1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 513 J != JE; ++J) 514 WorkSet.push_back(*J); 515 } 516 } 517 } 518 519 return false; 520 } 521 522 // Is this an intrinsic that cannot be speculated but also cannot trap? 523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 524 if (const CallInst *CI = dyn_cast<CallInst>(I)) 525 if (Function *F = CI->getCalledFunction()) 526 switch (F->getIntrinsicID()) { 527 default: break; 528 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 529 case Intrinsic::assume: 530 case Intrinsic::sideeffect: 531 case Intrinsic::pseudoprobe: 532 case Intrinsic::dbg_declare: 533 case Intrinsic::dbg_value: 534 case Intrinsic::dbg_label: 535 case Intrinsic::invariant_start: 536 case Intrinsic::invariant_end: 537 case Intrinsic::lifetime_start: 538 case Intrinsic::lifetime_end: 539 case Intrinsic::objectsize: 540 case Intrinsic::ptr_annotation: 541 case Intrinsic::var_annotation: 542 return true; 543 } 544 545 return false; 546 } 547 548 bool llvm::isValidAssumeForContext(const Instruction *Inv, 549 const Instruction *CxtI, 550 const DominatorTree *DT) { 551 // There are two restrictions on the use of an assume: 552 // 1. The assume must dominate the context (or the control flow must 553 // reach the assume whenever it reaches the context). 554 // 2. The context must not be in the assume's set of ephemeral values 555 // (otherwise we will use the assume to prove that the condition 556 // feeding the assume is trivially true, thus causing the removal of 557 // the assume). 558 559 if (Inv->getParent() == CxtI->getParent()) { 560 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 561 // in the BB. 562 if (Inv->comesBefore(CxtI)) 563 return true; 564 565 // Don't let an assume affect itself - this would cause the problems 566 // `isEphemeralValueOf` is trying to prevent, and it would also make 567 // the loop below go out of bounds. 568 if (Inv == CxtI) 569 return false; 570 571 // The context comes first, but they're both in the same block. 572 // Make sure there is nothing in between that might interrupt 573 // the control flow, not even CxtI itself. 574 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 575 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 576 return false; 577 578 return !isEphemeralValueOf(Inv, CxtI); 579 } 580 581 // Inv and CxtI are in different blocks. 582 if (DT) { 583 if (DT->dominates(Inv, CxtI)) 584 return true; 585 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 586 // We don't have a DT, but this trivially dominates. 587 return true; 588 } 589 590 return false; 591 } 592 593 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 594 // Use of assumptions is context-sensitive. If we don't have a context, we 595 // cannot use them! 596 if (!Q.AC || !Q.CxtI) 597 return false; 598 599 // Note that the patterns below need to be kept in sync with the code 600 // in AssumptionCache::updateAffectedValues. 601 602 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 603 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 604 605 Value *RHS; 606 CmpInst::Predicate Pred; 607 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 608 return false; 609 // assume(v u> y) -> assume(v != 0) 610 if (Pred == ICmpInst::ICMP_UGT) 611 return true; 612 613 // assume(v != 0) 614 // We special-case this one to ensure that we handle `assume(v != null)`. 615 if (Pred == ICmpInst::ICMP_NE) 616 return match(RHS, m_Zero()); 617 618 // All other predicates - rely on generic ConstantRange handling. 619 ConstantInt *CI; 620 if (!match(RHS, m_ConstantInt(CI))) 621 return false; 622 ConstantRange RHSRange(CI->getValue()); 623 ConstantRange TrueValues = 624 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 625 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 626 }; 627 628 if (Q.CxtI && V->getType()->isPointerTy()) { 629 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 630 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 631 V->getType()->getPointerAddressSpace())) 632 AttrKinds.push_back(Attribute::Dereferenceable); 633 634 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 635 return true; 636 } 637 638 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 639 if (!AssumeVH) 640 continue; 641 CallInst *I = cast<CallInst>(AssumeVH); 642 assert(I->getFunction() == Q.CxtI->getFunction() && 643 "Got assumption for the wrong function!"); 644 if (Q.isExcluded(I)) 645 continue; 646 647 // Warning: This loop can end up being somewhat performance sensitive. 648 // We're running this loop for once for each value queried resulting in a 649 // runtime of ~O(#assumes * #values). 650 651 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 652 "must be an assume intrinsic"); 653 654 Value *Arg = I->getArgOperand(0); 655 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 656 if (!Cmp) 657 continue; 658 659 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 660 return true; 661 } 662 663 return false; 664 } 665 666 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 667 unsigned Depth, const Query &Q) { 668 // Use of assumptions is context-sensitive. If we don't have a context, we 669 // cannot use them! 670 if (!Q.AC || !Q.CxtI) 671 return; 672 673 unsigned BitWidth = Known.getBitWidth(); 674 675 // Refine Known set if the pointer alignment is set by assume bundles. 676 if (V->getType()->isPointerTy()) { 677 if (RetainedKnowledge RK = getKnowledgeValidInContext( 678 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 679 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 680 } 681 } 682 683 // Note that the patterns below need to be kept in sync with the code 684 // in AssumptionCache::updateAffectedValues. 685 686 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 687 if (!AssumeVH) 688 continue; 689 CallInst *I = cast<CallInst>(AssumeVH); 690 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 691 "Got assumption for the wrong function!"); 692 if (Q.isExcluded(I)) 693 continue; 694 695 // Warning: This loop can end up being somewhat performance sensitive. 696 // We're running this loop for once for each value queried resulting in a 697 // runtime of ~O(#assumes * #values). 698 699 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 700 "must be an assume intrinsic"); 701 702 Value *Arg = I->getArgOperand(0); 703 704 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 705 assert(BitWidth == 1 && "assume operand is not i1?"); 706 Known.setAllOnes(); 707 return; 708 } 709 if (match(Arg, m_Not(m_Specific(V))) && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 assert(BitWidth == 1 && "assume operand is not i1?"); 712 Known.setAllZero(); 713 return; 714 } 715 716 // The remaining tests are all recursive, so bail out if we hit the limit. 717 if (Depth == MaxAnalysisRecursionDepth) 718 continue; 719 720 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 721 if (!Cmp) 722 continue; 723 724 // Note that ptrtoint may change the bitwidth. 725 Value *A, *B; 726 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 727 728 CmpInst::Predicate Pred; 729 uint64_t C; 730 switch (Cmp->getPredicate()) { 731 default: 732 break; 733 case ICmpInst::ICMP_EQ: 734 // assume(v = a) 735 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 Known.Zero |= RHSKnown.Zero; 740 Known.One |= RHSKnown.One; 741 // assume(v & b = a) 742 } else if (match(Cmp, 743 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 745 KnownBits RHSKnown = 746 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 KnownBits MaskKnown = 748 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 749 750 // For those bits in the mask that are known to be one, we can propagate 751 // known bits from the RHS to V. 752 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 753 Known.One |= RHSKnown.One & MaskKnown.One; 754 // assume(~(v & b) = a) 755 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 756 m_Value(A))) && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 KnownBits RHSKnown = 759 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 KnownBits MaskKnown = 761 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 762 763 // For those bits in the mask that are known to be one, we can propagate 764 // inverted known bits from the RHS to V. 765 Known.Zero |= RHSKnown.One & MaskKnown.One; 766 Known.One |= RHSKnown.Zero & MaskKnown.One; 767 // assume(v | b = a) 768 } else if (match(Cmp, 769 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 771 KnownBits RHSKnown = 772 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 KnownBits BKnown = 774 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 775 776 // For those bits in B that are known to be zero, we can propagate known 777 // bits from the RHS to V. 778 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 779 Known.One |= RHSKnown.One & BKnown.Zero; 780 // assume(~(v | b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown = 785 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 KnownBits BKnown = 787 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. 791 Known.Zero |= RHSKnown.One & BKnown.Zero; 792 Known.One |= RHSKnown.Zero & BKnown.Zero; 793 // assume(v ^ b = a) 794 } else if (match(Cmp, 795 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 796 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 797 KnownBits RHSKnown = 798 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 KnownBits BKnown = 800 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 802 // For those bits in B that are known to be zero, we can propagate known 803 // bits from the RHS to V. For those bits in B that are known to be one, 804 // we can propagate inverted known bits from the RHS to V. 805 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 806 Known.One |= RHSKnown.One & BKnown.Zero; 807 Known.Zero |= RHSKnown.One & BKnown.One; 808 Known.One |= RHSKnown.Zero & BKnown.One; 809 // assume(~(v ^ b) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 KnownBits BKnown = 816 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 817 818 // For those bits in B that are known to be zero, we can propagate 819 // inverted known bits from the RHS to V. For those bits in B that are 820 // known to be one, we can propagate known bits from the RHS to V. 821 Known.Zero |= RHSKnown.One & BKnown.Zero; 822 Known.One |= RHSKnown.Zero & BKnown.Zero; 823 Known.Zero |= RHSKnown.Zero & BKnown.One; 824 Known.One |= RHSKnown.One & BKnown.One; 825 // assume(v << c = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 829 KnownBits RHSKnown = 830 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 831 832 // For those bits in RHS that are known, we can propagate them to known 833 // bits in V shifted to the right by C. 834 RHSKnown.Zero.lshrInPlace(C); 835 Known.Zero |= RHSKnown.Zero; 836 RHSKnown.One.lshrInPlace(C); 837 Known.One |= RHSKnown.One; 838 // assume(~(v << c) = a) 839 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 840 m_Value(A))) && 841 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 842 KnownBits RHSKnown = 843 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 844 // For those bits in RHS that are known, we can propagate them inverted 845 // to known bits in V shifted to the right by C. 846 RHSKnown.One.lshrInPlace(C); 847 Known.Zero |= RHSKnown.One; 848 RHSKnown.Zero.lshrInPlace(C); 849 Known.One |= RHSKnown.Zero; 850 // assume(v >> c = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them to known 857 // bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.Zero << C; 859 Known.One |= RHSKnown.One << C; 860 // assume(~(v >> c) = a) 861 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 862 m_Value(A))) && 863 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 864 KnownBits RHSKnown = 865 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 866 // For those bits in RHS that are known, we can propagate them inverted 867 // to known bits in V shifted to the right by C. 868 Known.Zero |= RHSKnown.One << C; 869 Known.One |= RHSKnown.Zero << C; 870 } 871 break; 872 case ICmpInst::ICMP_SGE: 873 // assume(v >=_s c) where c is non-negative 874 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 876 KnownBits RHSKnown = 877 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 878 879 if (RHSKnown.isNonNegative()) { 880 // We know that the sign bit is zero. 881 Known.makeNonNegative(); 882 } 883 } 884 break; 885 case ICmpInst::ICMP_SGT: 886 // assume(v >_s c) where c is at least -1. 887 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 888 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 889 KnownBits RHSKnown = 890 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 891 892 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 893 // We know that the sign bit is zero. 894 Known.makeNonNegative(); 895 } 896 } 897 break; 898 case ICmpInst::ICMP_SLE: 899 // assume(v <=_s c) where c is negative 900 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 901 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 902 KnownBits RHSKnown = 903 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 904 905 if (RHSKnown.isNegative()) { 906 // We know that the sign bit is one. 907 Known.makeNegative(); 908 } 909 } 910 break; 911 case ICmpInst::ICMP_SLT: 912 // assume(v <_s c) where c is non-positive 913 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 914 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 915 KnownBits RHSKnown = 916 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 917 918 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 919 // We know that the sign bit is one. 920 Known.makeNegative(); 921 } 922 } 923 break; 924 case ICmpInst::ICMP_ULE: 925 // assume(v <=_u c) 926 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 931 // Whatever high bits in c are zero are known to be zero. 932 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 933 } 934 break; 935 case ICmpInst::ICMP_ULT: 936 // assume(v <_u c) 937 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 938 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 939 KnownBits RHSKnown = 940 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 941 942 // If the RHS is known zero, then this assumption must be wrong (nothing 943 // is unsigned less than zero). Signal a conflict and get out of here. 944 if (RHSKnown.isZero()) { 945 Known.Zero.setAllBits(); 946 Known.One.setAllBits(); 947 break; 948 } 949 950 // Whatever high bits in c are zero are known to be zero (if c is a power 951 // of 2, then one more). 952 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 954 else 955 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 956 } 957 break; 958 } 959 } 960 961 // If assumptions conflict with each other or previous known bits, then we 962 // have a logical fallacy. It's possible that the assumption is not reachable, 963 // so this isn't a real bug. On the other hand, the program may have undefined 964 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 965 // clear out the known bits, try to warn the user, and hope for the best. 966 if (Known.Zero.intersects(Known.One)) { 967 Known.resetAll(); 968 969 if (Q.ORE) 970 Q.ORE->emit([&]() { 971 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 972 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 973 CxtI) 974 << "Detected conflicting code assumptions. Program may " 975 "have undefined behavior, or compiler may have " 976 "internal error."; 977 }); 978 } 979 } 980 981 /// Compute known bits from a shift operator, including those with a 982 /// non-constant shift amount. Known is the output of this function. Known2 is a 983 /// pre-allocated temporary with the same bit width as Known and on return 984 /// contains the known bit of the shift value source. KF is an 985 /// operator-specific function that, given the known-bits and a shift amount, 986 /// compute the implied known-bits of the shift operator's result respectively 987 /// for that shift amount. The results from calling KF are conservatively 988 /// combined for all permitted shift amounts. 989 static void computeKnownBitsFromShiftOperator( 990 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 991 KnownBits &Known2, unsigned Depth, const Query &Q, 992 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 993 unsigned BitWidth = Known.getBitWidth(); 994 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 995 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 996 997 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 998 // BitWidth > 64 and any upper bits are known, we'll end up returning the 999 // limit value (which implies all bits are known). 1000 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1001 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1002 bool ShiftAmtIsConstant = Known.isConstant(); 1003 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1004 1005 if (ShiftAmtIsConstant) { 1006 Known = KF(Known2, Known); 1007 1008 // If the known bits conflict, this must be an overflowing left shift, so 1009 // the shift result is poison. We can return anything we want. Choose 0 for 1010 // the best folding opportunity. 1011 if (Known.hasConflict()) 1012 Known.setAllZero(); 1013 1014 return; 1015 } 1016 1017 // If the shift amount could be greater than or equal to the bit-width of the 1018 // LHS, the value could be poison, but bail out because the check below is 1019 // expensive. 1020 // TODO: Should we just carry on? 1021 if (MaxShiftAmtIsOutOfRange) { 1022 Known.resetAll(); 1023 return; 1024 } 1025 1026 // It would be more-clearly correct to use the two temporaries for this 1027 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1028 Known.resetAll(); 1029 1030 // If we know the shifter operand is nonzero, we can sometimes infer more 1031 // known bits. However this is expensive to compute, so be lazy about it and 1032 // only compute it when absolutely necessary. 1033 Optional<bool> ShifterOperandIsNonZero; 1034 1035 // Early exit if we can't constrain any well-defined shift amount. 1036 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1037 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1038 ShifterOperandIsNonZero = 1039 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1040 if (!*ShifterOperandIsNonZero) 1041 return; 1042 } 1043 1044 Known.Zero.setAllBits(); 1045 Known.One.setAllBits(); 1046 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1047 // Combine the shifted known input bits only for those shift amounts 1048 // compatible with its known constraints. 1049 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1050 continue; 1051 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1052 continue; 1053 // If we know the shifter is nonzero, we may be able to infer more known 1054 // bits. This check is sunk down as far as possible to avoid the expensive 1055 // call to isKnownNonZero if the cheaper checks above fail. 1056 if (ShiftAmt == 0) { 1057 if (!ShifterOperandIsNonZero.hasValue()) 1058 ShifterOperandIsNonZero = 1059 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1060 if (*ShifterOperandIsNonZero) 1061 continue; 1062 } 1063 1064 Known = KnownBits::commonBits( 1065 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1066 } 1067 1068 // If the known bits conflict, the result is poison. Return a 0 and hope the 1069 // caller can further optimize that. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 } 1073 1074 static void computeKnownBitsFromOperator(const Operator *I, 1075 const APInt &DemandedElts, 1076 KnownBits &Known, unsigned Depth, 1077 const Query &Q) { 1078 unsigned BitWidth = Known.getBitWidth(); 1079 1080 KnownBits Known2(BitWidth); 1081 switch (I->getOpcode()) { 1082 default: break; 1083 case Instruction::Load: 1084 if (MDNode *MD = 1085 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1086 computeKnownBitsFromRangeMetadata(*MD, Known); 1087 break; 1088 case Instruction::And: { 1089 // If either the LHS or the RHS are Zero, the result is zero. 1090 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1091 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1092 1093 Known &= Known2; 1094 1095 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1096 // here we handle the more general case of adding any odd number by 1097 // matching the form add(x, add(x, y)) where y is odd. 1098 // TODO: This could be generalized to clearing any bit set in y where the 1099 // following bit is known to be unset in y. 1100 Value *X = nullptr, *Y = nullptr; 1101 if (!Known.Zero[0] && !Known.One[0] && 1102 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1103 Known2.resetAll(); 1104 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1105 if (Known2.countMinTrailingOnes() > 0) 1106 Known.Zero.setBit(0); 1107 } 1108 break; 1109 } 1110 case Instruction::Or: 1111 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1112 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1113 1114 Known |= Known2; 1115 break; 1116 case Instruction::Xor: 1117 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1118 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1119 1120 Known ^= Known2; 1121 break; 1122 case Instruction::Mul: { 1123 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1124 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1125 Known, Known2, Depth, Q); 1126 break; 1127 } 1128 case Instruction::UDiv: { 1129 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1131 Known = KnownBits::udiv(Known, Known2); 1132 break; 1133 } 1134 case Instruction::Select: { 1135 const Value *LHS = nullptr, *RHS = nullptr; 1136 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1137 if (SelectPatternResult::isMinOrMax(SPF)) { 1138 computeKnownBits(RHS, Known, Depth + 1, Q); 1139 computeKnownBits(LHS, Known2, Depth + 1, Q); 1140 switch (SPF) { 1141 default: 1142 llvm_unreachable("Unhandled select pattern flavor!"); 1143 case SPF_SMAX: 1144 Known = KnownBits::smax(Known, Known2); 1145 break; 1146 case SPF_SMIN: 1147 Known = KnownBits::smin(Known, Known2); 1148 break; 1149 case SPF_UMAX: 1150 Known = KnownBits::umax(Known, Known2); 1151 break; 1152 case SPF_UMIN: 1153 Known = KnownBits::umin(Known, Known2); 1154 break; 1155 } 1156 break; 1157 } 1158 1159 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1160 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1161 1162 // Only known if known in both the LHS and RHS. 1163 Known = KnownBits::commonBits(Known, Known2); 1164 1165 if (SPF == SPF_ABS) { 1166 // RHS from matchSelectPattern returns the negation part of abs pattern. 1167 // If the negate has an NSW flag we can assume the sign bit of the result 1168 // will be 0 because that makes abs(INT_MIN) undefined. 1169 if (match(RHS, m_Neg(m_Specific(LHS))) && 1170 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1171 Known.Zero.setSignBit(); 1172 } 1173 1174 break; 1175 } 1176 case Instruction::FPTrunc: 1177 case Instruction::FPExt: 1178 case Instruction::FPToUI: 1179 case Instruction::FPToSI: 1180 case Instruction::SIToFP: 1181 case Instruction::UIToFP: 1182 break; // Can't work with floating point. 1183 case Instruction::PtrToInt: 1184 case Instruction::IntToPtr: 1185 // Fall through and handle them the same as zext/trunc. 1186 LLVM_FALLTHROUGH; 1187 case Instruction::ZExt: 1188 case Instruction::Trunc: { 1189 Type *SrcTy = I->getOperand(0)->getType(); 1190 1191 unsigned SrcBitWidth; 1192 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1193 // which fall through here. 1194 Type *ScalarTy = SrcTy->getScalarType(); 1195 SrcBitWidth = ScalarTy->isPointerTy() ? 1196 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1197 Q.DL.getTypeSizeInBits(ScalarTy); 1198 1199 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1200 Known = Known.anyextOrTrunc(SrcBitWidth); 1201 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1202 Known = Known.zextOrTrunc(BitWidth); 1203 break; 1204 } 1205 case Instruction::BitCast: { 1206 Type *SrcTy = I->getOperand(0)->getType(); 1207 if (SrcTy->isIntOrPtrTy() && 1208 // TODO: For now, not handling conversions like: 1209 // (bitcast i64 %x to <2 x i32>) 1210 !I->getType()->isVectorTy()) { 1211 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1212 break; 1213 } 1214 break; 1215 } 1216 case Instruction::SExt: { 1217 // Compute the bits in the result that are not present in the input. 1218 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1219 1220 Known = Known.trunc(SrcBitWidth); 1221 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1222 // If the sign bit of the input is known set or clear, then we know the 1223 // top bits of the result. 1224 Known = Known.sext(BitWidth); 1225 break; 1226 } 1227 case Instruction::Shl: { 1228 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1229 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1230 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1231 // If this shift has "nsw" keyword, then the result is either a poison 1232 // value or has the same sign bit as the first operand. 1233 if (NSW) { 1234 if (KnownVal.Zero.isSignBitSet()) 1235 Result.Zero.setSignBit(); 1236 if (KnownVal.One.isSignBitSet()) 1237 Result.One.setSignBit(); 1238 } 1239 return Result; 1240 }; 1241 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1242 KF); 1243 break; 1244 } 1245 case Instruction::LShr: { 1246 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1247 return KnownBits::lshr(KnownVal, KnownAmt); 1248 }; 1249 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1250 KF); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor.Zero = ~TypeSizeInBytes; 1351 ScalingFactor.One = TypeSizeInBytes; 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index(BitWidth); 1367 Index.Zero = ~AccConstIndices; 1368 Index.One = AccConstIndices; 1369 Known = KnownBits::computeForAddSub( 1370 /*Add=*/true, /*NSW=*/false, Known, Index); 1371 } 1372 break; 1373 } 1374 case Instruction::PHI: { 1375 const PHINode *P = cast<PHINode>(I); 1376 // Handle the case of a simple two-predecessor recurrence PHI. 1377 // There's a lot more that could theoretically be done here, but 1378 // this is sufficient to catch some interesting cases. 1379 if (P->getNumIncomingValues() == 2) { 1380 for (unsigned i = 0; i != 2; ++i) { 1381 Value *L = P->getIncomingValue(i); 1382 Value *R = P->getIncomingValue(!i); 1383 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1384 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1385 Operator *LU = dyn_cast<Operator>(L); 1386 if (!LU) 1387 continue; 1388 unsigned Opcode = LU->getOpcode(); 1389 // Check for operations that have the property that if 1390 // both their operands have low zero bits, the result 1391 // will have low zero bits. 1392 if (Opcode == Instruction::Add || 1393 Opcode == Instruction::Sub || 1394 Opcode == Instruction::And || 1395 Opcode == Instruction::Or || 1396 Opcode == Instruction::Mul) { 1397 Value *LL = LU->getOperand(0); 1398 Value *LR = LU->getOperand(1); 1399 // Find a recurrence. 1400 if (LL == I) 1401 L = LR; 1402 else if (LR == I) 1403 L = LL; 1404 else 1405 continue; // Check for recurrence with L and R flipped. 