1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <cstring> 40 using namespace llvm; 41 using namespace llvm::PatternMatch; 42 43 const unsigned MaxDepth = 6; 44 45 /// Enable an experimental feature to leverage information about dominating 46 /// conditions to compute known bits. The individual options below control how 47 /// hard we search. The defaults are chosen to be fairly aggressive. If you 48 /// run into compile time problems when testing, scale them back and report 49 /// your findings. 50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 51 cl::Hidden, cl::init(false)); 52 53 // This is expensive, so we only do it for the top level query value. 54 // (TODO: evaluate cost vs profit, consider higher thresholds) 55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 56 cl::Hidden, cl::init(1)); 57 58 /// How many dominating blocks should be scanned looking for dominating 59 /// conditions? 60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 61 cl::Hidden, 62 cl::init(20)); 63 64 // Controls the number of uses of the value searched for possible 65 // dominating comparisons. 66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 67 cl::Hidden, cl::init(20)); 68 69 // If true, don't consider only compares whose only use is a branch. 70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 71 cl::Hidden, cl::init(false)); 72 73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 74 /// 0). For vector types, returns the element type's bitwidth. 75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 76 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 77 return BitWidth; 78 79 return DL.getPointerTypeSizeInBits(Ty); 80 } 81 82 // Many of these functions have internal versions that take an assumption 83 // exclusion set. This is because of the potential for mutual recursion to 84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 85 // classic case of this is assume(x = y), which will attempt to determine 86 // bits in x from bits in y, which will attempt to determine bits in y from 87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 91 92 namespace { 93 // Simplifying using an assume can only be done in a particular control-flow 94 // context (the context instruction provides that context). If an assume and 95 // the context instruction are not in the same block then the DT helps in 96 // figuring out if we can use it. 97 struct Query { 98 ExclInvsSet ExclInvs; 99 const DataLayout &DL; 100 AssumptionCache *AC; 101 const Instruction *CxtI; 102 const DominatorTree *DT; 103 104 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 105 const DominatorTree *DT) 106 : DL(DL), AC(AC), CxtI(CxtI), DT(DT) {} 107 108 Query(const Query &Q, const Value *NewExcl) 109 : ExclInvs(Q.ExclInvs), DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 110 ExclInvs.insert(NewExcl); 111 } 112 }; 113 } // end anonymous namespace 114 115 // Given the provided Value and, potentially, a context instruction, return 116 // the preferred context instruction (if any). 117 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 118 // If we've been provided with a context instruction, then use that (provided 119 // it has been inserted). 120 if (CxtI && CxtI->getParent()) 121 return CxtI; 122 123 // If the value is really an already-inserted instruction, then use that. 124 CxtI = dyn_cast<Instruction>(V); 125 if (CxtI && CxtI->getParent()) 126 return CxtI; 127 128 return nullptr; 129 } 130 131 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 132 unsigned Depth, const Query &Q); 133 134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 135 const DataLayout &DL, unsigned Depth, 136 AssumptionCache *AC, const Instruction *CxtI, 137 const DominatorTree *DT) { 138 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 139 Query(DL, AC, safeCxtI(V, CxtI), DT)); 140 } 141 142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 143 AssumptionCache *AC, const Instruction *CxtI, 144 const DominatorTree *DT) { 145 assert(LHS->getType() == RHS->getType() && 146 "LHS and RHS should have the same type"); 147 assert(LHS->getType()->isIntOrIntVectorTy() && 148 "LHS and RHS should be integers"); 149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 155 } 156 157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 158 unsigned Depth, const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 165 Query(DL, AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(DL, AC, safeCxtI(V, CxtI), DT)); 177 } 178 179 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 180 181 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 185 } 186 187 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 bool NonNegative, Negative; 191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 192 return NonNegative; 193 } 194 195 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 196 197 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 198 AssumptionCache *AC, const Instruction *CxtI, 199 const DominatorTree *DT) { 200 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 201 safeCxtI(V1, safeCxtI(V2, CxtI)), 202 DT)); 203 } 204 205 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 206 const Query &Q); 207 208 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 209 unsigned Depth, AssumptionCache *AC, 210 const Instruction *CxtI, const DominatorTree *DT) { 211 return ::MaskedValueIsZero(V, Mask, Depth, 212 Query(DL, AC, safeCxtI(V, CxtI), DT)); 213 } 214 215 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 216 217 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 218 unsigned Depth, AssumptionCache *AC, 219 const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 222 } 223 224 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 225 APInt &KnownZero, APInt &KnownOne, 226 APInt &KnownZero2, APInt &KnownOne2, 227 unsigned Depth, const Query &Q) { 228 if (!Add) { 229 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 230 // We know that the top bits of C-X are clear if X contains less bits 231 // than C (i.e. no wrap-around can happen). For example, 20-X is 232 // positive if we can prove that X is >= 0 and < 16. 233 if (!CLHS->getValue().isNegative()) { 234 unsigned BitWidth = KnownZero.getBitWidth(); 235 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 236 // NLZ can't be BitWidth with no sign bit 237 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 238 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 239 240 // If all of the MaskV bits are known to be zero, then we know the 241 // output top bits are zero, because we now know that the output is 242 // from [0-C]. 243 if ((KnownZero2 & MaskV) == MaskV) { 244 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 245 // Top bits known zero. 246 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 247 } 248 } 249 } 250 } 251 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 254 // If an initial sequence of bits in the result is not needed, the 255 // corresponding bits in the operands are not needed. 256 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 257 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 258 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 259 260 // Carry in a 1 for a subtract, rather than a 0. 261 APInt CarryIn(BitWidth, 0); 262 if (!Add) { 263 // Sum = LHS + ~RHS + 1 264 std::swap(KnownZero2, KnownOne2); 265 CarryIn.setBit(0); 266 } 267 268 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 269 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 270 271 // Compute known bits of the carry. 272 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 273 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 274 275 // Compute set of known bits (where all three relevant bits are known). 276 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 277 APInt RHSKnown = KnownZero2 | KnownOne2; 278 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 279 APInt Known = LHSKnown & RHSKnown & CarryKnown; 280 281 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 282 "known bits of sum differ"); 283 284 // Compute known bits of the result. 285 KnownZero = ~PossibleSumOne & Known; 286 KnownOne = PossibleSumOne & Known; 287 288 // Are we still trying to solve for the sign bit? 289 if (!Known.isNegative()) { 290 if (NSW) { 291 // Adding two non-negative numbers, or subtracting a negative number from 292 // a non-negative one, can't wrap into negative. 293 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 294 KnownZero |= APInt::getSignBit(BitWidth); 295 // Adding two negative numbers, or subtracting a non-negative number from 296 // a negative one, can't wrap into non-negative. 297 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 298 KnownOne |= APInt::getSignBit(BitWidth); 299 } 300 } 301 } 302 303 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 304 APInt &KnownZero, APInt &KnownOne, 305 APInt &KnownZero2, APInt &KnownOne2, 306 unsigned Depth, const Query &Q) { 307 unsigned BitWidth = KnownZero.getBitWidth(); 308 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 309 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 310 311 bool isKnownNegative = false; 312 bool isKnownNonNegative = false; 313 // If the multiplication is known not to overflow, compute the sign bit. 314 if (NSW) { 315 if (Op0 == Op1) { 316 // The product of a number with itself is non-negative. 317 isKnownNonNegative = true; 318 } else { 319 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 320 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 321 bool isKnownNegativeOp1 = KnownOne.isNegative(); 322 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 323 // The product of two numbers with the same sign is non-negative. 324 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 325 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 326 // The product of a negative number and a non-negative number is either 327 // negative or zero. 328 if (!isKnownNonNegative) 329 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 330 isKnownNonZero(Op0, Depth, Q)) || 331 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 332 isKnownNonZero(Op1, Depth, Q)); 333 } 334 } 335 336 // If low bits are zero in either operand, output low known-0 bits. 337 // Also compute a conservative estimate for high known-0 bits. 338 // More trickiness is possible, but this is sufficient for the 339 // interesting case of alignment computation. 340 KnownOne.clearAllBits(); 341 unsigned TrailZ = KnownZero.countTrailingOnes() + 342 KnownZero2.countTrailingOnes(); 343 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 344 KnownZero2.countLeadingOnes(), 345 BitWidth) - BitWidth; 346 347 TrailZ = std::min(TrailZ, BitWidth); 348 LeadZ = std::min(LeadZ, BitWidth); 349 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 350 APInt::getHighBitsSet(BitWidth, LeadZ); 351 352 // Only make use of no-wrap flags if we failed to compute the sign bit 353 // directly. This matters if the multiplication always overflows, in 354 // which case we prefer to follow the result of the direct computation, 355 // though as the program is invoking undefined behaviour we can choose 356 // whatever we like here. 357 if (isKnownNonNegative && !KnownOne.isNegative()) 358 KnownZero.setBit(BitWidth - 1); 359 else if (isKnownNegative && !KnownZero.isNegative()) 360 KnownOne.setBit(BitWidth - 1); 361 } 362 363 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 364 APInt &KnownZero, 365 APInt &KnownOne) { 366 unsigned BitWidth = KnownZero.getBitWidth(); 367 unsigned NumRanges = Ranges.getNumOperands() / 2; 368 assert(NumRanges >= 1); 369 370 KnownZero.setAllBits(); 371 KnownOne.setAllBits(); 372 373 for (unsigned i = 0; i < NumRanges; ++i) { 374 ConstantInt *Lower = 375 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 376 ConstantInt *Upper = 377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 378 ConstantRange Range(Lower->getValue(), Upper->getValue()); 379 380 // The first CommonPrefixBits of all values in Range are equal. 381 unsigned CommonPrefixBits = 382 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 383 384 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 385 KnownOne &= Range.getUnsignedMax() & Mask; 386 KnownZero &= ~Range.getUnsignedMax() & Mask; 387 } 388 } 389 390 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 391 SmallVector<const Value *, 16> WorkSet(1, I); 392 SmallPtrSet<const Value *, 32> Visited; 393 SmallPtrSet<const Value *, 16> EphValues; 394 395 // The instruction defining an assumption's condition itself is always 396 // considered ephemeral to that assumption (even if it has other 397 // non-ephemeral users). See r246696's test case for an example. 398 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 399 return true; 400 401 while (!WorkSet.empty()) { 402 const Value *V = WorkSet.pop_back_val(); 403 if (!Visited.insert(V).second) 404 continue; 405 406 // If all uses of this value are ephemeral, then so is this value. 407 if (std::all_of(V->user_begin(), V->user_end(), 408 [&](const User *U) { return EphValues.count(U); })) { 409 if (V == E) 410 return true; 411 412 EphValues.insert(V); 413 if (const User *U = dyn_cast<User>(V)) 414 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 415 J != JE; ++J) { 416 if (isSafeToSpeculativelyExecute(*J)) 417 WorkSet.push_back(*J); 418 } 419 } 420 } 421 422 return false; 423 } 424 425 // Is this an intrinsic that cannot be speculated but also cannot trap? 426 static bool isAssumeLikeIntrinsic(const Instruction *I) { 427 if (const CallInst *CI = dyn_cast<CallInst>(I)) 428 if (Function *F = CI->getCalledFunction()) 429 switch (F->getIntrinsicID()) { 430 default: break; 431 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 432 case Intrinsic::assume: 433 case Intrinsic::dbg_declare: 434 case Intrinsic::dbg_value: 435 case Intrinsic::invariant_start: 436 case Intrinsic::invariant_end: 437 case Intrinsic::lifetime_start: 438 case Intrinsic::lifetime_end: 439 case Intrinsic::objectsize: 440 case Intrinsic::ptr_annotation: 441 case Intrinsic::var_annotation: 442 return true; 443 } 444 445 return false; 446 } 447 448 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 449 const DominatorTree *DT) { 450 Instruction *Inv = cast<Instruction>(V); 451 452 // There are two restrictions on the use of an assume: 453 // 1. The assume must dominate the context (or the control flow must 454 // reach the assume whenever it reaches the context). 455 // 2. The context must not be in the assume's set of ephemeral values 456 // (otherwise we will use the assume to prove that the condition 457 // feeding the assume is trivially true, thus causing the removal of 458 // the assume). 459 460 if (DT) { 461 if (DT->dominates(Inv, CxtI)) { 462 return true; 463 } else if (Inv->getParent() == CxtI->getParent()) { 464 // The context comes first, but they're both in the same block. Make sure 465 // there is nothing in between that might interrupt the control flow. 466 for (BasicBlock::const_iterator I = 467 std::next(BasicBlock::const_iterator(CxtI)), 468 IE(Inv); I != IE; ++I) 469 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 470 return false; 471 472 return !isEphemeralValueOf(Inv, CxtI); 473 } 474 475 return false; 476 } 477 478 // When we don't have a DT, we do a limited search... 479 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 480 return true; 481 } else if (Inv->getParent() == CxtI->getParent()) { 482 // Search forward from the assume until we reach the context (or the end 483 // of the block); the common case is that the assume will come first. 484 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 485 IE = Inv->getParent()->end(); I != IE; ++I) 486 if (&*I == CxtI) 487 return true; 488 489 // The context must come first... 490 for (BasicBlock::const_iterator I = 491 std::next(BasicBlock::const_iterator(CxtI)), 492 IE(Inv); I != IE; ++I) 493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 494 return false; 495 496 return !isEphemeralValueOf(Inv, CxtI); 497 } 498 499 return false; 500 } 501 502 bool llvm::isValidAssumeForContext(const Instruction *I, 503 const Instruction *CxtI, 504 const DominatorTree *DT) { 505 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 506 } 507 508 template<typename LHS, typename RHS> 509 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 510 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 511 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 512 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 513 } 514 515 template<typename LHS, typename RHS> 516 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 517 BinaryOp_match<RHS, LHS, Instruction::And>> 518 m_c_And(const LHS &L, const RHS &R) { 519 return m_CombineOr(m_And(L, R), m_And(R, L)); 520 } 521 522 template<typename LHS, typename RHS> 523 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 524 BinaryOp_match<RHS, LHS, Instruction::Or>> 525 m_c_Or(const LHS &L, const RHS &R) { 526 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 527 } 528 529 template<typename LHS, typename RHS> 530 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 531 BinaryOp_match<RHS, LHS, Instruction::Xor>> 532 m_c_Xor(const LHS &L, const RHS &R) { 533 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 534 } 535 536 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 537 /// true (at the context instruction.) This is mostly a utility function for 538 /// the prototype dominating conditions reasoning below. 539 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 540 APInt &KnownZero, 541 APInt &KnownOne, 542 unsigned Depth, const Query &Q) { 543 Value *LHS = Cmp->getOperand(0); 544 Value *RHS = Cmp->getOperand(1); 545 // TODO: We could potentially be more aggressive here. This would be worth 546 // evaluating. If we can, explore commoning this code with the assume 547 // handling logic. 548 if (LHS != V && RHS != V) 549 return; 550 551 const unsigned BitWidth = KnownZero.getBitWidth(); 552 553 switch (Cmp->getPredicate()) { 554 default: 555 // We know nothing from this condition 556 break; 557 // TODO: implement unsigned bound from below (known one bits) 558 // TODO: common condition check implementations with assumes 559 // TODO: implement other patterns from assume (e.g. V & B == A) 560 case ICmpInst::ICMP_SGT: 561 if (LHS == V) { 562 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 563 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 564 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 565 // We know that the sign bit is zero. 566 KnownZero |= APInt::getSignBit(BitWidth); 567 } 568 } 569 break; 570 case ICmpInst::ICMP_EQ: 571 { 572 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 573 if (LHS == V) 574 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 575 else if (RHS == V) 576 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 577 else 578 llvm_unreachable("missing use?"); 579 KnownZero |= KnownZeroTemp; 580 KnownOne |= KnownOneTemp; 581 } 582 break; 583 case ICmpInst::ICMP_ULE: 584 if (LHS == V) { 585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 587 // The known zero bits carry over 588 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 589 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 590 } 591 break; 592 case ICmpInst::ICMP_ULT: 593 if (LHS == V) { 594 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 595 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 596 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 597 // power of 2, then one more). 