1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 982 /// operator-specific functions that, given the known-zero or known-one bits 983 /// respectively, and a shift amount, compute the implied known-zero or 984 /// known-one bits of the shift operator's result respectively for that shift 985 /// amount. The results from calling KZF and KOF are conservatively combined for 986 /// all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<APInt(const APInt &, unsigned)> KZF, 991 function_ref<APInt(const APInt &, unsigned)> KOF) { 992 unsigned BitWidth = Known.getBitWidth(); 993 994 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 998 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 999 Known.Zero = KZF(Known.Zero, ShiftAmt); 1000 Known.One = KOF(Known.One, ShiftAmt); 1001 // If the known bits conflict, this must be an overflowing left shift, so 1002 // the shift result is poison. We can return anything we want. Choose 0 for 1003 // the best folding opportunity. 1004 if (Known.hasConflict()) 1005 Known.setAllZero(); 1006 1007 return; 1008 } 1009 1010 // If the shift amount could be greater than or equal to the bit-width of the 1011 // LHS, the value could be poison, but bail out because the check below is 1012 // expensive. 1013 // TODO: Should we just carry on? 1014 if (Known.getMaxValue().uge(BitWidth)) { 1015 Known.resetAll(); 1016 return; 1017 } 1018 1019 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1021 // limit value (which implies all bits are known). 1022 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1023 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 Known.resetAll(); 1028 1029 // If we know the shifter operand is nonzero, we can sometimes infer more 1030 // known bits. However this is expensive to compute, so be lazy about it and 1031 // only compute it when absolutely necessary. 1032 Optional<bool> ShifterOperandIsNonZero; 1033 1034 // Early exit if we can't constrain any well-defined shift amount. 1035 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1036 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1039 if (!*ShifterOperandIsNonZero) 1040 return; 1041 } 1042 1043 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1048 // Combine the shifted known input bits only for those shift amounts 1049 // compatible with its known constraints. 1050 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1051 continue; 1052 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1053 continue; 1054 // If we know the shifter is nonzero, we may be able to infer more known 1055 // bits. This check is sunk down as far as possible to avoid the expensive 1056 // call to isKnownNonZero if the cheaper checks above fail. 1057 if (ShiftAmt == 0) { 1058 if (!ShifterOperandIsNonZero.hasValue()) 1059 ShifterOperandIsNonZero = 1060 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1061 if (*ShifterOperandIsNonZero) 1062 continue; 1063 } 1064 1065 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1066 Known.One &= KOF(Known2.One, ShiftAmt); 1067 } 1068 1069 // If the known bits conflict, the result is poison. Return a 0 and hope the 1070 // caller can further optimize that. 1071 if (Known.hasConflict()) 1072 Known.setAllZero(); 1073 } 1074 1075 static void computeKnownBitsFromOperator(const Operator *I, 1076 const APInt &DemandedElts, 1077 KnownBits &Known, unsigned Depth, 1078 const Query &Q) { 1079 unsigned BitWidth = Known.getBitWidth(); 1080 1081 KnownBits Known2(BitWidth); 1082 switch (I->getOpcode()) { 1083 default: break; 1084 case Instruction::Load: 1085 if (MDNode *MD = 1086 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1087 computeKnownBitsFromRangeMetadata(*MD, Known); 1088 break; 1089 case Instruction::And: { 1090 // If either the LHS or the RHS are Zero, the result is zero. 1091 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1092 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1093 1094 Known &= Known2; 1095 1096 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1097 // here we handle the more general case of adding any odd number by 1098 // matching the form add(x, add(x, y)) where y is odd. 1099 // TODO: This could be generalized to clearing any bit set in y where the 1100 // following bit is known to be unset in y. 1101 Value *X = nullptr, *Y = nullptr; 1102 if (!Known.Zero[0] && !Known.One[0] && 1103 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1104 Known2.resetAll(); 1105 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1106 if (Known2.countMinTrailingOnes() > 0) 1107 Known.Zero.setBit(0); 1108 } 1109 break; 1110 } 1111 case Instruction::Or: 1112 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1113 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1114 1115 Known |= Known2; 1116 break; 1117 case Instruction::Xor: 1118 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1119 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1120 1121 Known ^= Known2; 1122 break; 1123 case Instruction::Mul: { 1124 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1125 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1126 Known, Known2, Depth, Q); 1127 break; 1128 } 1129 case Instruction::UDiv: { 1130 // For the purposes of computing leading zeros we can conservatively 1131 // treat a udiv as a logical right shift by the power of 2 known to 1132 // be less than the denominator. 1133 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1134 unsigned LeadZ = Known2.countMinLeadingZeros(); 1135 1136 Known2.resetAll(); 1137 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1138 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1139 if (RHSMaxLeadingZeros != BitWidth) 1140 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1141 1142 Known.Zero.setHighBits(LeadZ); 1143 break; 1144 } 1145 case Instruction::Select: { 1146 const Value *LHS = nullptr, *RHS = nullptr; 1147 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1148 if (SelectPatternResult::isMinOrMax(SPF)) { 1149 computeKnownBits(RHS, Known, Depth + 1, Q); 1150 computeKnownBits(LHS, Known2, Depth + 1, Q); 1151 switch (SPF) { 1152 default: 1153 llvm_unreachable("Unhandled select pattern flavor!"); 1154 case SPF_SMAX: 1155 Known = KnownBits::smax(Known, Known2); 1156 break; 1157 case SPF_SMIN: 1158 Known = KnownBits::smin(Known, Known2); 1159 break; 1160 case SPF_UMAX: 1161 Known = KnownBits::umax(Known, Known2); 1162 break; 1163 case SPF_UMIN: 1164 Known = KnownBits::umin(Known, Known2); 1165 break; 1166 } 1167 break; 1168 } 1169 1170 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1171 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1172 1173 // Only known if known in both the LHS and RHS. 1174 Known.One &= Known2.One; 1175 Known.Zero &= Known2.Zero; 1176 1177 if (SPF == SPF_ABS) { 1178 // RHS from matchSelectPattern returns the negation part of abs pattern. 