1406 1407 // Change the context instruction to the "edge" that flows into the 1408 // phi. This is important because that is where the value is actually 1409 // "evaluated" even though it is used later somewhere else. (see also 1410 // D69571). 1411 Query RecQ = Q; 1412 1413 // Ok, we have a PHI of the form L op= R. Check for low 1414 // zero bits. 1415 RecQ.CxtI = RInst; 1416 computeKnownBits(R, Known2, Depth + 1, RecQ); 1417 1418 // We need to take the minimum number of known bits 1419 KnownBits Known3(BitWidth); 1420 RecQ.CxtI = LInst; 1421 computeKnownBits(L, Known3, Depth + 1, RecQ); 1422 1423 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1424 Known3.countMinTrailingZeros())); 1425 1426 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1427 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1428 // If initial value of recurrence is nonnegative, and we are adding 1429 // a nonnegative number with nsw, the result can only be nonnegative 1430 // or poison value regardless of the number of times we execute the 1431 // add in phi recurrence. If initial value is negative and we are 1432 // adding a negative number with nsw, the result can only be 1433 // negative or poison value. Similar arguments apply to sub and mul. 1434 // 1435 // (add non-negative, non-negative) --> non-negative 1436 // (add negative, negative) --> negative 1437 if (Opcode == Instruction::Add) { 1438 if (Known2.isNonNegative() && Known3.isNonNegative()) 1439 Known.makeNonNegative(); 1440 else if (Known2.isNegative() && Known3.isNegative()) 1441 Known.makeNegative(); 1442 } 1443 1444 // (sub nsw non-negative, negative) --> non-negative 1445 // (sub nsw negative, non-negative) --> negative 1446 else if (Opcode == Instruction::Sub && LL == I) { 1447 if (Known2.isNonNegative() && Known3.isNegative()) 1448 Known.makeNonNegative(); 1449 else if (Known2.isNegative() && Known3.isNonNegative()) 1450 Known.makeNegative(); 1451 } 1452 1453 // (mul nsw non-negative, non-negative) --> non-negative 1454 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1455 Known3.isNonNegative()) 1456 Known.makeNonNegative(); 1457 } 1458 1459 break; 1460 } 1461 } 1462 } 1463 1464 // Unreachable blocks may have zero-operand PHI nodes. 1465 if (P->getNumIncomingValues() == 0) 1466 break; 1467 1468 // Otherwise take the unions of the known bit sets of the operands, 1469 // taking conservative care to avoid excessive recursion. 1470 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1471 // Skip if every incoming value references to ourself. 1472 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1473 break; 1474 1475 Known.Zero.setAllBits(); 1476 Known.One.setAllBits(); 1477 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1478 Value *IncValue = P->getIncomingValue(u); 1479 // Skip direct self references. 1480 if (IncValue == P) continue; 1481 1482 // Change the context instruction to the "edge" that flows into the 1483 // phi. This is important because that is where the value is actually 1484 // "evaluated" even though it is used later somewhere else. (see also 1485 // D69571). 1486 Query RecQ = Q; 1487 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1488 1489 Known2 = KnownBits(BitWidth); 1490 // Recurse, but cap the recursion to one level, because we don't 1491 // want to waste time spinning around in loops. 1492 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1493 Known = KnownBits::commonBits(Known, Known2); 1494 // If all bits have been ruled out, there's no need to check 1495 // more operands. 1496 if (Known.isUnknown()) 1497 break; 1498 } 1499 } 1500 break; 1501 } 1502 case Instruction::Call: 1503 case Instruction::Invoke: 1504 // If range metadata is attached to this call, set known bits from that, 1505 // and then intersect with known bits based on other properties of the 1506 // function. 1507 if (MDNode *MD = 1508 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1509 computeKnownBitsFromRangeMetadata(*MD, Known); 1510 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1511 computeKnownBits(RV, Known2, Depth + 1, Q); 1512 Known.Zero |= Known2.Zero; 1513 Known.One |= Known2.One; 1514 } 1515 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::abs: { 1519 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1520 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1521 Known = Known2.abs(IntMinIsPoison); 1522 break; 1523 } 1524 case Intrinsic::bitreverse: 1525 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1526 Known.Zero |= Known2.Zero.reverseBits(); 1527 Known.One |= Known2.One.reverseBits(); 1528 break; 1529 case Intrinsic::bswap: 1530 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1531 Known.Zero |= Known2.Zero.byteSwap(); 1532 Known.One |= Known2.One.byteSwap(); 1533 break; 1534 case Intrinsic::ctlz: { 1535 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1536 // If we have a known 1, its position is our upper bound. 1537 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1538 // If this call is undefined for 0, the result will be less than 2^n. 1539 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1540 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1541 unsigned LowBits = Log2_32(PossibleLZ)+1; 1542 Known.Zero.setBitsFrom(LowBits); 1543 break; 1544 } 1545 case Intrinsic::cttz: { 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 // If we have a known 1, its position is our upper bound. 1548 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1549 // If this call is undefined for 0, the result will be less than 2^n. 1550 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1551 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1552 unsigned LowBits = Log2_32(PossibleTZ)+1; 1553 Known.Zero.setBitsFrom(LowBits); 1554 break; 1555 } 1556 case Intrinsic::ctpop: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // We can bound the space the count needs. Also, bits known to be zero 1559 // can't contribute to the population. 1560 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1561 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1562 Known.Zero.setBitsFrom(LowBits); 1563 // TODO: we could bound KnownOne using the lower bound on the number 1564 // of bits which might be set provided by popcnt KnownOne2. 1565 break; 1566 } 1567 case Intrinsic::fshr: 1568 case Intrinsic::fshl: { 1569 const APInt *SA; 1570 if (!match(I->getOperand(2), m_APInt(SA))) 1571 break; 1572 1573 // Normalize to funnel shift left. 1574 uint64_t ShiftAmt = SA->urem(BitWidth); 1575 if (II->getIntrinsicID() == Intrinsic::fshr) 1576 ShiftAmt = BitWidth - ShiftAmt; 1577 1578 KnownBits Known3(BitWidth); 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1581 1582 Known.Zero = 1583 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1584 Known.One = 1585 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1586 break; 1587 } 1588 case Intrinsic::uadd_sat: 1589 case Intrinsic::usub_sat: { 1590 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1591 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1592 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1593 1594 // Add: Leading ones of either operand are preserved. 1595 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1596 // as leading zeros in the result. 1597 unsigned LeadingKnown; 1598 if (IsAdd) 1599 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1600 Known2.countMinLeadingOnes()); 1601 else 1602 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1603 Known2.countMinLeadingOnes()); 1604 1605 Known = KnownBits::computeForAddSub( 1606 IsAdd, /* NSW */ false, Known, Known2); 1607 1608 // We select between the operation result and all-ones/zero 1609 // respectively, so we can preserve known ones/zeros. 1610 if (IsAdd) { 1611 Known.One.setHighBits(LeadingKnown); 1612 Known.Zero.clearAllBits(); 1613 } else { 1614 Known.Zero.setHighBits(LeadingKnown); 1615 Known.One.clearAllBits(); 1616 } 1617 break; 1618 } 1619 case Intrinsic::umin: 1620 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1621 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1622 Known = KnownBits::umin(Known, Known2); 1623 break; 1624 case Intrinsic::umax: 1625 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1626 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1627 Known = KnownBits::umax(Known, Known2); 1628 break; 1629 case Intrinsic::smin: 1630 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1632 Known = KnownBits::smin(Known, Known2); 1633 break; 1634 case Intrinsic::smax: 1635 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1636 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1637 Known = KnownBits::smax(Known, Known2); 1638 break; 1639 case Intrinsic::x86_sse42_crc32_64_64: 1640 Known.Zero.setBitsFrom(32); 1641 break; 1642 } 1643 } 1644 break; 1645 case Instruction::ShuffleVector: { 1646 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1647 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1648 if (!Shuf) { 1649 Known.resetAll(); 1650 return; 1651 } 1652 // For undef elements, we don't know anything about the common state of 1653 // the shuffle result. 1654 APInt DemandedLHS, DemandedRHS; 1655 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1656 Known.resetAll(); 1657 return; 1658 } 1659 Known.One.setAllBits(); 1660 Known.Zero.setAllBits(); 1661 if (!!DemandedLHS) { 1662 const Value *LHS = Shuf->getOperand(0); 1663 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1664 // If we don't know any bits, early out. 1665 if (Known.isUnknown()) 1666 break; 1667 } 1668 if (!!DemandedRHS) { 1669 const Value *RHS = Shuf->getOperand(1); 1670 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1671 Known = KnownBits::commonBits(Known, Known2); 1672 } 1673 break; 1674 } 1675 case Instruction::InsertElement: { 1676 const Value *Vec = I->getOperand(0); 1677 const Value *Elt = I->getOperand(1); 1678 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1679 // Early out if the index is non-constant or out-of-range. 1680 unsigned NumElts = DemandedElts.getBitWidth(); 1681 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1682 Known.resetAll(); 1683 return; 1684 } 1685 Known.One.setAllBits(); 1686 Known.Zero.setAllBits(); 1687 unsigned EltIdx = CIdx->getZExtValue(); 1688 // Do we demand the inserted element? 1689 if (DemandedElts[EltIdx]) { 1690 computeKnownBits(Elt, Known, Depth + 1, Q); 1691 // If we don't know any bits, early out. 1692 if (Known.isUnknown()) 1693 break; 1694 } 1695 // We don't need the base vector element that has been inserted. 1696 APInt DemandedVecElts = DemandedElts; 1697 DemandedVecElts.clearBit(EltIdx); 1698 if (!!DemandedVecElts) { 1699 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1700 Known = KnownBits::commonBits(Known, Known2); 1701 } 1702 break; 1703 } 1704 case Instruction::ExtractElement: { 1705 // Look through extract element. If the index is non-constant or 1706 // out-of-range demand all elements, otherwise just the extracted element. 1707 const Value *Vec = I->getOperand(0); 1708 const Value *Idx = I->getOperand(1); 1709 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1710 if (isa<ScalableVectorType>(Vec->getType())) { 1711 // FIXME: there's probably *something* we can do with scalable vectors 1712 Known.resetAll(); 1713 break; 1714 } 1715 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1716 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1717 if (CIdx && CIdx->getValue().ult(NumElts)) 1718 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1719 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1720 break; 1721 } 1722 case Instruction::ExtractValue: 1723 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1724 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1725 if (EVI->getNumIndices() != 1) break; 1726 if (EVI->getIndices()[0] == 0) { 1727 switch (II->getIntrinsicID()) { 1728 default: break; 1729 case Intrinsic::uadd_with_overflow: 1730 case Intrinsic::sadd_with_overflow: 1731 computeKnownBitsAddSub(true, II->getArgOperand(0), 1732 II->getArgOperand(1), false, DemandedElts, 1733 Known, Known2, Depth, Q); 1734 break; 1735 case Intrinsic::usub_with_overflow: 1736 case Intrinsic::ssub_with_overflow: 1737 computeKnownBitsAddSub(false, II->getArgOperand(0), 1738 II->getArgOperand(1), false, DemandedElts, 1739 Known, Known2, Depth, Q); 1740 break; 1741 case Intrinsic::umul_with_overflow: 1742 case Intrinsic::smul_with_overflow: 1743 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1744 DemandedElts, Known, Known2, Depth, Q); 1745 break; 1746 } 1747 } 1748 } 1749 break; 1750 case Instruction::Freeze: 1751 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1752 Depth + 1)) 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 break; 1755 } 1756 } 1757 1758 /// Determine which bits of V are known to be either zero or one and return 1759 /// them. 1760 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1761 unsigned Depth, const Query &Q) { 1762 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1763 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1764 return Known; 1765 } 1766 1767 /// Determine which bits of V are known to be either zero or one and return 1768 /// them. 1769 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1770 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1771 computeKnownBits(V, Known, Depth, Q); 1772 return Known; 1773 } 1774 1775 /// Determine which bits of V are known to be either zero or one and return 1776 /// them in the Known bit set. 1777 /// 1778 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1779 /// we cannot optimize based on the assumption that it is zero without changing 1780 /// it to be an explicit zero. If we don't change it to zero, other code could 1781 /// optimized based on the contradictory assumption that it is non-zero. 1782 /// Because instcombine aggressively folds operations with undef args anyway, 1783 /// this won't lose us code quality. 1784 /// 1785 /// This function is defined on values with integer type, values with pointer 1786 /// type, and vectors of integers. In the case 1787 /// where V is a vector, known zero, and known one values are the 1788 /// same width as the vector element, and the bit is set only if it is true 1789 /// for all of the demanded elements in the vector specified by DemandedElts. 1790 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1791 KnownBits &Known, unsigned Depth, const Query &Q) { 1792 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1793 // No demanded elts or V is a scalable vector, better to assume we don't 1794 // know anything. 1795 Known.resetAll(); 1796 return; 1797 } 1798 1799 assert(V && "No Value?"); 1800 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1801 1802 #ifndef NDEBUG 1803 Type *Ty = V->getType(); 1804 unsigned BitWidth = Known.getBitWidth(); 1805 1806 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1807 "Not integer or pointer type!"); 1808 1809 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1810 assert( 1811 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1812 "DemandedElt width should equal the fixed vector number of elements"); 1813 } else { 1814 assert(DemandedElts == APInt(1, 1) && 1815 "DemandedElt width should be 1 for scalars"); 1816 } 1817 1818 Type *ScalarTy = Ty->getScalarType(); 1819 if (ScalarTy->isPointerTy()) { 1820 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1821 "V and Known should have same BitWidth"); 1822 } else { 1823 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1824 "V and Known should have same BitWidth"); 1825 } 1826 #endif 1827 1828 const APInt *C; 1829 if (match(V, m_APInt(C))) { 1830 // We know all of the bits for a scalar constant or a splat vector constant! 1831 Known.One = *C; 1832 Known.Zero = ~Known.One; 1833 return; 1834 } 1835 // Null and aggregate-zero are all-zeros. 1836 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1837 Known.setAllZero(); 1838 return; 1839 } 1840 // Handle a constant vector by taking the intersection of the known bits of 1841 // each element. 1842 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1843 // We know that CDV must be a vector of integers. Take the intersection of 1844 // each element. 1845 Known.Zero.setAllBits(); Known.One.setAllBits(); 1846 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1847 if (!DemandedElts[i]) 1848 continue; 1849 APInt Elt = CDV->getElementAsAPInt(i); 1850 Known.Zero &= ~Elt; 1851 Known.One &= Elt; 1852 } 1853 return; 1854 } 1855 1856 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1857 // We know that CV must be a vector of integers. Take the intersection of 1858 // each element. 1859 Known.Zero.setAllBits(); Known.One.setAllBits(); 1860 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1861 if (!DemandedElts[i]) 1862 continue; 1863 Constant *Element = CV->getAggregateElement(i); 1864 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1865 if (!ElementCI) { 1866 Known.resetAll(); 1867 return; 1868 } 1869 const APInt &Elt = ElementCI->getValue(); 1870 Known.Zero &= ~Elt; 1871 Known.One &= Elt; 1872 } 1873 return; 1874 } 1875 1876 // Start out not knowing anything. 1877 Known.resetAll(); 1878 1879 // We can't imply anything about undefs. 1880 if (isa<UndefValue>(V)) 1881 return; 1882 1883 // There's no point in looking through other users of ConstantData for 1884 // assumptions. Confirm that we've handled them all. 1885 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1886 1887 // All recursive calls that increase depth must come after this. 1888 if (Depth == MaxAnalysisRecursionDepth) 1889 return; 1890 1891 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1892 // the bits of its aliasee. 1893 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1894 if (!GA->isInterposable()) 1895 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1896 return; 1897 } 1898 1899 if (const Operator *I = dyn_cast<Operator>(V)) 1900 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1901 1902 // Aligned pointers have trailing zeros - refine Known.Zero set 1903 if (isa<PointerType>(V->getType())) { 1904 Align Alignment = V->getPointerAlignment(Q.DL); 1905 Known.Zero.setLowBits(Log2(Alignment)); 1906 } 1907 1908 // computeKnownBitsFromAssume strictly refines Known. 1909 // Therefore, we run them after computeKnownBitsFromOperator. 1910 1911 // Check whether a nearby assume intrinsic can determine some known bits. 1912 computeKnownBitsFromAssume(V, Known, Depth, Q); 1913 1914 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1915 } 1916 1917 /// Return true if the given value is known to have exactly one 1918 /// bit set when defined. For vectors return true if every element is known to 1919 /// be a power of two when defined. Supports values with integer or pointer 1920 /// types and vectors of integers. 1921 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1922 const Query &Q) { 1923 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1924 1925 // Attempt to match against constants. 1926 if (OrZero && match(V, m_Power2OrZero())) 1927 return true; 1928 if (match(V, m_Power2())) 1929 return true; 1930 1931 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1932 // it is shifted off the end then the result is undefined. 1933 if (match(V, m_Shl(m_One(), m_Value()))) 1934 return true; 1935 1936 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1937 // the bottom. If it is shifted off the bottom then the result is undefined. 1938 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1939 return true; 1940 1941 // The remaining tests are all recursive, so bail out if we hit the limit. 1942 if (Depth++ == MaxAnalysisRecursionDepth) 1943 return false; 1944 1945 Value *X = nullptr, *Y = nullptr; 1946 // A shift left or a logical shift right of a power of two is a power of two 1947 // or zero. 1948 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1949 match(V, m_LShr(m_Value(X), m_Value())))) 1950 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1951 1952 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1953 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1954 1955 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1956 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1957 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1958 1959 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1960 // A power of two and'd with anything is a power of two or zero. 1961 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1962 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1963 return true; 1964 // X & (-X) is always a power of two or zero. 1965 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1966 return true; 1967 return false; 1968 } 1969 1970 // Adding a power-of-two or zero to the same power-of-two or zero yields 1971 // either the original power-of-two, a larger power-of-two or zero. 1972 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1973 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1974 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1975 Q.IIQ.hasNoSignedWrap(VOBO)) { 1976 if (match(X, m_And(m_Specific(Y), m_Value())) || 1977 match(X, m_And(m_Value(), m_Specific(Y)))) 1978 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1979 return true; 1980 if (match(Y, m_And(m_Specific(X), m_Value())) || 1981 match(Y, m_And(m_Value(), m_Specific(X)))) 1982 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1983 return true; 1984 1985 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1986 KnownBits LHSBits(BitWidth); 1987 computeKnownBits(X, LHSBits, Depth, Q); 1988 1989 KnownBits RHSBits(BitWidth); 1990 computeKnownBits(Y, RHSBits, Depth, Q); 1991 // If i8 V is a power of two or zero: 1992 // ZeroBits: 1 1 1 0 1 1 1 1 1993 // ~ZeroBits: 0 0 0 1 0 0 0 0 1994 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1995 // If OrZero isn't set, we cannot give back a zero result. 1996 // Make sure either the LHS or RHS has a bit set. 1997 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1998 return true; 1999 } 2000 } 2001 2002 // An exact divide or right shift can only shift off zero bits, so the result 2003 // is a power of two only if the first operand is a power of two and not 2004 // copying a sign bit (sdiv int_min, 2). 2005 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2006 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2007 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2008 Depth, Q); 2009 } 2010 2011 return false; 2012 } 2013 2014 /// Test whether a GEP's result is known to be non-null. 2015 /// 2016 /// Uses properties inherent in a GEP to try to determine whether it is known 2017 /// to be non-null. 2018 /// 2019 /// Currently this routine does not support vector GEPs. 2020 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2021 const Query &Q) { 2022 const Function *F = nullptr; 2023 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2024 F = I->getFunction(); 2025 2026 if (!GEP->isInBounds() || 2027 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2028 return false; 2029 2030 // FIXME: Support vector-GEPs. 2031 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2032 2033 // If the base pointer is non-null, we cannot walk to a null address with an 2034 // inbounds GEP in address space zero. 2035 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2036 return true; 2037 2038 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2039 // If so, then the GEP cannot produce a null pointer, as doing so would 2040 // inherently violate the inbounds contract within address space zero. 2041 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2042 GTI != GTE; ++GTI) { 2043 // Struct types are easy -- they must always be indexed by a constant. 2044 if (StructType *STy = GTI.getStructTypeOrNull()) { 2045 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2046 unsigned ElementIdx = OpC->getZExtValue(); 2047 const StructLayout *SL = Q.DL.getStructLayout(STy); 2048 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2049 if (ElementOffset > 0) 2050 return true; 2051 continue; 2052 } 2053 2054 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2055 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2056 continue; 2057 2058 // Fast path the constant operand case both for efficiency and so we don't 2059 // increment Depth when just zipping down an all-constant GEP. 2060 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2061 if (!OpC->isZero()) 2062 return true; 2063 continue; 2064 } 2065 2066 // We post-increment Depth here because while isKnownNonZero increments it 2067 // as well, when we pop back up that increment won't persist. We don't want 2068 // to recurse 10k times just because we have 10k GEP operands. We don't 2069 // bail completely out because we want to handle constant GEPs regardless 2070 // of depth. 2071 if (Depth++ >= MaxAnalysisRecursionDepth) 2072 continue; 2073 2074 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2075 return true; 2076 } 2077 2078 return false; 2079 } 2080 2081 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2082 const Instruction *CtxI, 2083 const DominatorTree *DT) { 2084 if (isa<Constant>(V)) 2085 return false; 2086 2087 if (!CtxI || !DT) 2088 return false; 2089 2090 unsigned NumUsesExplored = 0; 2091 for (auto *U : V->users()) { 2092 // Avoid massive lists 2093 if (NumUsesExplored >= DomConditionsMaxUses) 2094 break; 2095 NumUsesExplored++; 2096 2097 // If the value is used as an argument to a call or invoke, then argument 2098 // attributes may provide an answer about null-ness. 2099 if (const auto *CB = dyn_cast<CallBase>(U)) 2100 if (auto *CalledFunc = CB->getCalledFunction()) 2101 for (const Argument &Arg : CalledFunc->args()) 2102 if (CB->getArgOperand(Arg.getArgNo()) == V && 2103 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2104 return true; 2105 2106 // If the value is used as a load/store, then the pointer must be non null. 2107 if (V == getLoadStorePointerOperand(U)) { 2108 const Instruction *I = cast<Instruction>(U); 2109 if (!NullPointerIsDefined(I->getFunction(), 2110 V->getType()->getPointerAddressSpace()) && 2111 DT->dominates(I, CtxI)) 2112 return true; 2113 } 2114 2115 // Consider only compare instructions uniquely controlling a branch 2116 CmpInst::Predicate Pred; 2117 if (!match(const_cast<User *>(U), 2118 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2119 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2120 continue; 2121 2122 SmallVector<const User *, 4> WorkList; 2123 SmallPtrSet<const User *, 4> Visited; 2124 for (auto *CmpU : U->users()) { 2125 assert(WorkList.empty() && "Should be!"); 2126 if (Visited.insert(CmpU).second) 2127 WorkList.push_back(CmpU); 2128 2129 while (!WorkList.empty()) { 2130 auto *Curr = WorkList.pop_back_val(); 2131 2132 // If a user is an AND, add all its users to the work list. We only 2133 // propagate "pred != null" condition through AND because it is only 2134 // correct to assume that all conditions of AND are met in true branch. 2135 // TODO: Support similar logic of OR and EQ predicate? 