598 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 599 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp))) 600 SignBits++; 601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 602 } 603 break; 604 }; 605 } 606 607 /// Compute known bits in 'V' from conditions which are known to be true along 608 /// all paths leading to the context instruction. In particular, look for 609 /// cases where one branch of an interesting condition dominates the context 610 /// instruction. This does not do general dataflow. 611 /// NOTE: This code is EXPERIMENTAL and currently off by default. 612 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 613 APInt &KnownOne, 614 unsigned Depth, 615 const Query &Q) { 616 // Need both the dominator tree and the query location to do anything useful 617 if (!Q.DT || !Q.CxtI) 618 return; 619 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 620 // The context instruction might be in a statically unreachable block. If 621 // so, asking dominator queries may yield suprising results. (e.g. the block 622 // may not have a dom tree node) 623 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 624 return; 625 626 // Avoid useless work 627 if (auto VI = dyn_cast<Instruction>(V)) 628 if (VI->getParent() == Cxt->getParent()) 629 return; 630 631 // Note: We currently implement two options. It's not clear which of these 632 // will survive long term, we need data for that. 633 // Option 1 - Try walking the dominator tree looking for conditions which 634 // might apply. This works well for local conditions (loop guards, etc..), 635 // but not as well for things far from the context instruction (presuming a 636 // low max blocks explored). If we can set an high enough limit, this would 637 // be all we need. 638 // Option 2 - We restrict out search to those conditions which are uses of 639 // the value we're interested in. This is independent of dom structure, 640 // but is slightly less powerful without looking through lots of use chains. 641 // It does handle conditions far from the context instruction (e.g. early 642 // function exits on entry) really well though. 643 644 // Option 1 - Search the dom tree 645 unsigned NumBlocksExplored = 0; 646 BasicBlock *Current = Cxt->getParent(); 647 while (true) { 648 // Stop searching if we've gone too far up the chain 649 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 650 break; 651 NumBlocksExplored++; 652 653 if (!Q.DT->getNode(Current)->getIDom()) 654 break; 655 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 656 if (!Current) 657 // found function entry 658 break; 659 660 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 661 if (!BI || BI->isUnconditional()) 662 continue; 663 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 664 if (!Cmp) 665 continue; 666 667 // We're looking for conditions that are guaranteed to hold at the context 668 // instruction. Finding a condition where one path dominates the context 669 // isn't enough because both the true and false cases could merge before 670 // the context instruction we're actually interested in. Instead, we need 671 // to ensure that the taken *edge* dominates the context instruction. We 672 // know that the edge must be reachable since we started from a reachable 673 // block. 674 BasicBlock *BB0 = BI->getSuccessor(0); 675 BasicBlockEdge Edge(BI->getParent(), BB0); 676 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 677 continue; 678 679 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 680 } 681 682 // Option 2 - Search the other uses of V 683 unsigned NumUsesExplored = 0; 684 for (auto U : V->users()) { 685 // Avoid massive lists 686 if (NumUsesExplored >= DomConditionsMaxUses) 687 break; 688 NumUsesExplored++; 689 // Consider only compare instructions uniquely controlling a branch 690 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 691 if (!Cmp) 692 continue; 693 694 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 695 continue; 696 697 for (auto *CmpU : Cmp->users()) { 698 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 699 if (!BI || BI->isUnconditional()) 700 continue; 701 // We're looking for conditions that are guaranteed to hold at the 702 // context instruction. Finding a condition where one path dominates 703 // the context isn't enough because both the true and false cases could 704 // merge before the context instruction we're actually interested in. 705 // Instead, we need to ensure that the taken *edge* dominates the context 706 // instruction. 707 BasicBlock *BB0 = BI->getSuccessor(0); 708 BasicBlockEdge Edge(BI->getParent(), BB0); 709 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 710 continue; 711 712 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 713 } 714 } 715 } 716 717 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 718 APInt &KnownOne, unsigned Depth, 719 const Query &Q) { 720 // Use of assumptions is context-sensitive. If we don't have a context, we 721 // cannot use them! 722 if (!Q.AC || !Q.CxtI) 723 return; 724 725 unsigned BitWidth = KnownZero.getBitWidth(); 726 727 for (auto &AssumeVH : Q.AC->assumptions()) { 728 if (!AssumeVH) 729 continue; 730 CallInst *I = cast<CallInst>(AssumeVH); 731 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 732 "Got assumption for the wrong function!"); 733 if (Q.ExclInvs.count(I)) 734 continue; 735 736 // Warning: This loop can end up being somewhat performance sensetive. 737 // We're running this loop for once for each value queried resulting in a 738 // runtime of ~O(#assumes * #values). 739 740 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 741 "must be an assume intrinsic"); 742 743 Value *Arg = I->getArgOperand(0); 744 745 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 746 assert(BitWidth == 1 && "assume operand is not i1?"); 747 KnownZero.clearAllBits(); 748 KnownOne.setAllBits(); 749 return; 750 } 751 752 // The remaining tests are all recursive, so bail out if we hit the limit. 753 if (Depth == MaxDepth) 754 continue; 755 756 Value *A, *B; 757 auto m_V = m_CombineOr(m_Specific(V), 758 m_CombineOr(m_PtrToInt(m_Specific(V)), 759 m_BitCast(m_Specific(V)))); 760 761 CmpInst::Predicate Pred; 762 ConstantInt *C; 763 // assume(v = a) 764 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 765 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 766 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 767 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 768 KnownZero |= RHSKnownZero; 769 KnownOne |= RHSKnownOne; 770 // assume(v & b = a) 771 } else if (match(Arg, 772 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 773 Pred == ICmpInst::ICMP_EQ && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 776 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 777 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 778 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 779 780 // For those bits in the mask that are known to be one, we can propagate 781 // known bits from the RHS to V. 782 KnownZero |= RHSKnownZero & MaskKnownOne; 783 KnownOne |= RHSKnownOne & MaskKnownOne; 784 // assume(~(v & b) = a) 785 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 786 m_Value(A))) && 787 Pred == ICmpInst::ICMP_EQ && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 790 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 791 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 792 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 793 794 // For those bits in the mask that are known to be one, we can propagate 795 // inverted known bits from the RHS to V. 796 KnownZero |= RHSKnownOne & MaskKnownOne; 797 KnownOne |= RHSKnownZero & MaskKnownOne; 798 // assume(v | b = a) 799 } else if (match(Arg, 800 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 801 Pred == ICmpInst::ICMP_EQ && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 804 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 805 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 806 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 807 808 // For those bits in B that are known to be zero, we can propagate known 809 // bits from the RHS to V. 810 KnownZero |= RHSKnownZero & BKnownZero; 811 KnownOne |= RHSKnownOne & BKnownZero; 812 // assume(~(v | b) = a) 813 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 814 m_Value(A))) && 815 Pred == ICmpInst::ICMP_EQ && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 818 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 819 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 820 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 821 822 // For those bits in B that are known to be zero, we can propagate 823 // inverted known bits from the RHS to V. 824 KnownZero |= RHSKnownOne & BKnownZero; 825 KnownOne |= RHSKnownZero & BKnownZero; 826 // assume(v ^ b = a) 827 } else if (match(Arg, 828 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 829 Pred == ICmpInst::ICMP_EQ && 830 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 831 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 832 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 833 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 834 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 835 836 // For those bits in B that are known to be zero, we can propagate known 837 // bits from the RHS to V. For those bits in B that are known to be one, 838 // we can propagate inverted known bits from the RHS to V. 839 KnownZero |= RHSKnownZero & BKnownZero; 840 KnownOne |= RHSKnownOne & BKnownZero; 841 KnownZero |= RHSKnownOne & BKnownOne; 842 KnownOne |= RHSKnownZero & BKnownOne; 843 // assume(~(v ^ b) = a) 844 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 845 m_Value(A))) && 846 Pred == ICmpInst::ICMP_EQ && 847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 848 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 849 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 850 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 851 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 852 853 // For those bits in B that are known to be zero, we can propagate 854 // inverted known bits from the RHS to V. For those bits in B that are 855 // known to be one, we can propagate known bits from the RHS to V. 856 KnownZero |= RHSKnownOne & BKnownZero; 857 KnownOne |= RHSKnownZero & BKnownZero; 858 KnownZero |= RHSKnownZero & BKnownOne; 859 KnownOne |= RHSKnownOne & BKnownOne; 860 // assume(v << c = a) 861 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 862 m_Value(A))) && 863 Pred == ICmpInst::ICMP_EQ && 864 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 865 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 866 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 867 // For those bits in RHS that are known, we can propagate them to known 868 // bits in V shifted to the right by C. 869 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 870 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 871 // assume(~(v << c) = a) 872 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 873 m_Value(A))) && 874 Pred == ICmpInst::ICMP_EQ && 875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 876 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 877 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 878 // For those bits in RHS that are known, we can propagate them inverted 879 // to known bits in V shifted to the right by C. 880 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 881 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 882 // assume(v >> c = a) 883 } else if (match(Arg, 884 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 885 m_AShr(m_V, m_ConstantInt(C))), 886 m_Value(A))) && 887 Pred == ICmpInst::ICMP_EQ && 888 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 889 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 890 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 891 // For those bits in RHS that are known, we can propagate them to known 892 // bits in V shifted to the right by C. 893 KnownZero |= RHSKnownZero << C->getZExtValue(); 894 KnownOne |= RHSKnownOne << C->getZExtValue(); 895 // assume(~(v >> c) = a) 896 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 897 m_LShr(m_V, m_ConstantInt(C)), 898 m_AShr(m_V, m_ConstantInt(C)))), 899 m_Value(A))) && 900 Pred == ICmpInst::ICMP_EQ && 901 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 904 // For those bits in RHS that are known, we can propagate them inverted 905 // to known bits in V shifted to the right by C. 906 KnownZero |= RHSKnownOne << C->getZExtValue(); 907 KnownOne |= RHSKnownZero << C->getZExtValue(); 908 // assume(v >=_s c) where c is non-negative 909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 910 Pred == ICmpInst::ICMP_SGE && 911 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 912 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 913 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 914 915 if (RHSKnownZero.isNegative()) { 916 // We know that the sign bit is zero. 917 KnownZero |= APInt::getSignBit(BitWidth); 918 } 919 // assume(v >_s c) where c is at least -1. 920 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 921 Pred == ICmpInst::ICMP_SGT && 922 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 923 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 924 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 925 926 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 927 // We know that the sign bit is zero. 928 KnownZero |= APInt::getSignBit(BitWidth); 929 } 930 // assume(v <=_s c) where c is negative 931 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 932 Pred == ICmpInst::ICMP_SLE && 933 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 934 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 935 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 936 937 if (RHSKnownOne.isNegative()) { 938 // We know that the sign bit is one. 939 KnownOne |= APInt::getSignBit(BitWidth); 940 } 941 // assume(v <_s c) where c is non-positive 942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 943 Pred == ICmpInst::ICMP_SLT && 944 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 945 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 946 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 947 948 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 949 // We know that the sign bit is one. 950 KnownOne |= APInt::getSignBit(BitWidth); 951 } 952 // assume(v <=_u c) 953 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 954 Pred == ICmpInst::ICMP_ULE && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 957 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 958 959 // Whatever high bits in c are zero are known to be zero. 960 KnownZero |= 961 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 962 // assume(v <_u c) 963 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 964 Pred == ICmpInst::ICMP_ULT && 965 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 966 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 967 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 968 969 // Whatever high bits in c are zero are known to be zero (if c is a power 970 // of 2, then one more). 971 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 972 KnownZero |= 973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 974 else 975 KnownZero |= 976 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 977 } 978 } 979 } 980 981 // Compute known bits from a shift operator, including those with a 982 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 983 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 984 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 985 // functors that, given the known-zero or known-one bits respectively, and a 986 // shift amount, compute the implied known-zero or known-one bits of the shift 987 // operator's result respectively for that shift amount. The results from calling 988 // KZF and KOF are conservatively combined for all permitted shift amounts. 989 template <typename KZFunctor, typename KOFunctor> 990 static void computeKnownBitsFromShiftOperator(Operator *I, 991 APInt &KnownZero, APInt &KnownOne, 992 APInt &KnownZero2, APInt &KnownOne2, 993 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 994 unsigned BitWidth = KnownZero.getBitWidth(); 995 996 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 997 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 998 999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1000 KnownZero = KZF(KnownZero, ShiftAmt); 1001 KnownOne = KOF(KnownOne, ShiftAmt); 1002 return; 1003 } 1004 1005 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1006 1007 // Note: We cannot use KnownZero.getLimitedValue() here, because if 1008 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1009 // limit value (which implies all bits are known). 1010 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1011 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1012 1013 // It would be more-clearly correct to use the two temporaries for this 1014 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1015 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1016 1017 // If we know the shifter operand is nonzero, we can sometimes infer more 1018 // known bits. However this is expensive to compute, so be lazy about it and 1019 // only compute it when absolutely necessary. 1020 Optional<bool> ShifterOperandIsNonZero; 1021 1022 // Early exit if we can't constrain any well-defined shift amount. 1023 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1024 ShifterOperandIsNonZero = 1025 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1026 if (!*ShifterOperandIsNonZero) 1027 return; 1028 } 1029 1030 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1031 1032 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1033 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1034 // Combine the shifted known input bits only for those shift amounts 1035 // compatible with its known constraints. 1036 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1037 continue; 1038 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1039 continue; 1040 // If we know the shifter is nonzero, we may be able to infer more known 1041 // bits. This check is sunk down as far as possible to avoid the expensive 1042 // call to isKnownNonZero if the cheaper checks above fail. 1043 if (ShiftAmt == 0) { 1044 if (!ShifterOperandIsNonZero.hasValue()) 1045 ShifterOperandIsNonZero = 1046 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1047 if (*ShifterOperandIsNonZero) 1048 continue; 1049 } 1050 1051 KnownZero &= KZF(KnownZero2, ShiftAmt); 1052 KnownOne &= KOF(KnownOne2, ShiftAmt); 1053 } 1054 1055 // If there are no compatible shift amounts, then we've proven that the shift 1056 // amount must be >= the BitWidth, and the result is undefined. We could 1057 // return anything we'd like, but we need to make sure the sets of known bits 1058 // stay disjoint (it should be better for some other code to actually 1059 // propagate the undef than to pick a value here using known bits). 