1179 // If the negate has an NSW flag we can assume the sign bit of the result 1180 // will be 0 because that makes abs(INT_MIN) undefined. 1181 if (match(RHS, m_Neg(m_Specific(LHS))) && 1182 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1183 Known.Zero.setSignBit(); 1184 } 1185 1186 break; 1187 } 1188 case Instruction::FPTrunc: 1189 case Instruction::FPExt: 1190 case Instruction::FPToUI: 1191 case Instruction::FPToSI: 1192 case Instruction::SIToFP: 1193 case Instruction::UIToFP: 1194 break; // Can't work with floating point. 1195 case Instruction::PtrToInt: 1196 case Instruction::IntToPtr: 1197 // Fall through and handle them the same as zext/trunc. 1198 LLVM_FALLTHROUGH; 1199 case Instruction::ZExt: 1200 case Instruction::Trunc: { 1201 Type *SrcTy = I->getOperand(0)->getType(); 1202 1203 unsigned SrcBitWidth; 1204 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1205 // which fall through here. 1206 Type *ScalarTy = SrcTy->getScalarType(); 1207 SrcBitWidth = ScalarTy->isPointerTy() ? 1208 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1209 Q.DL.getTypeSizeInBits(ScalarTy); 1210 1211 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1212 Known = Known.anyextOrTrunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 Known = Known.zextOrTrunc(BitWidth); 1215 break; 1216 } 1217 case Instruction::BitCast: { 1218 Type *SrcTy = I->getOperand(0)->getType(); 1219 if (SrcTy->isIntOrPtrTy() && 1220 // TODO: For now, not handling conversions like: 1221 // (bitcast i64 %x to <2 x i32>) 1222 !I->getType()->isVectorTy()) { 1223 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1224 break; 1225 } 1226 break; 1227 } 1228 case Instruction::SExt: { 1229 // Compute the bits in the result that are not present in the input. 1230 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1231 1232 Known = Known.trunc(SrcBitWidth); 1233 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1234 // If the sign bit of the input is known set or clear, then we know the 1235 // top bits of the result. 1236 Known = Known.sext(BitWidth); 1237 break; 1238 } 1239 case Instruction::Shl: { 1240 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1241 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1242 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1243 APInt KZResult = KnownZero << ShiftAmt; 1244 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1245 // If this shift has "nsw" keyword, then the result is either a poison 1246 // value or has the same sign bit as the first operand. 1247 if (NSW && KnownZero.isSignBitSet()) 1248 KZResult.setSignBit(); 1249 return KZResult; 1250 }; 1251 1252 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1253 APInt KOResult = KnownOne << ShiftAmt; 1254 if (NSW && KnownOne.isSignBitSet()) 1255 KOResult.setSignBit(); 1256 return KOResult; 1257 }; 1258 1259 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1260 KZF, KOF); 1261 break; 1262 } 1263 case Instruction::LShr: { 1264 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1265 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1266 APInt KZResult = KnownZero.lshr(ShiftAmt); 1267 // High bits known zero. 1268 KZResult.setHighBits(ShiftAmt); 1269 return KZResult; 1270 }; 1271 1272 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1273 return KnownOne.lshr(ShiftAmt); 1274 }; 1275 1276 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1277 KZF, KOF); 1278 break; 1279 } 1280 case Instruction::AShr: { 1281 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1282 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1283 return KnownZero.ashr(ShiftAmt); 1284 }; 1285 1286 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1287 return KnownOne.ashr(ShiftAmt); 1288 }; 1289 1290 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1291 KZF, KOF); 1292 break; 1293 } 1294 case Instruction::Sub: { 1295 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1296 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1297 DemandedElts, Known, Known2, Depth, Q); 1298 break; 1299 } 1300 case Instruction::Add: { 1301 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1302 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1303 DemandedElts, Known, Known2, Depth, Q); 1304 break; 1305 } 1306 case Instruction::SRem: 1307 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1308 APInt RA = Rem->getValue().abs(); 1309 if (RA.isPowerOf2()) { 1310 APInt LowBits = RA - 1; 1311 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1312 1313 // The low bits of the first operand are unchanged by the srem. 1314 Known.Zero = Known2.Zero & LowBits; 1315 Known.One = Known2.One & LowBits; 1316 1317 // If the first operand is non-negative or has all low bits zero, then 1318 // the upper bits are all zero. 1319 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1320 Known.Zero |= ~LowBits; 1321 1322 // If the first operand is negative and not all low bits are zero, then 1323 // the upper bits are all one. 1324 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1325 Known.One |= ~LowBits; 1326 1327 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1328 break; 1329 } 1330 } 1331 1332 // The sign bit is the LHS's sign bit, except when the result of the 1333 // remainder is zero. 1334 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1335 // If it's known zero, our sign bit is also zero. 1336 if (Known2.isNonNegative()) 1337 Known.makeNonNegative(); 1338 1339 break; 1340 case Instruction::URem: { 1341 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1342 const APInt &RA = Rem->getValue(); 1343 if (RA.isPowerOf2()) { 1344 APInt LowBits = (RA - 1); 1345 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1346 Known.Zero |= ~LowBits; 1347 Known.One &= LowBits; 1348 break; 1349 } 1350 } 1351 1352 // Since the result is less than or equal to either operand, any leading 1353 // zero bits in either operand must also exist in the result. 1354 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1355 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1356 1357 unsigned Leaders = 1358 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1359 Known.resetAll(); 1360 Known.Zero.setHighBits(Leaders); 1361 break; 1362 } 1363 case Instruction::Alloca: 1364 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1365 break; 1366 case Instruction::GetElementPtr: { 1367 // Analyze all of the subscripts of this getelementptr instruction 1368 // to determine if we can prove known low zero bits. 1369 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1370 // Accumulate the constant indices in a separate variable 1371 // to minimize the number of calls to computeForAddSub. 1372 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1373 1374 gep_type_iterator GTI = gep_type_begin(I); 1375 // If the inbounds keyword is not present, the offsets are added to the 1376 // base address with silently-wrapping two’s complement arithmetic. 