2136 if (Pred == ICmpInst::ICMP_NE) 2137 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2138 if (BO->getOpcode() == Instruction::And) { 2139 for (auto *BOU : BO->users()) 2140 if (Visited.insert(BOU).second) 2141 WorkList.push_back(BOU); 2142 continue; 2143 } 2144 2145 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2146 assert(BI->isConditional() && "uses a comparison!"); 2147 2148 BasicBlock *NonNullSuccessor = 2149 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2150 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2151 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2152 return true; 2153 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2154 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2155 return true; 2156 } 2157 } 2158 } 2159 } 2160 2161 return false; 2162 } 2163 2164 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2165 /// ensure that the value it's attached to is never Value? 'RangeType' is 2166 /// is the type of the value described by the range. 2167 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2168 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2169 assert(NumRanges >= 1); 2170 for (unsigned i = 0; i < NumRanges; ++i) { 2171 ConstantInt *Lower = 2172 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2173 ConstantInt *Upper = 2174 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2175 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2176 if (Range.contains(Value)) 2177 return false; 2178 } 2179 return true; 2180 } 2181 2182 /// Return true if the given value is known to be non-zero when defined. For 2183 /// vectors, return true if every demanded element is known to be non-zero when 2184 /// defined. For pointers, if the context instruction and dominator tree are 2185 /// specified, perform context-sensitive analysis and return true if the 2186 /// pointer couldn't possibly be null at the specified instruction. 2187 /// Supports values with integer or pointer type and vectors of integers. 2188 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2189 const Query &Q) { 2190 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2191 // vector 2192 if (isa<ScalableVectorType>(V->getType())) 2193 return false; 2194 2195 if (auto *C = dyn_cast<Constant>(V)) { 2196 if (C->isNullValue()) 2197 return false; 2198 if (isa<ConstantInt>(C)) 2199 // Must be non-zero due to null test above. 2200 return true; 2201 2202 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2203 // See the comment for IntToPtr/PtrToInt instructions below. 2204 if (CE->getOpcode() == Instruction::IntToPtr || 2205 CE->getOpcode() == Instruction::PtrToInt) 2206 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2207 .getFixedSize() <= 2208 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2209 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2210 } 2211 2212 // For constant vectors, check that all elements are undefined or known 2213 // non-zero to determine that the whole vector is known non-zero. 2214 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2215 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2216 if (!DemandedElts[i]) 2217 continue; 2218 Constant *Elt = C->getAggregateElement(i); 2219 if (!Elt || Elt->isNullValue()) 2220 return false; 2221 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2222 return false; 2223 } 2224 return true; 2225 } 2226 2227 // A global variable in address space 0 is non null unless extern weak 2228 // or an absolute symbol reference. Other address spaces may have null as a 2229 // valid address for a global, so we can't assume anything. 2230 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2231 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2232 GV->getType()->getAddressSpace() == 0) 2233 return true; 2234 } else 2235 return false; 2236 } 2237 2238 if (auto *I = dyn_cast<Instruction>(V)) { 2239 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2240 // If the possible ranges don't contain zero, then the value is 2241 // definitely non-zero. 2242 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2243 const APInt ZeroValue(Ty->getBitWidth(), 0); 2244 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2245 return true; 2246 } 2247 } 2248 } 2249 2250 if (isKnownNonZeroFromAssume(V, Q)) 2251 return true; 2252 2253 // Some of the tests below are recursive, so bail out if we hit the limit. 2254 if (Depth++ >= MaxAnalysisRecursionDepth) 2255 return false; 2256 2257 // Check for pointer simplifications. 2258 2259 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2260 // Alloca never returns null, malloc might. 2261 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2262 return true; 2263 2264 // A byval, inalloca may not be null in a non-default addres space. A 2265 // nonnull argument is assumed never 0. 2266 if (const Argument *A = dyn_cast<Argument>(V)) { 2267 if (((A->hasPassPointeeByValueCopyAttr() && 2268 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2269 A->hasNonNullAttr())) 2270 return true; 2271 } 2272 2273 // A Load tagged with nonnull metadata is never null. 2274 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2275 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2276 return true; 2277 2278 if (const auto *Call = dyn_cast<CallBase>(V)) { 2279 if (Call->isReturnNonNull()) 2280 return true; 2281 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2282 return isKnownNonZero(RP, Depth, Q); 2283 } 2284 } 2285 2286 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2287 return true; 2288 2289 // Check for recursive pointer simplifications. 2290 if (V->getType()->isPointerTy()) { 2291 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2292 // do not alter the value, or at least not the nullness property of the 2293 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2294 // 2295 // Note that we have to take special care to avoid looking through 2296 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2297 // as casts that can alter the value, e.g., AddrSpaceCasts. 2298 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2299 return isGEPKnownNonNull(GEP, Depth, Q); 2300 2301 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2302 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2303 2304 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2305 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2306 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2307 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2308 } 2309 2310 // Similar to int2ptr above, we can look through ptr2int here if the cast 2311 // is a no-op or an extend and not a truncate. 2312 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2313 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2314 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2315 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2316 2317 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2318 2319 // X | Y != 0 if X != 0 or Y != 0. 2320 Value *X = nullptr, *Y = nullptr; 2321 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2322 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2323 isKnownNonZero(Y, DemandedElts, Depth, Q); 2324 2325 // ext X != 0 if X != 0. 2326 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2327 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2328 2329 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2330 // if the lowest bit is shifted off the end. 2331 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2332 // shl nuw can't remove any non-zero bits. 2333 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2334 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2335 return isKnownNonZero(X, Depth, Q); 2336 2337 KnownBits Known(BitWidth); 2338 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2339 if (Known.One[0]) 2340 return true; 2341 } 2342 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2343 // defined if the sign bit is shifted off the end. 2344 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2345 // shr exact can only shift out zero bits. 2346 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2347 if (BO->isExact()) 2348 return isKnownNonZero(X, Depth, Q); 2349 2350 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2351 if (Known.isNegative()) 2352 return true; 2353 2354 // If the shifter operand is a constant, and all of the bits shifted 2355 // out are known to be zero, and X is known non-zero then at least one 2356 // non-zero bit must remain. 2357 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2358 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2359 // Is there a known one in the portion not shifted out? 2360 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2361 return true; 2362 // Are all the bits to be shifted out known zero? 2363 if (Known.countMinTrailingZeros() >= ShiftVal) 2364 return isKnownNonZero(X, DemandedElts, Depth, Q); 2365 } 2366 } 2367 // div exact can only produce a zero if the dividend is zero. 2368 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2369 return isKnownNonZero(X, DemandedElts, Depth, Q); 2370 } 2371 // X + Y. 2372 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2373 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2374 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2375 2376 // If X and Y are both non-negative (as signed values) then their sum is not 2377 // zero unless both X and Y are zero. 2378 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2379 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2380 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2381 return true; 2382 2383 // If X and Y are both negative (as signed values) then their sum is not 2384 // zero unless both X and Y equal INT_MIN. 2385 if (XKnown.isNegative() && YKnown.isNegative()) { 2386 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2387 // The sign bit of X is set. If some other bit is set then X is not equal 2388 // to INT_MIN. 2389 if (XKnown.One.intersects(Mask)) 2390 return true; 2391 // The sign bit of Y is set. If some other bit is set then Y is not equal 2392 // to INT_MIN. 2393 if (YKnown.One.intersects(Mask)) 2394 return true; 2395 } 2396 2397 // The sum of a non-negative number and a power of two is not zero. 2398 if (XKnown.isNonNegative() && 2399 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2400 return true; 2401 if (YKnown.isNonNegative() && 2402 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2403 return true; 2404 } 2405 // X * Y. 2406 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2407 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2408 // If X and Y are non-zero then so is X * Y as long as the multiplication 2409 // does not overflow. 2410 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2411 isKnownNonZero(X, DemandedElts, Depth, Q) && 2412 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2413 return true; 2414 } 2415 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2416 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2417 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2418 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2419 return true; 2420 } 2421 // PHI 2422 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2423 // Try and detect a recurrence that monotonically increases from a 2424 // starting value, as these are common as induction variables. 2425 if (PN->getNumIncomingValues() == 2) { 2426 Value *Start = PN->getIncomingValue(0); 2427 Value *Induction = PN->getIncomingValue(1); 2428 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2429 std::swap(Start, Induction); 2430 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2431 if (!C->isZero() && !C->isNegative()) { 2432 ConstantInt *X; 2433 if (Q.IIQ.UseInstrInfo && 2434 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2435 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2436 !X->isNegative()) 2437 return true; 2438 } 2439 } 2440 } 2441 // Check if all incoming values are non-zero using recursion. 2442 Query RecQ = Q; 2443 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2444 return llvm::all_of(PN->operands(), [&](const Use &U) { 2445 if (U.get() == PN) 2446 return true; 2447 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2448 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2449 }); 2450 } 2451 // ExtractElement 2452 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2453 const Value *Vec = EEI->getVectorOperand(); 2454 const Value *Idx = EEI->getIndexOperand(); 2455 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2456 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2457 unsigned NumElts = VecTy->getNumElements(); 2458 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2459 if (CIdx && CIdx->getValue().ult(NumElts)) 2460 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2461 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2462 } 2463 } 2464 // Freeze 2465 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2466 auto *Op = FI->getOperand(0); 2467 if (isKnownNonZero(Op, Depth, Q) && 2468 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2469 return true; 2470 } 2471 2472 KnownBits Known(BitWidth); 2473 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2474 return Known.One != 0; 2475 } 2476 2477 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2478 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2479 // vector 2480 if (isa<ScalableVectorType>(V->getType())) 2481 return false; 2482 2483 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2484 APInt DemandedElts = 2485 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2486 return isKnownNonZero(V, DemandedElts, Depth, Q); 2487 } 2488 2489 /// Return true if V2 == V1 + X, where X is known non-zero. 2490 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2491 const Query &Q) { 2492 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2493 if (!BO || BO->getOpcode() != Instruction::Add) 2494 return false; 2495 Value *Op = nullptr; 2496 if (V2 == BO->getOperand(0)) 2497 Op = BO->getOperand(1); 2498 else if (V2 == BO->getOperand(1)) 2499 Op = BO->getOperand(0); 2500 else 2501 return false; 2502 return isKnownNonZero(Op, Depth + 1, Q); 2503 } 2504 2505 /// Return true if it is known that V1 != V2. 2506 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2507 const Query &Q) { 2508 if (V1 == V2) 2509 return false; 2510 if (V1->getType() != V2->getType()) 2511 // We can't look through casts yet. 2512 return false; 2513 2514 if (Depth >= MaxAnalysisRecursionDepth) 2515 return false; 2516 2517 // See if we can recurse through (exactly one of) our operands. 2518 auto *O1 = dyn_cast<Operator>(V1); 2519 auto *O2 = dyn_cast<Operator>(V2); 2520 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2521 switch (O1->getOpcode()) { 2522 default: break; 2523 case Instruction::Add: 2524 case Instruction::Sub: 2525 // Assume operand order has been canonicalized 2526 if (O1->getOperand(0) == O2->getOperand(0)) 2527 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2528 Depth + 1, Q); 2529 if (O1->getOperand(1) == O2->getOperand(1)) 2530 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2531 Depth + 1, Q); 2532 break; 2533 case Instruction::SExt: 2534 case Instruction::ZExt: 2535 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2536 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2537 Depth + 1, Q); 2538 break; 2539 }; 2540 } 2541 2542 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2543 return true; 2544 2545 if (V1->getType()->isIntOrIntVectorTy()) { 2546 // Are any known bits in V1 contradictory to known bits in V2? If V1 2547 // has a known zero where V2 has a known one, they must not be equal. 2548 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2549 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2550 2551 if (Known1.Zero.intersects(Known2.One) || 2552 Known2.Zero.intersects(Known1.One)) 2553 return true; 2554 } 2555 return false; 2556 } 2557 2558 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2559 /// simplify operations downstream. Mask is known to be zero for bits that V 2560 /// cannot have. 2561 /// 2562 /// This function is defined on values with integer type, values with pointer 2563 /// type, and vectors of integers. In the case 2564 /// where V is a vector, the mask, known zero, and known one values are the 2565 /// same width as the vector element, and the bit is set only if it is true 2566 /// for all of the elements in the vector. 2567 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2568 const Query &Q) { 2569 KnownBits Known(Mask.getBitWidth()); 2570 computeKnownBits(V, Known, Depth, Q); 2571 return Mask.isSubsetOf(Known.Zero); 2572 } 2573 2574 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2575 // Returns the input and lower/upper bounds. 2576 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2577 const APInt *&CLow, const APInt *&CHigh) { 2578 assert(isa<Operator>(Select) && 2579 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2580 "Input should be a Select!"); 2581 2582 const Value *LHS = nullptr, *RHS = nullptr; 2583 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2584 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2585 return false; 2586 2587 if (!match(RHS, m_APInt(CLow))) 2588 return false; 2589 2590 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2591 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2592 if (getInverseMinMaxFlavor(SPF) != SPF2) 2593 return false; 2594 2595 if (!match(RHS2, m_APInt(CHigh))) 2596 return false; 2597 2598 if (SPF == SPF_SMIN) 2599 std::swap(CLow, CHigh); 2600 2601 In = LHS2; 2602 return CLow->sle(*CHigh); 2603 } 2604 2605 /// For vector constants, loop over the elements and find the constant with the 2606 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2607 /// or if any element was not analyzed; otherwise, return the count for the 2608 /// element with the minimum number of sign bits. 2609 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2610 const APInt &DemandedElts, 2611 unsigned TyBits) { 2612 const auto *CV = dyn_cast<Constant>(V); 2613 if (!CV || !isa<FixedVectorType>(CV->getType())) 2614 return 0; 2615 2616 unsigned MinSignBits = TyBits; 2617 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2618 for (unsigned i = 0; i != NumElts; ++i) { 2619 if (!DemandedElts[i]) 2620 continue; 2621 // If we find a non-ConstantInt, bail out. 2622 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2623 if (!Elt) 2624 return 0; 2625 2626 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2627 } 2628 2629 return MinSignBits; 2630 } 2631 2632 static unsigned ComputeNumSignBitsImpl(const Value *V, 2633 const APInt &DemandedElts, 2634 unsigned Depth, const Query &Q); 2635 2636 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2637 unsigned Depth, const Query &Q) { 2638 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2639 assert(Result > 0 && "At least one sign bit needs to be present!"); 2640 return Result; 2641 } 2642 2643 /// Return the number of times the sign bit of the register is replicated into 2644 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2645 /// (itself), but other cases can give us information. For example, immediately 2646 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2647 /// other, so we return 3. For vectors, return the number of sign bits for the 2648 /// vector element with the minimum number of known sign bits of the demanded 2649 /// elements in the vector specified by DemandedElts. 2650 static unsigned ComputeNumSignBitsImpl(const Value *V, 2651 const APInt &DemandedElts, 2652 unsigned Depth, const Query &Q) { 2653 Type *Ty = V->getType(); 2654 2655 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2656 // vector 2657 if (isa<ScalableVectorType>(Ty)) 2658 return 1; 2659 2660 #ifndef NDEBUG 2661 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2662 2663 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2664 assert( 2665 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2666 "DemandedElt width should equal the fixed vector number of elements"); 2667 } else { 2668 assert(DemandedElts == APInt(1, 1) && 2669 "DemandedElt width should be 1 for scalars"); 2670 } 2671 #endif 2672 2673 // We return the minimum number of sign bits that are guaranteed to be present 2674 // in V, so for undef we have to conservatively return 1. We don't have the 2675 // same behavior for poison though -- that's a FIXME today. 2676 2677 Type *ScalarTy = Ty->getScalarType(); 2678 unsigned TyBits = ScalarTy->isPointerTy() ? 2679 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2680 Q.DL.getTypeSizeInBits(ScalarTy); 2681 2682 unsigned Tmp, Tmp2; 2683 unsigned FirstAnswer = 1; 2684 2685 // Note that ConstantInt is handled by the general computeKnownBits case 2686 // below. 2687 2688 if (Depth == MaxAnalysisRecursionDepth) 2689 return 1; 2690 2691 if (auto *U = dyn_cast<Operator>(V)) { 2692 switch (Operator::getOpcode(V)) { 2693 default: break; 2694 case Instruction::SExt: 2695 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2696 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2697 2698 case Instruction::SDiv: { 2699 const APInt *Denominator; 2700 // sdiv X, C -> adds log(C) sign bits. 2701 if (match(U->getOperand(1), m_APInt(Denominator))) { 2702 2703 // Ignore non-positive denominator. 2704 if (!Denominator->isStrictlyPositive()) 2705 break; 2706 2707 // Calculate the incoming numerator bits. 2708 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2709 2710 // Add floor(log(C)) bits to the numerator bits. 2711 return std::min(TyBits, NumBits + Denominator->logBase2()); 2712 } 2713 break; 2714 } 2715 2716 case Instruction::SRem: { 2717 const APInt *Denominator; 2718 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2719 // positive constant. This let us put a lower bound on the number of sign 2720 // bits. 2721 if (match(U->getOperand(1), m_APInt(Denominator))) { 2722 2723 // Ignore non-positive denominator. 2724 if (!Denominator->isStrictlyPositive()) 2725 break; 2726 2727 // Calculate the incoming numerator bits. SRem by a positive constant 2728 // can't lower the number of sign bits. 2729 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2730 2731 // Calculate the leading sign bit constraints by examining the 2732 // denominator. Given that the denominator is positive, there are two 2733 // cases: 2734 // 2735 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2736 // (1 << ceilLogBase2(C)). 2737 // 2738 // 2. the numerator is negative. Then the result range is (-C,0] and 2739 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2740 // 2741 // Thus a lower bound on the number of sign bits is `TyBits - 2742 // ceilLogBase2(C)`. 2743 2744 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2745 return std::max(NumrBits, ResBits); 2746 } 2747 break; 2748 } 2749 2750 case Instruction::AShr: { 2751 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2752 // ashr X, C -> adds C sign bits. Vectors too. 2753 const APInt *ShAmt; 2754 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2755 if (ShAmt->uge(TyBits)) 2756 break; // Bad shift. 2757 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2758 Tmp += ShAmtLimited; 2759 if (Tmp > TyBits) Tmp = TyBits; 2760 } 2761 return Tmp; 2762 } 2763 case Instruction::Shl: { 2764 const APInt *ShAmt; 2765 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2766 // shl destroys sign bits. 2767 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2768 if (ShAmt->uge(TyBits) || // Bad shift. 2769 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2770 Tmp2 = ShAmt->getZExtValue(); 2771 return Tmp - Tmp2; 2772 } 2773 break; 2774 } 2775 case Instruction::And: 2776 case Instruction::Or: 2777 case Instruction::Xor: // NOT is handled here. 2778 // Logical binary ops preserve the number of sign bits at the worst. 2779 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2780 if (Tmp != 1) { 2781 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2782 FirstAnswer = std::min(Tmp, Tmp2); 2783 // We computed what we know about the sign bits as our first 2784 // answer. Now proceed to the generic code that uses 2785 // computeKnownBits, and pick whichever answer is better. 2786 } 2787 break; 2788 2789 case Instruction::Select: { 2790 // If we have a clamp pattern, we know that the number of sign bits will 2791 // be the minimum of the clamp min/max range. 2792 const Value *X; 2793 const APInt *CLow, *CHigh; 2794 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2795 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2796 2797 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2798 if (Tmp == 1) break; 2799 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2800 return std::min(Tmp, Tmp2); 2801 } 2802 2803 case Instruction::Add: 2804 // Add can have at most one carry bit. Thus we know that the output 2805 // is, at worst, one more bit than the inputs. 2806 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2807 if (Tmp == 1) break; 2808 2809 // Special case decrementing a value (ADD X, -1): 2810 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2811 if (CRHS->isAllOnesValue()) { 2812 KnownBits Known(TyBits); 2813 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2814 2815 // If the input is known to be 0 or 1, the output is 0/-1, which is 2816 // all sign bits set. 2817 if ((Known.Zero | 1).isAllOnesValue()) 2818 return TyBits; 2819 2820 // If we are subtracting one from a positive number, there is no carry 2821 // out of the result. 2822 if (Known.isNonNegative()) 2823 return Tmp; 2824 } 2825 2826 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2827 if (Tmp2 == 1) break; 2828 return std::min(Tmp, Tmp2) - 1; 2829 2830 case Instruction::Sub: 2831 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2832 if (Tmp2 == 1) break; 2833 2834 // Handle NEG. 2835 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2836 if (CLHS->isNullValue()) { 2837 KnownBits Known(TyBits); 2838 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2839 // If the input is known to be 0 or 1, the output is 0/-1, which is 2840 // all sign bits set. 2841 if ((Known.Zero | 1).isAllOnesValue()) 2842 return TyBits; 2843 2844 // If the input is known to be positive (the sign bit is known clear), 2845 // the output of the NEG has the same number of sign bits as the 2846 // input. 2847 if (Known.isNonNegative()) 2848 return Tmp2; 2849 2850 // Otherwise, we treat this like a SUB. 2851 } 2852 2853 // Sub can have at most one carry bit. Thus we know that the output 2854 // is, at worst, one more bit than the inputs. 2855 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2856 if (Tmp == 1) break; 2857 return std::min(Tmp, Tmp2) - 1; 2858 2859 case Instruction::Mul: { 2860 // The output of the Mul can be at most twice the valid bits in the 2861 // inputs. 