1060 if ((KnownZero & KnownOne) != 0) 1061 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1062 } 1063 1064 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1065 APInt &KnownOne, unsigned Depth, 1066 const Query &Q) { 1067 unsigned BitWidth = KnownZero.getBitWidth(); 1068 1069 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1070 switch (I->getOpcode()) { 1071 default: break; 1072 case Instruction::Load: 1073 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1074 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1075 break; 1076 case Instruction::And: { 1077 // If either the LHS or the RHS are Zero, the result is zero. 1078 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1079 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1080 1081 // Output known-1 bits are only known if set in both the LHS & RHS. 1082 KnownOne &= KnownOne2; 1083 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1084 KnownZero |= KnownZero2; 1085 1086 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1087 // here we handle the more general case of adding any odd number by 1088 // matching the form add(x, add(x, y)) where y is odd. 1089 // TODO: This could be generalized to clearing any bit set in y where the 1090 // following bit is known to be unset in y. 1091 Value *Y = nullptr; 1092 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 1093 m_Value(Y))) || 1094 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 1095 m_Value(Y)))) { 1096 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 1097 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 1098 if (KnownOne3.countTrailingOnes() > 0) 1099 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 1100 } 1101 break; 1102 } 1103 case Instruction::Or: { 1104 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1106 1107 // Output known-0 bits are only known if clear in both the LHS & RHS. 1108 KnownZero &= KnownZero2; 1109 // Output known-1 are known to be set if set in either the LHS | RHS. 1110 KnownOne |= KnownOne2; 1111 break; 1112 } 1113 case Instruction::Xor: { 1114 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1115 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1116 1117 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1118 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1119 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1120 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1121 KnownZero = KnownZeroOut; 1122 break; 1123 } 1124 case Instruction::Mul: { 1125 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1126 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1127 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1128 break; 1129 } 1130 case Instruction::UDiv: { 1131 // For the purposes of computing leading zeros we can conservatively 1132 // treat a udiv as a logical right shift by the power of 2 known to 1133 // be less than the denominator. 1134 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1135 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1136 1137 KnownOne2.clearAllBits(); 1138 KnownZero2.clearAllBits(); 1139 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1140 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1141 if (RHSUnknownLeadingOnes != BitWidth) 1142 LeadZ = std::min(BitWidth, 1143 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1144 1145 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1146 break; 1147 } 1148 case Instruction::Select: 1149 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1150 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1151 1152 // Only known if known in both the LHS and RHS. 1153 KnownOne &= KnownOne2; 1154 KnownZero &= KnownZero2; 1155 break; 1156 case Instruction::FPTrunc: 1157 case Instruction::FPExt: 1158 case Instruction::FPToUI: 1159 case Instruction::FPToSI: 1160 case Instruction::SIToFP: 1161 case Instruction::UIToFP: 1162 break; // Can't work with floating point. 1163 case Instruction::PtrToInt: 1164 case Instruction::IntToPtr: 1165 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1166 // FALL THROUGH and handle them the same as zext/trunc. 1167 case Instruction::ZExt: 1168 case Instruction::Trunc: { 1169 Type *SrcTy = I->getOperand(0)->getType(); 1170 1171 unsigned SrcBitWidth; 1172 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1173 // which fall through here. 1174 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1175 1176 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1177 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1178 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1179 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1180 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1181 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1182 // Any top bits are known to be zero. 1183 if (BitWidth > SrcBitWidth) 1184 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1185 break; 1186 } 1187 case Instruction::BitCast: { 1188 Type *SrcTy = I->getOperand(0)->getType(); 1189 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1190 SrcTy->isFloatingPointTy()) && 1191 // TODO: For now, not handling conversions like: 1192 // (bitcast i64 %x to <2 x i32>) 1193 !I->getType()->isVectorTy()) { 1194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1195 break; 1196 } 1197 break; 1198 } 1199 case Instruction::SExt: { 1200 // Compute the bits in the result that are not present in the input. 1201 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1202 1203 KnownZero = KnownZero.trunc(SrcBitWidth); 1204 KnownOne = KnownOne.trunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1206 KnownZero = KnownZero.zext(BitWidth); 1207 KnownOne = KnownOne.zext(BitWidth); 1208 1209 // If the sign bit of the input is known set or clear, then we know the 1210 // top bits of the result. 1211 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1212 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1213 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1214 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1215 break; 1216 } 1217 case Instruction::Shl: { 1218 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1219 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1220 return (KnownZero << ShiftAmt) | 1221 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1222 }; 1223 1224 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1225 return KnownOne << ShiftAmt; 1226 }; 1227 1228 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1229 KnownZero2, KnownOne2, Depth, Q, KZF, 1230 KOF); 1231 break; 1232 } 1233 case Instruction::LShr: { 1234 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1235 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1236 return APIntOps::lshr(KnownZero, ShiftAmt) | 1237 // High bits known zero. 1238 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1239 }; 1240 1241 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1242 return APIntOps::lshr(KnownOne, ShiftAmt); 1243 }; 1244 1245 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1246 KnownZero2, KnownOne2, Depth, Q, KZF, 1247 KOF); 1248 break; 1249 } 1250 case Instruction::AShr: { 1251 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1252 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1253 return APIntOps::ashr(KnownZero, ShiftAmt); 1254 }; 1255 1256 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1257 return APIntOps::ashr(KnownOne, ShiftAmt); 1258 }; 1259 1260 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1261 KnownZero2, KnownOne2, Depth, Q, KZF, 1262 KOF); 1263 break; 1264 } 1265 case Instruction::Sub: { 1266 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1267 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1268 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1269 Q); 1270 break; 1271 } 1272 case Instruction::Add: { 1273 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1274 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1275 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1276 Q); 1277 break; 1278 } 1279 case Instruction::SRem: 1280 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1281 APInt RA = Rem->getValue().abs(); 1282 if (RA.isPowerOf2()) { 1283 APInt LowBits = RA - 1; 1284 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1285 Q); 1286 1287 // The low bits of the first operand are unchanged by the srem. 1288 KnownZero = KnownZero2 & LowBits; 1289 KnownOne = KnownOne2 & LowBits; 1290 1291 // If the first operand is non-negative or has all low bits zero, then 1292 // the upper bits are all zero. 1293 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1294 KnownZero |= ~LowBits; 1295 1296 // If the first operand is negative and not all low bits are zero, then 1297 // the upper bits are all one. 1298 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1299 KnownOne |= ~LowBits; 1300 1301 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1302 } 1303 } 1304 1305 // The sign bit is the LHS's sign bit, except when the result of the 1306 // remainder is zero. 1307 if (KnownZero.isNonNegative()) { 1308 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1309 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1310 Q); 1311 // If it's known zero, our sign bit is also zero. 1312 if (LHSKnownZero.isNegative()) 1313 KnownZero.setBit(BitWidth - 1); 1314 } 1315 1316 break; 1317 case Instruction::URem: { 1318 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1319 APInt RA = Rem->getValue(); 1320 if (RA.isPowerOf2()) { 1321 APInt LowBits = (RA - 1); 1322 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1323 KnownZero |= ~LowBits; 1324 KnownOne &= LowBits; 1325 break; 1326 } 1327 } 1328 1329 // Since the result is less than or equal to either operand, any leading 1330 // zero bits in either operand must also exist in the result. 1331 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1332 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1333 1334 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1335 KnownZero2.countLeadingOnes()); 1336 KnownOne.clearAllBits(); 1337 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1338 break; 1339 } 1340 1341 case Instruction::Alloca: { 1342 AllocaInst *AI = cast<AllocaInst>(I); 1343 unsigned Align = AI->getAlignment(); 1344 if (Align == 0) 1345 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1346 1347 if (Align > 0) 1348 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1349 break; 1350 } 1351 case Instruction::GetElementPtr: { 1352 // Analyze all of the subscripts of this getelementptr instruction 1353 // to determine if we can prove known low zero bits. 1354 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1355 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1356 Q); 1357 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1358 1359 gep_type_iterator GTI = gep_type_begin(I); 1360 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1361 Value *Index = I->getOperand(i); 1362 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1363 // Handle struct member offset arithmetic. 1364 1365 // Handle case when index is vector zeroinitializer 1366 Constant *CIndex = cast<Constant>(Index); 1367 if (CIndex->isZeroValue()) 1368 continue; 1369 1370 if (CIndex->getType()->isVectorTy()) 1371 Index = CIndex->getSplatValue(); 1372 1373 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1374 const StructLayout *SL = Q.DL.getStructLayout(STy); 1375 uint64_t Offset = SL->getElementOffset(Idx); 1376 TrailZ = std::min<unsigned>(TrailZ, 1377 countTrailingZeros(Offset)); 1378 } else { 1379 // Handle array index arithmetic. 1380 Type *IndexedTy = GTI.getIndexedType(); 1381 if (!IndexedTy->isSized()) { 1382 TrailZ = 0; 1383 break; 1384 } 1385 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1386 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1387 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1388 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1389 TrailZ = std::min(TrailZ, 1390 unsigned(countTrailingZeros(TypeSize) + 1391 LocalKnownZero.countTrailingOnes())); 1392 } 1393 } 1394 1395 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1396 break; 1397 } 1398 case Instruction::PHI: { 1399 PHINode *P = cast<PHINode>(I); 1400 // Handle the case of a simple two-predecessor recurrence PHI. 1401 // There's a lot more that could theoretically be done here, but 1402 // this is sufficient to catch some interesting cases. 1403 if (P->getNumIncomingValues() == 2) { 1404 for (unsigned i = 0; i != 2; ++i) { 1405 Value *L = P->getIncomingValue(i); 1406 Value *R = P->getIncomingValue(!i); 1407 Operator *LU = dyn_cast<Operator>(L); 1408 if (!LU) 1409 continue; 1410 unsigned Opcode = LU->getOpcode(); 1411 // Check for operations that have the property that if 1412 // both their operands have low zero bits, the result 1413 // will have low zero bits. 1414 if (Opcode == Instruction::Add || 1415 Opcode == Instruction::Sub || 1416 Opcode == Instruction::And || 1417 Opcode == Instruction::Or || 1418 Opcode == Instruction::Mul) { 1419 Value *LL = LU->getOperand(0); 1420 Value *LR = LU->getOperand(1); 1421 // Find a recurrence. 1422 if (LL == I) 1423 L = LR; 1424 else if (LR == I) 1425 L = LL; 1426 else 1427 break; 1428 // Ok, we have a PHI of the form L op= R. Check for low 1429 // zero bits. 1430 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1431 1432 // We need to take the minimum number of known bits 1433 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1434 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1435 1436 KnownZero = APInt::getLowBitsSet(BitWidth, 1437 std::min(KnownZero2.countTrailingOnes(), 1438 KnownZero3.countTrailingOnes())); 1439 break; 1440 } 1441 } 1442 } 1443 1444 // Unreachable blocks may have zero-operand PHI nodes. 1445 if (P->getNumIncomingValues() == 0) 1446 break; 1447 1448 // Otherwise take the unions of the known bit sets of the operands, 1449 // taking conservative care to avoid excessive recursion. 1450 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1451 // Skip if every incoming value references to ourself. 1452 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1453 break; 1454 1455 KnownZero = APInt::getAllOnesValue(BitWidth); 1456 KnownOne = APInt::getAllOnesValue(BitWidth); 1457 for (Value *IncValue : P->incoming_values()) { 1458 // Skip direct self references. 1459 if (IncValue == P) continue; 1460 1461 KnownZero2 = APInt(BitWidth, 0); 1462 KnownOne2 = APInt(BitWidth, 0); 1463 // Recurse, but cap the recursion to one level, because we don't 1464 // want to waste time spinning around in loops. 1465 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1466 KnownZero &= KnownZero2; 1467 KnownOne &= KnownOne2; 1468 // If all bits have been ruled out, there's no need to check 1469 // more operands. 1470 if (!KnownZero && !KnownOne) 1471 break; 1472 } 1473 } 1474 break; 1475 } 1476 case Instruction::Call: 1477 case Instruction::Invoke: 1478 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1479 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1480 // If a range metadata is attached to this IntrinsicInst, intersect the 1481 // explicit range specified by the metadata and the implicit range of 1482 // the intrinsic. 1483 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1484 switch (II->getIntrinsicID()) { 1485 default: break; 1486 case Intrinsic::bswap: 1487 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1488 KnownZero |= KnownZero2.byteSwap(); 1489 KnownOne |= KnownOne2.byteSwap(); 1490 break; 1491 case Intrinsic::ctlz: 1492 case Intrinsic::cttz: { 1493 unsigned LowBits = Log2_32(BitWidth)+1; 1494 // If this call is undefined for 0, the result will be less than 2^n. 1495 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1496 LowBits -= 1; 1497 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1498 break; 1499 } 1500 case Intrinsic::ctpop: { 1501 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1502 // We can bound the space the count needs. Also, bits known to be zero 1503 // can't contribute to the population. 1504 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1505 unsigned LeadingZeros = 1506 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1507 assert(LeadingZeros <= BitWidth); 1508 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1509 KnownOne &= ~KnownZero; 1510 // TODO: we could bound KnownOne using the lower bound on the number 1511 // of bits which might be set provided by popcnt KnownOne2. 1512 break; 1513 } 1514 case Intrinsic::fabs: { 1515 Type *Ty = II->getType(); 1516 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1517 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1518 break; 1519 } 1520 case Intrinsic::x86_sse42_crc32_64_64: 1521 KnownZero |= APInt::getHighBitsSet(64, 32); 1522 break; 1523 } 1524 } 1525 break; 1526 case Instruction::ExtractValue: 1527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1528 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1529 if (EVI->getNumIndices() != 1) break; 1530 if (EVI->getIndices()[0] == 0) { 1531 switch (II->getIntrinsicID()) { 1532 default: break; 1533 case Intrinsic::uadd_with_overflow: 1534 case Intrinsic::sadd_with_overflow: 1535 computeKnownBitsAddSub(true, II->getArgOperand(0), 1536 II->getArgOperand(1), false, KnownZero, 1537 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1538 break; 1539 case Intrinsic::usub_with_overflow: 1540 case Intrinsic::ssub_with_overflow: 1541 computeKnownBitsAddSub(false, II->getArgOperand(0), 1542 II->getArgOperand(1), false, KnownZero, 1543 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1544 break; 1545 case Intrinsic::umul_with_overflow: 1546 case Intrinsic::smul_with_overflow: 1547 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1548 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1549 Q); 1550 break; 1551 } 1552 } 1553 } 1554 } 1555 } 1556 1557 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1558 unsigned Align = 0; 1559 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1560 Align = GO->getAlignment(); 1561 if (Align == 0) { 1562 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1563 Type *ObjectType = GVar->getValueType(); 1564 if (ObjectType->isSized()) { 1565 // If the object is defined in the current Module, we'll be giving 1566 // it the preferred alignment. Otherwise, we have to assume that it 1567 // may only have the minimum ABI alignment. 