                  AC, CxtI, DT);
3634 
3635   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3636       (LHSKnownNegative && RHSKnownNonNegative)) {
3637     // The sign bits are opposite: this CANNOT overflow.
3638     return OverflowResult::NeverOverflows;
3639   }
3640 
3641   // The remaining code needs Add to be available. Early returns if not so.
3642   if (!Add)
3643     return OverflowResult::MayOverflow;
3644 
3645   // If the sign of Add is the same as at least one of the operands, this add
3646   // CANNOT overflow. This is particularly useful when the sum is
3647   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3648   // operands.
3649   bool LHSOrRHSKnownNonNegative =
3650       (LHSKnownNonNegative || RHSKnownNonNegative);
3651   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3652   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3653     bool AddKnownNonNegative, AddKnownNegative;
3654     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3655                    /*Depth=*/0, AC, CxtI, DT);
3656     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3657         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3658       return OverflowResult::NeverOverflows;
3659     }
3660   }
3661 
3662   return OverflowResult::MayOverflow;
3663 }
3664 
3665 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3666                                                  const DataLayout &DL,
3667                                                  AssumptionCache *AC,
3668                                                  const Instruction *CxtI,
3669                                                  const DominatorTree *DT) {
3670   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3671                                        Add, DL, AC, CxtI, DT);
3672 }
3673 
3674 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3675                                                  const DataLayout &DL,
3676                                                  AssumptionCache *AC,
3677                                                  const Instruction *CxtI,
3678                                                  const DominatorTree *DT) {
3679   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3680 }
3681 
3682 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3683   // FIXME: This conservative implementation can be relaxed. E.g. most
3684   // atomic operations are guaranteed to terminate on most platforms
3685   // and most functions terminate.
3686 
3687   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3688          !isa<CallInst>(I) &&    // could throw and might not terminate
3689          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3690                                  //   non-successor (see bug 24185 for details).
3691          !isa<ResumeInst>(I) &&  // has no successors
3692          !isa<ReturnInst>(I);    // has no successors
3693 }
3694 
3695 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3696                                                   const Loop *L) {
3697   // The loop header is guaranteed to be executed for every iteration.
3698   //
3699   // FIXME: Relax this constraint to cover all basic blocks that are
3700   // guaranteed to be executed at every iteration.
3701   if (I->getParent() != L->getHeader()) return false;
3702 
3703   for (const Instruction &LI : *L->getHeader()) {
3704     if (&LI == I) return true;
3705     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3706   }
3707   llvm_unreachable("Instruction not contained in its own parent basic block.");
3708 }
3709 
3710 bool llvm::propagatesFullPoison(const Instruction *I) {
3711   switch (I->getOpcode()) {
3712     case Instruction::Add:
3713     case Instruction::Sub:
3714     case Instruction::Xor:
3715     case Instruction::Trunc:
3716     case Instruction::BitCast:
3717     case Instruction::AddrSpaceCast:
3718       // These operations all propagate poison unconditionally. Note that poison
3719       // is not any particular value, so xor or subtraction of poison with
3720       // itself still yields poison, not zero.
3721       return true;
3722 
3723     case Instruction::AShr:
3724     case Instruction::SExt:
3725       // For these operations, one bit of the input is replicated across
3726       // multiple output bits. A replicated poison bit is still poison.
3727       return true;
3728 
3729     case Instruction::Shl: {
3730       // Left shift *by* a poison value is poison. The number of
3731       // positions to shift is unsigned, so no negative values are
3732       // possible there. Left shift by zero places preserves poison. So
3733       // it only remains to consider left shift of poison by a positive
3734       // number of places.
3735       //
3736       // A left shift by a positive number of places leaves the lowest order bit
3737       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3738       // make the poison operand violate that flag, yielding a fresh full-poison
3739       // value.
3740       auto *OBO = cast<OverflowingBinaryOperator>(I);
3741       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3742     }
3743 
3744     case Instruction::Mul: {
3745       // A multiplication by zero yields a non-poison zero result, so we need to
3746       // rule out zero as an operand. Conservatively, multiplication by a
3747       // non-zero constant is not multiplication by zero.
3748       //
3749       // Multiplication by a non-zero constant can leave some bits
3750       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3751       // order bit unpoisoned. So we need to consider that.
3752       //
3753       // Multiplication by 1 preserves poison. If the multiplication has a
3754       // no-wrap flag, then we can make the poison operand violate that flag
3755       // when multiplied by any integer other than 0 and 1.