2862 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2863 if (SignBitsOp0 == 1) break; 2864 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2865 if (SignBitsOp1 == 1) break; 2866 unsigned OutValidBits = 2867 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2868 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2869 } 2870 2871 case Instruction::PHI: { 2872 const PHINode *PN = cast<PHINode>(U); 2873 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2874 // Don't analyze large in-degree PHIs. 2875 if (NumIncomingValues > 4) break; 2876 // Unreachable blocks may have zero-operand PHI nodes. 2877 if (NumIncomingValues == 0) break; 2878 2879 // Take the minimum of all incoming values. This can't infinitely loop 2880 // because of our depth threshold. 2881 Query RecQ = Q; 2882 Tmp = TyBits; 2883 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2884 if (Tmp == 1) return Tmp; 2885 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2886 Tmp = std::min( 2887 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2888 } 2889 return Tmp; 2890 } 2891 2892 case Instruction::Trunc: 2893 // FIXME: it's tricky to do anything useful for this, but it is an 2894 // important case for targets like X86. 2895 break; 2896 2897 case Instruction::ExtractElement: 2898 // Look through extract element. At the moment we keep this simple and 2899 // skip tracking the specific element. But at least we might find 2900 // information valid for all elements of the vector (for example if vector 2901 // is sign extended, shifted, etc). 2902 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2903 2904 case Instruction::ShuffleVector: { 2905 // Collect the minimum number of sign bits that are shared by every vector 2906 // element referenced by the shuffle. 2907 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2908 if (!Shuf) { 2909 // FIXME: Add support for shufflevector constant expressions. 2910 return 1; 2911 } 2912 APInt DemandedLHS, DemandedRHS; 2913 // For undef elements, we don't know anything about the common state of 2914 // the shuffle result. 2915 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2916 return 1; 2917 Tmp = std::numeric_limits<unsigned>::max(); 2918 if (!!DemandedLHS) { 2919 const Value *LHS = Shuf->getOperand(0); 2920 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2921 } 2922 // If we don't know anything, early out and try computeKnownBits 2923 // fall-back. 2924 if (Tmp == 1) 2925 break; 2926 if (!!DemandedRHS) { 2927 const Value *RHS = Shuf->getOperand(1); 2928 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2929 Tmp = std::min(Tmp, Tmp2); 2930 } 2931 // If we don't know anything, early out and try computeKnownBits 2932 // fall-back. 2933 if (Tmp == 1) 2934 break; 2935 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2936 return Tmp; 2937 } 2938 case Instruction::Call: { 2939 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2940 switch (II->getIntrinsicID()) { 2941 default: break; 2942 case Intrinsic::abs: 2943 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2944 if (Tmp == 1) break; 2945 2946 // Absolute value reduces number of sign bits by at most 1. 2947 return Tmp - 1; 2948 } 2949 } 2950 } 2951 } 2952 } 2953 2954 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2955 // use this information. 2956 2957 // If we can examine all elements of a vector constant successfully, we're 2958 // done (we can't do any better than that). If not, keep trying. 2959 if (unsigned VecSignBits = 2960 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2961 return VecSignBits; 2962 2963 KnownBits Known(TyBits); 2964 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2965 2966 // If we know that the sign bit is either zero or one, determine the number of 2967 // identical bits in the top of the input value. 2968 return std::max(FirstAnswer, Known.countMinSignBits()); 2969 } 2970 2971 /// This function computes the integer multiple of Base that equals V. 2972 /// If successful, it returns true and returns the multiple in 2973 /// Multiple. If unsuccessful, it returns false. It looks 2974 /// through SExt instructions only if LookThroughSExt is true. 2975 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2976 bool LookThroughSExt, unsigned Depth) { 2977 assert(V && "No Value?"); 2978 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2979 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2980 2981 Type *T = V->getType(); 2982 2983 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2984 2985 if (Base == 0) 2986 return false; 2987 2988 if (Base == 1) { 2989 Multiple = V; 2990 return true; 2991 } 2992 2993 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2994 Constant *BaseVal = ConstantInt::get(T, Base); 2995 if (CO && CO == BaseVal) { 2996 // Multiple is 1. 2997 Multiple = ConstantInt::get(T, 1); 2998 return true; 2999 } 3000 3001 if (CI && CI->getZExtValue() % Base == 0) { 3002 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3003 return true; 3004 } 3005 3006 if (Depth == MaxAnalysisRecursionDepth) return false; 3007 3008 Operator *I = dyn_cast<Operator>(V); 3009 if (!I) return false; 3010 3011 switch (I->getOpcode()) { 3012 default: break; 3013 case Instruction::SExt: 3014 if (!LookThroughSExt) return false; 3015 // otherwise fall through to ZExt 3016 LLVM_FALLTHROUGH; 3017 case Instruction::ZExt: 3018 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3019 LookThroughSExt, Depth+1); 3020 case Instruction::Shl: 3021 case Instruction::Mul: { 3022 Value *Op0 = I->getOperand(0); 3023 Value *Op1 = I->getOperand(1); 3024 3025 if (I->getOpcode() == Instruction::Shl) { 3026 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3027 if (!Op1CI) return false; 3028 // Turn Op0 << Op1 into Op0 * 2^Op1 3029 APInt Op1Int = Op1CI->getValue(); 3030 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3031 APInt API(Op1Int.getBitWidth(), 0); 3032 API.setBit(BitToSet); 3033 Op1 = ConstantInt::get(V->getContext(), API); 3034 } 3035 3036 Value *Mul0 = nullptr; 3037 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3038 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3039 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3040 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3041 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3042 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3043 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3044 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3045 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3046 3047 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3048 Multiple = ConstantExpr::getMul(MulC, Op1C); 3049 return true; 3050 } 3051 3052 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3053 if (Mul0CI->getValue() == 1) { 3054 // V == Base * Op1, so return Op1 3055 Multiple = Op1; 3056 return true; 3057 } 3058 } 3059 3060 Value *Mul1 = nullptr; 3061 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3062 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3063 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3064 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3065 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3066 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3067 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3068 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3069 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3070 3071 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3072 Multiple = ConstantExpr::getMul(MulC, Op0C); 3073 return true; 3074 } 3075 3076 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3077 if (Mul1CI->getValue() == 1) { 3078 // V == Base * Op0, so return Op0 3079 Multiple = Op0; 3080 return true; 3081 } 3082 } 3083 } 3084 } 3085 3086 // We could not determine if V is a multiple of Base. 3087 return false; 3088 } 3089 3090 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3091 const TargetLibraryInfo *TLI) { 3092 const Function *F = CB.getCalledFunction(); 3093 if (!F) 3094 return Intrinsic::not_intrinsic; 3095 3096 if (F->isIntrinsic()) 3097 return F->getIntrinsicID(); 3098 3099 // We are going to infer semantics of a library function based on mapping it 3100 // to an LLVM intrinsic. Check that the library function is available from 3101 // this callbase and in this environment. 3102 LibFunc Func; 3103 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3104 !CB.onlyReadsMemory()) 3105 return Intrinsic::not_intrinsic; 3106 3107 switch (Func) { 3108 default: 3109 break; 3110 case LibFunc_sin: 3111 case LibFunc_sinf: 3112 case LibFunc_sinl: 3113 return Intrinsic::sin; 3114 case LibFunc_cos: 3115 case LibFunc_cosf: 3116 case LibFunc_cosl: 3117 return Intrinsic::cos; 3118 case LibFunc_exp: 3119 case LibFunc_expf: 3120 case LibFunc_expl: 3121 return Intrinsic::exp; 3122 case LibFunc_exp2: 3123 case LibFunc_exp2f: 3124 case LibFunc_exp2l: 3125 return Intrinsic::exp2; 3126 case LibFunc_log: 3127 case LibFunc_logf: 3128 case LibFunc_logl: 3129 return Intrinsic::log; 3130 case LibFunc_log10: 3131 case LibFunc_log10f: 3132 case LibFunc_log10l: 3133 return Intrinsic::log10; 3134 case LibFunc_log2: 3135 case LibFunc_log2f: 3136 case LibFunc_log2l: 3137 return Intrinsic::log2; 3138 case LibFunc_fabs: 3139 case LibFunc_fabsf: 3140 case LibFunc_fabsl: 3141 return Intrinsic::fabs; 3142 case LibFunc_fmin: 3143 case LibFunc_fminf: 3144 case LibFunc_fminl: 3145 return Intrinsic::minnum; 3146 case LibFunc_fmax: 3147 case LibFunc_fmaxf: 3148 case LibFunc_fmaxl: 3149 return Intrinsic::maxnum; 3150 case LibFunc_copysign: 3151 case LibFunc_copysignf: 3152 case LibFunc_copysignl: 3153 return Intrinsic::copysign; 3154 case LibFunc_floor: 3155 case LibFunc_floorf: 3156 case LibFunc_floorl: 3157 return Intrinsic::floor; 3158 case LibFunc_ceil: 3159 case LibFunc_ceilf: 3160 case LibFunc_ceill: 3161 return Intrinsic::ceil; 3162 case LibFunc_trunc: 3163 case LibFunc_truncf: 3164 case LibFunc_truncl: 3165 return Intrinsic::trunc; 3166 case LibFunc_rint: 3167 case LibFunc_rintf: 3168 case LibFunc_rintl: 3169 return Intrinsic::rint; 3170 case LibFunc_nearbyint: 3171 case LibFunc_nearbyintf: 3172 case LibFunc_nearbyintl: 3173 return Intrinsic::nearbyint; 3174 case LibFunc_round: 3175 case LibFunc_roundf: 3176 case LibFunc_roundl: 3177 return Intrinsic::round; 3178 case LibFunc_roundeven: 3179 case LibFunc_roundevenf: 3180 case LibFunc_roundevenl: 3181 return Intrinsic::roundeven; 3182 case LibFunc_pow: 3183 case LibFunc_powf: 3184 case LibFunc_powl: 3185 return Intrinsic::pow; 3186 case LibFunc_sqrt: 3187 case LibFunc_sqrtf: 3188 case LibFunc_sqrtl: 3189 return Intrinsic::sqrt; 3190 } 3191 3192 return Intrinsic::not_intrinsic; 3193 } 3194 3195 /// Return true if we can prove that the specified FP value is never equal to 3196 /// -0.0. 3197 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3198 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3199 /// the same as +0.0 in floating-point ops. 3200 /// 3201 /// NOTE: this function will need to be revisited when we support non-default 3202 /// rounding modes! 3203 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3204 unsigned Depth) { 3205 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3206 return !CFP->getValueAPF().isNegZero(); 3207 3208 if (Depth == MaxAnalysisRecursionDepth) 3209 return false; 3210 3211 auto *Op = dyn_cast<Operator>(V); 3212 if (!Op) 3213 return false; 3214 3215 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3216 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3217 return true; 3218 3219 // sitofp and uitofp turn into +0.0 for zero. 3220 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3221 return true; 3222 3223 if (auto *Call = dyn_cast<CallInst>(Op)) { 3224 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3225 switch (IID) { 3226 default: 3227 break; 3228 // sqrt(-0.0) = -0.0, no other negative results are possible. 3229 case Intrinsic::sqrt: 3230 case Intrinsic::canonicalize: 3231 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3232 // fabs(x) != -0.0 3233 case Intrinsic::fabs: 3234 return true; 3235 } 3236 } 3237 3238 return false; 3239 } 3240 3241 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3242 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3243 /// bit despite comparing equal. 3244 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3245 const TargetLibraryInfo *TLI, 3246 bool SignBitOnly, 3247 unsigned Depth) { 3248 // TODO: This function does not do the right thing when SignBitOnly is true 3249 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3250 // which flips the sign bits of NaNs. See 3251 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3252 3253 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3254 return !CFP->getValueAPF().isNegative() || 3255 (!SignBitOnly && CFP->getValueAPF().isZero()); 3256 } 3257 3258 // Handle vector of constants. 3259 if (auto *CV = dyn_cast<Constant>(V)) { 3260 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3261 unsigned NumElts = CVFVTy->getNumElements(); 3262 for (unsigned i = 0; i != NumElts; ++i) { 3263 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3264 if (!CFP) 3265 return false; 3266 if (CFP->getValueAPF().isNegative() && 3267 (SignBitOnly || !CFP->getValueAPF().isZero())) 3268 return false; 3269 } 3270 3271 // All non-negative ConstantFPs. 3272 return true; 3273 } 3274 } 3275 3276 if (Depth == MaxAnalysisRecursionDepth) 3277 return false; 3278 3279 const Operator *I = dyn_cast<Operator>(V); 3280 if (!I) 3281 return false; 3282 3283 switch (I->getOpcode()) { 3284 default: 3285 break; 3286 // Unsigned integers are always nonnegative. 3287 case Instruction::UIToFP: 3288 return true; 3289 case Instruction::FMul: 3290 case Instruction::FDiv: 3291 // X * X is always non-negative or a NaN. 3292 // X / X is always exactly 1.0 or a NaN. 3293 if (I->getOperand(0) == I->getOperand(1) && 3294 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3295 return true; 3296 3297 LLVM_FALLTHROUGH; 3298 case Instruction::FAdd: 3299 case Instruction::FRem: 3300 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3301 Depth + 1) && 3302 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3303 Depth + 1); 3304 case Instruction::Select: 3305 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3306 Depth + 1) && 3307 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3308 Depth + 1); 3309 case Instruction::FPExt: 3310 case Instruction::FPTrunc: 3311 // Widening/narrowing never change sign. 3312 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3313 Depth + 1); 3314 case Instruction::ExtractElement: 3315 // Look through extract element. At the moment we keep this simple and skip 3316 // tracking the specific element. But at least we might find information 3317 // valid for all elements of the vector. 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::Call: 3321 const auto *CI = cast<CallInst>(I); 3322 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3323 switch (IID) { 3324 default: 3325 break; 3326 case Intrinsic::maxnum: { 3327 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3328 auto isPositiveNum = [&](Value *V) { 3329 if (SignBitOnly) { 3330 // With SignBitOnly, this is tricky because the result of 3331 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3332 // a constant strictly greater than 0.0. 3333 const APFloat *C; 3334 return match(V, m_APFloat(C)) && 3335 *C > APFloat::getZero(C->getSemantics()); 3336 } 3337 3338 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3339 // maxnum can't be ordered-less-than-zero. 3340 return isKnownNeverNaN(V, TLI) && 3341 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3342 }; 3343 3344 // TODO: This could be improved. We could also check that neither operand 3345 // has its sign bit set (and at least 1 is not-NAN?). 3346 return isPositiveNum(V0) || isPositiveNum(V1); 3347 } 3348 3349 case Intrinsic::maximum: 3350 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3351 Depth + 1) || 3352 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3353 Depth + 1); 3354 case Intrinsic::minnum: 3355 case Intrinsic::minimum: 3356 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3357 Depth + 1) && 3358 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3359 Depth + 1); 3360 case Intrinsic::exp: 3361 case Intrinsic::exp2: 3362 case Intrinsic::fabs: 3363 return true; 3364 3365 case Intrinsic::sqrt: 3366 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3367 if (!SignBitOnly) 3368 return true; 3369 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3370 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3371 3372 case Intrinsic::powi: 3373 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3374 // powi(x,n) is non-negative if n is even. 3375 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3376 return true; 3377 } 3378 // TODO: This is not correct. Given that exp is an integer, here are the 3379 // ways that pow can return a negative value: 3380 // 3381 // pow(x, exp) --> negative if exp is odd and x is negative. 3382 // pow(-0, exp) --> -inf if exp is negative odd. 3383 // pow(-0, exp) --> -0 if exp is positive odd. 3384 // pow(-inf, exp) --> -0 if exp is negative odd. 3385 // pow(-inf, exp) --> -inf if exp is positive odd. 3386 // 3387 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3388 // but we must return false if x == -0. Unfortunately we do not currently 3389 // have a way of expressing this constraint. See details in 3390 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3391 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3392 Depth + 1); 3393 3394 case Intrinsic::fma: 3395 case Intrinsic::fmuladd: 3396 // x*x+y is non-negative if y is non-negative. 3397 return I->getOperand(0) == I->getOperand(1) && 3398 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3399 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3400 Depth + 1); 3401 } 3402 break; 3403 } 3404 return false; 3405 } 3406 3407 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3408 const TargetLibraryInfo *TLI) { 3409 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3410 } 3411 3412 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3413 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3414 } 3415 3416 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3417 unsigned Depth) { 3418 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3419 3420 // If we're told that infinities won't happen, assume they won't. 3421 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3422 if (FPMathOp->hasNoInfs()) 3423 return true; 3424 3425 // Handle scalar constants. 3426 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3427 return !CFP->isInfinity(); 3428 3429 if (Depth == MaxAnalysisRecursionDepth) 3430 return false; 3431 3432 if (auto *Inst = dyn_cast<Instruction>(V)) { 3433 switch (Inst->getOpcode()) { 3434 case Instruction::Select: { 3435 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3436 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3437 } 3438 case Instruction::SIToFP: 3439 case Instruction::UIToFP: { 3440 // Get width of largest magnitude integer (remove a bit if signed). 3441 // This still works for a signed minimum value because the largest FP 3442 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3443 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3444 if (Inst->getOpcode() == Instruction::SIToFP) 3445 --IntSize; 3446 3447 // If the exponent of the largest finite FP value can hold the largest 3448 // integer, the result of the cast must be finite. 3449 Type *FPTy = Inst->getType()->getScalarType(); 3450 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3451 } 3452 default: 3453 break; 3454 } 3455 } 3456 3457 // try to handle fixed width vector constants 3458 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3459 if (VFVTy && isa<Constant>(V)) { 3460 // For vectors, verify that each element is not infinity. 3461 unsigned NumElts = VFVTy->getNumElements(); 3462 for (unsigned i = 0; i != NumElts; ++i) { 3463 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3464 if (!Elt) 3465 return false; 3466 if (isa<UndefValue>(Elt)) 3467 continue; 3468 auto *CElt = dyn_cast<ConstantFP>(Elt); 3469 if (!CElt || CElt->isInfinity()) 3470 return false; 3471 } 3472 // All elements were confirmed non-infinity or undefined. 3473 return true; 3474 } 3475 3476 // was not able to prove that V never contains infinity 3477 return false; 3478 } 3479 3480 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3481 unsigned Depth) { 3482 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3483 3484 // If we're told that NaNs won't happen, assume they won't. 3485 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3486 if (FPMathOp->hasNoNaNs()) 3487 return true; 3488 3489 // Handle scalar constants. 3490 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3491 return !CFP->isNaN(); 3492 3493 if (Depth == MaxAnalysisRecursionDepth) 3494 return false; 3495 3496 if (auto *Inst = dyn_cast<Instruction>(V)) { 3497 switch (Inst->getOpcode()) { 3498 case Instruction::FAdd: 3499 case Instruction::FSub: 3500 // Adding positive and negative infinity produces NaN. 3501 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3502 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3503 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3504 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3505 3506 case Instruction::FMul: 3507 // Zero multiplied with infinity produces NaN. 3508 // FIXME: If neither side can be zero fmul never produces NaN. 3509 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3510 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3511 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3512 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3513 3514 case Instruction::FDiv: 3515 case Instruction::FRem: 3516 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3517 return false; 3518 3519 case Instruction::Select: { 3520 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3521 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3522 } 3523 case Instruction::SIToFP: 3524 case Instruction::UIToFP: 3525 return true; 3526 case Instruction::FPTrunc: 3527 case Instruction::FPExt: 3528 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3529 default: 3530 break; 3531 } 3532 } 3533 3534 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3535 switch (II->getIntrinsicID()) { 3536 case Intrinsic::canonicalize: 3537 case Intrinsic::fabs: 3538 case Intrinsic::copysign: 3539 case Intrinsic::exp: 3540 case Intrinsic::exp2: 3541 case Intrinsic::floor: 3542 case Intrinsic::ceil: 3543 case Intrinsic::trunc: 3544 case Intrinsic::rint: 3545 case Intrinsic::nearbyint: 3546 case Intrinsic::round: 3547 case Intrinsic::roundeven: 3548 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3549 case Intrinsic::sqrt: 3550 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3551 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3552 case Intrinsic::minnum: 3553 case Intrinsic::maxnum: 3554 // If either operand is not NaN, the result is not NaN. 3555 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3556 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3557 default: 3558 return false; 3559 } 3560 } 3561 3562 // Try to handle fixed width vector constants 3563 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3564 if (VFVTy && isa<Constant>(V)) { 3565 // For vectors, verify that each element is not NaN. 3566 unsigned NumElts = VFVTy->getNumElements(); 3567 for (unsigned i = 0; i != NumElts; ++i) { 3568 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3569 if (!Elt) 3570 return false; 3571 if (isa<UndefValue>(Elt)) 3572 continue; 3573 auto *CElt = dyn_cast<ConstantFP>(Elt); 3574 if (!CElt || CElt->isNaN()) 3575 return false; 3576 } 3577 // All elements were confirmed not-NaN or undefined. 3578 return true; 3579 } 3580 3581 // Was not able to prove that V never contains NaN 3582 return false; 3583 } 3584 3585 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3586 3587 // All byte-wide stores are splatable, even of arbitrary variables. 3588 if (V->getType()->isIntegerTy(8)) 3589 return V; 3590 3591 LLVMContext &Ctx = V->getContext(); 3592 3593 // Undef don't care. 3594 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3595 if (isa<UndefValue>(V)) 3596 return UndefInt8; 3597 3598 // Return Undef for zero-sized type. 3599 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3600 return UndefInt8; 3601 3602 Constant *C = dyn_cast<Constant>(V); 3603 if (!C) { 3604 // Conceptually, we could handle things like: 3605 // %a = zext i8 %X to i16 3606 // %b = shl i16 %a, 8 3607 // %c = or i16 %a, %b 3608 // but until there is an example that actually needs this, it doesn't seem 3609 // worth worrying about. 3610 return nullptr; 3611 } 3612 3613 // Handle 'null' ConstantArrayZero etc. 3614 if (C->isNullValue()) 3615 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3616 3617 // Constant floating-point values can be handled as integer values if the 3618 // corresponding integer value is "byteable". An important case is 0.0. 3619 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3620 Type *Ty = nullptr; 3621 if (CFP->getType()->isHalfTy()) 3622 Ty = Type::getInt16Ty(Ctx); 3623 else if (CFP->getType()->isFloatTy()) 3624 Ty = Type::getInt32Ty(Ctx); 3625 else if (CFP->getType()->isDoubleTy()) 3626 Ty = Type::getInt64Ty(Ctx); 3627 // Don't handle long double formats, which have strange constraints. 3628 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3629 : nullptr; 3630 } 3631 3632 // We can handle constant integers that are multiple of 8 bits. 3633 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3634 if (CI->getBitWidth() % 8 == 0) { 3635 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3636 if (!CI->getValue().isSplat(8)) 3637 return nullptr; 3638 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3639 } 3640 } 3641 3642 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3643 if (CE->getOpcode() == Instruction::IntToPtr) { 3644 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3645 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3646 return isBytewiseValue( 3647 ConstantExpr::getIntegerCast(CE->getOperand(0), 3648 Type::getIntNTy(Ctx, BitWidth), false), 3649 DL); 3650 } 3651 } 3652 } 3653 3654 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3655 if (LHS == RHS) 3656 return LHS; 3657 if (!LHS || !RHS) 3658 return nullptr; 3659 if (LHS == UndefInt8) 3660 return RHS; 3661 if (RHS == UndefInt8) 3662 return LHS; 3663 return nullptr; 3664 }; 3665 3666 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3667 Value *Val = UndefInt8; 3668 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3669 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3670 return nullptr; 3671 return Val; 3672 } 3673 3674 if (isa<ConstantAggregate>(C)) { 3675 Value *Val = UndefInt8; 3676 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3677 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3678 return nullptr; 3679 return Val; 3680 } 3681 3682 // Don't try to handle the handful of other constants. 