1568 if (GVar->isStrongDefinitionForLinker()) 1569 Align = DL.getPreferredAlignment(GVar); 1570 else 1571 Align = DL.getABITypeAlignment(ObjectType); 1572 } 1573 } 1574 } 1575 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1576 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1577 1578 if (!Align && A->hasStructRetAttr()) { 1579 // An sret parameter has at least the ABI alignment of the return type. 1580 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1581 if (EltTy->isSized()) 1582 Align = DL.getABITypeAlignment(EltTy); 1583 } 1584 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1585 Align = AI->getAlignment(); 1586 else if (auto CS = ImmutableCallSite(V)) 1587 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1588 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1589 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1591 Align = CI->getLimitedValue(); 1592 } 1593 1594 return Align; 1595 } 1596 1597 /// Determine which bits of V are known to be either zero or one and return 1598 /// them in the KnownZero/KnownOne bit sets. 1599 /// 1600 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1601 /// we cannot optimize based on the assumption that it is zero without changing 1602 /// it to be an explicit zero. If we don't change it to zero, other code could 1603 /// optimized based on the contradictory assumption that it is non-zero. 1604 /// Because instcombine aggressively folds operations with undef args anyway, 1605 /// this won't lose us code quality. 1606 /// 1607 /// This function is defined on values with integer type, values with pointer 1608 /// type, and vectors of integers. In the case 1609 /// where V is a vector, known zero, and known one values are the 1610 /// same width as the vector element, and the bit is set only if it is true 1611 /// for all of the elements in the vector. 1612 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1613 unsigned Depth, const Query &Q) { 1614 assert(V && "No Value?"); 1615 assert(Depth <= MaxDepth && "Limit Search Depth"); 1616 unsigned BitWidth = KnownZero.getBitWidth(); 1617 1618 assert((V->getType()->isIntOrIntVectorTy() || 1619 V->getType()->isFPOrFPVectorTy() || 1620 V->getType()->getScalarType()->isPointerTy()) && 1621 "Not integer, floating point, or pointer type!"); 1622 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1623 (!V->getType()->isIntOrIntVectorTy() || 1624 V->getType()->getScalarSizeInBits() == BitWidth) && 1625 KnownZero.getBitWidth() == BitWidth && 1626 KnownOne.getBitWidth() == BitWidth && 1627 "V, KnownOne and KnownZero should have same BitWidth"); 1628 1629 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1630 // We know all of the bits for a constant! 1631 KnownOne = CI->getValue(); 1632 KnownZero = ~KnownOne; 1633 return; 1634 } 1635 // Null and aggregate-zero are all-zeros. 1636 if (isa<ConstantPointerNull>(V) || 1637 isa<ConstantAggregateZero>(V)) { 1638 KnownOne.clearAllBits(); 1639 KnownZero = APInt::getAllOnesValue(BitWidth); 1640 return; 1641 } 1642 // Handle a constant vector by taking the intersection of the known bits of 1643 // each element. There is no real need to handle ConstantVector here, because 1644 // we don't handle undef in any particularly useful way. 1645 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1646 // We know that CDS must be a vector of integers. Take the intersection of 1647 // each element. 1648 KnownZero.setAllBits(); KnownOne.setAllBits(); 1649 APInt Elt(KnownZero.getBitWidth(), 0); 1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1651 Elt = CDS->getElementAsInteger(i); 1652 KnownZero &= ~Elt; 1653 KnownOne &= Elt; 1654 } 1655 return; 1656 } 1657 1658 // Start out not knowing anything. 1659 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1660 1661 // Limit search depth. 1662 // All recursive calls that increase depth must come after this. 1663 if (Depth == MaxDepth) 1664 return; 1665 1666 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1667 // the bits of its aliasee. 1668 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1669 if (!GA->mayBeOverridden()) 1670 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1671 return; 1672 } 1673 1674 if (Operator *I = dyn_cast<Operator>(V)) 1675 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1676 1677 // Aligned pointers have trailing zeros - refine KnownZero set 1678 if (V->getType()->isPointerTy()) { 1679 unsigned Align = getAlignment(V, Q.DL); 1680 if (Align) 1681 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1682 } 1683 1684 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1685 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1686 // computeKnownBitsFromOperator. 1687 1688 // Check whether a nearby assume intrinsic can determine some known bits. 1689 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1690 1691 // Check whether there's a dominating condition which implies something about 1692 // this value at the given context. 1693 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1694 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q); 1695 1696 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1697 } 1698 1699 /// Determine whether the sign bit is known to be zero or one. 1700 /// Convenience wrapper around computeKnownBits. 1701 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1702 unsigned Depth, const Query &Q) { 1703 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1704 if (!BitWidth) { 1705 KnownZero = false; 1706 KnownOne = false; 1707 return; 1708 } 1709 APInt ZeroBits(BitWidth, 0); 1710 APInt OneBits(BitWidth, 0); 1711 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1712 KnownOne = OneBits[BitWidth - 1]; 1713 KnownZero = ZeroBits[BitWidth - 1]; 1714 } 1715 1716 /// Return true if the given value is known to have exactly one 1717 /// bit set when defined. For vectors return true if every element is known to 1718 /// be a power of two when defined. Supports values with integer or pointer 1719 /// types and vectors of integers. 1720 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1721 const Query &Q) { 1722 if (Constant *C = dyn_cast<Constant>(V)) { 1723 if (C->isNullValue()) 1724 return OrZero; 1725 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1726 return CI->getValue().isPowerOf2(); 1727 // TODO: Handle vector constants. 1728 } 1729 1730 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1731 // it is shifted off the end then the result is undefined. 1732 if (match(V, m_Shl(m_One(), m_Value()))) 1733 return true; 1734 1735 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1736 // bottom. If it is shifted off the bottom then the result is undefined. 1737 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1738 return true; 1739 1740 // The remaining tests are all recursive, so bail out if we hit the limit. 1741 if (Depth++ == MaxDepth) 1742 return false; 1743 1744 Value *X = nullptr, *Y = nullptr; 1745 // A shift left or a logical shift right of a power of two is a power of two 1746 // or zero. 1747 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1748 match(V, m_LShr(m_Value(X), m_Value())))) 1749 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1750 1751 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1752 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1753 1754 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1755 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1756 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1757 1758 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1759 // A power of two and'd with anything is a power of two or zero. 1760 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1761 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1762 return true; 1763 // X & (-X) is always a power of two or zero. 1764 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1765 return true; 1766 return false; 1767 } 1768 1769 // Adding a power-of-two or zero to the same power-of-two or zero yields 1770 // either the original power-of-two, a larger power-of-two or zero. 1771 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1772 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1773 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1774 if (match(X, m_And(m_Specific(Y), m_Value())) || 1775 match(X, m_And(m_Value(), m_Specific(Y)))) 1776 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1777 return true; 1778 if (match(Y, m_And(m_Specific(X), m_Value())) || 1779 match(Y, m_And(m_Value(), m_Specific(X)))) 1780 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1781 return true; 1782 1783 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1784 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1785 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1786 1787 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1788 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1789 // If i8 V is a power of two or zero: 1790 // ZeroBits: 1 1 1 0 1 1 1 1 1791 // ~ZeroBits: 0 0 0 1 0 0 0 0 1792 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1793 // If OrZero isn't set, we cannot give back a zero result. 1794 // Make sure either the LHS or RHS has a bit set. 1795 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1796 return true; 1797 } 1798 } 1799 1800 // An exact divide or right shift can only shift off zero bits, so the result 1801 // is a power of two only if the first operand is a power of two and not 1802 // copying a sign bit (sdiv int_min, 2). 1803 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1804 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1805 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1806 Depth, Q); 1807 } 1808 1809 return false; 1810 } 1811 1812 /// \brief Test whether a GEP's result is known to be non-null. 1813 /// 1814 /// Uses properties inherent in a GEP to try to determine whether it is known 1815 /// to be non-null. 1816 /// 1817 /// Currently this routine does not support vector GEPs. 1818 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1819 const Query &Q) { 1820 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1821 return false; 1822 1823 // FIXME: Support vector-GEPs. 1824 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1825 1826 // If the base pointer is non-null, we cannot walk to a null address with an 1827 // inbounds GEP in address space zero. 1828 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1829 return true; 1830 1831 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1832 // If so, then the GEP cannot produce a null pointer, as doing so would 1833 // inherently violate the inbounds contract within address space zero. 1834 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1835 GTI != GTE; ++GTI) { 1836 // Struct types are easy -- they must always be indexed by a constant. 1837 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1838 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1839 unsigned ElementIdx = OpC->getZExtValue(); 1840 const StructLayout *SL = Q.DL.getStructLayout(STy); 1841 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1842 if (ElementOffset > 0) 1843 return true; 1844 continue; 1845 } 1846 1847 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1848 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1849 continue; 1850 1851 // Fast path the constant operand case both for efficiency and so we don't 1852 // increment Depth when just zipping down an all-constant GEP. 1853 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1854 if (!OpC->isZero()) 1855 return true; 1856 continue; 1857 } 1858 1859 // We post-increment Depth here because while isKnownNonZero increments it 1860 // as well, when we pop back up that increment won't persist. We don't want 1861 // to recurse 10k times just because we have 10k GEP operands. We don't 1862 // bail completely out because we want to handle constant GEPs regardless 1863 // of depth. 1864 if (Depth++ >= MaxDepth) 1865 continue; 1866 1867 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1868 return true; 1869 } 1870 1871 return false; 1872 } 1873 1874 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1875 /// ensure that the value it's attached to is never Value? 'RangeType' is 1876 /// is the type of the value described by the range. 1877 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1878 const APInt& Value) { 1879 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1880 assert(NumRanges >= 1); 1881 for (unsigned i = 0; i < NumRanges; ++i) { 1882 ConstantInt *Lower = 1883 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1884 ConstantInt *Upper = 1885 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1886 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1887 if (Range.contains(Value)) 1888 return false; 1889 } 1890 return true; 1891 } 1892 1893 /// Return true if the given value is known to be non-zero when defined. 1894 /// For vectors return true if every element is known to be non-zero when 1895 /// defined. Supports values with integer or pointer type and vectors of 1896 /// integers. 1897 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1898 if (Constant *C = dyn_cast<Constant>(V)) { 1899 if (C->isNullValue()) 1900 return false; 1901 if (isa<ConstantInt>(C)) 1902 // Must be non-zero due to null test above. 1903 return true; 1904 // TODO: Handle vectors 1905 return false; 1906 } 1907 1908 if (Instruction* I = dyn_cast<Instruction>(V)) { 1909 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1910 // If the possible ranges don't contain zero, then the value is 1911 // definitely non-zero. 1912 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1913 const APInt ZeroValue(Ty->getBitWidth(), 0); 1914 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1915 return true; 1916 } 1917 } 1918 } 1919 1920 // The remaining tests are all recursive, so bail out if we hit the limit. 1921 if (Depth++ >= MaxDepth) 1922 return false; 1923 1924 // Check for pointer simplifications. 1925 if (V->getType()->isPointerTy()) { 1926 if (isKnownNonNull(V)) 1927 return true; 1928 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1929 if (isGEPKnownNonNull(GEP, Depth, Q)) 1930 return true; 1931 } 1932 1933 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1934 1935 // X | Y != 0 if X != 0 or Y != 0. 1936 Value *X = nullptr, *Y = nullptr; 1937 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1938 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1939 1940 // ext X != 0 if X != 0. 1941 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1942 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1943 1944 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1945 // if the lowest bit is shifted off the end. 1946 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1947 // shl nuw can't remove any non-zero bits. 1948 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1949 if (BO->hasNoUnsignedWrap()) 1950 return isKnownNonZero(X, Depth, Q); 1951 1952 APInt KnownZero(BitWidth, 0); 1953 APInt KnownOne(BitWidth, 0); 1954 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1955 if (KnownOne[0]) 1956 return true; 1957 } 1958 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1959 // defined if the sign bit is shifted off the end. 1960 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1961 // shr exact can only shift out zero bits. 1962 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1963 if (BO->isExact()) 1964 return isKnownNonZero(X, Depth, Q); 1965 1966 bool XKnownNonNegative, XKnownNegative; 1967 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1968 if (XKnownNegative) 1969 return true; 1970 1971 // If the shifter operand is a constant, and all of the bits shifted 1972 // out are known to be zero, and X is known non-zero then at least one 1973 // non-zero bit must remain. 1974 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1975 APInt KnownZero(BitWidth, 0); 1976 APInt KnownOne(BitWidth, 0); 1977 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1978 1979 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1980 // Is there a known one in the portion not shifted out? 1981 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1982 return true; 1983 // Are all the bits to be shifted out known zero? 1984 if (KnownZero.countTrailingOnes() >= ShiftVal) 1985 return isKnownNonZero(X, Depth, Q); 1986 } 1987 } 1988 // div exact can only produce a zero if the dividend is zero. 1989 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1990 return isKnownNonZero(X, Depth, Q); 1991 } 1992 // X + Y. 1993 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1994 bool XKnownNonNegative, XKnownNegative; 1995 bool YKnownNonNegative, YKnownNegative; 1996 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1997 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1998 1999 // If X and Y are both non-negative (as signed values) then their sum is not 2000 // zero unless both X and Y are zero. 2001 if (XKnownNonNegative && YKnownNonNegative) 2002 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2003 return true; 2004 2005 // If X and Y are both negative (as signed values) then their sum is not 2006 // zero unless both X and Y equal INT_MIN. 2007 if (BitWidth && XKnownNegative && YKnownNegative) { 2008 APInt KnownZero(BitWidth, 0); 2009 APInt KnownOne(BitWidth, 0); 2010 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2011 // The sign bit of X is set. If some other bit is set then X is not equal 2012 // to INT_MIN. 2013 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 2014 if ((KnownOne & Mask) != 0) 2015 return true; 2016 // The sign bit of Y is set. If some other bit is set then Y is not equal 2017 // to INT_MIN. 2018 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 2019 if ((KnownOne & Mask) != 0) 2020 return true; 2021 } 2022 2023 // The sum of a non-negative number and a power of two is not zero. 2024 if (XKnownNonNegative && 2025 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2026 return true; 2027 if (YKnownNonNegative && 2028 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2029 return true; 2030 } 2031 // X * Y. 2032 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2033 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2034 // If X and Y are non-zero then so is X * Y as long as the multiplication 2035 // does not overflow. 2036 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2037 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2038 return true; 2039 } 2040 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2041 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2042 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2043 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2044 return true; 2045 } 2046 // PHI 2047 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2048 // Try and detect a recurrence that monotonically increases from a 2049 // starting value, as these are common as induction variables. 2050 if (PN->getNumIncomingValues() == 2) { 2051 Value *Start = PN->getIncomingValue(0); 2052 Value *Induction = PN->getIncomingValue(1); 2053 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2054 std::swap(Start, Induction); 2055 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2056 if (!C->isZero() && !C->isNegative()) { 2057 ConstantInt *X; 2058 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2059 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2060 !X->isNegative()) 2061 return true; 2062 } 2063 } 2064 } 2065 } 2066 2067 if (!BitWidth) return false; 2068 APInt KnownZero(BitWidth, 0); 2069 APInt KnownOne(BitWidth, 0); 2070 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2071 return KnownOne != 0; 2072 } 2073 2074 /// Return true if V2 == V1 + X, where X is known non-zero. 2075 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 2076 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2077 if (!BO || BO->getOpcode() != Instruction::Add) 2078 return false; 2079 Value *Op = nullptr; 2080 if (V2 == BO->getOperand(0)) 2081 Op = BO->getOperand(1); 2082 else if (V2 == BO->getOperand(1)) 2083 Op = BO->getOperand(0); 2084 else 2085 return false; 2086 return isKnownNonZero(Op, 0, Q); 2087 } 2088 2089 /// Return true if it is known that V1 != V2. 