1377 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1378 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1379 // TrailZ can only become smaller, short-circuit if we hit zero. 1380 if (Known.isUnknown()) 1381 break; 1382 1383 Value *Index = I->getOperand(i); 1384 1385 // Handle case when index is zero. 1386 Constant *CIndex = dyn_cast<Constant>(Index); 1387 if (CIndex && CIndex->isZeroValue()) 1388 continue; 1389 1390 if (StructType *STy = GTI.getStructTypeOrNull()) { 1391 // Handle struct member offset arithmetic. 1392 1393 assert(CIndex && 1394 "Access to structure field must be known at compile time"); 1395 1396 if (CIndex->getType()->isVectorTy()) 1397 Index = CIndex->getSplatValue(); 1398 1399 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1400 const StructLayout *SL = Q.DL.getStructLayout(STy); 1401 uint64_t Offset = SL->getElementOffset(Idx); 1402 AccConstIndices += Offset; 1403 continue; 1404 } 1405 1406 // Handle array index arithmetic. 1407 Type *IndexedTy = GTI.getIndexedType(); 1408 if (!IndexedTy->isSized()) { 1409 Known.resetAll(); 1410 break; 1411 } 1412 1413 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1414 KnownBits IndexBits(IndexBitWidth); 1415 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1416 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1417 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1418 KnownBits ScalingFactor(IndexBitWidth); 1419 // Multiply by current sizeof type. 1420 // &A[i] == A + i * sizeof(*A[i]). 1421 if (IndexTypeSize.isScalable()) { 1422 // For scalable types the only thing we know about sizeof is 1423 // that this is a multiple of the minimum size. 1424 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1425 } else if (IndexBits.isConstant()) { 1426 APInt IndexConst = IndexBits.getConstant(); 1427 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1428 IndexConst *= ScalingFactor; 1429 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1430 continue; 1431 } else { 1432 ScalingFactor.Zero = ~TypeSizeInBytes; 1433 ScalingFactor.One = TypeSizeInBytes; 1434 } 1435 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1436 1437 // If the offsets have a different width from the pointer, according 1438 // to the language reference we need to sign-extend or truncate them 1439 // to the width of the pointer. 1440 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1441 1442 Known = KnownBits::computeForAddSub( 1443 /*Add=*/true, 1444 /*NSW=*/IsInBounds, Known, IndexBits); 1445 } 1446 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1447 KnownBits Index(BitWidth); 1448 Index.Zero = ~AccConstIndices; 1449 Index.One = AccConstIndices; 1450 Known = KnownBits::computeForAddSub( 1451 /*Add=*/true, 1452 /*NSW=*/IsInBounds, Known, Index); 1453 } 1454 break; 1455 } 1456 case Instruction::PHI: { 1457 const PHINode *P = cast<PHINode>(I); 1458 // Handle the case of a simple two-predecessor recurrence PHI. 1459 // There's a lot more that could theoretically be done here, but 1460 // this is sufficient to catch some interesting cases. 1461 if (P->getNumIncomingValues() == 2) { 1462 for (unsigned i = 0; i != 2; ++i) { 1463 Value *L = P->getIncomingValue(i); 1464 Value *R = P->getIncomingValue(!i); 1465 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1466 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1467 Operator *LU = dyn_cast<Operator>(L); 1468 if (!LU) 1469 continue; 1470 unsigned Opcode = LU->getOpcode(); 1471 // Check for operations that have the property that if 1472 // both their operands have low zero bits, the result 1473 // will have low zero bits. 1474 if (Opcode == Instruction::Add || 1475 Opcode == Instruction::Sub || 1476 Opcode == Instruction::And || 1477 Opcode == Instruction::Or || 1478 Opcode == Instruction::Mul) { 1479 Value *LL = LU->getOperand(0); 1480 Value *LR = LU->getOperand(1); 1481 // Find a recurrence. 1482 if (LL == I) 1483 L = LR; 1484 else if (LR == I) 1485 L = LL; 1486 else 1487 continue; // Check for recurrence with L and R flipped. 1488 1489 // Change the context instruction to the "edge" that flows into the 1490 // phi. This is important because that is where the value is actually 1491 // "evaluated" even though it is used later somewhere else. (see also 1492 // D69571). 1493 Query RecQ = Q; 1494 1495 // Ok, we have a PHI of the form L op= R. Check for low 1496 // zero bits. 1497 RecQ.CxtI = RInst; 1498 computeKnownBits(R, Known2, Depth + 1, RecQ); 1499 1500 // We need to take the minimum number of known bits 1501 KnownBits Known3(BitWidth); 1502 RecQ.CxtI = LInst; 1503 computeKnownBits(L, Known3, Depth + 1, RecQ); 1504 1505 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1506 Known3.countMinTrailingZeros())); 1507 1508 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1509 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1510 // If initial value of recurrence is nonnegative, and we are adding 1511 // a nonnegative number with nsw, the result can only be nonnegative 1512 // or poison value regardless of the number of times we execute the 1513 // add in phi recurrence. If initial value is negative and we are 1514 // adding a negative number with nsw, the result can only be 1515 // negative or poison value. Similar arguments apply to sub and mul. 1516 // 1517 // (add non-negative, non-negative) --> non-negative 1518 // (add negative, negative) --> negative 1519 if (Opcode == Instruction::Add) { 1520 if (Known2.isNonNegative() && Known3.isNonNegative()) 1521 Known.makeNonNegative(); 1522 else if (Known2.isNegative() && Known3.isNegative()) 1523 Known.makeNegative(); 1524 } 1525 1526 // (sub nsw non-negative, negative) --> non-negative 1527 // (sub nsw negative, non-negative) --> negative 1528 else if (Opcode == Instruction::Sub && LL == I) { 1529 if (Known2.isNonNegative() && Known3.isNegative()) 1530 Known.makeNonNegative(); 1531 else if (Known2.isNegative() && Known3.isNonNegative()) 1532 Known.makeNegative(); 1533 } 1534 1535 // (mul nsw non-negative, non-negative) --> non-negative 1536 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1537 Known3.isNonNegative()) 1538 Known.makeNonNegative(); 1539 } 1540 1541 break; 1542 } 1543 } 1544 } 1545 1546 // Unreachable blocks may have zero-operand PHI nodes. 1547 if (P->getNumIncomingValues() == 0) 1548 break; 1549 1550 // Otherwise take the unions of the known bit sets of the operands, 1551 // taking conservative care to avoid excessive recursion. 1552 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1553 // Skip if every incoming value references to ourself. 1554 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1555 break; 1556 1557 Known.Zero.setAllBits(); 1558 Known.One.setAllBits(); 1559 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1560 Value *IncValue = P->getIncomingValue(u); 1561 // Skip direct self references. 