3683 return nullptr; 3684 } 3685 3686 // This is the recursive version of BuildSubAggregate. It takes a few different 3687 // arguments. Idxs is the index within the nested struct From that we are 3688 // looking at now (which is of type IndexedType). IdxSkip is the number of 3689 // indices from Idxs that should be left out when inserting into the resulting 3690 // struct. To is the result struct built so far, new insertvalue instructions 3691 // build on that. 3692 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3693 SmallVectorImpl<unsigned> &Idxs, 3694 unsigned IdxSkip, 3695 Instruction *InsertBefore) { 3696 StructType *STy = dyn_cast<StructType>(IndexedType); 3697 if (STy) { 3698 // Save the original To argument so we can modify it 3699 Value *OrigTo = To; 3700 // General case, the type indexed by Idxs is a struct 3701 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3702 // Process each struct element recursively 3703 Idxs.push_back(i); 3704 Value *PrevTo = To; 3705 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3706 InsertBefore); 3707 Idxs.pop_back(); 3708 if (!To) { 3709 // Couldn't find any inserted value for this index? Cleanup 3710 while (PrevTo != OrigTo) { 3711 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3712 PrevTo = Del->getAggregateOperand(); 3713 Del->eraseFromParent(); 3714 } 3715 // Stop processing elements 3716 break; 3717 } 3718 } 3719 // If we successfully found a value for each of our subaggregates 3720 if (To) 3721 return To; 3722 } 3723 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3724 // the struct's elements had a value that was inserted directly. In the latter 3725 // case, perhaps we can't determine each of the subelements individually, but 3726 // we might be able to find the complete struct somewhere. 3727 3728 // Find the value that is at that particular spot 3729 Value *V = FindInsertedValue(From, Idxs); 3730 3731 if (!V) 3732 return nullptr; 3733 3734 // Insert the value in the new (sub) aggregate 3735 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3736 "tmp", InsertBefore); 3737 } 3738 3739 // This helper takes a nested struct and extracts a part of it (which is again a 3740 // struct) into a new value. For example, given the struct: 3741 // { a, { b, { c, d }, e } } 3742 // and the indices "1, 1" this returns 3743 // { c, d }. 3744 // 3745 // It does this by inserting an insertvalue for each element in the resulting 3746 // struct, as opposed to just inserting a single struct. This will only work if 3747 // each of the elements of the substruct are known (ie, inserted into From by an 3748 // insertvalue instruction somewhere). 3749 // 3750 // All inserted insertvalue instructions are inserted before InsertBefore 3751 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3752 Instruction *InsertBefore) { 3753 assert(InsertBefore && "Must have someplace to insert!"); 3754 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3755 idx_range); 3756 Value *To = UndefValue::get(IndexedType); 3757 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3758 unsigned IdxSkip = Idxs.size(); 3759 3760 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3761 } 3762 3763 /// Given an aggregate and a sequence of indices, see if the scalar value 3764 /// indexed is already around as a register, for example if it was inserted 3765 /// directly into the aggregate. 3766 /// 3767 /// If InsertBefore is not null, this function will duplicate (modified) 3768 /// insertvalues when a part of a nested struct is extracted. 3769 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3770 Instruction *InsertBefore) { 3771 // Nothing to index? Just return V then (this is useful at the end of our 3772 // recursion). 3773 if (idx_range.empty()) 3774 return V; 3775 // We have indices, so V should have an indexable type. 3776 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3777 "Not looking at a struct or array?"); 3778 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3779 "Invalid indices for type?"); 3780 3781 if (Constant *C = dyn_cast<Constant>(V)) { 3782 C = C->getAggregateElement(idx_range[0]); 3783 if (!C) return nullptr; 3784 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3785 } 3786 3787 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3788 // Loop the indices for the insertvalue instruction in parallel with the 3789 // requested indices 3790 const unsigned *req_idx = idx_range.begin(); 3791 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3792 i != e; ++i, ++req_idx) { 3793 if (req_idx == idx_range.end()) { 3794 // We can't handle this without inserting insertvalues 3795 if (!InsertBefore) 3796 return nullptr; 3797 3798 // The requested index identifies a part of a nested aggregate. Handle 3799 // this specially. For example, 3800 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3801 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3802 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3803 // This can be changed into 3804 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3805 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3806 // which allows the unused 0,0 element from the nested struct to be 3807 // removed. 3808 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3809 InsertBefore); 3810 } 3811 3812 // This insert value inserts something else than what we are looking for. 3813 // See if the (aggregate) value inserted into has the value we are 3814 // looking for, then. 3815 if (*req_idx != *i) 3816 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3817 InsertBefore); 3818 } 3819 // If we end up here, the indices of the insertvalue match with those 3820 // requested (though possibly only partially). Now we recursively look at 3821 // the inserted value, passing any remaining indices. 3822 return FindInsertedValue(I->getInsertedValueOperand(), 3823 makeArrayRef(req_idx, idx_range.end()), 3824 InsertBefore); 3825 } 3826 3827 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3828 // If we're extracting a value from an aggregate that was extracted from 3829 // something else, we can extract from that something else directly instead. 3830 // However, we will need to chain I's indices with the requested indices. 3831 3832 // Calculate the number of indices required 3833 unsigned size = I->getNumIndices() + idx_range.size(); 3834 // Allocate some space to put the new indices in 3835 SmallVector<unsigned, 5> Idxs; 3836 Idxs.reserve(size); 3837 // Add indices from the extract value instruction 3838 Idxs.append(I->idx_begin(), I->idx_end()); 3839 3840 // Add requested indices 3841 Idxs.append(idx_range.begin(), idx_range.end()); 3842 3843 assert(Idxs.size() == size 3844 && "Number of indices added not correct?"); 3845 3846 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3847 } 3848 // Otherwise, we don't know (such as, extracting from a function return value 3849 // or load instruction) 3850 return nullptr; 3851 } 3852 3853 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3854 unsigned CharSize) { 3855 // Make sure the GEP has exactly three arguments. 3856 if (GEP->getNumOperands() != 3) 3857 return false; 3858 3859 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3860 // CharSize. 3861 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3862 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3863 return false; 3864 3865 // Check to make sure that the first operand of the GEP is an integer and 3866 // has value 0 so that we are sure we're indexing into the initializer. 3867 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3868 if (!FirstIdx || !FirstIdx->isZero()) 3869 return false; 3870 3871 return true; 3872 } 3873 3874 bool llvm::getConstantDataArrayInfo(const Value *V, 3875 ConstantDataArraySlice &Slice, 3876 unsigned ElementSize, uint64_t Offset) { 3877 assert(V); 3878 3879 // Look through bitcast instructions and geps. 3880 V = V->stripPointerCasts(); 3881 3882 // If the value is a GEP instruction or constant expression, treat it as an 3883 // offset. 3884 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3885 // The GEP operator should be based on a pointer to string constant, and is 3886 // indexing into the string constant. 3887 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3888 return false; 3889 3890 // If the second index isn't a ConstantInt, then this is a variable index 3891 // into the array. If this occurs, we can't say anything meaningful about 3892 // the string. 3893 uint64_t StartIdx = 0; 3894 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3895 StartIdx = CI->getZExtValue(); 3896 else 3897 return false; 3898 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3899 StartIdx + Offset); 3900 } 3901 3902 // The GEP instruction, constant or instruction, must reference a global 3903 // variable that is a constant and is initialized. The referenced constant 3904 // initializer is the array that we'll use for optimization. 3905 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3906 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3907 return false; 3908 3909 const ConstantDataArray *Array; 3910 ArrayType *ArrayTy; 3911 if (GV->getInitializer()->isNullValue()) { 3912 Type *GVTy = GV->getValueType(); 3913 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3914 // A zeroinitializer for the array; there is no ConstantDataArray. 3915 Array = nullptr; 3916 } else { 3917 const DataLayout &DL = GV->getParent()->getDataLayout(); 3918 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3919 uint64_t Length = SizeInBytes / (ElementSize / 8); 3920 if (Length <= Offset) 3921 return false; 3922 3923 Slice.Array = nullptr; 3924 Slice.Offset = 0; 3925 Slice.Length = Length - Offset; 3926 return true; 3927 } 3928 } else { 3929 // This must be a ConstantDataArray. 3930 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3931 if (!Array) 3932 return false; 3933 ArrayTy = Array->getType(); 3934 } 3935 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3936 return false; 3937 3938 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3939 if (Offset > NumElts) 3940 return false; 3941 3942 Slice.Array = Array; 3943 Slice.Offset = Offset; 3944 Slice.Length = NumElts - Offset; 3945 return true; 3946 } 3947 3948 /// This function computes the length of a null-terminated C string pointed to 3949 /// by V. If successful, it returns true and returns the string in Str. 3950 /// If unsuccessful, it returns false. 3951 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3952 uint64_t Offset, bool TrimAtNul) { 3953 ConstantDataArraySlice Slice; 3954 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3955 return false; 3956 3957 if (Slice.Array == nullptr) { 3958 if (TrimAtNul) { 3959 Str = StringRef(); 3960 return true; 3961 } 3962 if (Slice.Length == 1) { 3963 Str = StringRef("", 1); 3964 return true; 3965 } 3966 // We cannot instantiate a StringRef as we do not have an appropriate string 3967 // of 0s at hand. 3968 return false; 3969 } 3970 3971 // Start out with the entire array in the StringRef. 3972 Str = Slice.Array->getAsString(); 3973 // Skip over 'offset' bytes. 3974 Str = Str.substr(Slice.Offset); 3975 3976 if (TrimAtNul) { 3977 // Trim off the \0 and anything after it. If the array is not nul 3978 // terminated, we just return the whole end of string. The client may know 3979 // some other way that the string is length-bound. 3980 Str = Str.substr(0, Str.find('\0')); 3981 } 3982 return true; 3983 } 3984 3985 // These next two are very similar to the above, but also look through PHI 3986 // nodes. 3987 // TODO: See if we can integrate these two together. 3988 3989 /// If we can compute the length of the string pointed to by 3990 /// the specified pointer, return 'len+1'. If we can't, return 0. 3991 static uint64_t GetStringLengthH(const Value *V, 3992 SmallPtrSetImpl<const PHINode*> &PHIs, 3993 unsigned CharSize) { 3994 // Look through noop bitcast instructions. 3995 V = V->stripPointerCasts(); 3996 3997 // If this is a PHI node, there are two cases: either we have already seen it 3998 // or we haven't. 3999 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4000 if (!PHIs.insert(PN).second) 4001 return ~0ULL; // already in the set. 4002 4003 // If it was new, see if all the input strings are the same length. 4004 uint64_t LenSoFar = ~0ULL; 4005 for (Value *IncValue : PN->incoming_values()) { 4006 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4007 if (Len == 0) return 0; // Unknown length -> unknown. 4008 4009 if (Len == ~0ULL) continue; 4010 4011 if (Len != LenSoFar && LenSoFar != ~0ULL) 4012 return 0; // Disagree -> unknown. 4013 LenSoFar = Len; 4014 } 4015 4016 // Success, all agree. 4017 return LenSoFar; 4018 } 4019 4020 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4021 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4022 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4023 if (Len1 == 0) return 0; 4024 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4025 if (Len2 == 0) return 0; 4026 if (Len1 == ~0ULL) return Len2; 4027 if (Len2 == ~0ULL) return Len1; 4028 if (Len1 != Len2) return 0; 4029 return Len1; 4030 } 4031 4032 // Otherwise, see if we can read the string. 4033 ConstantDataArraySlice Slice; 4034 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4035 return 0; 4036 4037 if (Slice.Array == nullptr) 4038 return 1; 4039 4040 // Search for nul characters 4041 unsigned NullIndex = 0; 4042 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4043 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4044 break; 4045 } 4046 4047 return NullIndex + 1; 4048 } 4049 4050 /// If we can compute the length of the string pointed to by 4051 /// the specified pointer, return 'len+1'. If we can't, return 0. 4052 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4053 if (!V->getType()->isPointerTy()) 4054 return 0; 4055 4056 SmallPtrSet<const PHINode*, 32> PHIs; 4057 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4058 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4059 // an empty string as a length. 4060 return Len == ~0ULL ? 1 : Len; 4061 } 4062 4063 const Value * 4064 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4065 bool MustPreserveNullness) { 4066 assert(Call && 4067 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4068 if (const Value *RV = Call->getReturnedArgOperand()) 4069 return RV; 4070 // This can be used only as a aliasing property. 4071 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4072 Call, MustPreserveNullness)) 4073 return Call->getArgOperand(0); 4074 return nullptr; 4075 } 4076 4077 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4078 const CallBase *Call, bool MustPreserveNullness) { 4079 switch (Call->getIntrinsicID()) { 4080 case Intrinsic::launder_invariant_group: 4081 case Intrinsic::strip_invariant_group: 4082 case Intrinsic::aarch64_irg: 4083 case Intrinsic::aarch64_tagp: 4084 return true; 4085 case Intrinsic::ptrmask: 4086 return !MustPreserveNullness; 4087 default: 4088 return false; 4089 } 4090 } 4091 4092 /// \p PN defines a loop-variant pointer to an object. Check if the 4093 /// previous iteration of the loop was referring to the same object as \p PN. 4094 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4095 const LoopInfo *LI) { 4096 // Find the loop-defined value. 4097 Loop *L = LI->getLoopFor(PN->getParent()); 4098 if (PN->getNumIncomingValues() != 2) 4099 return true; 4100 4101 // Find the value from previous iteration. 4102 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4103 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4104 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4105 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4106 return true; 4107 4108 // If a new pointer is loaded in the loop, the pointer references a different 4109 // object in every iteration. E.g.: 4110 // for (i) 4111 // int *p = a[i]; 4112 // ... 4113 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4114 if (!L->isLoopInvariant(Load->getPointerOperand())) 4115 return false; 4116 return true; 4117 } 4118 4119 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4120 if (!V->getType()->isPointerTy()) 4121 return V; 4122 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4123 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4124 V = GEP->getPointerOperand(); 4125 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4126 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4127 V = cast<Operator>(V)->getOperand(0); 4128 if (!V->getType()->isPointerTy()) 4129 return V; 4130 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4131 if (GA->isInterposable()) 4132 return V; 4133 V = GA->getAliasee(); 4134 } else { 4135 if (auto *PHI = dyn_cast<PHINode>(V)) { 4136 // Look through single-arg phi nodes created by LCSSA. 4137 if (PHI->getNumIncomingValues() == 1) { 4138 V = PHI->getIncomingValue(0); 4139 continue; 4140 } 4141 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4142 // CaptureTracking can know about special capturing properties of some 4143 // intrinsics like launder.invariant.group, that can't be expressed with 4144 // the attributes, but have properties like returning aliasing pointer. 4145 // Because some analysis may assume that nocaptured pointer is not 4146 // returned from some special intrinsic (because function would have to 4147 // be marked with returns attribute), it is crucial to use this function 4148 // because it should be in sync with CaptureTracking. Not using it may 4149 // cause weird miscompilations where 2 aliasing pointers are assumed to 4150 // noalias. 4151 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4152 V = RP; 4153 continue; 4154 } 4155 } 4156 4157 return V; 4158 } 4159 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4160 } 4161 return V; 4162 } 4163 4164 void llvm::getUnderlyingObjects(const Value *V, 4165 SmallVectorImpl<const Value *> &Objects, 4166 LoopInfo *LI, unsigned MaxLookup) { 4167 SmallPtrSet<const Value *, 4> Visited; 4168 SmallVector<const Value *, 4> Worklist; 4169 Worklist.push_back(V); 4170 do { 4171 const Value *P = Worklist.pop_back_val(); 4172 P = getUnderlyingObject(P, MaxLookup); 4173 4174 if (!Visited.insert(P).second) 4175 continue; 4176 4177 if (auto *SI = dyn_cast<SelectInst>(P)) { 4178 Worklist.push_back(SI->getTrueValue()); 4179 Worklist.push_back(SI->getFalseValue()); 4180 continue; 4181 } 4182 4183 if (auto *PN = dyn_cast<PHINode>(P)) { 4184 // If this PHI changes the underlying object in every iteration of the 4185 // loop, don't look through it. Consider: 4186 // int **A; 4187 // for (i) { 4188 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4189 // Curr = A[i]; 4190 // *Prev, *Curr; 4191 // 4192 // Prev is tracking Curr one iteration behind so they refer to different 4193 // underlying objects. 4194 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4195 isSameUnderlyingObjectInLoop(PN, LI)) 4196 for (Value *IncValue : PN->incoming_values()) 4197 Worklist.push_back(IncValue); 4198 continue; 4199 } 4200 4201 Objects.push_back(P); 4202 } while (!Worklist.empty()); 4203 } 4204 4205 /// This is the function that does the work of looking through basic 4206 /// ptrtoint+arithmetic+inttoptr sequences. 4207 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4208 do { 4209 if (const Operator *U = dyn_cast<Operator>(V)) { 4210 // If we find a ptrtoint, we can transfer control back to the 4211 // regular getUnderlyingObjectFromInt. 4212 if (U->getOpcode() == Instruction::PtrToInt) 4213 return U->getOperand(0); 4214 // If we find an add of a constant, a multiplied value, or a phi, it's 4215 // likely that the other operand will lead us to the base 4216 // object. We don't have to worry about the case where the 4217 // object address is somehow being computed by the multiply, 4218 // because our callers only care when the result is an 4219 // identifiable object. 4220 if (U->getOpcode() != Instruction::Add || 4221 (!isa<ConstantInt>(U->getOperand(1)) && 4222 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4223 !isa<PHINode>(U->getOperand(1)))) 4224 return V; 4225 V = U->getOperand(0); 4226 } else { 4227 return V; 4228 } 4229 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4230 } while (true); 4231 } 4232 4233 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4234 /// ptrtoint+arithmetic+inttoptr sequences. 4235 /// It returns false if unidentified object is found in getUnderlyingObjects. 4236 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4237 SmallVectorImpl<Value *> &Objects) { 4238 SmallPtrSet<const Value *, 16> Visited; 4239 SmallVector<const Value *, 4> Working(1, V); 4240 do { 4241 V = Working.pop_back_val(); 4242 4243 SmallVector<const Value *, 4> Objs; 4244 getUnderlyingObjects(V, Objs); 4245 4246 for (const Value *V : Objs) { 4247 if (!Visited.insert(V).second) 4248 continue; 4249 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4250 const Value *O = 4251 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4252 if (O->getType()->isPointerTy()) { 4253 Working.push_back(O); 4254 continue; 4255 } 4256 } 4257 // If getUnderlyingObjects fails to find an identifiable object, 4258 // getUnderlyingObjectsForCodeGen also fails for safety. 4259 if (!isIdentifiedObject(V)) { 4260 Objects.clear(); 4261 return false; 4262 } 4263 Objects.push_back(const_cast<Value *>(V)); 4264 } 4265 } while (!Working.empty()); 4266 return true; 4267 } 4268 4269 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4270 AllocaInst *Result = nullptr; 4271 SmallPtrSet<Value *, 4> Visited; 4272 SmallVector<Value *, 4> Worklist; 4273 4274 auto AddWork = [&](Value *V) { 4275 if (Visited.insert(V).second) 4276 Worklist.push_back(V); 4277 }; 4278 4279 AddWork(V); 4280 do { 4281 V = Worklist.pop_back_val(); 4282 assert(Visited.count(V)); 4283 4284 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4285 if (Result && Result != AI) 4286 return nullptr; 4287 Result = AI; 4288 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4289 AddWork(CI->getOperand(0)); 4290 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4291 for (Value *IncValue : PN->incoming_values()) 4292 AddWork(IncValue); 4293 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4294 AddWork(SI->getTrueValue()); 4295 AddWork(SI->getFalseValue()); 4296 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4297 if (OffsetZero && !GEP->hasAllZeroIndices()) 4298 return nullptr; 4299 AddWork(GEP->getPointerOperand()); 4300 } else { 4301 return nullptr; 4302 } 4303 } while (!Worklist.empty()); 4304 4305 return Result; 4306 } 4307 4308 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4309 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4310 for (const User *U : V->users()) { 4311 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4312 if (!II) 4313 return false; 4314 4315 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4316 continue; 4317 4318 if (AllowDroppable && II->isDroppable()) 4319 continue; 4320 4321 return false; 4322 } 4323 return true; 4324 } 4325 4326 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4327 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4328 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4329 } 4330 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4331 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4332 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4333 } 4334 4335 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4336 if (!LI.isUnordered()) 4337 return true; 4338 const Function &F = *LI.getFunction(); 4339 // Speculative load may create a race that did not exist in the source. 4340 return F.hasFnAttribute(Attribute::SanitizeThread) || 4341 // Speculative load may load data from dirty regions. 4342 F.hasFnAttribute(Attribute::SanitizeAddress) || 4343 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4344 } 4345 4346 4347 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4348 const Instruction *CtxI, 4349 const DominatorTree *DT) { 4350 const Operator *Inst = dyn_cast<Operator>(V); 4351 if (!Inst) 4352 return false; 4353 4354 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4355 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4356 if (C->canTrap()) 4357 return false; 4358 4359 switch (Inst->getOpcode()) { 4360 default: 4361 return true; 4362 case Instruction::UDiv: 4363 case Instruction::URem: { 4364 // x / y is undefined if y == 0. 4365 const APInt *V; 4366 if (match(Inst->getOperand(1), m_APInt(V))) 4367 return *V != 0; 4368 return false; 4369 } 4370 case Instruction::SDiv: 4371 case Instruction::SRem: { 4372 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4373 const APInt *Numerator, *Denominator; 4374 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4375 return false; 4376 // We cannot hoist this division if the denominator is 0. 4377 if (*Denominator == 0) 4378 return false; 4379 // It's safe to hoist if the denominator is not 0 or -1. 4380 if (*Denominator != -1) 4381 return true; 4382 // At this point we know that the denominator is -1. It is safe to hoist as 4383 // long we know that the numerator is not INT_MIN. 4384 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4385 return !Numerator->isMinSignedValue(); 4386 // The numerator *might* be MinSignedValue. 4387 return false; 4388 } 4389 case Instruction::Load: { 4390 const LoadInst *LI = cast<LoadInst>(Inst); 4391 if (mustSuppressSpeculation(*LI)) 4392 return false; 4393 const DataLayout &DL = LI->getModule()->getDataLayout(); 4394 return isDereferenceableAndAlignedPointer( 4395 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4396 DL, CtxI, DT); 4397 } 4398 case Instruction::Call: { 4399 auto *CI = cast<const CallInst>(Inst); 4400 const Function *Callee = CI->getCalledFunction(); 4401 4402 // The called function could have undefined behavior or side-effects, even 4403 // if marked readnone nounwind. 