2090 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 2091 if (V1->getType()->isVectorTy() || V1 == V2) 2092 return false; 2093 if (V1->getType() != V2->getType()) 2094 // We can't look through casts yet. 2095 return false; 2096 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2097 return true; 2098 2099 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2100 // Are any known bits in V1 contradictory to known bits in V2? If V1 2101 // has a known zero where V2 has a known one, they must not be equal. 2102 auto BitWidth = Ty->getBitWidth(); 2103 APInt KnownZero1(BitWidth, 0); 2104 APInt KnownOne1(BitWidth, 0); 2105 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2106 APInt KnownZero2(BitWidth, 0); 2107 APInt KnownOne2(BitWidth, 0); 2108 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2109 2110 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2111 if (OppositeBits.getBoolValue()) 2112 return true; 2113 } 2114 return false; 2115 } 2116 2117 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2118 /// simplify operations downstream. Mask is known to be zero for bits that V 2119 /// cannot have. 2120 /// 2121 /// This function is defined on values with integer type, values with pointer 2122 /// type, and vectors of integers. In the case 2123 /// where V is a vector, the mask, known zero, and known one values are the 2124 /// same width as the vector element, and the bit is set only if it is true 2125 /// for all of the elements in the vector. 2126 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 2127 const Query &Q) { 2128 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2129 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2130 return (KnownZero & Mask) == Mask; 2131 } 2132 2133 2134 2135 /// Return the number of times the sign bit of the register is replicated into 2136 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2137 /// (itself), but other cases can give us information. For example, immediately 2138 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2139 /// other, so we return 3. 2140 /// 2141 /// 'Op' must have a scalar integer type. 2142 /// 2143 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 2144 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2145 unsigned Tmp, Tmp2; 2146 unsigned FirstAnswer = 1; 2147 2148 // Note that ConstantInt is handled by the general computeKnownBits case 2149 // below. 2150 2151 if (Depth == 6) 2152 return 1; // Limit search depth. 2153 2154 Operator *U = dyn_cast<Operator>(V); 2155 switch (Operator::getOpcode(V)) { 2156 default: break; 2157 case Instruction::SExt: 2158 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2159 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2160 2161 case Instruction::SDiv: { 2162 const APInt *Denominator; 2163 // sdiv X, C -> adds log(C) sign bits. 2164 if (match(U->getOperand(1), m_APInt(Denominator))) { 2165 2166 // Ignore non-positive denominator. 2167 if (!Denominator->isStrictlyPositive()) 2168 break; 2169 2170 // Calculate the incoming numerator bits. 2171 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2172 2173 // Add floor(log(C)) bits to the numerator bits. 2174 return std::min(TyBits, NumBits + Denominator->logBase2()); 2175 } 2176 break; 2177 } 2178 2179 case Instruction::SRem: { 2180 const APInt *Denominator; 2181 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2182 // positive constant. This let us put a lower bound on the number of sign 2183 // bits. 2184 if (match(U->getOperand(1), m_APInt(Denominator))) { 2185 2186 // Ignore non-positive denominator. 2187 if (!Denominator->isStrictlyPositive()) 2188 break; 2189 2190 // Calculate the incoming numerator bits. SRem by a positive constant 2191 // can't lower the number of sign bits. 2192 unsigned NumrBits = 2193 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2194 2195 // Calculate the leading sign bit constraints by examining the 2196 // denominator. Given that the denominator is positive, there are two 2197 // cases: 2198 // 2199 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2200 // (1 << ceilLogBase2(C)). 2201 // 2202 // 2. the numerator is negative. Then the result range is (-C,0] and 2203 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2204 // 2205 // Thus a lower bound on the number of sign bits is `TyBits - 2206 // ceilLogBase2(C)`. 2207 2208 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2209 return std::max(NumrBits, ResBits); 2210 } 2211 break; 2212 } 2213 2214 case Instruction::AShr: { 2215 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2216 // ashr X, C -> adds C sign bits. Vectors too. 2217 const APInt *ShAmt; 2218 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2219 Tmp += ShAmt->getZExtValue(); 2220 if (Tmp > TyBits) Tmp = TyBits; 2221 } 2222 return Tmp; 2223 } 2224 case Instruction::Shl: { 2225 const APInt *ShAmt; 2226 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2227 // shl destroys sign bits. 2228 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2229 Tmp2 = ShAmt->getZExtValue(); 2230 if (Tmp2 >= TyBits || // Bad shift. 2231 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2232 return Tmp - Tmp2; 2233 } 2234 break; 2235 } 2236 case Instruction::And: 2237 case Instruction::Or: 2238 case Instruction::Xor: // NOT is handled here. 2239 // Logical binary ops preserve the number of sign bits at the worst. 2240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2241 if (Tmp != 1) { 2242 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2243 FirstAnswer = std::min(Tmp, Tmp2); 2244 // We computed what we know about the sign bits as our first 2245 // answer. Now proceed to the generic code that uses 2246 // computeKnownBits, and pick whichever answer is better. 2247 } 2248 break; 2249 2250 case Instruction::Select: 2251 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2252 if (Tmp == 1) return 1; // Early out. 2253 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2254 return std::min(Tmp, Tmp2); 2255 2256 case Instruction::Add: 2257 // Add can have at most one carry bit. Thus we know that the output 2258 // is, at worst, one more bit than the inputs. 2259 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2260 if (Tmp == 1) return 1; // Early out. 2261 2262 // Special case decrementing a value (ADD X, -1): 2263 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2264 if (CRHS->isAllOnesValue()) { 2265 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2266 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2267 2268 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2269 // sign bits set. 2270 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2271 return TyBits; 2272 2273 // If we are subtracting one from a positive number, there is no carry 2274 // out of the result. 2275 if (KnownZero.isNegative()) 2276 return Tmp; 2277 } 2278 2279 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2280 if (Tmp2 == 1) return 1; 2281 return std::min(Tmp, Tmp2)-1; 2282 2283 case Instruction::Sub: 2284 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2285 if (Tmp2 == 1) return 1; 2286 2287 // Handle NEG. 2288 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2289 if (CLHS->isNullValue()) { 2290 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2291 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2292 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2293 // sign bits set. 2294 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2295 return TyBits; 2296 2297 // If the input is known to be positive (the sign bit is known clear), 2298 // the output of the NEG has the same number of sign bits as the input. 2299 if (KnownZero.isNegative()) 2300 return Tmp2; 2301 2302 // Otherwise, we treat this like a SUB. 2303 } 2304 2305 // Sub can have at most one carry bit. Thus we know that the output 2306 // is, at worst, one more bit than the inputs. 2307 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2308 if (Tmp == 1) return 1; // Early out. 2309 return std::min(Tmp, Tmp2)-1; 2310 2311 case Instruction::PHI: { 2312 PHINode *PN = cast<PHINode>(U); 2313 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2314 // Don't analyze large in-degree PHIs. 2315 if (NumIncomingValues > 4) break; 2316 // Unreachable blocks may have zero-operand PHI nodes. 2317 if (NumIncomingValues == 0) break; 2318 2319 // Take the minimum of all incoming values. This can't infinitely loop 2320 // because of our depth threshold. 2321 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2322 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2323 if (Tmp == 1) return Tmp; 2324 Tmp = std::min( 2325 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2326 } 2327 return Tmp; 2328 } 2329 2330 case Instruction::Trunc: 2331 // FIXME: it's tricky to do anything useful for this, but it is an important 2332 // case for targets like X86. 2333 break; 2334 } 2335 2336 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2337 // use this information. 2338 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2339 APInt Mask; 2340 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2341 2342 if (KnownZero.isNegative()) { // sign bit is 0 2343 Mask = KnownZero; 2344 } else if (KnownOne.isNegative()) { // sign bit is 1; 2345 Mask = KnownOne; 2346 } else { 2347 // Nothing known. 2348 return FirstAnswer; 2349 } 2350 2351 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2352 // the number of identical bits in the top of the input value. 2353 Mask = ~Mask; 2354 Mask <<= Mask.getBitWidth()-TyBits; 2355 // Return # leading zeros. We use 'min' here in case Val was zero before 2356 // shifting. We don't want to return '64' as for an i32 "0". 2357 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2358 } 2359 2360 /// This function computes the integer multiple of Base that equals V. 2361 /// If successful, it returns true and returns the multiple in 2362 /// Multiple. If unsuccessful, it returns false. It looks 2363 /// through SExt instructions only if LookThroughSExt is true. 2364 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2365 bool LookThroughSExt, unsigned Depth) { 2366 const unsigned MaxDepth = 6; 2367 2368 assert(V && "No Value?"); 2369 assert(Depth <= MaxDepth && "Limit Search Depth"); 2370 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2371 2372 Type *T = V->getType(); 2373 2374 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2375 2376 if (Base == 0) 2377 return false; 2378 2379 if (Base == 1) { 2380 Multiple = V; 2381 return true; 2382 } 2383 2384 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2385 Constant *BaseVal = ConstantInt::get(T, Base); 2386 if (CO && CO == BaseVal) { 2387 // Multiple is 1. 2388 Multiple = ConstantInt::get(T, 1); 2389 return true; 2390 } 2391 2392 if (CI && CI->getZExtValue() % Base == 0) { 2393 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2394 return true; 2395 } 2396 2397 if (Depth == MaxDepth) return false; // Limit search depth. 2398 2399 Operator *I = dyn_cast<Operator>(V); 2400 if (!I) return false; 2401 2402 switch (I->getOpcode()) { 2403 default: break; 2404 case Instruction::SExt: 2405 if (!LookThroughSExt) return false; 2406 // otherwise fall through to ZExt 2407 case Instruction::ZExt: 2408 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2409 LookThroughSExt, Depth+1); 2410 case Instruction::Shl: 2411 case Instruction::Mul: { 2412 Value *Op0 = I->getOperand(0); 2413 Value *Op1 = I->getOperand(1); 2414 2415 if (I->getOpcode() == Instruction::Shl) { 2416 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2417 if (!Op1CI) return false; 2418 // Turn Op0 << Op1 into Op0 * 2^Op1 2419 APInt Op1Int = Op1CI->getValue(); 2420 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2421 APInt API(Op1Int.getBitWidth(), 0); 2422 API.setBit(BitToSet); 2423 Op1 = ConstantInt::get(V->getContext(), API); 2424 } 2425 2426 Value *Mul0 = nullptr; 2427 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2428 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2429 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2430 if (Op1C->getType()->getPrimitiveSizeInBits() < 2431 MulC->getType()->getPrimitiveSizeInBits()) 2432 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2433 if (Op1C->getType()->getPrimitiveSizeInBits() > 2434 MulC->getType()->getPrimitiveSizeInBits()) 2435 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2436 2437 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2438 Multiple = ConstantExpr::getMul(MulC, Op1C); 2439 return true; 2440 } 2441 2442 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2443 if (Mul0CI->getValue() == 1) { 2444 // V == Base * Op1, so return Op1 2445 Multiple = Op1; 2446 return true; 2447 } 2448 } 2449 2450 Value *Mul1 = nullptr; 2451 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2452 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2453 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2454 if (Op0C->getType()->getPrimitiveSizeInBits() < 2455 MulC->getType()->getPrimitiveSizeInBits()) 2456 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2457 if (Op0C->getType()->getPrimitiveSizeInBits() > 2458 MulC->getType()->getPrimitiveSizeInBits()) 2459 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2460 2461 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2462 Multiple = ConstantExpr::getMul(MulC, Op0C); 2463 return true; 2464 } 2465 2466 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2467 if (Mul1CI->getValue() == 1) { 2468 // V == Base * Op0, so return Op0 2469 Multiple = Op0; 2470 return true; 2471 } 2472 } 2473 } 2474 } 2475 2476 // We could not determine if V is a multiple of Base. 2477 return false; 2478 } 2479 2480 /// Return true if we can prove that the specified FP value is never equal to 2481 /// -0.0. 2482 /// 2483 /// NOTE: this function will need to be revisited when we support non-default 2484 /// rounding modes! 2485 /// 2486 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2487 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2488 return !CFP->getValueAPF().isNegZero(); 2489 2490 // FIXME: Magic number! At the least, this should be given a name because it's 2491 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2492 // expose it as a parameter, so it can be used for testing / experimenting. 2493 if (Depth == 6) 2494 return false; // Limit search depth. 2495 2496 const Operator *I = dyn_cast<Operator>(V); 2497 if (!I) return false; 2498 2499 // Check if the nsz fast-math flag is set 2500 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2501 if (FPO->hasNoSignedZeros()) 2502 return true; 2503 2504 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2505 if (I->getOpcode() == Instruction::FAdd) 2506 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2507 if (CFP->isNullValue()) 2508 return true; 2509 2510 // sitofp and uitofp turn into +0.0 for zero. 2511 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2512 return true; 2513 2514 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2515 // sqrt(-0.0) = -0.0, no other negative results are possible. 2516 if (II->getIntrinsicID() == Intrinsic::sqrt) 2517 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2518 2519 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2520 if (const Function *F = CI->getCalledFunction()) { 2521 if (F->isDeclaration()) { 2522 // abs(x) != -0.0 2523 if (F->getName() == "abs") return true; 2524 // fabs[lf](x) != -0.0 2525 if (F->getName() == "fabs") return true; 2526 if (F->getName() == "fabsf") return true; 2527 if (F->getName() == "fabsl") return true; 2528 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2529 F->getName() == "sqrtl") 2530 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2531 } 2532 } 2533 2534 return false; 2535 } 2536 2537 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2538 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2539 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2540 2541 // FIXME: Magic number! At the least, this should be given a name because it's 2542 // used similarly in CannotBeNegativeZero(). A better fix may be to 2543 // expose it as a parameter, so it can be used for testing / experimenting. 2544 if (Depth == 6) 2545 return false; // Limit search depth. 2546 2547 const Operator *I = dyn_cast<Operator>(V); 2548 if (!I) return false; 2549 2550 switch (I->getOpcode()) { 2551 default: break; 2552 // Unsigned integers are always nonnegative. 2553 case Instruction::UIToFP: 2554 return true; 2555 case Instruction::FMul: 2556 // x*x is always non-negative or a NaN. 2557 if (I->getOperand(0) == I->getOperand(1)) 2558 return true; 2559 // Fall through 2560 case Instruction::FAdd: 2561 case Instruction::FDiv: 2562 case Instruction::FRem: 2563 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2564 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2565 case Instruction::Select: 2566 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2567 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2568 case Instruction::FPExt: 2569 case Instruction::FPTrunc: 2570 // Widening/narrowing never change sign. 2571 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2572 case Instruction::Call: 2573 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2574 switch (II->getIntrinsicID()) { 2575 default: break; 2576 case Intrinsic::maxnum: 2577 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2578 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2579 case Intrinsic::minnum: 2580 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2581 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2582 case Intrinsic::exp: 2583 case Intrinsic::exp2: 2584 case Intrinsic::fabs: 2585 case Intrinsic::sqrt: 2586 return true; 2587 case Intrinsic::powi: 2588 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2589 // powi(x,n) is non-negative if n is even. 2590 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2591 return true; 2592 } 2593 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2594 case Intrinsic::fma: 2595 case Intrinsic::fmuladd: 2596 // x*x+y is non-negative if y is non-negative. 2597 return I->getOperand(0) == I->getOperand(1) && 2598 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2599 } 2600 break; 2601 } 2602 return false; 2603 } 2604 2605 /// If the specified value can be set by repeating the same byte in memory, 2606 /// return the i8 value that it is represented with. This is 2607 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2608 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2609 /// byte store (e.g. i16 0x1234), return null. 2610 Value *llvm::isBytewiseValue(Value *V) { 2611 // All byte-wide stores are splatable, even of arbitrary variables. 