1562 if (IncValue == P) continue; 1563 1564 // Change the context instruction to the "edge" that flows into the 1565 // phi. This is important because that is where the value is actually 1566 // "evaluated" even though it is used later somewhere else. (see also 1567 // D69571). 1568 Query RecQ = Q; 1569 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1570 1571 Known2 = KnownBits(BitWidth); 1572 // Recurse, but cap the recursion to one level, because we don't 1573 // want to waste time spinning around in loops. 1574 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1575 Known.Zero &= Known2.Zero; 1576 Known.One &= Known2.One; 1577 // If all bits have been ruled out, there's no need to check 1578 // more operands. 1579 if (!Known.Zero && !Known.One) 1580 break; 1581 } 1582 } 1583 break; 1584 } 1585 case Instruction::Call: 1586 case Instruction::Invoke: 1587 // If range metadata is attached to this call, set known bits from that, 1588 // and then intersect with known bits based on other properties of the 1589 // function. 1590 if (MDNode *MD = 1591 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1592 computeKnownBitsFromRangeMetadata(*MD, Known); 1593 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1594 computeKnownBits(RV, Known2, Depth + 1, Q); 1595 Known.Zero |= Known2.Zero; 1596 Known.One |= Known2.One; 1597 } 1598 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1599 switch (II->getIntrinsicID()) { 1600 default: break; 1601 case Intrinsic::abs: 1602 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1603 1604 // If the source's MSB is zero then we know the rest of the bits. 1605 if (Known2.isNonNegative()) { 1606 Known.Zero |= Known2.Zero; 1607 Known.One |= Known2.One; 1608 break; 1609 } 1610 1611 // Absolute value preserves trailing zero count. 1612 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1613 1614 // If this call is undefined for INT_MIN, the result is positive. We 1615 // also know it can't be INT_MIN if there is a set bit that isn't the 1616 // sign bit. 1617 Known2.One.clearSignBit(); 1618 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1619 Known.Zero.setSignBit(); 1620 // FIXME: Handle known negative input? 1621 // FIXME: Calculate the negated Known bits and combine them? 1622 break; 1623 case Intrinsic::bitreverse: 1624 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1625 Known.Zero |= Known2.Zero.reverseBits(); 1626 Known.One |= Known2.One.reverseBits(); 1627 break; 1628 case Intrinsic::bswap: 1629 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1630 Known.Zero |= Known2.Zero.byteSwap(); 1631 Known.One |= Known2.One.byteSwap(); 1632 break; 1633 case Intrinsic::ctlz: { 1634 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1635 // If we have a known 1, its position is our upper bound. 1636 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1637 // If this call is undefined for 0, the result will be less than 2^n. 1638 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1639 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1640 unsigned LowBits = Log2_32(PossibleLZ)+1; 1641 Known.Zero.setBitsFrom(LowBits); 1642 break; 1643 } 1644 case Intrinsic::cttz: { 1645 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1646 // If we have a known 1, its position is our upper bound. 1647 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1648 // If this call is undefined for 0, the result will be less than 2^n. 1649 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1650 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1651 unsigned LowBits = Log2_32(PossibleTZ)+1; 1652 Known.Zero.setBitsFrom(LowBits); 1653 break; 1654 } 1655 case Intrinsic::ctpop: { 1656 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1657 // We can bound the space the count needs. Also, bits known to be zero 1658 // can't contribute to the population. 1659 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1660 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1661 Known.Zero.setBitsFrom(LowBits); 1662 // TODO: we could bound KnownOne using the lower bound on the number 1663 // of bits which might be set provided by popcnt KnownOne2. 1664 break; 1665 } 1666 case Intrinsic::fshr: 1667 case Intrinsic::fshl: { 1668 const APInt *SA; 1669 if (!match(I->getOperand(2), m_APInt(SA))) 1670 break; 1671 1672 // Normalize to funnel shift left. 1673 uint64_t ShiftAmt = SA->urem(BitWidth); 1674 if (II->getIntrinsicID() == Intrinsic::fshr) 1675 ShiftAmt = BitWidth - ShiftAmt; 1676 1677 KnownBits Known3(BitWidth); 1678 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1680 1681 Known.Zero = 1682 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1683 Known.One = 1684 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1685 break; 1686 } 1687 case Intrinsic::uadd_sat: 1688 case Intrinsic::usub_sat: { 1689 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1690 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1691 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1692 1693 // Add: Leading ones of either operand are preserved. 1694 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1695 // as leading zeros in the result. 1696 unsigned LeadingKnown; 1697 if (IsAdd) 1698 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1699 Known2.countMinLeadingOnes()); 1700 else 1701 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1702 Known2.countMinLeadingOnes()); 1703 1704 Known = KnownBits::computeForAddSub( 1705 IsAdd, /* NSW */ false, Known, Known2); 1706 1707 // We select between the operation result and all-ones/zero 1708 // respectively, so we can preserve known ones/zeros. 1709 if (IsAdd) { 1710 Known.One.setHighBits(LeadingKnown); 1711 Known.Zero.clearAllBits(); 1712 } else { 1713 Known.Zero.setHighBits(LeadingKnown); 1714 Known.One.clearAllBits(); 1715 } 1716 break; 1717 } 1718 case Intrinsic::umin: 1719 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1720 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1721 Known = KnownBits::umin(Known, Known2); 1722 break; 1723 case Intrinsic::umax: 1724 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1725 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1726 Known = KnownBits::umax(Known, Known2); 1727 break; 1728 case Intrinsic::smin: 1729 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1730 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1731 Known = KnownBits::smin(Known, Known2); 1732 break; 1733 case Intrinsic::smax: 1734 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1735 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1736 Known = KnownBits::smax(Known, Known2); 1737 break; 1738 case Intrinsic::x86_sse42_crc32_64_64: 1739 Known.Zero.setBitsFrom(32); 1740 break; 1741 } 1742 } 1743 break; 1744 case Instruction::ShuffleVector: { 1745 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1746 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1747 if (!Shuf) { 1748 Known.resetAll(); 1749 return; 1750 } 1751 // For undef elements, we don't know anything about the common state of 1752 // the shuffle result. 