3756       auto *OBO = cast<OverflowingBinaryOperator>(I);
3757       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3758         for (Value *V : OBO->operands()) {
3759           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3760             // A ConstantInt cannot yield poison, so we can assume that it is
3761             // the other operand that is poison.
3762             return !CI->isZero();
3763           }
3764         }
3765       }
3766       return false;
3767     }
3768 
3769     case Instruction::GetElementPtr:
3770       // A GEP implicitly represents a sequence of additions, subtractions,
3771       // truncations, sign extensions and multiplications. The multiplications
3772       // are by the non-zero sizes of some set of types, so we do not have to be
3773       // concerned with multiplication by zero. If the GEP is in-bounds, then
3774       // these operations are implicitly no-signed-wrap so poison is propagated
3775       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3776       return cast<GEPOperator>(I)->isInBounds();
3777 
3778     default:
3779       return false;
3780   }
3781 }
3782 
3783 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3784   switch (I->getOpcode()) {
3785     case Instruction::Store:
3786       return cast<StoreInst>(I)->getPointerOperand();
3787 
3788     case Instruction::Load:
3789       return cast<LoadInst>(I)->getPointerOperand();
3790 
3791     case Instruction::AtomicCmpXchg:
3792       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3793 
3794     case Instruction::AtomicRMW:
3795       return cast<AtomicRMWInst>(I)->getPointerOperand();
3796 
3797     case Instruction::UDiv:
3798     case Instruction::SDiv:
3799     case Instruction::URem:
3800     case Instruction::SRem:
3801       return I->getOperand(1);
3802 
3803     default:
3804       return nullptr;
3805   }
3806 }
3807 
3808 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3809   // We currently only look for uses of poison values within the same basic
3810   // block, as that makes it easier to guarantee that the uses will be
3811   // executed given that PoisonI is executed.
3812   //
3813   // FIXME: Expand this to consider uses beyond the same basic block. To do
3814   // this, look out for the distinction between post-dominance and strong
3815   // post-dominance.
3816   const BasicBlock *BB = PoisonI->getParent();
3817 
3818   // Set of instructions that we have proved will yield poison if PoisonI
3819   // does.
3820   SmallSet<const Value *, 16> YieldsPoison;
3821   YieldsPoison.insert(PoisonI);
3822 
3823   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3824        I != E; ++I) {
3825     if (&*I != PoisonI) {
3826       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3827       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3828       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3829         return false;
3830     }
3831 
3832     // Mark poison that propagates from I through uses of I.
3833     if (YieldsPoison.count(&*I)) {
3834       for (const User *User : I->users()) {
3835         const Instruction *UserI = cast<Instruction>(User);
3836         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3837           YieldsPoison.insert(User);
3838       }
3839     }
3840   }
3841   return false;
3842 }
3843 
3844 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3845   if (FMF.noNaNs())
3846     return true;
3847 
3848   if (auto *C = dyn_cast<ConstantFP>(V))
3849     return !C->isNaN();
3850   return false;
3851 }
3852 
3853 static bool isKnownNonZero(Value *V) {
3854   if (auto *C = dyn_cast<ConstantFP>(V))
3855     return !C->isZero();
3856   return false;
3857 }
3858 
3859 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3860                                               FastMathFlags FMF,
3861                                               Value *CmpLHS, Value *CmpRHS,
3862                                               Value *TrueVal, Value *FalseVal,
3863                                               Value *&LHS, Value *&RHS) {
3864   LHS = CmpLHS;
3865   RHS = CmpRHS;
3866 
3867   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3868   // return inconsistent results between implementations.
3869   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3870   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3871   // Therefore we behave conservatively and only proceed if at least one of the
3872   // operands is known to not be zero, or if we don't care about signed zeroes.
3873   switch (Pred) {
3874   default: break;
3875   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3876   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3877     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3878         !isKnownNonZero(CmpRHS))
3879       return {SPF_UNKNOWN, SPNB_NA, false};
3880   }
3881 
3882   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3883   bool Ordered = false;
3884 
3885   // When given one NaN and one non-NaN input:
3886   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3887   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3888   //     ordered comparison fails), which could be NaN or non-NaN.
3889   // so here we discover exactly what NaN behavior is required/accepted.
3890   if (CmpInst::isFPPredicate(Pred)) {
3891     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3892     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3893 
3894     if (LHSSafe && RHSSafe) {
3895       // Both operands are known non-NaN.
3896       NaNBehavior = SPNB_RETURNS_ANY;
3897     } else if (CmpInst::isOrdered(Pred)) {
3898       // An ordered comparison will return false when given a NaN, so it
3899       // returns the RHS.