4404 return Callee && Callee->isSpeculatable(); 4405 } 4406 case Instruction::VAArg: 4407 case Instruction::Alloca: 4408 case Instruction::Invoke: 4409 case Instruction::CallBr: 4410 case Instruction::PHI: 4411 case Instruction::Store: 4412 case Instruction::Ret: 4413 case Instruction::Br: 4414 case Instruction::IndirectBr: 4415 case Instruction::Switch: 4416 case Instruction::Unreachable: 4417 case Instruction::Fence: 4418 case Instruction::AtomicRMW: 4419 case Instruction::AtomicCmpXchg: 4420 case Instruction::LandingPad: 4421 case Instruction::Resume: 4422 case Instruction::CatchSwitch: 4423 case Instruction::CatchPad: 4424 case Instruction::CatchRet: 4425 case Instruction::CleanupPad: 4426 case Instruction::CleanupRet: 4427 return false; // Misc instructions which have effects 4428 } 4429 } 4430 4431 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4432 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4433 } 4434 4435 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4436 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4437 switch (OR) { 4438 case ConstantRange::OverflowResult::MayOverflow: 4439 return OverflowResult::MayOverflow; 4440 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4441 return OverflowResult::AlwaysOverflowsLow; 4442 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4443 return OverflowResult::AlwaysOverflowsHigh; 4444 case ConstantRange::OverflowResult::NeverOverflows: 4445 return OverflowResult::NeverOverflows; 4446 } 4447 llvm_unreachable("Unknown OverflowResult"); 4448 } 4449 4450 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4451 static ConstantRange computeConstantRangeIncludingKnownBits( 4452 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4453 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4454 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4455 KnownBits Known = computeKnownBits( 4456 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4457 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4458 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4459 ConstantRange::PreferredRangeType RangeType = 4460 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4461 return CR1.intersectWith(CR2, RangeType); 4462 } 4463 4464 OverflowResult llvm::computeOverflowForUnsignedMul( 4465 const Value *LHS, const Value *RHS, const DataLayout &DL, 4466 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4467 bool UseInstrInfo) { 4468 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4469 nullptr, UseInstrInfo); 4470 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4471 nullptr, UseInstrInfo); 4472 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4473 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4474 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4475 } 4476 4477 OverflowResult 4478 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4479 const DataLayout &DL, AssumptionCache *AC, 4480 const Instruction *CxtI, 4481 const DominatorTree *DT, bool UseInstrInfo) { 4482 // Multiplying n * m significant bits yields a result of n + m significant 4483 // bits. If the total number of significant bits does not exceed the 4484 // result bit width (minus 1), there is no overflow. 4485 // This means if we have enough leading sign bits in the operands 4486 // we can guarantee that the result does not overflow. 4487 // Ref: "Hacker's Delight" by Henry Warren 4488 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4489 4490 // Note that underestimating the number of sign bits gives a more 4491 // conservative answer. 4492 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4493 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4494 4495 // First handle the easy case: if we have enough sign bits there's 4496 // definitely no overflow. 4497 if (SignBits > BitWidth + 1) 4498 return OverflowResult::NeverOverflows; 4499 4500 // There are two ambiguous cases where there can be no overflow: 4501 // SignBits == BitWidth + 1 and 4502 // SignBits == BitWidth 4503 // The second case is difficult to check, therefore we only handle the 4504 // first case. 4505 if (SignBits == BitWidth + 1) { 4506 // It overflows only when both arguments are negative and the true 4507 // product is exactly the minimum negative number. 4508 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4509 // For simplicity we just check if at least one side is not negative. 4510 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4511 nullptr, UseInstrInfo); 4512 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4513 nullptr, UseInstrInfo); 4514 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4515 return OverflowResult::NeverOverflows; 4516 } 4517 return OverflowResult::MayOverflow; 4518 } 4519 4520 OverflowResult llvm::computeOverflowForUnsignedAdd( 4521 const Value *LHS, const Value *RHS, const DataLayout &DL, 4522 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4523 bool UseInstrInfo) { 4524 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4525 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4526 nullptr, UseInstrInfo); 4527 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4528 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4529 nullptr, UseInstrInfo); 4530 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4531 } 4532 4533 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4534 const Value *RHS, 4535 const AddOperator *Add, 4536 const DataLayout &DL, 4537 AssumptionCache *AC, 4538 const Instruction *CxtI, 4539 const DominatorTree *DT) { 4540 if (Add && Add->hasNoSignedWrap()) { 4541 return OverflowResult::NeverOverflows; 4542 } 4543 4544 // If LHS and RHS each have at least two sign bits, the addition will look 4545 // like 4546 // 4547 // XX..... + 4548 // YY..... 4549 // 4550 // If the carry into the most significant position is 0, X and Y can't both 4551 // be 1 and therefore the carry out of the addition is also 0. 4552 // 4553 // If the carry into the most significant position is 1, X and Y can't both 4554 // be 0 and therefore the carry out of the addition is also 1. 4555 // 4556 // Since the carry into the most significant position is always equal to 4557 // the carry out of the addition, there is no signed overflow. 4558 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4559 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4560 return OverflowResult::NeverOverflows; 4561 4562 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4563 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4564 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4565 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4566 OverflowResult OR = 4567 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4568 if (OR != OverflowResult::MayOverflow) 4569 return OR; 4570 4571 // The remaining code needs Add to be available. Early returns if not so. 4572 if (!Add) 4573 return OverflowResult::MayOverflow; 4574 4575 // If the sign of Add is the same as at least one of the operands, this add 4576 // CANNOT overflow. If this can be determined from the known bits of the 4577 // operands the above signedAddMayOverflow() check will have already done so. 4578 // The only other way to improve on the known bits is from an assumption, so 4579 // call computeKnownBitsFromAssume() directly. 4580 bool LHSOrRHSKnownNonNegative = 4581 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4582 bool LHSOrRHSKnownNegative = 4583 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4584 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4585 KnownBits AddKnown(LHSRange.getBitWidth()); 4586 computeKnownBitsFromAssume( 4587 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4588 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4589 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4590 return OverflowResult::NeverOverflows; 4591 } 4592 4593 return OverflowResult::MayOverflow; 4594 } 4595 4596 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4597 const Value *RHS, 4598 const DataLayout &DL, 4599 AssumptionCache *AC, 4600 const Instruction *CxtI, 4601 const DominatorTree *DT) { 4602 // Checking for conditions implied by dominating conditions may be expensive. 4603 // Limit it to usub_with_overflow calls for now. 4604 if (match(CxtI, 4605 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4606 if (auto C = 4607 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4608 if (*C) 4609 return OverflowResult::NeverOverflows; 4610 return OverflowResult::AlwaysOverflowsLow; 4611 } 4612 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4613 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4614 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4615 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4616 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4617 } 4618 4619 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4620 const Value *RHS, 4621 const DataLayout &DL, 4622 AssumptionCache *AC, 4623 const Instruction *CxtI, 4624 const DominatorTree *DT) { 4625 // If LHS and RHS each have at least two sign bits, the subtraction 4626 // cannot overflow. 4627 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4628 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4629 return OverflowResult::NeverOverflows; 4630 4631 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4632 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4633 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4634 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4635 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4636 } 4637 4638 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4639 const DominatorTree &DT) { 4640 SmallVector<const BranchInst *, 2> GuardingBranches; 4641 SmallVector<const ExtractValueInst *, 2> Results; 4642 4643 for (const User *U : WO->users()) { 4644 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4645 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4646 4647 if (EVI->getIndices()[0] == 0) 4648 Results.push_back(EVI); 4649 else { 4650 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4651 4652 for (const auto *U : EVI->users()) 4653 if (const auto *B = dyn_cast<BranchInst>(U)) { 4654 assert(B->isConditional() && "How else is it using an i1?"); 4655 GuardingBranches.push_back(B); 4656 } 4657 } 4658 } else { 4659 // We are using the aggregate directly in a way we don't want to analyze 4660 // here (storing it to a global, say). 4661 return false; 4662 } 4663 } 4664 4665 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4666 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4667 if (!NoWrapEdge.isSingleEdge()) 4668 return false; 4669 4670 // Check if all users of the add are provably no-wrap. 4671 for (const auto *Result : Results) { 4672 // If the extractvalue itself is not executed on overflow, the we don't 4673 // need to check each use separately, since domination is transitive. 4674 if (DT.dominates(NoWrapEdge, Result->getParent())) 4675 continue; 4676 4677 for (auto &RU : Result->uses()) 4678 if (!DT.dominates(NoWrapEdge, RU)) 4679 return false; 4680 } 4681 4682 return true; 4683 }; 4684 4685 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4686 } 4687 4688 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4689 // See whether I has flags that may create poison 4690 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4691 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4692 return true; 4693 } 4694 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4695 if (ExactOp->isExact()) 4696 return true; 4697 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4698 auto FMF = FP->getFastMathFlags(); 4699 if (FMF.noNaNs() || FMF.noInfs()) 4700 return true; 4701 } 4702 4703 unsigned Opcode = Op->getOpcode(); 4704 4705 // Check whether opcode is a poison/undef-generating operation 4706 switch (Opcode) { 4707 case Instruction::Shl: 4708 case Instruction::AShr: 4709 case Instruction::LShr: { 4710 // Shifts return poison if shiftwidth is larger than the bitwidth. 4711 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4712 SmallVector<Constant *, 4> ShiftAmounts; 4713 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4714 unsigned NumElts = FVTy->getNumElements(); 4715 for (unsigned i = 0; i < NumElts; ++i) 4716 ShiftAmounts.push_back(C->getAggregateElement(i)); 4717 } else if (isa<ScalableVectorType>(C->getType())) 4718 return true; // Can't tell, just return true to be safe 4719 else 4720 ShiftAmounts.push_back(C); 4721 4722 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4723 auto *CI = dyn_cast<ConstantInt>(C); 4724 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4725 }); 4726 return !Safe; 4727 } 4728 return true; 4729 } 4730 case Instruction::FPToSI: 4731 case Instruction::FPToUI: 4732 // fptosi/ui yields poison if the resulting value does not fit in the 4733 // destination type. 4734 return true; 4735 case Instruction::Call: 4736 case Instruction::CallBr: 4737 case Instruction::Invoke: { 4738 const auto *CB = cast<CallBase>(Op); 4739 return !CB->hasRetAttr(Attribute::NoUndef); 4740 } 4741 case Instruction::InsertElement: 4742 case Instruction::ExtractElement: { 4743 // If index exceeds the length of the vector, it returns poison 4744 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4745 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4746 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4747 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4748 return true; 4749 return false; 4750 } 4751 case Instruction::ShuffleVector: { 4752 // shufflevector may return undef. 4753 if (PoisonOnly) 4754 return false; 4755 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4756 ? cast<ConstantExpr>(Op)->getShuffleMask() 4757 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4758 return is_contained(Mask, UndefMaskElem); 4759 } 4760 case Instruction::FNeg: 4761 case Instruction::PHI: 4762 case Instruction::Select: 4763 case Instruction::URem: 4764 case Instruction::SRem: 4765 case Instruction::ExtractValue: 4766 case Instruction::InsertValue: 4767 case Instruction::Freeze: 4768 case Instruction::ICmp: 4769 case Instruction::FCmp: 4770 return false; 4771 case Instruction::GetElementPtr: { 4772 const auto *GEP = cast<GEPOperator>(Op); 4773 return GEP->isInBounds(); 4774 } 4775 default: { 4776 const auto *CE = dyn_cast<ConstantExpr>(Op); 4777 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4778 return false; 4779 else if (Instruction::isBinaryOp(Opcode)) 4780 return false; 4781 // Be conservative and return true. 4782 return true; 4783 } 4784 } 4785 } 4786 4787 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4788 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4789 } 4790 4791 bool llvm::canCreatePoison(const Operator *Op) { 4792 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4793 } 4794 4795 static bool programUndefinedIfUndefOrPoison(const Value *V, 4796 bool PoisonOnly); 4797 4798 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4799 AssumptionCache *AC, 4800 const Instruction *CtxI, 4801 const DominatorTree *DT, 4802 unsigned Depth, bool PoisonOnly) { 4803 if (Depth >= MaxAnalysisRecursionDepth) 4804 return false; 4805 4806 if (isa<MetadataAsValue>(V)) 4807 return false; 4808 4809 if (const auto *A = dyn_cast<Argument>(V)) { 4810 if (A->hasAttribute(Attribute::NoUndef)) 4811 return true; 4812 } 4813 4814 if (auto *C = dyn_cast<Constant>(V)) { 4815 if (isa<UndefValue>(C)) 4816 return PoisonOnly; 4817 4818 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4819 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4820 return true; 4821 4822 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4823 return (PoisonOnly || !C->containsUndefElement()) && 4824 !C->containsConstantExpression(); 4825 } 4826 4827 // Strip cast operations from a pointer value. 4828 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4829 // inbounds with zero offset. To guarantee that the result isn't poison, the 4830 // stripped pointer is checked as it has to be pointing into an allocated 4831 // object or be null `null` to ensure `inbounds` getelement pointers with a 4832 // zero offset could not produce poison. 4833 // It can strip off addrspacecast that do not change bit representation as 4834 // well. We believe that such addrspacecast is equivalent to no-op. 4835 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4836 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4837 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4838 return true; 4839 4840 auto OpCheck = [&](const Value *V) { 4841 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4842 PoisonOnly); 4843 }; 4844 4845 if (auto *Opr = dyn_cast<Operator>(V)) { 4846 // If the value is a freeze instruction, then it can never 4847 // be undef or poison. 4848 if (isa<FreezeInst>(V)) 4849 return true; 4850 4851 if (const auto *CB = dyn_cast<CallBase>(V)) { 4852 if (CB->hasRetAttr(Attribute::NoUndef)) 4853 return true; 4854 } 4855 4856 if (const auto *PN = dyn_cast<PHINode>(V)) { 4857 unsigned Num = PN->getNumIncomingValues(); 4858 bool IsWellDefined = true; 4859 for (unsigned i = 0; i < Num; ++i) { 4860 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4861 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4862 DT, Depth + 1, PoisonOnly)) { 4863 IsWellDefined = false; 4864 break; 4865 } 4866 } 4867 if (IsWellDefined) 4868 return true; 4869 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4870 return true; 4871 } 4872 4873 if (auto *I = dyn_cast<LoadInst>(V)) 4874 if (I->getMetadata(LLVMContext::MD_noundef)) 4875 return true; 4876 4877 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4878 return true; 4879 4880 // CxtI may be null or a cloned instruction. 4881 if (!CtxI || !CtxI->getParent() || !DT) 4882 return false; 4883 4884 auto *DNode = DT->getNode(CtxI->getParent()); 4885 if (!DNode) 4886 // Unreachable block 4887 return false; 4888 4889 // If V is used as a branch condition before reaching CtxI, V cannot be 4890 // undef or poison. 4891 // br V, BB1, BB2 4892 // BB1: 4893 // CtxI ; V cannot be undef or poison here 4894 auto *Dominator = DNode->getIDom(); 4895 while (Dominator) { 4896 auto *TI = Dominator->getBlock()->getTerminator(); 4897 4898 Value *Cond = nullptr; 4899 if (auto BI = dyn_cast<BranchInst>(TI)) { 4900 if (BI->isConditional()) 4901 Cond = BI->getCondition(); 4902 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4903 Cond = SI->getCondition(); 4904 } 4905 4906 if (Cond) { 4907 if (Cond == V) 4908 return true; 4909 else if (PoisonOnly && isa<Operator>(Cond)) { 4910 // For poison, we can analyze further 4911 auto *Opr = cast<Operator>(Cond); 4912 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4913 return true; 4914 } 4915 } 4916 4917 Dominator = Dominator->getIDom(); 4918 } 4919 4920 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4921 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4922 return true; 4923 4924 return false; 4925 } 4926 4927 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4928 const Instruction *CtxI, 4929 const DominatorTree *DT, 4930 unsigned Depth) { 4931 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4932 } 4933 4934 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4935 const Instruction *CtxI, 4936 const DominatorTree *DT, unsigned Depth) { 4937 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4938 } 4939 4940 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4941 const DataLayout &DL, 4942 AssumptionCache *AC, 4943 const Instruction *CxtI, 4944 const DominatorTree *DT) { 4945 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4946 Add, DL, AC, CxtI, DT); 4947 } 4948 4949 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4950 const Value *RHS, 4951 const DataLayout &DL, 4952 AssumptionCache *AC, 4953 const Instruction *CxtI, 4954 const DominatorTree *DT) { 4955 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4956 } 4957 4958 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4959 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4960 // of time because it's possible for another thread to interfere with it for an 4961 // arbitrary length of time, but programs aren't allowed to rely on that. 4962 4963 // If there is no successor, then execution can't transfer to it. 4964 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4965 return !CRI->unwindsToCaller(); 4966 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4967 return !CatchSwitch->unwindsToCaller(); 4968 if (isa<ResumeInst>(I)) 4969 return false; 4970 if (isa<ReturnInst>(I)) 4971 return false; 4972 if (isa<UnreachableInst>(I)) 4973 return false; 4974 4975 // Calls can throw, or contain an infinite loop, or kill the process. 4976 if (const auto *CB = dyn_cast<CallBase>(I)) { 4977 // Call sites that throw have implicit non-local control flow. 4978 if (!CB->doesNotThrow()) 4979 return false; 4980 4981 // A function which doens't throw and has "willreturn" attribute will 4982 // always return. 4983 if (CB->hasFnAttr(Attribute::WillReturn)) 4984 return true; 4985 4986 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4987 // etc. and thus not return. However, LLVM already assumes that 4988 // 4989 // - Thread exiting actions are modeled as writes to memory invisible to 4990 // the program. 4991 // 4992 // - Loops that don't have side effects (side effects are volatile/atomic 4993 // stores and IO) always terminate (see http://llvm.org/PR965). 4994 // Furthermore IO itself is also modeled as writes to memory invisible to 4995 // the program. 4996 // 4997 // We rely on those assumptions here, and use the memory effects of the call 4998 // target as a proxy for checking that it always returns. 4999 5000 // FIXME: This isn't aggressive enough; a call which only writes to a global 5001 // is guaranteed to return. 5002 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5003 } 5004 5005 // Other instructions return normally. 5006 return true; 5007 } 5008 5009 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5010 // TODO: This is slightly conservative for invoke instruction since exiting 5011 // via an exception *is* normal control for them. 5012 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5013 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5014 return false; 5015 return true; 5016 } 5017 5018 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5019 const Loop *L) { 5020 // The loop header is guaranteed to be executed for every iteration. 5021 // 5022 // FIXME: Relax this constraint to cover all basic blocks that are 5023 // guaranteed to be executed at every iteration. 5024 if (I->getParent() != L->getHeader()) return false; 5025 5026 for (const Instruction &LI : *L->getHeader()) { 5027 if (&LI == I) return true; 5028 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5029 } 5030 llvm_unreachable("Instruction not contained in its own parent basic block."); 5031 } 5032 5033 bool llvm::propagatesPoison(const Operator *I) { 5034 switch (I->getOpcode()) { 5035 case Instruction::Freeze: 5036 case Instruction::Select: 5037 case Instruction::PHI: 5038 case Instruction::Call: 5039 case Instruction::Invoke: 5040 return false; 5041 case Instruction::ICmp: 5042 case Instruction::FCmp: 5043 case Instruction::GetElementPtr: 5044 return true; 5045 default: 5046 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5047 return true; 5048 5049 // Be conservative and return false. 5050 return false; 5051 } 5052 } 5053 5054 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5055 SmallPtrSetImpl<const Value *> &Operands) { 5056 switch (I->getOpcode()) { 5057 case Instruction::Store: 5058 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5059 break; 5060 5061 case Instruction::Load: 5062 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5063 break; 5064 5065 case Instruction::AtomicCmpXchg: 5066 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5067 break; 5068 5069 case Instruction::AtomicRMW: 5070 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5071 break; 5072 5073 case Instruction::UDiv: 5074 case Instruction::SDiv: 5075 case Instruction::URem: 5076 case Instruction::SRem: 5077 Operands.insert(I->getOperand(1)); 5078 break; 5079 5080 case Instruction::Call: 5081 case Instruction::Invoke: { 5082 const CallBase *CB = cast<CallBase>(I); 5083 if (CB->isIndirectCall()) 5084 Operands.insert(CB->getCalledOperand()); 5085 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5086 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5087 Operands.insert(CB->getArgOperand(i)); 5088 } 5089 break; 5090 } 5091 5092 default: 5093 break; 5094 } 5095 } 5096 5097 bool llvm::mustTriggerUB(const Instruction *I, 5098 const SmallSet<const Value *, 16>& KnownPoison) { 5099 SmallPtrSet<const Value *, 4> NonPoisonOps; 5100 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5101 5102 for (const auto *V : NonPoisonOps) 5103 if (KnownPoison.count(V)) 5104 return true; 5105 5106 return false; 5107 } 5108 5109 static bool programUndefinedIfUndefOrPoison(const Value *V, 5110 bool PoisonOnly) { 5111 // We currently only look for uses of values within the same basic 5112 // block, as that makes it easier to guarantee that the uses will be 5113 // executed given that Inst is executed. 5114 // 5115 // FIXME: Expand this to consider uses beyond the same basic block. To do 5116 // this, look out for the distinction between post-dominance and strong 5117 // post-dominance. 5118 const BasicBlock *BB = nullptr; 5119 BasicBlock::const_iterator Begin; 5120 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5121 BB = Inst->getParent(); 5122 Begin = Inst->getIterator(); 5123 Begin++; 5124 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5125 BB = &Arg->getParent()->getEntryBlock(); 5126 Begin = BB->begin(); 5127 } else { 5128 return false; 5129 } 5130 5131 BasicBlock::const_iterator End = BB->end(); 5132 5133 if (!PoisonOnly) { 5134 // Be conservative & just check whether a value is passed to a noundef 5135 // argument. 5136 // Instructions that raise UB with a poison operand are well-defined 5137 // or have unclear semantics when the input is partially undef. 5138 // For example, 'udiv x, (undef | 1)' isn't UB. 5139 5140 for (auto &I : make_range(Begin, End)) { 5141 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5142 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5143 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5144 CB->getArgOperand(i) == V) 5145 return true; 5146 } 5147 } 5148 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5149 break; 5150 } 5151 return false; 5152 } 5153 5154 // Set of instructions that we have proved will yield poison if Inst 5155 // does. 5156 SmallSet<const Value *, 16> YieldsPoison; 5157 SmallSet<const BasicBlock *, 4> Visited; 5158 5159 YieldsPoison.insert(V); 5160 auto Propagate = [&](const User *User) { 5161 if (propagatesPoison(cast<Operator>(User))) 5162 YieldsPoison.insert(User); 5163 }; 5164 for_each(V->users(), Propagate); 5165 Visited.insert(BB); 5166 5167 unsigned Iter = 0; 5168 while (Iter++ < MaxAnalysisRecursionDepth) { 5169 for (auto &I : make_range(Begin, End)) { 5170 if (mustTriggerUB(&I, YieldsPoison)) 5171 return true; 5172 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5173 return false; 5174 5175 // Mark poison that propagates from I through uses of I. 5176 if (YieldsPoison.count(&I)) 5177 for_each(I.users(), Propagate); 5178 } 5179 5180 if (auto *NextBB = BB->getSingleSuccessor()) { 5181 if (Visited.insert(NextBB).second) { 5182 BB = NextBB; 5183 Begin = BB->getFirstNonPHI()->getIterator(); 5184 End = BB->end(); 5185 continue; 5186 } 5187 } 5188 5189 break; 5190 } 5191 return false; 5192 } 5193 5194 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5195 return ::programUndefinedIfUndefOrPoison(Inst, false); 5196 } 5197 5198 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5199 return ::programUndefinedIfUndefOrPoison(Inst, true); 5200 } 5201 5202 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5203 if (FMF.noNaNs()) 5204 return true; 5205 5206 if (auto *C = dyn_cast<ConstantFP>(V)) 5207 return !C->isNaN(); 5208 5209 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5210 if (!C->getElementType()->isFloatingPointTy()) 5211 return false; 5212 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5213 if (C->getElementAsAPFloat(I).isNaN()) 5214 return false; 5215 } 5216 return true; 5217 } 5218 5219 if (isa<ConstantAggregateZero>(V)) 5220 return true; 5221 5222 return false; 5223 } 5224 5225 static bool isKnownNonZero(const Value *V) { 5226 if (auto *C = dyn_cast<ConstantFP>(V)) 5227 return !C->isZero(); 5228 5229 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5230 if (!C->getElementType()->isFloatingPointTy()) 5231 return false; 5232 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5233 if (C->getElementAsAPFloat(I).isZero()) 5234 return false; 5235 } 5236 return true; 5237 } 5238 5239 return false; 5240 } 5241 5242 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5243 /// Given non-min/max outer cmp/select from the clamp pattern this 5244 /// function recognizes if it can be substitued by a "canonical" min/max 5245 /// pattern. 