1753 APInt DemandedLHS, DemandedRHS; 1754 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1755 Known.resetAll(); 1756 return; 1757 } 1758 Known.One.setAllBits(); 1759 Known.Zero.setAllBits(); 1760 if (!!DemandedLHS) { 1761 const Value *LHS = Shuf->getOperand(0); 1762 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1763 // If we don't know any bits, early out. 1764 if (Known.isUnknown()) 1765 break; 1766 } 1767 if (!!DemandedRHS) { 1768 const Value *RHS = Shuf->getOperand(1); 1769 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1770 Known.One &= Known2.One; 1771 Known.Zero &= Known2.Zero; 1772 } 1773 break; 1774 } 1775 case Instruction::InsertElement: { 1776 const Value *Vec = I->getOperand(0); 1777 const Value *Elt = I->getOperand(1); 1778 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1779 // Early out if the index is non-constant or out-of-range. 1780 unsigned NumElts = DemandedElts.getBitWidth(); 1781 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1782 Known.resetAll(); 1783 return; 1784 } 1785 Known.One.setAllBits(); 1786 Known.Zero.setAllBits(); 1787 unsigned EltIdx = CIdx->getZExtValue(); 1788 // Do we demand the inserted element? 1789 if (DemandedElts[EltIdx]) { 1790 computeKnownBits(Elt, Known, Depth + 1, Q); 1791 // If we don't know any bits, early out. 1792 if (Known.isUnknown()) 1793 break; 1794 } 1795 // We don't need the base vector element that has been inserted. 1796 APInt DemandedVecElts = DemandedElts; 1797 DemandedVecElts.clearBit(EltIdx); 1798 if (!!DemandedVecElts) { 1799 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1800 Known.One &= Known2.One; 1801 Known.Zero &= Known2.Zero; 1802 } 1803 break; 1804 } 1805 case Instruction::ExtractElement: { 1806 // Look through extract element. If the index is non-constant or 1807 // out-of-range demand all elements, otherwise just the extracted element. 1808 const Value *Vec = I->getOperand(0); 1809 const Value *Idx = I->getOperand(1); 1810 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1811 if (isa<ScalableVectorType>(Vec->getType())) { 1812 // FIXME: there's probably *something* we can do with scalable vectors 1813 Known.resetAll(); 1814 break; 1815 } 1816 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1817 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1818 if (CIdx && CIdx->getValue().ult(NumElts)) 1819 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1820 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1821 break; 1822 } 1823 case Instruction::ExtractValue: 1824 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1825 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1826 if (EVI->getNumIndices() != 1) break; 1827 if (EVI->getIndices()[0] == 0) { 1828 switch (II->getIntrinsicID()) { 1829 default: break; 1830 case Intrinsic::uadd_with_overflow: 1831 case Intrinsic::sadd_with_overflow: 1832 computeKnownBitsAddSub(true, II->getArgOperand(0), 1833 II->getArgOperand(1), false, DemandedElts, 1834 Known, Known2, Depth, Q); 1835 break; 1836 case Intrinsic::usub_with_overflow: 1837 case Intrinsic::ssub_with_overflow: 1838 computeKnownBitsAddSub(false, II->getArgOperand(0), 1839 II->getArgOperand(1), false, DemandedElts, 1840 Known, Known2, Depth, Q); 1841 break; 1842 case Intrinsic::umul_with_overflow: 1843 case Intrinsic::smul_with_overflow: 1844 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1845 DemandedElts, Known, Known2, Depth, Q); 1846 break; 1847 } 1848 } 1849 } 1850 break; 1851 case Instruction::Freeze: 1852 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1853 Depth + 1)) 1854 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1855 break; 1856 } 1857 } 1858 1859 /// Determine which bits of V are known to be either zero or one and return 1860 /// them. 1861 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1862 unsigned Depth, const Query &Q) { 1863 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1864 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1865 return Known; 1866 } 1867 1868 /// Determine which bits of V are known to be either zero or one and return 1869 /// them. 1870 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1871 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1872 computeKnownBits(V, Known, Depth, Q); 1873 return Known; 1874 } 1875 1876 /// Determine which bits of V are known to be either zero or one and return 1877 /// them in the Known bit set. 1878 /// 1879 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1880 /// we cannot optimize based on the assumption that it is zero without changing 1881 /// it to be an explicit zero. If we don't change it to zero, other code could 1882 /// optimized based on the contradictory assumption that it is non-zero. 1883 /// Because instcombine aggressively folds operations with undef args anyway, 1884 /// this won't lose us code quality. 1885 /// 1886 /// This function is defined on values with integer type, values with pointer 1887 /// type, and vectors of integers. In the case 1888 /// where V is a vector, known zero, and known one values are the 1889 /// same width as the vector element, and the bit is set only if it is true 1890 /// for all of the demanded elements in the vector specified by DemandedElts. 1891 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1892 KnownBits &Known, unsigned Depth, const Query &Q) { 1893 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1894 // No demanded elts or V is a scalable vector, better to assume we don't 1895 // know anything. 1896 Known.resetAll(); 1897 return; 1898 } 1899 1900 assert(V && "No Value?"); 1901 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1902 1903 #ifndef NDEBUG 1904 Type *Ty = V->getType(); 1905 unsigned BitWidth = Known.getBitWidth(); 1906 1907 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1908 "Not integer or pointer type!"); 1909 1910 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1911 assert( 1912 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1913 "DemandedElt width should equal the fixed vector number of elements"); 1914 } else { 1915 assert(DemandedElts == APInt(1, 1) && 1916 "DemandedElt width should be 1 for scalars"); 1917 } 1918 1919 Type *ScalarTy = Ty->getScalarType(); 1920 if (ScalarTy->isPointerTy()) { 1921 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1922 "V and Known should have same BitWidth"); 1923 } else { 1924 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1925 "V and Known should have same BitWidth"); 1926 } 1927 #endif 1928 1929 const APInt *C; 1930 if (match(V, m_APInt(C))) { 1931 // We know all of the bits for a scalar constant or a splat vector constant! 