3900       Ordered = true;
3901       if (LHSSafe)
3902         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3903         NaNBehavior = SPNB_RETURNS_NAN;
3904       else if (RHSSafe)
3905         NaNBehavior = SPNB_RETURNS_OTHER;
3906       else
3907         // Completely unsafe.
3908         return {SPF_UNKNOWN, SPNB_NA, false};
3909     } else {
3910       Ordered = false;
3911       // An unordered comparison will return true when given a NaN, so it
3912       // returns the LHS.
3913       if (LHSSafe)
3914         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3915         NaNBehavior = SPNB_RETURNS_OTHER;
3916       else if (RHSSafe)
3917         NaNBehavior = SPNB_RETURNS_NAN;
3918       else
3919         // Completely unsafe.
3920         return {SPF_UNKNOWN, SPNB_NA, false};
3921     }
3922   }
3923 
3924   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3925     std::swap(CmpLHS, CmpRHS);
3926     Pred = CmpInst::getSwappedPredicate(Pred);
3927     if (NaNBehavior == SPNB_RETURNS_NAN)
3928       NaNBehavior = SPNB_RETURNS_OTHER;
3929     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3930       NaNBehavior = SPNB_RETURNS_NAN;
3931     Ordered = !Ordered;
3932   }
3933 
3934   // ([if]cmp X, Y) ? X : Y
3935   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3936     switch (Pred) {
3937     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3938     case ICmpInst::ICMP_UGT:
3939     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3940     case ICmpInst::ICMP_SGT:
3941     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3942     case ICmpInst::ICMP_ULT:
3943     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3944     case ICmpInst::ICMP_SLT:
3945     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3946     case FCmpInst::FCMP_UGT:
3947     case FCmpInst::FCMP_UGE:
3948     case FCmpInst::FCMP_OGT:
3949     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3950     case FCmpInst::FCMP_ULT:
3951     case FCmpInst::FCMP_ULE:
3952     case FCmpInst::FCMP_OLT:
3953     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3954     }
3955   }
3956 
3957   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3958     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3959         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3960 
3961       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3962       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3963       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3964         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3965       }
3966 
3967       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3968       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3969       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3970         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3971       }
3972     }
3973 
3974     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3975     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3976       if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3977           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3978            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3979         LHS = TrueVal;
3980         RHS = FalseVal;
3981         return {SPF_SMIN, SPNB_NA, false};
3982       }
3983     }
3984   }
3985 
3986   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3987 
3988   return {SPF_UNKNOWN, SPNB_NA, false};
3989 }
3990 
3991 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3992                               Instruction::CastOps *CastOp) {
3993   CastInst *CI = dyn_cast<CastInst>(V1);
3994   Constant *C = dyn_cast<Constant>(V2);
3995   CastInst *CI2 = dyn_cast<CastInst>(V2);
3996   if (!CI)
3997     return nullptr;
3998   *CastOp = CI->getOpcode();
3999 
4000   if (CI2) {
4001     // If V1 and V2 are both the same cast from the same type, we can look
4002     // through V1.
4003     if (CI2->getOpcode() == CI->getOpcode() &&
4004         CI2->getSrcTy() == CI->getSrcTy())
4005       return CI2->getOperand(0);
4006     return nullptr;
4007   } else if (!C) {
4008     return nullptr;
4009   }
4010 
4011   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4012     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4013     // This is only valid if the truncated value can be sign-extended
4014     // back to the original value.
4015     if (ConstantExpr::getSExt(T, C->getType()) == C)
4016       return T;
4017     return nullptr;
4018   }
4019   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4020     return ConstantExpr::getTrunc(C, CI->getSrcTy());
4021 
4022   if (isa<TruncInst>(CI))
4023     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4024 
4025   if (isa<FPToUIInst>(CI))
4026     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4027 
4028   if (isa<FPToSIInst>(CI))
4029     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4030 
4031   if (isa<UIToFPInst>(CI))
4032     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4033 
4034   if (isa<SIToFPInst>(CI))
4035     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4036 
4037   if (isa<FPTruncInst>(CI))
4038     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4039 
4040   if (isa<FPExtInst>(CI))
4041     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4042 
4043   return nullptr;
4044 }
4045 
4046 SelectPatternResult llvm::matchSelectPattern(Value *V,
4047                                              Value *&LHS, Value *&RHS,
4048                                              Instruction::CastOps *CastOp) {
4049   SelectInst *SI = dyn_cast<SelectInst>(V);
4050   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4051 
4052   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4053   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4054 
4055   CmpInst::Predicate Pred = CmpI->getPredicate();
4056   Value *CmpLHS = CmpI->getOperand(0);
4057   Value *CmpRHS = CmpI->getOperand(1);
4058   Value *TrueVal = SI->getTrueValue();
4059   Value *FalseVal = SI->getFalseValue();
4060   FastMathFlags FMF;
4061   if (isa<FPMathOperator>(CmpI))
4062     FMF = CmpI->getFastMathFlags();
4063 
4064   // Bail out early.