5246 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5247 Value *CmpLHS, Value *CmpRHS, 5248 Value *TrueVal, Value *FalseVal, 5249 Value *&LHS, Value *&RHS) { 5250 // Try to match 5251 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5252 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5253 // and return description of the outer Max/Min. 5254 5255 // First, check if select has inverse order: 5256 if (CmpRHS == FalseVal) { 5257 std::swap(TrueVal, FalseVal); 5258 Pred = CmpInst::getInversePredicate(Pred); 5259 } 5260 5261 // Assume success now. If there's no match, callers should not use these anyway. 5262 LHS = TrueVal; 5263 RHS = FalseVal; 5264 5265 const APFloat *FC1; 5266 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5267 return {SPF_UNKNOWN, SPNB_NA, false}; 5268 5269 const APFloat *FC2; 5270 switch (Pred) { 5271 case CmpInst::FCMP_OLT: 5272 case CmpInst::FCMP_OLE: 5273 case CmpInst::FCMP_ULT: 5274 case CmpInst::FCMP_ULE: 5275 if (match(FalseVal, 5276 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5277 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5278 *FC1 < *FC2) 5279 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5280 break; 5281 case CmpInst::FCMP_OGT: 5282 case CmpInst::FCMP_OGE: 5283 case CmpInst::FCMP_UGT: 5284 case CmpInst::FCMP_UGE: 5285 if (match(FalseVal, 5286 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5287 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5288 *FC1 > *FC2) 5289 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5290 break; 5291 default: 5292 break; 5293 } 5294 5295 return {SPF_UNKNOWN, SPNB_NA, false}; 5296 } 5297 5298 /// Recognize variations of: 5299 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5300 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5301 Value *CmpLHS, Value *CmpRHS, 5302 Value *TrueVal, Value *FalseVal) { 5303 // Swap the select operands and predicate to match the patterns below. 5304 if (CmpRHS != TrueVal) { 5305 Pred = ICmpInst::getSwappedPredicate(Pred); 5306 std::swap(TrueVal, FalseVal); 5307 } 5308 const APInt *C1; 5309 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5310 const APInt *C2; 5311 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5312 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5313 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5314 return {SPF_SMAX, SPNB_NA, false}; 5315 5316 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5317 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5318 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5319 return {SPF_SMIN, SPNB_NA, false}; 5320 5321 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5322 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5323 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5324 return {SPF_UMAX, SPNB_NA, false}; 5325 5326 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5327 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5328 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5329 return {SPF_UMIN, SPNB_NA, false}; 5330 } 5331 return {SPF_UNKNOWN, SPNB_NA, false}; 5332 } 5333 5334 /// Recognize variations of: 5335 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5336 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5337 Value *CmpLHS, Value *CmpRHS, 5338 Value *TVal, Value *FVal, 5339 unsigned Depth) { 5340 // TODO: Allow FP min/max with nnan/nsz. 5341 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5342 5343 Value *A = nullptr, *B = nullptr; 5344 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5345 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5346 return {SPF_UNKNOWN, SPNB_NA, false}; 5347 5348 Value *C = nullptr, *D = nullptr; 5349 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5350 if (L.Flavor != R.Flavor) 5351 return {SPF_UNKNOWN, SPNB_NA, false}; 5352 5353 // We have something like: x Pred y ? min(a, b) : min(c, d). 5354 // Try to match the compare to the min/max operations of the select operands. 5355 // First, make sure we have the right compare predicate. 5356 switch (L.Flavor) { 5357 case SPF_SMIN: 5358 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5359 Pred = ICmpInst::getSwappedPredicate(Pred); 5360 std::swap(CmpLHS, CmpRHS); 5361 } 5362 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5363 break; 5364 return {SPF_UNKNOWN, SPNB_NA, false}; 5365 case SPF_SMAX: 5366 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5367 Pred = ICmpInst::getSwappedPredicate(Pred); 5368 std::swap(CmpLHS, CmpRHS); 5369 } 5370 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5371 break; 5372 return {SPF_UNKNOWN, SPNB_NA, false}; 5373 case SPF_UMIN: 5374 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5375 Pred = ICmpInst::getSwappedPredicate(Pred); 5376 std::swap(CmpLHS, CmpRHS); 5377 } 5378 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5379 break; 5380 return {SPF_UNKNOWN, SPNB_NA, false}; 5381 case SPF_UMAX: 5382 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5383 Pred = ICmpInst::getSwappedPredicate(Pred); 5384 std::swap(CmpLHS, CmpRHS); 5385 } 5386 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5387 break; 5388 return {SPF_UNKNOWN, SPNB_NA, false}; 5389 default: 5390 return {SPF_UNKNOWN, SPNB_NA, false}; 5391 } 5392 5393 // If there is a common operand in the already matched min/max and the other 5394 // min/max operands match the compare operands (either directly or inverted), 5395 // then this is min/max of the same flavor. 5396 5397 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5398 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5399 if (D == B) { 5400 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5401 match(A, m_Not(m_Specific(CmpRHS))))) 5402 return {L.Flavor, SPNB_NA, false}; 5403 } 5404 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5405 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5406 if (C == B) { 5407 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5408 match(A, m_Not(m_Specific(CmpRHS))))) 5409 return {L.Flavor, SPNB_NA, false}; 5410 } 5411 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5412 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5413 if (D == A) { 5414 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5415 match(B, m_Not(m_Specific(CmpRHS))))) 5416 return {L.Flavor, SPNB_NA, false}; 5417 } 5418 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5419 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5420 if (C == A) { 5421 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5422 match(B, m_Not(m_Specific(CmpRHS))))) 5423 return {L.Flavor, SPNB_NA, false}; 5424 } 5425 5426 return {SPF_UNKNOWN, SPNB_NA, false}; 5427 } 5428 5429 /// If the input value is the result of a 'not' op, constant integer, or vector 5430 /// splat of a constant integer, return the bitwise-not source value. 5431 /// TODO: This could be extended to handle non-splat vector integer constants. 5432 static Value *getNotValue(Value *V) { 5433 Value *NotV; 5434 if (match(V, m_Not(m_Value(NotV)))) 5435 return NotV; 5436 5437 const APInt *C; 5438 if (match(V, m_APInt(C))) 5439 return ConstantInt::get(V->getType(), ~(*C)); 5440 5441 return nullptr; 5442 } 5443 5444 /// Match non-obvious integer minimum and maximum sequences. 5445 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5446 Value *CmpLHS, Value *CmpRHS, 5447 Value *TrueVal, Value *FalseVal, 5448 Value *&LHS, Value *&RHS, 5449 unsigned Depth) { 5450 // Assume success. If there's no match, callers should not use these anyway. 5451 LHS = TrueVal; 5452 RHS = FalseVal; 5453 5454 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5455 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5456 return SPR; 5457 5458 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5459 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5460 return SPR; 5461 5462 // Look through 'not' ops to find disguised min/max. 5463 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5464 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5465 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5466 switch (Pred) { 5467 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5468 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5469 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5470 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5471 default: break; 5472 } 5473 } 5474 5475 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5476 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5477 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5478 switch (Pred) { 5479 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5480 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5481 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5482 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5483 default: break; 5484 } 5485 } 5486 5487 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5488 return {SPF_UNKNOWN, SPNB_NA, false}; 5489 5490 // Z = X -nsw Y 5491 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5492 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5493 if (match(TrueVal, m_Zero()) && 5494 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5495 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5496 5497 // Z = X -nsw Y 5498 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5499 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5500 if (match(FalseVal, m_Zero()) && 5501 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5502 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5503 5504 const APInt *C1; 5505 if (!match(CmpRHS, m_APInt(C1))) 5506 return {SPF_UNKNOWN, SPNB_NA, false}; 5507 5508 // An unsigned min/max can be written with a signed compare. 5509 const APInt *C2; 5510 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5511 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5512 // Is the sign bit set? 5513 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5514 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5515 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5516 C2->isMaxSignedValue()) 5517 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5518 5519 // Is the sign bit clear? 5520 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5521 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5522 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5523 C2->isMinSignedValue()) 5524 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5525 } 5526 5527 return {SPF_UNKNOWN, SPNB_NA, false}; 5528 } 5529 5530 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5531 assert(X && Y && "Invalid operand"); 5532 5533 // X = sub (0, Y) || X = sub nsw (0, Y) 5534 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5535 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5536 return true; 5537 5538 // Y = sub (0, X) || Y = sub nsw (0, X) 5539 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5540 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5541 return true; 5542 5543 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5544 Value *A, *B; 5545 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5546 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5547 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5548 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5549 } 5550 5551 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5552 FastMathFlags FMF, 5553 Value *CmpLHS, Value *CmpRHS, 5554 Value *TrueVal, Value *FalseVal, 5555 Value *&LHS, Value *&RHS, 5556 unsigned Depth) { 5557 if (CmpInst::isFPPredicate(Pred)) { 5558 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5559 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5560 // purpose of identifying min/max. Disregard vector constants with undefined 5561 // elements because those can not be back-propagated for analysis. 5562 Value *OutputZeroVal = nullptr; 5563 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5564 !cast<Constant>(TrueVal)->containsUndefElement()) 5565 OutputZeroVal = TrueVal; 5566 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5567 !cast<Constant>(FalseVal)->containsUndefElement()) 5568 OutputZeroVal = FalseVal; 5569 5570 if (OutputZeroVal) { 5571 if (match(CmpLHS, m_AnyZeroFP())) 5572 CmpLHS = OutputZeroVal; 5573 if (match(CmpRHS, m_AnyZeroFP())) 5574 CmpRHS = OutputZeroVal; 5575 } 5576 } 5577 5578 LHS = CmpLHS; 5579 RHS = CmpRHS; 5580 5581 // Signed zero may return inconsistent results between implementations. 5582 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5583 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5584 // Therefore, we behave conservatively and only proceed if at least one of the 5585 // operands is known to not be zero or if we don't care about signed zero. 5586 switch (Pred) { 5587 default: break; 5588 // FIXME: Include OGT/OLT/UGT/ULT. 5589 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5590 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5591 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5592 !isKnownNonZero(CmpRHS)) 5593 return {SPF_UNKNOWN, SPNB_NA, false}; 5594 } 5595 5596 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5597 bool Ordered = false; 5598 5599 // When given one NaN and one non-NaN input: 5600 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5601 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5602 // ordered comparison fails), which could be NaN or non-NaN. 5603 // so here we discover exactly what NaN behavior is required/accepted. 5604 if (CmpInst::isFPPredicate(Pred)) { 5605 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5606 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5607 5608 if (LHSSafe && RHSSafe) { 5609 // Both operands are known non-NaN. 5610 NaNBehavior = SPNB_RETURNS_ANY; 5611 } else if (CmpInst::isOrdered(Pred)) { 5612 // An ordered comparison will return false when given a NaN, so it 5613 // returns the RHS. 5614 Ordered = true; 5615 if (LHSSafe) 5616 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5617 NaNBehavior = SPNB_RETURNS_NAN; 5618 else if (RHSSafe) 5619 NaNBehavior = SPNB_RETURNS_OTHER; 5620 else 5621 // Completely unsafe. 5622 return {SPF_UNKNOWN, SPNB_NA, false}; 5623 } else { 5624 Ordered = false; 5625 // An unordered comparison will return true when given a NaN, so it 5626 // returns the LHS. 5627 if (LHSSafe) 5628 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5629 NaNBehavior = SPNB_RETURNS_OTHER; 5630 else if (RHSSafe) 5631 NaNBehavior = SPNB_RETURNS_NAN; 5632 else 5633 // Completely unsafe. 5634 return {SPF_UNKNOWN, SPNB_NA, false}; 5635 } 5636 } 5637 5638 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5639 std::swap(CmpLHS, CmpRHS); 5640 Pred = CmpInst::getSwappedPredicate(Pred); 5641 if (NaNBehavior == SPNB_RETURNS_NAN) 5642 NaNBehavior = SPNB_RETURNS_OTHER; 5643 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5644 NaNBehavior = SPNB_RETURNS_NAN; 5645 Ordered = !Ordered; 5646 } 5647 5648 // ([if]cmp X, Y) ? X : Y 5649 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5650 switch (Pred) { 5651 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5652 case ICmpInst::ICMP_UGT: 5653 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5654 case ICmpInst::ICMP_SGT: 5655 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5656 case ICmpInst::ICMP_ULT: 5657 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5658 case ICmpInst::ICMP_SLT: 5659 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5660 case FCmpInst::FCMP_UGT: 5661 case FCmpInst::FCMP_UGE: 5662 case FCmpInst::FCMP_OGT: 5663 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5664 case FCmpInst::FCMP_ULT: 5665 case FCmpInst::FCMP_ULE: 5666 case FCmpInst::FCMP_OLT: 5667 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5668 } 5669 } 5670 5671 if (isKnownNegation(TrueVal, FalseVal)) { 5672 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5673 // match against either LHS or sext(LHS). 5674 auto MaybeSExtCmpLHS = 5675 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5676 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5677 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5678 if (match(TrueVal, MaybeSExtCmpLHS)) { 5679 // Set the return values. If the compare uses the negated value (-X >s 0), 5680 // swap the return values because the negated value is always 'RHS'. 5681 LHS = TrueVal; 5682 RHS = FalseVal; 5683 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5684 std::swap(LHS, RHS); 5685 5686 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5687 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5688 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5689 return {SPF_ABS, SPNB_NA, false}; 5690 5691 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5692 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5693 return {SPF_ABS, SPNB_NA, false}; 5694 5695 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5696 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5697 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5698 return {SPF_NABS, SPNB_NA, false}; 5699 } 5700 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5701 // Set the return values. If the compare uses the negated value (-X >s 0), 5702 // swap the return values because the negated value is always 'RHS'. 5703 LHS = FalseVal; 5704 RHS = TrueVal; 5705 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5706 std::swap(LHS, RHS); 5707 5708 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5709 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5710 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5711 return {SPF_NABS, SPNB_NA, false}; 5712 5713 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5714 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5715 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5716 return {SPF_ABS, SPNB_NA, false}; 5717 } 5718 } 5719 5720 if (CmpInst::isIntPredicate(Pred)) 5721 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5722 5723 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5724 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5725 // semantics than minNum. Be conservative in such case. 5726 if (NaNBehavior != SPNB_RETURNS_ANY || 5727 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5728 !isKnownNonZero(CmpRHS))) 5729 return {SPF_UNKNOWN, SPNB_NA, false}; 5730 5731 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5732 } 5733 5734 /// Helps to match a select pattern in case of a type mismatch. 5735 /// 5736 /// The function processes the case when type of true and false values of a 5737 /// select instruction differs from type of the cmp instruction operands because 5738 /// of a cast instruction. The function checks if it is legal to move the cast 5739 /// operation after "select". If yes, it returns the new second value of 5740 /// "select" (with the assumption that cast is moved): 5741 /// 1. As operand of cast instruction when both values of "select" are same cast 5742 /// instructions. 5743 /// 2. As restored constant (by applying reverse cast operation) when the first 5744 /// value of the "select" is a cast operation and the second value is a 5745 /// constant. 5746 /// NOTE: We return only the new second value because the first value could be 5747 /// accessed as operand of cast instruction. 5748 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5749 Instruction::CastOps *CastOp) { 5750 auto *Cast1 = dyn_cast<CastInst>(V1); 5751 if (!Cast1) 5752 return nullptr; 5753 5754 *CastOp = Cast1->getOpcode(); 5755 Type *SrcTy = Cast1->getSrcTy(); 5756 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5757 // If V1 and V2 are both the same cast from the same type, look through V1. 5758 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5759 return Cast2->getOperand(0); 5760 return nullptr; 5761 } 5762 5763 auto *C = dyn_cast<Constant>(V2); 5764 if (!C) 5765 return nullptr; 5766 5767 Constant *CastedTo = nullptr; 5768 switch (*CastOp) { 5769 case Instruction::ZExt: 5770 if (CmpI->isUnsigned()) 5771 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5772 break; 5773 case Instruction::SExt: 5774 if (CmpI->isSigned()) 5775 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5776 break; 5777 case Instruction::Trunc: 5778 Constant *CmpConst; 5779 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5780 CmpConst->getType() == SrcTy) { 5781 // Here we have the following case: 5782 // 5783 // %cond = cmp iN %x, CmpConst 5784 // %tr = trunc iN %x to iK 5785 // %narrowsel = select i1 %cond, iK %t, iK C 5786 // 5787 // We can always move trunc after select operation: 5788 // 5789 // %cond = cmp iN %x, CmpConst 5790 // %widesel = select i1 %cond, iN %x, iN CmpConst 5791 // %tr = trunc iN %widesel to iK 5792 // 5793 // Note that C could be extended in any way because we don't care about 5794 // upper bits after truncation. It can't be abs pattern, because it would 5795 // look like: 5796 // 5797 // select i1 %cond, x, -x. 5798 // 5799 // So only min/max pattern could be matched. Such match requires widened C 5800 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5801 // CmpConst == C is checked below. 5802 CastedTo = CmpConst; 5803 } else { 5804 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5805 } 5806 break; 5807 case Instruction::FPTrunc: 5808 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5809 break; 5810 case Instruction::FPExt: 5811 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5812 break; 5813 case Instruction::FPToUI: 5814 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5815 break; 5816 case Instruction::FPToSI: 5817 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5818 break; 5819 case Instruction::UIToFP: 5820 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5821 break; 5822 case Instruction::SIToFP: 5823 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5824 break; 5825 default: 5826 break; 5827 } 5828 5829 if (!CastedTo) 5830 return nullptr; 5831 5832 // Make sure the cast doesn't lose any information. 5833 Constant *CastedBack = 5834 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5835 if (CastedBack != C) 5836 return nullptr; 5837 5838 return CastedTo; 5839 } 5840 5841 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5842 Instruction::CastOps *CastOp, 5843 unsigned Depth) { 5844 if (Depth >= MaxAnalysisRecursionDepth) 5845 return {SPF_UNKNOWN, SPNB_NA, false}; 5846 5847 SelectInst *SI = dyn_cast<SelectInst>(V); 5848 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5849 5850 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5851 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5852 5853 Value *TrueVal = SI->getTrueValue(); 5854 Value *FalseVal = SI->getFalseValue(); 5855 5856 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5857 CastOp, Depth); 5858 } 5859 5860 SelectPatternResult llvm::matchDecomposedSelectPattern( 5861 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5862 Instruction::CastOps *CastOp, unsigned Depth) { 5863 CmpInst::Predicate Pred = CmpI->getPredicate(); 5864 Value *CmpLHS = CmpI->getOperand(0); 5865 Value *CmpRHS = CmpI->getOperand(1); 5866 FastMathFlags FMF; 5867 if (isa<FPMathOperator>(CmpI)) 5868 FMF = CmpI->getFastMathFlags(); 5869 5870 // Bail out early. 5871 if (CmpI->isEquality()) 5872 return {SPF_UNKNOWN, SPNB_NA, false}; 5873 5874 // Deal with type mismatches. 5875 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5876 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5877 // If this is a potential fmin/fmax with a cast to integer, then ignore 5878 // -0.0 because there is no corresponding integer value. 5879 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5880 FMF.setNoSignedZeros(); 5881 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5882 cast<CastInst>(TrueVal)->getOperand(0), C, 5883 LHS, RHS, Depth); 5884 } 5885 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5886 // If this is a potential fmin/fmax with a cast to integer, then ignore 5887 // -0.0 because there is no corresponding integer value. 5888 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5889 FMF.setNoSignedZeros(); 5890 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5891 C, cast<CastInst>(FalseVal)->getOperand(0), 5892 LHS, RHS, Depth); 5893 } 5894 } 5895 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5896 LHS, RHS, Depth); 5897 } 5898 5899 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5900 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5901 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5902 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5903 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5904 if (SPF == SPF_FMINNUM) 5905 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5906 if (SPF == SPF_FMAXNUM) 5907 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5908 llvm_unreachable("unhandled!"); 5909 } 5910 5911 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5912 if (SPF == SPF_SMIN) return SPF_SMAX; 5913 if (SPF == SPF_UMIN) return SPF_UMAX; 5914 if (SPF == SPF_SMAX) return SPF_SMIN; 5915 if (SPF == SPF_UMAX) return SPF_UMIN; 5916 llvm_unreachable("unhandled!"); 5917 } 5918 5919 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5920 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5921 } 5922 5923 std::pair<Intrinsic::ID, bool> 5924 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5925 // Check if VL contains select instructions that can be folded into a min/max 5926 // vector intrinsic and return the intrinsic if it is possible. 