1932 Known.One = *C; 1933 Known.Zero = ~Known.One; 1934 return; 1935 } 1936 // Null and aggregate-zero are all-zeros. 1937 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1938 Known.setAllZero(); 1939 return; 1940 } 1941 // Handle a constant vector by taking the intersection of the known bits of 1942 // each element. 1943 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1944 // We know that CDV must be a vector of integers. Take the intersection of 1945 // each element. 1946 Known.Zero.setAllBits(); Known.One.setAllBits(); 1947 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1948 if (!DemandedElts[i]) 1949 continue; 1950 APInt Elt = CDV->getElementAsAPInt(i); 1951 Known.Zero &= ~Elt; 1952 Known.One &= Elt; 1953 } 1954 return; 1955 } 1956 1957 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1958 // We know that CV must be a vector of integers. Take the intersection of 1959 // each element. 1960 Known.Zero.setAllBits(); Known.One.setAllBits(); 1961 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1962 if (!DemandedElts[i]) 1963 continue; 1964 Constant *Element = CV->getAggregateElement(i); 1965 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1966 if (!ElementCI) { 1967 Known.resetAll(); 1968 return; 1969 } 1970 const APInt &Elt = ElementCI->getValue(); 1971 Known.Zero &= ~Elt; 1972 Known.One &= Elt; 1973 } 1974 return; 1975 } 1976 1977 // Start out not knowing anything. 1978 Known.resetAll(); 1979 1980 // We can't imply anything about undefs. 1981 if (isa<UndefValue>(V)) 1982 return; 1983 1984 // There's no point in looking through other users of ConstantData for 1985 // assumptions. Confirm that we've handled them all. 1986 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1987 1988 // All recursive calls that increase depth must come after this. 1989 if (Depth == MaxAnalysisRecursionDepth) 1990 return; 1991 1992 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1993 // the bits of its aliasee. 1994 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1995 if (!GA->isInterposable()) 1996 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1997 return; 1998 } 1999 2000 if (const Operator *I = dyn_cast<Operator>(V)) 2001 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2002 2003 // Aligned pointers have trailing zeros - refine Known.Zero set 2004 if (isa<PointerType>(V->getType())) { 2005 Align Alignment = V->getPointerAlignment(Q.DL); 2006 Known.Zero.setLowBits(Log2(Alignment)); 2007 } 2008 2009 // computeKnownBitsFromAssume strictly refines Known. 2010 // Therefore, we run them after computeKnownBitsFromOperator. 2011 2012 // Check whether a nearby assume intrinsic can determine some known bits. 2013 computeKnownBitsFromAssume(V, Known, Depth, Q); 2014 2015 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2016 } 2017 2018 /// Return true if the given value is known to have exactly one 2019 /// bit set when defined. For vectors return true if every element is known to 2020 /// be a power of two when defined. Supports values with integer or pointer 2021 /// types and vectors of integers. 2022 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2023 const Query &Q) { 2024 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2025 2026 // Attempt to match against constants. 2027 if (OrZero && match(V, m_Power2OrZero())) 2028 return true; 2029 if (match(V, m_Power2())) 2030 return true; 2031 2032 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2033 // it is shifted off the end then the result is undefined. 2034 if (match(V, m_Shl(m_One(), m_Value()))) 2035 return true; 2036 2037 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2038 // the bottom. If it is shifted off the bottom then the result is undefined. 2039 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2040 return true; 2041 2042 // The remaining tests are all recursive, so bail out if we hit the limit. 2043 if (Depth++ == MaxAnalysisRecursionDepth) 2044 return false; 2045 2046 Value *X = nullptr, *Y = nullptr; 2047 // A shift left or a logical shift right of a power of two is a power of two 2048 // or zero. 2049 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2050 match(V, m_LShr(m_Value(X), m_Value())))) 2051 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2052 2053 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2054 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2055 2056 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2057 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2058 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2059 2060 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2061 // A power of two and'd with anything is a power of two or zero. 2062 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2063 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2064 return true; 2065 // X & (-X) is always a power of two or zero. 2066 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2067 return true; 2068 return false; 2069 } 2070 2071 // Adding a power-of-two or zero to the same power-of-two or zero yields 2072 // either the original power-of-two, a larger power-of-two or zero. 2073 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2074 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2075 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2076 Q.IIQ.hasNoSignedWrap(VOBO)) { 2077 if (match(X, m_And(m_Specific(Y), m_Value())) || 2078 match(X, m_And(m_Value(), m_Specific(Y)))) 2079 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2080 return true; 2081 if (match(Y, m_And(m_Specific(X), m_Value())) || 2082 match(Y, m_And(m_Value(), m_Specific(X)))) 2083 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2084 return true; 2085 2086 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2087 KnownBits LHSBits(BitWidth); 2088 computeKnownBits(X, LHSBits, Depth, Q); 2089 2090 KnownBits RHSBits(BitWidth); 2091 computeKnownBits(Y, RHSBits, Depth, Q); 2092 // If i8 V is a power of two or zero: 2093 // ZeroBits: 1 1 1 0 1 1 1 1 2094 // ~ZeroBits: 0 0 0 1 0 0 0 0 2095 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2096 // If OrZero isn't set, we cannot give back a zero result. 2097 // Make sure either the LHS or RHS has a bit set. 2098 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2099 return true; 2100 } 2101 } 2102 2103 // An exact divide or right shift can only shift off zero bits, so the result 2104 // is a power of two only if the first operand is a power of two and not 2105 // copying a sign bit (sdiv int_min, 2). 