4065   if (CmpI->isEquality())
4066     return {SPF_UNKNOWN, SPNB_NA, false};
4067 
4068   // Deal with type mismatches.
4069   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4070     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4071       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4072                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4073                                   LHS, RHS);
4074     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4075       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4076                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4077                                   LHS, RHS);
4078   }
4079   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4080                               LHS, RHS);
4081 }
4082 
4083 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4084   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4085   assert(NumRanges >= 1 && "Must have at least one range!");
4086   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4087 
4088   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4089   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4090 
4091   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4092 
4093   for (unsigned i = 1; i < NumRanges; ++i) {
4094     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4095     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4096 
4097     // Note: unionWith will potentially create a range that contains values not
4098     // contained in any of the original N ranges.
4099     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4100   }
4101 
4102   return CR;
4103 }
4104 
4105 /// Return true if "icmp Pred LHS RHS" is always true.
4106 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4107                             const DataLayout &DL, unsigned Depth,
4108                             AssumptionCache *AC, const Instruction *CxtI,
4109                             const DominatorTree *DT) {
4110   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4111   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4112     return true;
4113 
4114   switch (Pred) {
4115   default:
4116     return false;
4117 
4118   case CmpInst::ICMP_SLE: {
4119     const APInt *C;
4120 
4121     // LHS s<= LHS +_{nsw} C   if C >= 0
4122     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4123       return !C->isNegative();
4124     return false;
4125   }
4126 
4127   case CmpInst::ICMP_ULE: {
4128     const APInt *C;
4129 
4130     // LHS u<= LHS +_{nuw} C   for any C
4131     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4132       return true;
4133 
4134     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4135     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4136                                        const APInt *&CA, const APInt *&CB) {
4137       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4138           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4139         return true;
4140 
4141       // If X & C == 0 then (X | C) == X +_{nuw} C
4142       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4143           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4144         unsigned BitWidth = CA->getBitWidth();
4145         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4146         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4147 
4148         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4149           return true;
4150       }
4151 
4152       return false;
4153     };
4154 
4155     Value *X;
4156     const APInt *CLHS, *CRHS;
4157     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4158       return CLHS->ule(*CRHS);
4159 
4160     return false;
4161   }
4162   }
4163 }
4164 
4165 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4166 /// ALHS ARHS" is true.
4167 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
4168                                   Value *ARHS, Value *BLHS, Value *BRHS,
4169                                   const DataLayout &DL, unsigned Depth,
4170                                   AssumptionCache *AC, const Instruction *CxtI,
4171                                   const DominatorTree *DT) {
4172   switch (Pred) {
4173   default:
4174     return false;
4175 
4176   case CmpInst::ICMP_SLT:
4177   case CmpInst::ICMP_SLE:
4178     return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4179                            DT) &&
4180            isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4181                            DT);
4182 
4183   case CmpInst::ICMP_ULT:
4184   case CmpInst::ICMP_ULE:
4185     return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4186                            DT) &&
4187            isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4188                            DT);
4189   }
4190 }
4191 
4192 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4193                               unsigned Depth, AssumptionCache *AC,
4194                               const Instruction *CxtI,
4195                               const DominatorTree *DT) {
4196   assert(LHS->getType() == RHS->getType() && "mismatched type");
4197   Type *OpTy = LHS->getType();
4198   assert(OpTy->getScalarType()->isIntegerTy(1));
4199 
4200   // LHS ==> RHS by definition
4201   if (LHS == RHS) return true;
4202 
4203   if (OpTy->isVectorTy())
4204     // TODO: extending the code below to handle vectors
4205     return false;
4206   assert(OpTy->isIntegerTy(1) && "implied by above");
4207 
4208   ICmpInst::Predicate APred, BPred;
4209   Value *ALHS, *ARHS;
4210   Value *BLHS, *BRHS;
4211 
4212   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4213       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4214     return false;
4215 
4216   if (APred == BPred)
4217     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4218                                  CxtI, DT);
4219 
4220   return false;
4221 }
4222