5927 // TODO: Support floating point min/max. 5928 bool AllCmpSingleUse = true; 5929 SelectPatternResult SelectPattern; 5930 SelectPattern.Flavor = SPF_UNKNOWN; 5931 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5932 Value *LHS, *RHS; 5933 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5934 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5935 CurrentPattern.Flavor == SPF_FMINNUM || 5936 CurrentPattern.Flavor == SPF_FMAXNUM || 5937 !I->getType()->isIntOrIntVectorTy()) 5938 return false; 5939 if (SelectPattern.Flavor != SPF_UNKNOWN && 5940 SelectPattern.Flavor != CurrentPattern.Flavor) 5941 return false; 5942 SelectPattern = CurrentPattern; 5943 AllCmpSingleUse &= 5944 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5945 return true; 5946 })) { 5947 switch (SelectPattern.Flavor) { 5948 case SPF_SMIN: 5949 return {Intrinsic::smin, AllCmpSingleUse}; 5950 case SPF_UMIN: 5951 return {Intrinsic::umin, AllCmpSingleUse}; 5952 case SPF_SMAX: 5953 return {Intrinsic::smax, AllCmpSingleUse}; 5954 case SPF_UMAX: 5955 return {Intrinsic::umax, AllCmpSingleUse}; 5956 default: 5957 llvm_unreachable("unexpected select pattern flavor"); 5958 } 5959 } 5960 return {Intrinsic::not_intrinsic, false}; 5961 } 5962 5963 /// Return true if "icmp Pred LHS RHS" is always true. 5964 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5965 const Value *RHS, const DataLayout &DL, 5966 unsigned Depth) { 5967 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5968 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5969 return true; 5970 5971 switch (Pred) { 5972 default: 5973 return false; 5974 5975 case CmpInst::ICMP_SLE: { 5976 const APInt *C; 5977 5978 // LHS s<= LHS +_{nsw} C if C >= 0 5979 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5980 return !C->isNegative(); 5981 return false; 5982 } 5983 5984 case CmpInst::ICMP_ULE: { 5985 const APInt *C; 5986 5987 // LHS u<= LHS +_{nuw} C for any C 5988 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5989 return true; 5990 5991 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5992 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5993 const Value *&X, 5994 const APInt *&CA, const APInt *&CB) { 5995 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5996 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5997 return true; 5998 5999 // If X & C == 0 then (X | C) == X +_{nuw} C 6000 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6001 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6002 KnownBits Known(CA->getBitWidth()); 6003 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6004 /*CxtI*/ nullptr, /*DT*/ nullptr); 6005 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6006 return true; 6007 } 6008 6009 return false; 6010 }; 6011 6012 const Value *X; 6013 const APInt *CLHS, *CRHS; 6014 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6015 return CLHS->ule(*CRHS); 6016 6017 return false; 6018 } 6019 } 6020 } 6021 6022 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6023 /// ALHS ARHS" is true. Otherwise, return None. 6024 static Optional<bool> 6025 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6026 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6027 const DataLayout &DL, unsigned Depth) { 6028 switch (Pred) { 6029 default: 6030 return None; 6031 6032 case CmpInst::ICMP_SLT: 6033 case CmpInst::ICMP_SLE: 6034 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6035 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6036 return true; 6037 return None; 6038 6039 case CmpInst::ICMP_ULT: 6040 case CmpInst::ICMP_ULE: 6041 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6042 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6043 return true; 6044 return None; 6045 } 6046 } 6047 6048 /// Return true if the operands of the two compares match. IsSwappedOps is true 6049 /// when the operands match, but are swapped. 6050 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6051 const Value *BLHS, const Value *BRHS, 6052 bool &IsSwappedOps) { 6053 6054 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6055 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6056 return IsMatchingOps || IsSwappedOps; 6057 } 6058 6059 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6060 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6061 /// Otherwise, return None if we can't infer anything. 6062 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6063 CmpInst::Predicate BPred, 6064 bool AreSwappedOps) { 6065 // Canonicalize the predicate as if the operands were not commuted. 6066 if (AreSwappedOps) 6067 BPred = ICmpInst::getSwappedPredicate(BPred); 6068 6069 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6070 return true; 6071 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6072 return false; 6073 6074 return None; 6075 } 6076 6077 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6078 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6079 /// Otherwise, return None if we can't infer anything. 6080 static Optional<bool> 6081 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6082 const ConstantInt *C1, 6083 CmpInst::Predicate BPred, 6084 const ConstantInt *C2) { 6085 ConstantRange DomCR = 6086 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6087 ConstantRange CR = 6088 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6089 ConstantRange Intersection = DomCR.intersectWith(CR); 6090 ConstantRange Difference = DomCR.difference(CR); 6091 if (Intersection.isEmptySet()) 6092 return false; 6093 if (Difference.isEmptySet()) 6094 return true; 6095 return None; 6096 } 6097 6098 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6099 /// false. Otherwise, return None if we can't infer anything. 6100 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6101 CmpInst::Predicate BPred, 6102 const Value *BLHS, const Value *BRHS, 6103 const DataLayout &DL, bool LHSIsTrue, 6104 unsigned Depth) { 6105 Value *ALHS = LHS->getOperand(0); 6106 Value *ARHS = LHS->getOperand(1); 6107 6108 // The rest of the logic assumes the LHS condition is true. If that's not the 6109 // case, invert the predicate to make it so. 6110 CmpInst::Predicate APred = 6111 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6112 6113 // Can we infer anything when the two compares have matching operands? 6114 bool AreSwappedOps; 6115 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6116 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6117 APred, BPred, AreSwappedOps)) 6118 return Implication; 6119 // No amount of additional analysis will infer the second condition, so 6120 // early exit. 6121 return None; 6122 } 6123 6124 // Can we infer anything when the LHS operands match and the RHS operands are 6125 // constants (not necessarily matching)? 6126 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6127 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6128 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6129 return Implication; 6130 // No amount of additional analysis will infer the second condition, so 6131 // early exit. 6132 return None; 6133 } 6134 6135 if (APred == BPred) 6136 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6137 return None; 6138 } 6139 6140 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6141 /// false. Otherwise, return None if we can't infer anything. We expect the 6142 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6143 static Optional<bool> 6144 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6145 const Value *RHSOp0, const Value *RHSOp1, 6146 6147 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6148 // The LHS must be an 'or' or an 'and' instruction. 6149 assert((LHS->getOpcode() == Instruction::And || 6150 LHS->getOpcode() == Instruction::Or) && 6151 "Expected LHS to be 'and' or 'or'."); 6152 6153 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6154 6155 // If the result of an 'or' is false, then we know both legs of the 'or' are 6156 // false. Similarly, if the result of an 'and' is true, then we know both 6157 // legs of the 'and' are true. 6158 Value *ALHS, *ARHS; 6159 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6160 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6161 // FIXME: Make this non-recursion. 6162 if (Optional<bool> Implication = isImpliedCondition( 6163 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6164 return Implication; 6165 if (Optional<bool> Implication = isImpliedCondition( 6166 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6167 return Implication; 6168 return None; 6169 } 6170 return None; 6171 } 6172 6173 Optional<bool> 6174 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6175 const Value *RHSOp0, const Value *RHSOp1, 6176 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6177 // Bail out when we hit the limit. 6178 if (Depth == MaxAnalysisRecursionDepth) 6179 return None; 6180 6181 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6182 // example. 6183 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6184 return None; 6185 6186 Type *OpTy = LHS->getType(); 6187 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6188 6189 // FIXME: Extending the code below to handle vectors. 6190 if (OpTy->isVectorTy()) 6191 return None; 6192 6193 assert(OpTy->isIntegerTy(1) && "implied by above"); 6194 6195 // Both LHS and RHS are icmps. 6196 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6197 if (LHSCmp) 6198 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6199 Depth); 6200 6201 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6202 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6203 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6204 if (LHSBO) { 6205 if ((LHSBO->getOpcode() == Instruction::And || 6206 LHSBO->getOpcode() == Instruction::Or)) 6207 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6208 Depth); 6209 } 6210 return None; 6211 } 6212 6213 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6214 const DataLayout &DL, bool LHSIsTrue, 6215 unsigned Depth) { 6216 // LHS ==> RHS by definition 6217 if (LHS == RHS) 6218 return LHSIsTrue; 6219 6220 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6221 if (RHSCmp) 6222 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6223 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6224 LHSIsTrue, Depth); 6225 return None; 6226 } 6227 6228 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6229 // condition dominating ContextI or nullptr, if no condition is found. 6230 static std::pair<Value *, bool> 6231 getDomPredecessorCondition(const Instruction *ContextI) { 6232 if (!ContextI || !ContextI->getParent()) 6233 return {nullptr, false}; 6234 6235 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6236 // dominator tree (eg, from a SimplifyQuery) instead? 6237 const BasicBlock *ContextBB = ContextI->getParent(); 6238 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6239 if (!PredBB) 6240 return {nullptr, false}; 6241 6242 // We need a conditional branch in the predecessor. 6243 Value *PredCond; 6244 BasicBlock *TrueBB, *FalseBB; 6245 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6246 return {nullptr, false}; 6247 6248 // The branch should get simplified. Don't bother simplifying this condition. 6249 if (TrueBB == FalseBB) 6250 return {nullptr, false}; 6251 6252 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6253 "Predecessor block does not point to successor?"); 6254 6255 // Is this condition implied by the predecessor condition? 6256 return {PredCond, TrueBB == ContextBB}; 6257 } 6258 6259 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6260 const Instruction *ContextI, 6261 const DataLayout &DL) { 6262 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6263 auto PredCond = getDomPredecessorCondition(ContextI); 6264 if (PredCond.first) 6265 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6266 return None; 6267 } 6268 6269 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6270 const Value *LHS, const Value *RHS, 6271 const Instruction *ContextI, 6272 const DataLayout &DL) { 6273 auto PredCond = getDomPredecessorCondition(ContextI); 6274 if (PredCond.first) 6275 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6276 PredCond.second); 6277 return None; 6278 } 6279 6280 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6281 APInt &Upper, const InstrInfoQuery &IIQ) { 6282 unsigned Width = Lower.getBitWidth(); 6283 const APInt *C; 6284 switch (BO.getOpcode()) { 6285 case Instruction::Add: 6286 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6287 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6288 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6289 // 'add nuw x, C' produces [C, UINT_MAX]. 6290 Lower = *C; 6291 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6292 if (C->isNegative()) { 6293 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6294 Lower = APInt::getSignedMinValue(Width); 6295 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6296 } else { 6297 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6298 Lower = APInt::getSignedMinValue(Width) + *C; 6299 Upper = APInt::getSignedMaxValue(Width) + 1; 6300 } 6301 } 6302 } 6303 break; 6304 6305 case Instruction::And: 6306 if (match(BO.getOperand(1), m_APInt(C))) 6307 // 'and x, C' produces [0, C]. 6308 Upper = *C + 1; 6309 break; 6310 6311 case Instruction::Or: 6312 if (match(BO.getOperand(1), m_APInt(C))) 6313 // 'or x, C' produces [C, UINT_MAX]. 6314 Lower = *C; 6315 break; 6316 6317 case Instruction::AShr: 6318 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6319 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6320 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6321 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6322 } else if (match(BO.getOperand(0), m_APInt(C))) { 6323 unsigned ShiftAmount = Width - 1; 6324 if (!C->isNullValue() && IIQ.isExact(&BO)) 6325 ShiftAmount = C->countTrailingZeros(); 6326 if (C->isNegative()) { 6327 // 'ashr C, x' produces [C, C >> (Width-1)] 6328 Lower = *C; 6329 Upper = C->ashr(ShiftAmount) + 1; 6330 } else { 6331 // 'ashr C, x' produces [C >> (Width-1), C] 6332 Lower = C->ashr(ShiftAmount); 6333 Upper = *C + 1; 6334 } 6335 } 6336 break; 6337 6338 case Instruction::LShr: 6339 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6340 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6341 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6342 } else if (match(BO.getOperand(0), m_APInt(C))) { 6343 // 'lshr C, x' produces [C >> (Width-1), C]. 6344 unsigned ShiftAmount = Width - 1; 6345 if (!C->isNullValue() && IIQ.isExact(&BO)) 6346 ShiftAmount = C->countTrailingZeros(); 6347 Lower = C->lshr(ShiftAmount); 6348 Upper = *C + 1; 6349 } 6350 break; 6351 6352 case Instruction::Shl: 6353 if (match(BO.getOperand(0), m_APInt(C))) { 6354 if (IIQ.hasNoUnsignedWrap(&BO)) { 6355 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6356 Lower = *C; 6357 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6358 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6359 if (C->isNegative()) { 6360 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6361 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6362 Lower = C->shl(ShiftAmount); 6363 Upper = *C + 1; 6364 } else { 6365 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6366 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6367 Lower = *C; 6368 Upper = C->shl(ShiftAmount) + 1; 6369 } 6370 } 6371 } 6372 break; 6373 6374 case Instruction::SDiv: 6375 if (match(BO.getOperand(1), m_APInt(C))) { 6376 APInt IntMin = APInt::getSignedMinValue(Width); 6377 APInt IntMax = APInt::getSignedMaxValue(Width); 6378 if (C->isAllOnesValue()) { 6379 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6380 // where C != -1 and C != 0 and C != 1 6381 Lower = IntMin + 1; 6382 Upper = IntMax + 1; 6383 } else if (C->countLeadingZeros() < Width - 1) { 6384 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6385 // where C != -1 and C != 0 and C != 1 6386 Lower = IntMin.sdiv(*C); 6387 Upper = IntMax.sdiv(*C); 6388 if (Lower.sgt(Upper)) 6389 std::swap(Lower, Upper); 6390 Upper = Upper + 1; 6391 assert(Upper != Lower && "Upper part of range has wrapped!"); 6392 } 6393 } else if (match(BO.getOperand(0), m_APInt(C))) { 6394 if (C->isMinSignedValue()) { 6395 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6396 Lower = *C; 6397 Upper = Lower.lshr(1) + 1; 6398 } else { 6399 // 'sdiv C, x' produces [-|C|, |C|]. 6400 Upper = C->abs() + 1; 6401 Lower = (-Upper) + 1; 6402 } 6403 } 6404 break; 6405 6406 case Instruction::UDiv: 6407 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6408 // 'udiv x, C' produces [0, UINT_MAX / C]. 6409 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6410 } else if (match(BO.getOperand(0), m_APInt(C))) { 6411 // 'udiv C, x' produces [0, C]. 6412 Upper = *C + 1; 6413 } 6414 break; 6415 6416 case Instruction::SRem: 6417 if (match(BO.getOperand(1), m_APInt(C))) { 6418 // 'srem x, C' produces (-|C|, |C|). 6419 Upper = C->abs(); 6420 Lower = (-Upper) + 1; 6421 } 6422 break; 6423 6424 case Instruction::URem: 6425 if (match(BO.getOperand(1), m_APInt(C))) 6426 // 'urem x, C' produces [0, C). 6427 Upper = *C; 6428 break; 6429 6430 default: 6431 break; 6432 } 6433 } 6434 6435 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6436 APInt &Upper) { 6437 unsigned Width = Lower.getBitWidth(); 6438 const APInt *C; 6439 switch (II.getIntrinsicID()) { 6440 case Intrinsic::ctpop: 6441 case Intrinsic::ctlz: 6442 case Intrinsic::cttz: 6443 // Maximum of set/clear bits is the bit width. 6444 assert(Lower == 0 && "Expected lower bound to be zero"); 6445 Upper = Width + 1; 6446 break; 6447 case Intrinsic::uadd_sat: 6448 // uadd.sat(x, C) produces [C, UINT_MAX]. 6449 if (match(II.getOperand(0), m_APInt(C)) || 6450 match(II.getOperand(1), m_APInt(C))) 6451 Lower = *C; 6452 break; 6453 case Intrinsic::sadd_sat: 6454 if (match(II.getOperand(0), m_APInt(C)) || 6455 match(II.getOperand(1), m_APInt(C))) { 6456 if (C->isNegative()) { 6457 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6458 Lower = APInt::getSignedMinValue(Width); 6459 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6460 } else { 6461 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6462 Lower = APInt::getSignedMinValue(Width) + *C; 6463 Upper = APInt::getSignedMaxValue(Width) + 1; 6464 } 6465 } 6466 break; 6467 case Intrinsic::usub_sat: 6468 // usub.sat(C, x) produces [0, C]. 6469 if (match(II.getOperand(0), m_APInt(C))) 6470 Upper = *C + 1; 6471 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6472 else if (match(II.getOperand(1), m_APInt(C))) 6473 Upper = APInt::getMaxValue(Width) - *C + 1; 6474 break; 6475 case Intrinsic::ssub_sat: 6476 if (match(II.getOperand(0), m_APInt(C))) { 6477 if (C->isNegative()) { 6478 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6479 Lower = APInt::getSignedMinValue(Width); 6480 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6481 } else { 6482 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6483 Lower = *C - APInt::getSignedMaxValue(Width); 6484 Upper = APInt::getSignedMaxValue(Width) + 1; 6485 } 6486 } else if (match(II.getOperand(1), m_APInt(C))) { 6487 if (C->isNegative()) { 6488 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6489 Lower = APInt::getSignedMinValue(Width) - *C; 6490 Upper = APInt::getSignedMaxValue(Width) + 1; 6491 } else { 6492 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6493 Lower = APInt::getSignedMinValue(Width); 6494 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6495 } 6496 } 6497 break; 6498 case Intrinsic::umin: 6499 case Intrinsic::umax: 6500 case Intrinsic::smin: 6501 case Intrinsic::smax: 6502 if (!match(II.getOperand(0), m_APInt(C)) && 6503 !match(II.getOperand(1), m_APInt(C))) 6504 break; 6505 6506 switch (II.getIntrinsicID()) { 6507 case Intrinsic::umin: 6508 Upper = *C + 1; 6509 break; 6510 case Intrinsic::umax: 6511 Lower = *C; 6512 break; 6513 case Intrinsic::smin: 6514 Lower = APInt::getSignedMinValue(Width); 6515 Upper = *C + 1; 6516 break; 6517 case Intrinsic::smax: 6518 Lower = *C; 6519 Upper = APInt::getSignedMaxValue(Width) + 1; 6520 break; 6521 default: 6522 llvm_unreachable("Must be min/max intrinsic"); 6523 } 6524 break; 6525 case Intrinsic::abs: 6526 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6527 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6528 if (match(II.getOperand(1), m_One())) 6529 Upper = APInt::getSignedMaxValue(Width) + 1; 6530 else 6531 Upper = APInt::getSignedMinValue(Width) + 1; 6532 break; 6533 default: 6534 break; 6535 } 6536 } 6537 6538 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6539 APInt &Upper, const InstrInfoQuery &IIQ) { 6540 const Value *LHS = nullptr, *RHS = nullptr; 6541 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6542 if (R.Flavor == SPF_UNKNOWN) 6543 return; 6544 6545 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6546 6547 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6548 // If the negation part of the abs (in RHS) has the NSW flag, 6549 // then the result of abs(X) is [0..SIGNED_MAX], 6550 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6551 Lower = APInt::getNullValue(BitWidth); 6552 if (match(RHS, m_Neg(m_Specific(LHS))) && 6553 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6554 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6555 else 6556 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6557 return; 6558 } 6559 6560 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6561 // The result of -abs(X) is <= 0. 6562 Lower = APInt::getSignedMinValue(BitWidth); 6563 Upper = APInt(BitWidth, 1); 6564 return; 6565 } 6566 6567 const APInt *C; 6568 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6569 return; 6570 6571 switch (R.Flavor) { 6572 case SPF_UMIN: 6573 Upper = *C + 1; 6574 break; 6575 case SPF_UMAX: 6576 Lower = *C; 6577 break; 6578 case SPF_SMIN: 6579 Lower = APInt::getSignedMinValue(BitWidth); 6580 Upper = *C + 1; 6581 break; 6582 case SPF_SMAX: 6583 Lower = *C; 6584 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6585 break; 6586 default: 6587 break; 6588 } 6589 } 6590 6591 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6592 AssumptionCache *AC, 6593 const Instruction *CtxI, 6594 unsigned Depth) { 6595 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6596 6597 if (Depth == MaxAnalysisRecursionDepth) 6598 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6599 6600 const APInt *C; 6601 if (match(V, m_APInt(C))) 6602 return ConstantRange(*C); 6603 6604 InstrInfoQuery IIQ(UseInstrInfo); 6605 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6606 APInt Lower = APInt(BitWidth, 0); 6607 APInt Upper = APInt(BitWidth, 0); 6608 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6609 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6610 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6611 setLimitsForIntrinsic(*II, Lower, Upper); 6612 else if (auto *SI = dyn_cast<SelectInst>(V)) 6613 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6614 6615 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6616 6617 if (auto *I = dyn_cast<Instruction>(V)) 6618 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6619 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6620 6621 if (CtxI && AC) { 6622 // Try to restrict the range based on information from assumptions. 6623 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6624 if (!AssumeVH) 6625 continue; 6626 CallInst *I = cast<CallInst>(AssumeVH); 6627 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6628 "Got assumption for the wrong function!"); 6629 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6630 "must be an assume intrinsic"); 6631 6632 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6633 continue; 6634 Value *Arg = I->getArgOperand(0); 6635 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6636 // Currently we just use information from comparisons. 6637 if (!Cmp || Cmp->getOperand(0) != V) 6638 continue; 6639 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6640 AC, I, Depth + 1); 6641 CR = CR.intersectWith( 6642 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6643 } 6644 } 6645 6646 return CR; 6647 } 6648 6649 static Optional<int64_t> 6650 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6651 // Skip over the first indices. 6652 gep_type_iterator GTI = gep_type_begin(GEP); 6653 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6654 /*skip along*/; 6655 6656 // Compute the offset implied by the rest of the indices. 6657 int64_t Offset = 0; 6658 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6659 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6660 if (!OpC) 6661 return None; 6662 if (OpC->isZero()) 6663 continue; // No offset. 6664 6665 // Handle struct indices, which add their field offset to the pointer. 6666 if (StructType *STy = GTI.getStructTypeOrNull()) { 6667 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6668 continue; 6669 } 6670 6671 // Otherwise, we have a sequential type like an array or fixed-length 6672 // vector. Multiply the index by the ElementSize. 6673 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6674 if (Size.isScalable()) 6675 return None; 6676 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6677 } 6678 6679 return Offset; 6680 } 6681 6682 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6683 const DataLayout &DL) { 6684 Ptr1 = Ptr1->stripPointerCasts(); 6685 Ptr2 = Ptr2->stripPointerCasts(); 6686 6687 // Handle the trivial case first. 6688 if (Ptr1 == Ptr2) { 6689 return 0; 6690 } 6691 6692 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6693 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6694 6695 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6696 // as in "P" and "gep P, 1". 6697 // Also do this iteratively to handle the the following case: 6698 // Ptr_t1 = GEP Ptr1, c1 6699 // Ptr_t2 = GEP Ptr_t1, c2 6700 // Ptr2 = GEP Ptr_t2, c3 6701 // where we will return c1+c2+c3. 6702 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6703 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6704 // are the same, and return the difference between offsets. 6705 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6706 const Value *Ptr) -> Optional<int64_t> { 6707 const GEPOperator *GEP_T = GEP; 6708 int64_t OffsetVal = 0; 6709 bool HasSameBase = false; 6710 while (GEP_T) { 6711 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6712 if (!Offset) 6713 return None; 6714 OffsetVal += *Offset; 6715 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6716 if (Op0 == Ptr) { 6717 HasSameBase = true; 6718 break; 6719 } 6720 GEP_T = dyn_cast<GEPOperator>(Op0); 6721 } 6722 if (!HasSameBase) 6723 return None; 6724 return OffsetVal; 6725 }; 6726 6727 if (GEP1) { 6728 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6729 if (Offset) 6730 return -*Offset; 6731 } 6732 if (GEP2) { 6733 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6734 if (Offset) 6735 return Offset; 6736 } 6737 6738 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6739 // base. After that base, they may have some number of common (and 6740 // potentially variable) indices. After that they handle some constant 6741 // offset, which determines their offset from each other. At this point, we 6742 // handle no other case. 6743 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6744 return None; 6745 6746 // Skip any common indices and track the GEP types. 6747 unsigned Idx = 1; 6748 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6749 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6750 break; 6751 6752 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6753 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6754 if (!Offset1 || !Offset2) 6755 return None; 6756 return *Offset2 - *Offset1; 6757 } 6758