2106 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2107 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2108 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2109 Depth, Q); 2110 } 2111 2112 return false; 2113 } 2114 2115 /// Test whether a GEP's result is known to be non-null. 2116 /// 2117 /// Uses properties inherent in a GEP to try to determine whether it is known 2118 /// to be non-null. 2119 /// 2120 /// Currently this routine does not support vector GEPs. 2121 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2122 const Query &Q) { 2123 const Function *F = nullptr; 2124 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2125 F = I->getFunction(); 2126 2127 if (!GEP->isInBounds() || 2128 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2129 return false; 2130 2131 // FIXME: Support vector-GEPs. 2132 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2133 2134 // If the base pointer is non-null, we cannot walk to a null address with an 2135 // inbounds GEP in address space zero. 2136 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2137 return true; 2138 2139 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2140 // If so, then the GEP cannot produce a null pointer, as doing so would 2141 // inherently violate the inbounds contract within address space zero. 2142 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2143 GTI != GTE; ++GTI) { 2144 // Struct types are easy -- they must always be indexed by a constant. 2145 if (StructType *STy = GTI.getStructTypeOrNull()) { 2146 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2147 unsigned ElementIdx = OpC->getZExtValue(); 2148 const StructLayout *SL = Q.DL.getStructLayout(STy); 2149 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2150 if (ElementOffset > 0) 2151 return true; 2152 continue; 2153 } 2154 2155 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2156 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2157 continue; 2158 2159 // Fast path the constant operand case both for efficiency and so we don't 2160 // increment Depth when just zipping down an all-constant GEP. 2161 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2162 if (!OpC->isZero()) 2163 return true; 2164 continue; 2165 } 2166 2167 // We post-increment Depth here because while isKnownNonZero increments it 2168 // as well, when we pop back up that increment won't persist. We don't want 2169 // to recurse 10k times just because we have 10k GEP operands. We don't 2170 // bail completely out because we want to handle constant GEPs regardless 2171 // of depth. 2172 if (Depth++ >= MaxAnalysisRecursionDepth) 2173 continue; 2174 2175 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2176 return true; 2177 } 2178 2179 return false; 2180 } 2181 2182 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2183 const Instruction *CtxI, 2184 const DominatorTree *DT) { 2185 if (isa<Constant>(V)) 2186 return false; 2187 2188 if (!CtxI || !DT) 2189 return false; 2190 2191 unsigned NumUsesExplored = 0; 2192 for (auto *U : V->users()) { 2193 // Avoid massive lists 2194 if (NumUsesExplored >= DomConditionsMaxUses) 2195 break; 2196 NumUsesExplored++; 2197 2198 // If the value is used as an argument to a call or invoke, then argument 2199 // attributes may provide an answer about null-ness. 2200 if (const auto *CB = dyn_cast<CallBase>(U)) 2201 if (auto *CalledFunc = CB->getCalledFunction()) 2202 for (const Argument &Arg : CalledFunc->args()) 2203 if (CB->getArgOperand(Arg.getArgNo()) == V && 2204 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2205 return true; 2206 2207 // If the value is used as a load/store, then the pointer must be non null. 2208 if (V == getLoadStorePointerOperand(U)) { 2209 const Instruction *I = cast<Instruction>(U); 2210 if (!NullPointerIsDefined(I->getFunction(), 2211 V->getType()->getPointerAddressSpace()) && 2212 DT->dominates(I, CtxI)) 2213 return true; 2214 } 2215 2216 // Consider only compare instructions uniquely controlling a branch 2217 CmpInst::Predicate Pred; 2218 if (!match(const_cast<User *>(U), 2219 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2220 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2221 continue; 2222 2223 SmallVector<const User *, 4> WorkList; 2224 SmallPtrSet<const User *, 4> Visited; 2225 for (auto *CmpU : U->users()) { 2226 assert(WorkList.empty() && "Should be!"); 2227 if (Visited.insert(CmpU).second) 2228 WorkList.push_back(CmpU); 2229 2230 while (!WorkList.empty()) { 2231 auto *Curr = WorkList.pop_back_val(); 2232 2233 // If a user is an AND, add all its users to the work list. We only 2234 // propagate "pred != null" condition through AND because it is only 2235 // correct to assume that all conditions of AND are met in true branch. 2236 // TODO: Support similar logic of OR and EQ predicate? 2237 if (Pred == ICmpInst::ICMP_NE) 2238 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2239 if (BO->getOpcode() == Instruction::And) { 2240 for (auto *BOU : BO->users()) 2241 if (Visited.insert(BOU).second) 2242 WorkList.push_back(BOU); 2243 continue; 2244 } 2245 2246 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2247 assert(BI->isConditional() && "uses a comparison!"); 2248 2249 BasicBlock *NonNullSuccessor = 2250 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2251 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2252 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2253 return true; 2254 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2255 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2256 return true; 2257 } 2258 } 2259 } 2260 } 2261 2262 return false; 2263 } 2264 2265 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2266 /// ensure that the value it's attached to is never Value? 'RangeType' is 2267 /// is the type of the value described by the range. 2268 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2269 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2270 assert(NumRanges >= 1); 2271 for (unsigned i = 0; i < NumRanges; ++i) { 2272 ConstantInt *Lower = 2273 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2274 ConstantInt *Upper = 2275 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2276 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2277 if (Range.contains(Value)) 2278 return false; 2279 } 2280 return true; 2281 } 2282 2283 /// Return true if the given value is known to be non-zero when defined. For 2284 /// vectors, return true if every demanded element is known to be non-zero when 2285 /// defined. For pointers, if the context instruction and dominator tree are 2286 /// specified, perform context-sensitive analysis and return true if the 2287 /// pointer couldn't possibly be null at the specified instruction. 2288 /// Supports values with integer or pointer type and vectors of integers. 