2612 if (V->getType()->isIntegerTy(8)) return V; 2613 2614 // Handle 'null' ConstantArrayZero etc. 2615 if (Constant *C = dyn_cast<Constant>(V)) 2616 if (C->isNullValue()) 2617 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2618 2619 // Constant float and double values can be handled as integer values if the 2620 // corresponding integer value is "byteable". An important case is 0.0. 2621 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2622 if (CFP->getType()->isFloatTy()) 2623 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2624 if (CFP->getType()->isDoubleTy()) 2625 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2626 // Don't handle long double formats, which have strange constraints. 2627 } 2628 2629 // We can handle constant integers that are multiple of 8 bits. 2630 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2631 if (CI->getBitWidth() % 8 == 0) { 2632 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2633 2634 if (!CI->getValue().isSplat(8)) 2635 return nullptr; 2636 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2637 } 2638 } 2639 2640 // A ConstantDataArray/Vector is splatable if all its members are equal and 2641 // also splatable. 2642 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2643 Value *Elt = CA->getElementAsConstant(0); 2644 Value *Val = isBytewiseValue(Elt); 2645 if (!Val) 2646 return nullptr; 2647 2648 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2649 if (CA->getElementAsConstant(I) != Elt) 2650 return nullptr; 2651 2652 return Val; 2653 } 2654 2655 // Conceptually, we could handle things like: 2656 // %a = zext i8 %X to i16 2657 // %b = shl i16 %a, 8 2658 // %c = or i16 %a, %b 2659 // but until there is an example that actually needs this, it doesn't seem 2660 // worth worrying about. 2661 return nullptr; 2662 } 2663 2664 2665 // This is the recursive version of BuildSubAggregate. It takes a few different 2666 // arguments. Idxs is the index within the nested struct From that we are 2667 // looking at now (which is of type IndexedType). IdxSkip is the number of 2668 // indices from Idxs that should be left out when inserting into the resulting 2669 // struct. To is the result struct built so far, new insertvalue instructions 2670 // build on that. 2671 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2672 SmallVectorImpl<unsigned> &Idxs, 2673 unsigned IdxSkip, 2674 Instruction *InsertBefore) { 2675 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2676 if (STy) { 2677 // Save the original To argument so we can modify it 2678 Value *OrigTo = To; 2679 // General case, the type indexed by Idxs is a struct 2680 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2681 // Process each struct element recursively 2682 Idxs.push_back(i); 2683 Value *PrevTo = To; 2684 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2685 InsertBefore); 2686 Idxs.pop_back(); 2687 if (!To) { 2688 // Couldn't find any inserted value for this index? Cleanup 2689 while (PrevTo != OrigTo) { 2690 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2691 PrevTo = Del->getAggregateOperand(); 2692 Del->eraseFromParent(); 2693 } 2694 // Stop processing elements 2695 break; 2696 } 2697 } 2698 // If we successfully found a value for each of our subaggregates 2699 if (To) 2700 return To; 2701 } 2702 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2703 // the struct's elements had a value that was inserted directly. In the latter 2704 // case, perhaps we can't determine each of the subelements individually, but 2705 // we might be able to find the complete struct somewhere. 2706 2707 // Find the value that is at that particular spot 2708 Value *V = FindInsertedValue(From, Idxs); 2709 2710 if (!V) 2711 return nullptr; 2712 2713 // Insert the value in the new (sub) aggregrate 2714 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2715 "tmp", InsertBefore); 2716 } 2717 2718 // This helper takes a nested struct and extracts a part of it (which is again a 2719 // struct) into a new value. For example, given the struct: 2720 // { a, { b, { c, d }, e } } 2721 // and the indices "1, 1" this returns 2722 // { c, d }. 2723 // 2724 // It does this by inserting an insertvalue for each element in the resulting 2725 // struct, as opposed to just inserting a single struct. This will only work if 2726 // each of the elements of the substruct are known (ie, inserted into From by an 2727 // insertvalue instruction somewhere). 2728 // 2729 // All inserted insertvalue instructions are inserted before InsertBefore 2730 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2731 Instruction *InsertBefore) { 2732 assert(InsertBefore && "Must have someplace to insert!"); 2733 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2734 idx_range); 2735 Value *To = UndefValue::get(IndexedType); 2736 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2737 unsigned IdxSkip = Idxs.size(); 2738 2739 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2740 } 2741 2742 /// Given an aggregrate and an sequence of indices, see if 2743 /// the scalar value indexed is already around as a register, for example if it 2744 /// were inserted directly into the aggregrate. 2745 /// 2746 /// If InsertBefore is not null, this function will duplicate (modified) 2747 /// insertvalues when a part of a nested struct is extracted. 2748 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2749 Instruction *InsertBefore) { 2750 // Nothing to index? Just return V then (this is useful at the end of our 2751 // recursion). 2752 if (idx_range.empty()) 2753 return V; 2754 // We have indices, so V should have an indexable type. 2755 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2756 "Not looking at a struct or array?"); 2757 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2758 "Invalid indices for type?"); 2759 2760 if (Constant *C = dyn_cast<Constant>(V)) { 2761 C = C->getAggregateElement(idx_range[0]); 2762 if (!C) return nullptr; 2763 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2764 } 2765 2766 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2767 // Loop the indices for the insertvalue instruction in parallel with the 2768 // requested indices 2769 const unsigned *req_idx = idx_range.begin(); 2770 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2771 i != e; ++i, ++req_idx) { 2772 if (req_idx == idx_range.end()) { 2773 // We can't handle this without inserting insertvalues 2774 if (!InsertBefore) 2775 return nullptr; 2776 2777 // The requested index identifies a part of a nested aggregate. Handle 2778 // this specially. For example, 2779 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2780 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2781 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2782 // This can be changed into 2783 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2784 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2785 // which allows the unused 0,0 element from the nested struct to be 2786 // removed. 2787 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2788 InsertBefore); 2789 } 2790 2791 // This insert value inserts something else than what we are looking for. 2792 // See if the (aggregate) value inserted into has the value we are 2793 // looking for, then. 2794 if (*req_idx != *i) 2795 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2796 InsertBefore); 2797 } 2798 // If we end up here, the indices of the insertvalue match with those 2799 // requested (though possibly only partially). Now we recursively look at 2800 // the inserted value, passing any remaining indices. 2801 return FindInsertedValue(I->getInsertedValueOperand(), 2802 makeArrayRef(req_idx, idx_range.end()), 2803 InsertBefore); 2804 } 2805 2806 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2807 // If we're extracting a value from an aggregate that was extracted from 2808 // something else, we can extract from that something else directly instead. 2809 // However, we will need to chain I's indices with the requested indices. 2810 2811 // Calculate the number of indices required 2812 unsigned size = I->getNumIndices() + idx_range.size(); 2813 // Allocate some space to put the new indices in 2814 SmallVector<unsigned, 5> Idxs; 2815 Idxs.reserve(size); 2816 // Add indices from the extract value instruction 2817 Idxs.append(I->idx_begin(), I->idx_end()); 2818 2819 // Add requested indices 2820 Idxs.append(idx_range.begin(), idx_range.end()); 2821 2822 assert(Idxs.size() == size 2823 && "Number of indices added not correct?"); 2824 2825 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2826 } 2827 // Otherwise, we don't know (such as, extracting from a function return value 2828 // or load instruction) 2829 return nullptr; 2830 } 2831 2832 /// Analyze the specified pointer to see if it can be expressed as a base 2833 /// pointer plus a constant offset. Return the base and offset to the caller. 2834 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2835 const DataLayout &DL) { 2836 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2837 APInt ByteOffset(BitWidth, 0); 2838 2839 // We walk up the defs but use a visited set to handle unreachable code. In 2840 // that case, we stop after accumulating the cycle once (not that it 2841 // matters). 2842 SmallPtrSet<Value *, 16> Visited; 2843 while (Visited.insert(Ptr).second) { 2844 if (Ptr->getType()->isVectorTy()) 2845 break; 2846 2847 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2848 APInt GEPOffset(BitWidth, 0); 2849 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2850 break; 2851 2852 ByteOffset += GEPOffset; 2853 2854 Ptr = GEP->getPointerOperand(); 2855 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2856 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2857 Ptr = cast<Operator>(Ptr)->getOperand(0); 2858 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2859 if (GA->mayBeOverridden()) 2860 break; 2861 Ptr = GA->getAliasee(); 2862 } else { 2863 break; 2864 } 2865 } 2866 Offset = ByteOffset.getSExtValue(); 2867 return Ptr; 2868 } 2869 2870 2871 /// This function computes the length of a null-terminated C string pointed to 2872 /// by V. If successful, it returns true and returns the string in Str. 2873 /// If unsuccessful, it returns false. 2874 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2875 uint64_t Offset, bool TrimAtNul) { 2876 assert(V); 2877 2878 // Look through bitcast instructions and geps. 2879 V = V->stripPointerCasts(); 2880 2881 // If the value is a GEP instruction or constant expression, treat it as an 2882 // offset. 2883 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2884 // Make sure the GEP has exactly three arguments. 2885 if (GEP->getNumOperands() != 3) 2886 return false; 2887 2888 // Make sure the index-ee is a pointer to array of i8. 2889 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2890 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2891 return false; 2892 2893 // Check to make sure that the first operand of the GEP is an integer and 2894 // has value 0 so that we are sure we're indexing into the initializer. 2895 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2896 if (!FirstIdx || !FirstIdx->isZero()) 2897 return false; 2898 2899 // If the second index isn't a ConstantInt, then this is a variable index 2900 // into the array. If this occurs, we can't say anything meaningful about 2901 // the string. 2902 uint64_t StartIdx = 0; 2903 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2904 StartIdx = CI->getZExtValue(); 2905 else 2906 return false; 2907 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2908 TrimAtNul); 2909 } 2910 2911 // The GEP instruction, constant or instruction, must reference a global 2912 // variable that is a constant and is initialized. The referenced constant 2913 // initializer is the array that we'll use for optimization. 2914 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2915 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2916 return false; 2917 2918 // Handle the all-zeros case 2919 if (GV->getInitializer()->isNullValue()) { 2920 // This is a degenerate case. The initializer is constant zero so the 2921 // length of the string must be zero. 2922 Str = ""; 2923 return true; 2924 } 2925 2926 // Must be a Constant Array 2927 const ConstantDataArray *Array = 2928 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2929 if (!Array || !Array->isString()) 2930 return false; 2931 2932 // Get the number of elements in the array 2933 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2934 2935 // Start out with the entire array in the StringRef. 2936 Str = Array->getAsString(); 2937 2938 if (Offset > NumElts) 2939 return false; 2940 2941 // Skip over 'offset' bytes. 2942 Str = Str.substr(Offset); 2943 2944 if (TrimAtNul) { 2945 // Trim off the \0 and anything after it. If the array is not nul 2946 // terminated, we just return the whole end of string. The client may know 2947 // some other way that the string is length-bound. 2948 Str = Str.substr(0, Str.find('\0')); 2949 } 2950 return true; 2951 } 2952 2953 // These next two are very similar to the above, but also look through PHI 2954 // nodes. 2955 // TODO: See if we can integrate these two together. 2956 2957 /// If we can compute the length of the string pointed to by 2958 /// the specified pointer, return 'len+1'. If we can't, return 0. 2959 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2960 // Look through noop bitcast instructions. 2961 V = V->stripPointerCasts(); 2962 2963 // If this is a PHI node, there are two cases: either we have already seen it 2964 // or we haven't. 2965 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2966 if (!PHIs.insert(PN).second) 2967 return ~0ULL; // already in the set. 2968 2969 // If it was new, see if all the input strings are the same length. 2970 uint64_t LenSoFar = ~0ULL; 2971 for (Value *IncValue : PN->incoming_values()) { 2972 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2973 if (Len == 0) return 0; // Unknown length -> unknown. 2974 2975 if (Len == ~0ULL) continue; 2976 2977 if (Len != LenSoFar && LenSoFar != ~0ULL) 2978 return 0; // Disagree -> unknown. 2979 LenSoFar = Len; 2980 } 2981 2982 // Success, all agree. 2983 return LenSoFar; 2984 } 2985 2986 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2987 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2988 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2989 if (Len1 == 0) return 0; 2990 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2991 if (Len2 == 0) return 0; 2992 if (Len1 == ~0ULL) return Len2; 2993 if (Len2 == ~0ULL) return Len1; 2994 if (Len1 != Len2) return 0; 2995 return Len1; 2996 } 2997 2998 // Otherwise, see if we can read the string. 2999 StringRef StrData; 3000 if (!getConstantStringInfo(V, StrData)) 3001 return 0; 3002 3003 return StrData.size()+1; 3004 } 3005 3006 /// If we can compute the length of the string pointed to by 3007 /// the specified pointer, return 'len+1'. If we can't, return 0. 3008 uint64_t llvm::GetStringLength(Value *V) { 3009 if (!V->getType()->isPointerTy()) return 0; 3010 3011 SmallPtrSet<PHINode*, 32> PHIs; 3012 uint64_t Len = GetStringLengthH(V, PHIs); 3013 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3014 // an empty string as a length. 3015 return Len == ~0ULL ? 1 : Len; 3016 } 3017 3018 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3019 /// previous iteration of the loop was referring to the same object as \p PN. 3020 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 3021 // Find the loop-defined value. 3022 Loop *L = LI->getLoopFor(PN->getParent()); 3023 if (PN->getNumIncomingValues() != 2) 3024 return true; 3025 3026 // Find the value from previous iteration. 3027 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3028 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3029 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3030 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3031 return true; 3032 3033 // If a new pointer is loaded in the loop, the pointer references a different 3034 // object in every iteration. E.g.: 3035 // for (i) 3036 // int *p = a[i]; 3037 // ... 3038 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3039 if (!L->isLoopInvariant(Load->getPointerOperand())) 3040 return false; 3041 return true; 3042 } 3043 3044 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3045 unsigned MaxLookup) { 3046 if (!V->getType()->isPointerTy()) 3047 return V; 3048 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3049 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3050 V = GEP->getPointerOperand(); 3051 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3052 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3053 V = cast<Operator>(V)->getOperand(0); 3054 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3055 if (GA->mayBeOverridden()) 3056 return V; 3057 V = GA->getAliasee(); 3058 } else { 3059 // See if InstructionSimplify knows any relevant tricks. 3060 if (Instruction *I = dyn_cast<Instruction>(V)) 3061 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3062 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3063 V = Simplified; 3064 continue; 3065 } 3066 3067 return V; 3068 } 3069 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3070 } 3071 return V; 3072 } 3073 3074 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3075 const DataLayout &DL, LoopInfo *LI, 3076 unsigned MaxLookup) { 3077 SmallPtrSet<Value *, 4> Visited; 3078 SmallVector<Value *, 4> Worklist; 3079 Worklist.push_back(V); 3080 do { 3081 Value *P = Worklist.pop_back_val(); 3082 P = GetUnderlyingObject(P, DL, MaxLookup); 3083 3084 if (!Visited.insert(P).second) 3085 continue; 3086 3087 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3088 Worklist.push_back(SI->getTrueValue()); 3089 Worklist.push_back(SI->getFalseValue()); 3090 continue; 3091 } 3092 3093 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3094 // If this PHI changes the underlying object in every iteration of the 3095 // loop, don't look through it. Consider: 3096 // int **A; 3097 // for (i) { 3098 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3099 // Curr = A[i]; 3100 // *Prev, *Curr; 3101 // 3102 // Prev is tracking Curr one iteration behind so they refer to different 3103 // underlying objects. 3104 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3105 isSameUnderlyingObjectInLoop(PN, LI)) 3106 for (Value *IncValue : PN->incoming_values()) 3107 Worklist.push_back(IncValue); 3108 continue; 3109 } 3110 3111 Objects.push_back(P); 3112 } while (!Worklist.empty()); 3113 } 3114 3115 /// Return true if the only users of this pointer are lifetime markers. 3116 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3117 for (const User *U : V->users()) { 3118 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3119 if (!II) return false; 3120 3121 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3122 II->getIntrinsicID() != Intrinsic::lifetime_end) 3123 return false; 3124 } 3125 return true; 3126 } 3127 3128 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3129 Type *Ty, const DataLayout &DL, 3130 const Instruction *CtxI, 3131 const DominatorTree *DT, 3132 const TargetLibraryInfo *TLI) { 3133 assert(Offset.isNonNegative() && "offset can't be negative"); 3134 assert(Ty->isSized() && "must be sized"); 3135 3136 APInt DerefBytes(Offset.getBitWidth(), 0); 3137 bool CheckForNonNull = false; 3138 if (const Argument *A = dyn_cast<Argument>(BV)) { 3139 DerefBytes = A->getDereferenceableBytes(); 3140 if (!DerefBytes.getBoolValue()) { 3141 DerefBytes = A->getDereferenceableOrNullBytes(); 3142 CheckForNonNull = true; 3143 } 3144 } else if (auto CS = ImmutableCallSite(BV)) { 3145 DerefBytes = CS.getDereferenceableBytes(0); 3146 if (!DerefBytes.getBoolValue()) { 3147 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3148 CheckForNonNull = true; 3149 } 3150 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3151 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3152 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3153 DerefBytes = CI->getLimitedValue(); 3154 } 3155 if (!DerefBytes.getBoolValue()) { 3156 if (MDNode *MD = 3157 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3158 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3159 DerefBytes = CI->getLimitedValue(); 3160 } 3161 CheckForNonNull = true; 3162 } 3163 } 3164 3165 if (DerefBytes.getBoolValue()) 3166 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3167 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3168 return true; 3169 3170 return false; 3171 } 3172 3173 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3174 const Instruction *CtxI, 3175 const DominatorTree *DT, 3176 const TargetLibraryInfo *TLI) { 3177 Type *VTy = V->getType(); 3178 Type *Ty = VTy->getPointerElementType(); 3179 if (!Ty->isSized()) 3180 return false; 3181 3182 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3183 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3184 } 3185 3186 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3187 const DataLayout &DL) { 3188 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3189 3190 if (!BaseAlign) { 3191 Type *Ty = Base->getType()->getPointerElementType(); 3192 if (!Ty->isSized()) 3193 return false; 3194 BaseAlign = DL.getABITypeAlignment(Ty); 3195 } 3196 3197 APInt Alignment(Offset.getBitWidth(), Align); 3198 3199 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3200 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3201 } 3202 3203 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3204 Type *Ty = Base->getType(); 3205 assert(Ty->isSized() && "must be sized"); 3206 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 3207 return isAligned(Base, Offset, Align, DL); 3208 } 3209 3210 /// Test if V is always a pointer to allocated and suitably aligned memory for 3211 /// a simple load or store. 3212 static bool isDereferenceableAndAlignedPointer( 3213 const Value *V, unsigned Align, const DataLayout &DL, 3214 const Instruction *CtxI, const DominatorTree *DT, 3215 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3216 // Note that it is not safe to speculate into a malloc'd region because 3217 // malloc may return null. 3218 3219 // These are obviously ok if aligned. 3220 if (isa<AllocaInst>(V)) 3221 return isAligned(V, Align, DL); 3222 3223 // It's not always safe to follow a bitcast, for example: 3224 // bitcast i8* (alloca i8) to i32* 3225 // would result in a 4-byte load from a 1-byte alloca. However, 3226 // if we're casting from a pointer from a type of larger size 3227 // to a type of smaller size (or the same size), and the alignment 3228 // is at least as large as for the resulting pointer type, then 3229 // we can look through the bitcast. 3230 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3231 Type *STy = BC->getSrcTy()->getPointerElementType(), 3232 *DTy = BC->getDestTy()->getPointerElementType(); 3233 if (STy->isSized() && DTy->isSized() && 3234 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3235 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3236 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3237 CtxI, DT, TLI, Visited); 3238 } 3239 3240 // Global variables which can't collapse to null are ok. 3241 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3242 if (!GV->hasExternalWeakLinkage()) 3243 return isAligned(V, Align, DL); 3244 3245 // byval arguments are okay. 3246 if (const Argument *A = dyn_cast<Argument>(V)) 3247 if (A->hasByValAttr()) 3248 return isAligned(V, Align, DL); 3249 3250 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3251 return isAligned(V, Align, DL); 3252 3253 // For GEPs, determine if the indexing lands within the allocated object. 3254 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3255 Type *Ty = GEP->getResultElementType(); 3256 const Value *Base = GEP->getPointerOperand(); 3257 3258 // Conservatively require that the base pointer be fully dereferenceable 3259 // and aligned. 3260 if (!Visited.insert(Base).second) 3261 return false; 3262 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3263 Visited)) 3264 return false; 3265 3266 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 3267 if (!GEP->accumulateConstantOffset(DL, Offset)) 3268 return false; 3269 3270 // Check if the load is within the bounds of the underlying object 3271 // and offset is aligned. 3272 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3273 Type *BaseType = GEP->getSourceElementType(); 3274 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3275 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3276 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3277 } 3278 3279 // For gc.relocate, look through relocations 3280 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 3281 return isDereferenceableAndAlignedPointer( 3282 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3283 3284 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3285 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3286 CtxI, DT, TLI, Visited); 3287 3288 // If we don't know, assume the worst. 3289 return false; 3290 } 3291 3292 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3293 const DataLayout &DL, 3294 const Instruction *CtxI, 3295 const DominatorTree *DT, 3296 const TargetLibraryInfo *TLI) { 3297 // When dereferenceability information is provided by a dereferenceable 3298 // attribute, we know exactly how many bytes are dereferenceable. If we can 3299 // determine the exact offset to the attributed variable, we can use that 3300 // information here. 3301 Type *VTy = V->getType(); 3302 Type *Ty = VTy->getPointerElementType(); 3303 3304 // Require ABI alignment for loads without alignment specification 3305 if (Align == 0) 3306 Align = DL.getABITypeAlignment(Ty); 3307 3308 if (Ty->isSized()) { 3309 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3310 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3311 3312 if (Offset.isNonNegative()) 3313 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3314 isAligned(BV, Offset, Align, DL)) 3315 return true; 3316 } 3317 3318 SmallPtrSet<const Value *, 32> Visited; 3319 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3320 Visited); 3321 } 3322 3323 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3324 const Instruction *CtxI, 3325 const DominatorTree *DT, 3326 const TargetLibraryInfo *TLI) { 3327 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3328 } 3329 3330 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3331 const Instruction *CtxI, 3332 const DominatorTree *DT, 3333 const TargetLibraryInfo *TLI) { 3334 const Operator *Inst = dyn_cast<Operator>(V); 3335 if (!Inst) 3336 return false; 3337 3338 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3339 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3340 if (C->canTrap()) 3341 return false; 3342 3343 switch (Inst->getOpcode()) { 3344 default: 3345 return true; 3346 case Instruction::UDiv: 3347 case Instruction::URem: { 3348 // x / y is undefined if y == 0. 3349 const APInt *V; 3350 if (match(Inst->getOperand(1), m_APInt(V))) 3351 return *V != 0; 3352 return false; 3353 } 3354 case Instruction::SDiv: 3355 case Instruction::SRem: { 3356 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3357 const APInt *Numerator, *Denominator; 3358 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3359 return false; 3360 // We cannot hoist this division if the denominator is 0. 3361 if (*Denominator == 0) 3362 return false; 3363 // It's safe to hoist if the denominator is not 0 or -1. 3364 if (*Denominator != -1) 3365 return true; 3366 // At this point we know that the denominator is -1. It is safe to hoist as 3367 // long we know that the numerator is not INT_MIN. 3368 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3369 return !Numerator->isMinSignedValue(); 3370 // The numerator *might* be MinSignedValue. 3371 return false; 3372 } 3373 case Instruction::Load: { 3374 const LoadInst *LI = cast<LoadInst>(Inst); 3375 if (!LI->isUnordered() || 3376 // Speculative load may create a race that did not exist in the source. 3377 LI->getParent()->getParent()->hasFnAttribute( 3378 Attribute::SanitizeThread) || 3379 // Speculative load may load data from dirty regions. 3380 LI->getParent()->getParent()->hasFnAttribute( 3381 Attribute::SanitizeAddress)) 3382 return false; 3383 const DataLayout &DL = LI->getModule()->getDataLayout(); 3384 return isDereferenceableAndAlignedPointer( 3385 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3386 } 3387 case Instruction::Call: { 3388 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3389 switch (II->getIntrinsicID()) { 3390 // These synthetic intrinsics have no side-effects and just mark 3391 // information about their operands. 3392 // FIXME: There are other no-op synthetic instructions that potentially 3393 // should be considered at least *safe* to speculate... 3394 case Intrinsic::dbg_declare: 3395 case Intrinsic::dbg_value: 3396 return true; 3397 3398 case Intrinsic::bswap: 3399 case Intrinsic::ctlz: 3400 case Intrinsic::ctpop: 3401 case Intrinsic::cttz: 3402 case Intrinsic::objectsize: 3403 case Intrinsic::sadd_with_overflow: 3404 case Intrinsic::smul_with_overflow: 3405 case Intrinsic::ssub_with_overflow: 3406 case Intrinsic::uadd_with_overflow: 3407 case Intrinsic::umul_with_overflow: 3408 case Intrinsic::usub_with_overflow: 3409 return true; 3410 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3411 // errno like libm sqrt would. 3412 case Intrinsic::sqrt: 3413 case Intrinsic::fma: 3414 case Intrinsic::fmuladd: 3415 case Intrinsic::fabs: 3416 case Intrinsic::minnum: 3417 case Intrinsic::maxnum: 3418 return true; 3419 // TODO: some fp intrinsics are marked as having the same error handling 3420 // as libm. They're safe to speculate when they won't error. 3421 // TODO: are convert_{from,to}_fp16 safe? 3422 // TODO: can we list target-specific intrinsics here? 3423 default: break; 3424 } 3425 } 3426 return false; // The called function could have undefined behavior or 3427 // side-effects, even if marked readnone nounwind. 3428 } 3429 case Instruction::VAArg: 3430 case Instruction::Alloca: 3431 case Instruction::Invoke: 3432 case Instruction::PHI: 3433 case Instruction::Store: 3434 case Instruction::Ret: 3435 case Instruction::Br: 3436 case Instruction::IndirectBr: 3437 case Instruction::Switch: 3438 case Instruction::Unreachable: 3439 case Instruction::Fence: 3440 case Instruction::AtomicRMW: 3441 case Instruction::AtomicCmpXchg: 3442 case Instruction::LandingPad: 3443 case Instruction::Resume: 3444 case Instruction::CatchSwitch: 3445 case Instruction::CatchPad: 3446 case Instruction::CatchRet: 3447 case Instruction::CleanupPad: 3448 case Instruction::CleanupRet: 3449 return false; // Misc instructions which have effects 3450 } 3451 } 3452 3453 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3454 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3455 } 3456 3457 /// Return true if we know that the specified value is never null. 3458 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3459 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3460 3461 // Alloca never returns null, malloc might. 3462 if (isa<AllocaInst>(V)) return true; 3463 3464 // A byval, inalloca, or nonnull argument is never null. 3465 if (const Argument *A = dyn_cast<Argument>(V)) 3466 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3467 3468 // A global variable in address space 0 is non null unless extern weak. 3469 // Other address spaces may have null as a valid address for a global, 3470 // so we can't assume anything. 3471 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3472 return !GV->hasExternalWeakLinkage() && 3473 GV->getType()->getAddressSpace() == 0; 3474 3475 // A Load tagged w/nonnull metadata is never null. 3476 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3477 return LI->getMetadata(LLVMContext::MD_nonnull); 3478 3479 if (auto CS = ImmutableCallSite(V)) 3480 if (CS.isReturnNonNull()) 3481 return true; 3482 3483 return false; 3484 } 3485 3486 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3487 const Instruction *CtxI, 3488 const DominatorTree *DT) { 3489 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3490 3491 unsigned NumUsesExplored = 0; 3492 for (auto U : V->users()) { 3493 // Avoid massive lists 3494 if (NumUsesExplored >= DomConditionsMaxUses) 3495 break; 3496 NumUsesExplored++; 3497 // Consider only compare instructions uniquely controlling a branch 3498 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3499 if (!Cmp) 3500 continue; 3501 3502 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3503 continue; 3504 3505 for (auto *CmpU : Cmp->users()) { 3506 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3507 if (!BI) 3508 continue; 3509 3510 assert(BI->isConditional() && "uses a comparison!"); 3511 3512 BasicBlock *NonNullSuccessor = nullptr; 3513 CmpInst::Predicate Pred; 3514 3515 if (match(const_cast<ICmpInst*>(Cmp), 3516 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3517 if (Pred == ICmpInst::ICMP_EQ) 3518 NonNullSuccessor = BI->getSuccessor(1); 3519 else if (Pred == ICmpInst::ICMP_NE) 3520 NonNullSuccessor = BI->getSuccessor(0); 3521 } 3522 3523 if (NonNullSuccessor) { 3524 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3525 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3526 return true; 3527 } 3528 } 3529 } 3530 3531 return false; 3532 } 3533 3534 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3535 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3536 if (isKnownNonNull(V, TLI)) 3537 return true; 3538 3539 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3540 } 3541 3542 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3543 const DataLayout &DL, 3544 AssumptionCache *AC, 3545 const Instruction *CxtI, 3546 const DominatorTree *DT) { 3547 // Multiplying n * m significant bits yields a result of n + m significant 3548 // bits. If the total number of significant bits does not exceed the 3549 // result bit width (minus 1), there is no overflow. 3550 // This means if we have enough leading zero bits in the operands 3551 // we can guarantee that the result does not overflow. 3552 // Ref: "Hacker's Delight" by Henry Warren 3553 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3554 APInt LHSKnownZero(BitWidth, 0); 3555 APInt LHSKnownOne(BitWidth, 0); 3556 APInt RHSKnownZero(BitWidth, 0); 3557 APInt RHSKnownOne(BitWidth, 0); 3558 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3559 DT); 3560 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3561 DT); 3562 // Note that underestimating the number of zero bits gives a more 3563 // conservative answer. 3564 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3565 RHSKnownZero.countLeadingOnes(); 3566 // First handle the easy case: if we have enough zero bits there's 3567 // definitely no overflow. 3568 if (ZeroBits >= BitWidth) 3569 return OverflowResult::NeverOverflows; 3570 3571 // Get the largest possible values for each operand. 3572 APInt LHSMax = ~LHSKnownZero; 3573 APInt RHSMax = ~RHSKnownZero; 3574 3575 // We know the multiply operation doesn't overflow if the maximum values for 3576 // each operand will not overflow after we multiply them together. 3577 bool MaxOverflow; 3578 LHSMax.umul_ov(RHSMax, MaxOverflow); 3579 if (!MaxOverflow) 3580 return OverflowResult::NeverOverflows; 3581 3582 // We know it always overflows if multiplying the smallest possible values for 3583 // the operands also results in overflow. 3584 bool MinOverflow; 3585 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3586 if (MinOverflow) 3587 return OverflowResult::AlwaysOverflows; 3588 3589 return OverflowResult::MayOverflow; 3590 } 3591 3592 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3593 const DataLayout &DL, 3594 AssumptionCache *AC, 3595 const Instruction *CxtI, 3596 const DominatorTree *DT) { 3597 bool LHSKnownNonNegative, LHSKnownNegative; 3598 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3599 AC, CxtI, DT); 3600 if (LHSKnownNonNegative || LHSKnownNegative) { 3601 bool RHSKnownNonNegative, RHSKnownNegative; 3602 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3603 AC, CxtI, DT); 3604 3605 if (LHSKnownNegative && RHSKnownNegative) { 3606 // The sign bit is set in both cases: this MUST overflow. 3607 // Create a simple add instruction, and insert it into the struct. 3608 return OverflowResult::AlwaysOverflows; 3609 } 3610 3611 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3612 // The sign bit is clear in both cases: this CANNOT overflow. 3613 // Create a simple add instruction, and insert it into the struct. 3614 return OverflowResult::NeverOverflows; 3615 } 3616 } 3617 3618 return OverflowResult::MayOverflow; 3619 } 3620 3621 static OverflowResult computeOverflowForSignedAdd( 3622 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3623 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3624 if (Add && Add->hasNoSignedWrap()) { 3625 return OverflowResult::NeverOverflows; 3626 } 3627 3628 bool LHSKnownNonNegative, LHSKnownNegative; 3629 bool RHSKnownNonNegative, RHSKnownNegative; 3630 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3631 AC, CxtI, DT); 3632 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3633 AC, CxtI, DT); 3634 3635 if ((LHSKnownNonNegative && RHSKnownNegative) || 3636 (LHSKnownNegative && RHSKnownNonNegative)) { 3637 // The sign bits are opposite: this CANNOT overflow. 3638 return OverflowResult::NeverOverflows; 3639 } 3640 3641 // The remaining code needs Add to be available. Early returns if not so. 3642 if (!Add) 3643 return OverflowResult::MayOverflow; 3644 3645 // If the sign of Add is the same as at least one of the operands, this add 3646 // CANNOT overflow. This is particularly useful when the sum is 3647 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3648 // operands. 3649 bool LHSOrRHSKnownNonNegative = 3650 (LHSKnownNonNegative || RHSKnownNonNegative); 3651 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3652 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3653 bool AddKnownNonNegative, AddKnownNegative; 3654 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3655 /*Depth=*/0, AC, CxtI, DT); 3656 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3657 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3658 return OverflowResult::NeverOverflows; 3659 } 3660 } 3661 3662 return OverflowResult::MayOverflow; 3663 } 3664 3665 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3666 const DataLayout &DL, 3667 AssumptionCache *AC, 3668 const Instruction *CxtI, 3669 const DominatorTree *DT) { 3670 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3671 Add, DL, AC, CxtI, DT); 3672 } 3673 3674 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3675 const DataLayout &DL, 3676 AssumptionCache *AC, 3677 const Instruction *CxtI, 3678 const DominatorTree *DT) { 3679 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3680 } 3681 3682 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3683 // FIXME: This conservative implementation can be relaxed. E.g. most 3684 // atomic operations are guaranteed to terminate on most platforms 3685 // and most functions terminate. 3686 3687 return !I->isAtomic() && // atomics may never succeed on some platforms 3688 !isa<CallInst>(I) && // could throw and might not terminate 3689 !isa<InvokeInst>(I) && // might not terminate and could throw to 3690 // non-successor (see bug 24185 for details). 3691 !isa<ResumeInst>(I) && // has no successors 3692 !isa<ReturnInst>(I); // has no successors 3693 } 3694 3695 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3696 const Loop *L) { 3697 // The loop header is guaranteed to be executed for every iteration. 3698 // 3699 // FIXME: Relax this constraint to cover all basic blocks that are 3700 // guaranteed to be executed at every iteration. 3701 if (I->getParent() != L->getHeader()) return false; 3702 3703 for (const Instruction &LI : *L->getHeader()) { 3704 if (&LI == I) return true; 3705 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3706 } 3707 llvm_unreachable("Instruction not contained in its own parent basic block."); 3708 } 3709 3710 bool llvm::propagatesFullPoison(const Instruction *I) { 3711 switch (I->getOpcode()) { 3712 case Instruction::Add: 3713 case Instruction::Sub: 3714 case Instruction::Xor: 3715 case Instruction::Trunc: 3716 case Instruction::BitCast: 3717 case Instruction::AddrSpaceCast: 3718 // These operations all propagate poison unconditionally. Note that poison 3719 // is not any particular value, so xor or subtraction of poison with 3720 // itself still yields poison, not zero. 3721 return true; 3722 3723 case Instruction::AShr: 3724 case Instruction::SExt: 3725 // For these operations, one bit of the input is replicated across 3726 // multiple output bits. A replicated poison bit is still poison. 3727 return true; 3728 3729 case Instruction::Shl: { 3730 // Left shift *by* a poison value is poison. The number of 3731 // positions to shift is unsigned, so no negative values are 3732 // possible there. Left shift by zero places preserves poison. So 3733 // it only remains to consider left shift of poison by a positive 3734 // number of places. 3735 // 3736 // A left shift by a positive number of places leaves the lowest order bit 3737 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3738 // make the poison operand violate that flag, yielding a fresh full-poison 3739 // value. 3740 auto *OBO = cast<OverflowingBinaryOperator>(I); 3741 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3742 } 3743 3744 case Instruction::Mul: { 3745 // A multiplication by zero yields a non-poison zero result, so we need to 3746 // rule out zero as an operand. Conservatively, multiplication by a 3747 // non-zero constant is not multiplication by zero. 3748 // 3749 // Multiplication by a non-zero constant can leave some bits 3750 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3751 // order bit unpoisoned. So we need to consider that. 3752 // 3753 // Multiplication by 1 preserves poison. If the multiplication has a 3754 // no-wrap flag, then we can make the poison operand violate that flag 3755 // when multiplied by any integer other than 0 and 1. 3756 auto *OBO = cast<OverflowingBinaryOperator>(I); 3757 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3758 for (Value *V : OBO->operands()) { 3759 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3760 // A ConstantInt cannot yield poison, so we can assume that it is 3761 // the other operand that is poison. 3762 return !CI->isZero(); 3763 } 3764 } 3765 } 3766 return false; 3767 } 3768 3769 case Instruction::GetElementPtr: 3770 // A GEP implicitly represents a sequence of additions, subtractions, 3771 // truncations, sign extensions and multiplications. The multiplications 3772 // are by the non-zero sizes of some set of types, so we do not have to be 3773 // concerned with multiplication by zero. If the GEP is in-bounds, then 3774 // these operations are implicitly no-signed-wrap so poison is propagated 3775 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3776 return cast<GEPOperator>(I)->isInBounds(); 3777 3778 default: 3779 return false; 3780 } 3781 } 3782 3783 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3784 switch (I->getOpcode()) { 3785 case Instruction::Store: 3786 return cast<StoreInst>(I)->getPointerOperand(); 3787 3788 case Instruction::Load: 3789 return cast<LoadInst>(I)->getPointerOperand(); 3790 3791 case Instruction::AtomicCmpXchg: 3792 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3793 3794 case Instruction::AtomicRMW: 3795 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3796 3797 case Instruction::UDiv: 3798 case Instruction::SDiv: 3799 case Instruction::URem: 3800 case Instruction::SRem: 3801 return I->getOperand(1); 3802 3803 default: 3804 return nullptr; 3805 } 3806 } 3807 3808 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3809 // We currently only look for uses of poison values within the same basic 3810 // block, as that makes it easier to guarantee that the uses will be 3811 // executed given that PoisonI is executed. 3812 // 3813 // FIXME: Expand this to consider uses beyond the same basic block. To do 3814 // this, look out for the distinction between post-dominance and strong 3815 // post-dominance. 3816 const BasicBlock *BB = PoisonI->getParent(); 3817 3818 // Set of instructions that we have proved will yield poison if PoisonI 3819 // does. 3820 SmallSet<const Value *, 16> YieldsPoison; 3821 YieldsPoison.insert(PoisonI); 3822 3823 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3824 I != E; ++I) { 3825 if (&*I != PoisonI) { 3826 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3827 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3828 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3829 return false; 3830 } 3831 3832 // Mark poison that propagates from I through uses of I. 3833 if (YieldsPoison.count(&*I)) { 3834 for (const User *User : I->users()) { 3835 const Instruction *UserI = cast<Instruction>(User); 3836 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3837 YieldsPoison.insert(User); 3838 } 3839 } 3840 } 3841 return false; 3842 } 3843 3844 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3845 if (FMF.noNaNs()) 3846 return true; 3847 3848 if (auto *C = dyn_cast<ConstantFP>(V)) 3849 return !C->isNaN(); 3850 return false; 3851 } 3852 3853 static bool isKnownNonZero(Value *V) { 3854 if (auto *C = dyn_cast<ConstantFP>(V)) 3855 return !C->isZero(); 3856 return false; 3857 } 3858 3859 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3860 FastMathFlags FMF, 3861 Value *CmpLHS, Value *CmpRHS, 3862 Value *TrueVal, Value *FalseVal, 3863 Value *&LHS, Value *&RHS) { 3864 LHS = CmpLHS; 3865 RHS = CmpRHS; 3866 3867 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3868 // return inconsistent results between implementations. 3869 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3870 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3871 // Therefore we behave conservatively and only proceed if at least one of the 3872 // operands is known to not be zero, or if we don't care about signed zeroes. 3873 switch (Pred) { 3874 default: break; 3875 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3876 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3877 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3878 !isKnownNonZero(CmpRHS)) 3879 return {SPF_UNKNOWN, SPNB_NA, false}; 3880 } 3881 3882 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3883 bool Ordered = false; 3884 3885 // When given one NaN and one non-NaN input: 3886 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3887 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3888 // ordered comparison fails), which could be NaN or non-NaN. 3889 // so here we discover exactly what NaN behavior is required/accepted. 3890 if (CmpInst::isFPPredicate(Pred)) { 3891 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3892 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3893 3894 if (LHSSafe && RHSSafe) { 3895 // Both operands are known non-NaN. 3896 NaNBehavior = SPNB_RETURNS_ANY; 3897 } else if (CmpInst::isOrdered(Pred)) { 3898 // An ordered comparison will return false when given a NaN, so it 3899 // returns the RHS. 3900 Ordered = true; 3901 if (LHSSafe) 3902 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3903 NaNBehavior = SPNB_RETURNS_NAN; 3904 else if (RHSSafe) 3905 NaNBehavior = SPNB_RETURNS_OTHER; 3906 else 3907 // Completely unsafe. 3908 return {SPF_UNKNOWN, SPNB_NA, false}; 3909 } else { 3910 Ordered = false; 3911 // An unordered comparison will return true when given a NaN, so it 3912 // returns the LHS. 3913 if (LHSSafe) 3914 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3915 NaNBehavior = SPNB_RETURNS_OTHER; 3916 else if (RHSSafe) 3917 NaNBehavior = SPNB_RETURNS_NAN; 3918 else 3919 // Completely unsafe. 3920 return {SPF_UNKNOWN, SPNB_NA, false}; 3921 } 3922 } 3923 3924 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3925 std::swap(CmpLHS, CmpRHS); 3926 Pred = CmpInst::getSwappedPredicate(Pred); 3927 if (NaNBehavior == SPNB_RETURNS_NAN) 3928 NaNBehavior = SPNB_RETURNS_OTHER; 3929 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3930 NaNBehavior = SPNB_RETURNS_NAN; 3931 Ordered = !Ordered; 3932 } 3933 3934 // ([if]cmp X, Y) ? X : Y 3935 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3936 switch (Pred) { 3937 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3938 case ICmpInst::ICMP_UGT: 3939 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3940 case ICmpInst::ICMP_SGT: 3941 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3942 case ICmpInst::ICMP_ULT: 3943 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3944 case ICmpInst::ICMP_SLT: 3945 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3946 case FCmpInst::FCMP_UGT: 3947 case FCmpInst::FCMP_UGE: 3948 case FCmpInst::FCMP_OGT: 3949 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3950 case FCmpInst::FCMP_ULT: 3951 case FCmpInst::FCMP_ULE: 3952 case FCmpInst::FCMP_OLT: 3953 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3954 } 3955 } 3956 3957 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3958 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3959 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3960 3961 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3962 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3963 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3964 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3965 } 3966 3967 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3968 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3969 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3970 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3971 } 3972 } 3973 3974 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3975 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3976 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3977 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3978 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3979 LHS = TrueVal; 3980 RHS = FalseVal; 3981 return {SPF_SMIN, SPNB_NA, false}; 3982 } 3983 } 3984 } 3985 3986 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3987 3988 return {SPF_UNKNOWN, SPNB_NA, false}; 3989 } 3990 3991 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3992 Instruction::CastOps *CastOp) { 3993 CastInst *CI = dyn_cast<CastInst>(V1); 3994 Constant *C = dyn_cast<Constant>(V2); 3995 CastInst *CI2 = dyn_cast<CastInst>(V2); 3996 if (!CI) 3997 return nullptr; 3998 *CastOp = CI->getOpcode(); 3999 4000 if (CI2) { 4001 // If V1 and V2 are both the same cast from the same type, we can look 4002 // through V1. 4003 if (CI2->getOpcode() == CI->getOpcode() && 4004 CI2->getSrcTy() == CI->getSrcTy()) 4005 return CI2->getOperand(0); 4006 return nullptr; 4007 } else if (!C) { 4008 return nullptr; 4009 } 4010 4011 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 4012 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4013 // This is only valid if the truncated value can be sign-extended 4014 // back to the original value. 4015 if (ConstantExpr::getSExt(T, C->getType()) == C) 4016 return T; 4017 return nullptr; 4018 } 4019 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4020 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 4021 4022 if (isa<TruncInst>(CI)) 4023 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4024 4025 if (isa<FPToUIInst>(CI)) 4026 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4027 4028 if (isa<FPToSIInst>(CI)) 4029 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4030 4031 if (isa<UIToFPInst>(CI)) 4032 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4033 4034 if (isa<SIToFPInst>(CI)) 4035 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4036 4037 if (isa<FPTruncInst>(CI)) 4038 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4039 4040 if (isa<FPExtInst>(CI)) 4041 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4042 4043 return nullptr; 4044 } 4045 4046 SelectPatternResult llvm::matchSelectPattern(Value *V, 4047 Value *&LHS, Value *&RHS, 4048 Instruction::CastOps *CastOp) { 4049 SelectInst *SI = dyn_cast<SelectInst>(V); 4050 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4051 4052 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4053 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4054 4055 CmpInst::Predicate Pred = CmpI->getPredicate(); 4056 Value *CmpLHS = CmpI->getOperand(0); 4057 Value *CmpRHS = CmpI->getOperand(1); 4058 Value *TrueVal = SI->getTrueValue(); 4059 Value *FalseVal = SI->getFalseValue(); 4060 FastMathFlags FMF; 4061 if (isa<FPMathOperator>(CmpI)) 4062 FMF = CmpI->getFastMathFlags(); 4063 4064 // Bail out early. 4065 if (CmpI->isEquality()) 4066 return {SPF_UNKNOWN, SPNB_NA, false}; 4067 4068 // Deal with type mismatches. 4069 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4070 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4071 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4072 cast<CastInst>(TrueVal)->getOperand(0), C, 4073 LHS, RHS); 4074 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4075 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4076 C, cast<CastInst>(FalseVal)->getOperand(0), 4077 LHS, RHS); 4078 } 4079 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4080 LHS, RHS); 4081 } 4082 4083 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4084 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4085 assert(NumRanges >= 1 && "Must have at least one range!"); 4086 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4087 4088 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4089 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4090 4091 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4092 4093 for (unsigned i = 1; i < NumRanges; ++i) { 4094 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4095 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4096 4097 // Note: unionWith will potentially create a range that contains values not 4098 // contained in any of the original N ranges. 4099 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4100 } 4101 4102 return CR; 4103 } 4104 4105 /// Return true if "icmp Pred LHS RHS" is always true. 4106 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 4107 const DataLayout &DL, unsigned Depth, 4108 AssumptionCache *AC, const Instruction *CxtI, 4109 const DominatorTree *DT) { 4110 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4111 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4112 return true; 4113 4114 switch (Pred) { 4115 default: 4116 return false; 4117 4118 case CmpInst::ICMP_SLE: { 4119 const APInt *C; 4120 4121 // LHS s<= LHS +_{nsw} C if C >= 0 4122 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4123 return !C->isNegative(); 4124 return false; 4125 } 4126 4127 case CmpInst::ICMP_ULE: { 4128 const APInt *C; 4129 4130 // LHS u<= LHS +_{nuw} C for any C 4131 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4132 return true; 4133 4134 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4135 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 4136 const APInt *&CA, const APInt *&CB) { 4137 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4138 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4139 return true; 4140 4141 // If X & C == 0 then (X | C) == X +_{nuw} C 4142 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4143 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4144 unsigned BitWidth = CA->getBitWidth(); 4145 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4146 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4147 4148 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4149 return true; 4150 } 4151 4152 return false; 4153 }; 4154 4155 Value *X; 4156 const APInt *CLHS, *CRHS; 4157 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4158 return CLHS->ule(*CRHS); 4159 4160 return false; 4161 } 4162 } 4163 } 4164 4165 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4166 /// ALHS ARHS" is true. 4167 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 4168 Value *ARHS, Value *BLHS, Value *BRHS, 4169 const DataLayout &DL, unsigned Depth, 4170 AssumptionCache *AC, const Instruction *CxtI, 4171 const DominatorTree *DT) { 4172 switch (Pred) { 4173 default: 4174 return false; 4175 4176 case CmpInst::ICMP_SLT: 4177 case CmpInst::ICMP_SLE: 4178 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4179 DT) && 4180 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 4181 DT); 4182 4183 case CmpInst::ICMP_ULT: 4184 case CmpInst::ICMP_ULE: 4185 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4186 DT) && 4187 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 4188 DT); 4189 } 4190 } 4191 4192 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 4193 unsigned Depth, AssumptionCache *AC, 4194 const Instruction *CxtI, 4195 const DominatorTree *DT) { 4196 assert(LHS->getType() == RHS->getType() && "mismatched type"); 4197 Type *OpTy = LHS->getType(); 4198 assert(OpTy->getScalarType()->isIntegerTy(1)); 4199 4200 // LHS ==> RHS by definition 4201 if (LHS == RHS) return true; 4202 4203 if (OpTy->isVectorTy()) 4204 // TODO: extending the code below to handle vectors 4205 return false; 4206 assert(OpTy->isIntegerTy(1) && "implied by above"); 4207 4208 ICmpInst::Predicate APred, BPred; 4209 Value *ALHS, *ARHS; 4210 Value *BLHS, *BRHS; 4211 4212 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4213 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4214 return false; 4215 4216 if (APred == BPred) 4217 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4218 CxtI, DT); 4219 4220 return false; 4221 } 4222