2289 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2290 const Query &Q) { 2291 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2292 // vector 2293 if (isa<ScalableVectorType>(V->getType())) 2294 return false; 2295 2296 if (auto *C = dyn_cast<Constant>(V)) { 2297 if (C->isNullValue()) 2298 return false; 2299 if (isa<ConstantInt>(C)) 2300 // Must be non-zero due to null test above. 2301 return true; 2302 2303 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2304 // See the comment for IntToPtr/PtrToInt instructions below. 2305 if (CE->getOpcode() == Instruction::IntToPtr || 2306 CE->getOpcode() == Instruction::PtrToInt) 2307 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2308 .getFixedSize() <= 2309 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2310 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2311 } 2312 2313 // For constant vectors, check that all elements are undefined or known 2314 // non-zero to determine that the whole vector is known non-zero. 2315 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2316 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2317 if (!DemandedElts[i]) 2318 continue; 2319 Constant *Elt = C->getAggregateElement(i); 2320 if (!Elt || Elt->isNullValue()) 2321 return false; 2322 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2323 return false; 2324 } 2325 return true; 2326 } 2327 2328 // A global variable in address space 0 is non null unless extern weak 2329 // or an absolute symbol reference. Other address spaces may have null as a 2330 // valid address for a global, so we can't assume anything. 2331 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2332 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2333 GV->getType()->getAddressSpace() == 0) 2334 return true; 2335 } else 2336 return false; 2337 } 2338 2339 if (auto *I = dyn_cast<Instruction>(V)) { 2340 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2341 // If the possible ranges don't contain zero, then the value is 2342 // definitely non-zero. 2343 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2344 const APInt ZeroValue(Ty->getBitWidth(), 0); 2345 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2346 return true; 2347 } 2348 } 2349 } 2350 2351 if (isKnownNonZeroFromAssume(V, Q)) 2352 return true; 2353 2354 // Some of the tests below are recursive, so bail out if we hit the limit. 2355 if (Depth++ >= MaxAnalysisRecursionDepth) 2356 return false; 2357 2358 // Check for pointer simplifications. 2359 2360 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2361 // Alloca never returns null, malloc might. 2362 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2363 return true; 2364 2365 // A byval, inalloca may not be null in a non-default addres space. A 2366 // nonnull argument is assumed never 0. 2367 if (const Argument *A = dyn_cast<Argument>(V)) { 2368 if (((A->hasPassPointeeByValueCopyAttr() && 2369 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2370 A->hasNonNullAttr())) 2371 return true; 2372 } 2373 2374 // A Load tagged with nonnull metadata is never null. 2375 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2376 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2377 return true; 2378 2379 if (const auto *Call = dyn_cast<CallBase>(V)) { 2380 if (Call->isReturnNonNull()) 2381 return true; 2382 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2383 return isKnownNonZero(RP, Depth, Q); 2384 } 2385 } 2386 2387 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2388 return true; 2389 2390 // Check for recursive pointer simplifications. 2391 if (V->getType()->isPointerTy()) { 2392 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2393 // do not alter the value, or at least not the nullness property of the 2394 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2395 // 2396 // Note that we have to take special care to avoid looking through 2397 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2398 // as casts that can alter the value, e.g., AddrSpaceCasts. 2399 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2400 return isGEPKnownNonNull(GEP, Depth, Q); 2401 2402 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2403 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2404 2405 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2406 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2407 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2408 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2409 } 2410 2411 // Similar to int2ptr above, we can look through ptr2int here if the cast 2412 // is a no-op or an extend and not a truncate. 2413 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2414 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2415 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2416 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2417 2418 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2419 2420 // X | Y != 0 if X != 0 or Y != 0. 2421 Value *X = nullptr, *Y = nullptr; 2422 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2423 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2424 isKnownNonZero(Y, DemandedElts, Depth, Q); 2425 2426 // ext X != 0 if X != 0. 2427 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2428 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2429 2430 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2431 // if the lowest bit is shifted off the end. 2432 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2433 // shl nuw can't remove any non-zero bits. 2434 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2435 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2436 return isKnownNonZero(X, Depth, Q); 2437 2438 KnownBits Known(BitWidth); 2439 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2440 if (Known.One[0]) 2441 return true; 2442 } 2443 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2444 // defined if the sign bit is shifted off the end. 2445 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2446 // shr exact can only shift out zero bits. 2447 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2448 if (BO->isExact()) 2449 return isKnownNonZero(X, Depth, Q); 2450 2451 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2452 if (Known.isNegative()) 2453 return true; 2454 2455 // If the shifter operand is a constant, and all of the bits shifted 2456 // out are known to be zero, and X is known non-zero then at least one 2457 // non-zero bit must remain. 2458 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2459 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2460 // Is there a known one in the portion not shifted out? 2461 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2462 return true; 2463 // Are all the bits to be shifted out known zero? 2464 if (Known.countMinTrailingZeros() >= ShiftVal) 2465 return isKnownNonZero(X, DemandedElts, Depth, Q); 2466 } 2467 } 2468 // div exact can only produce a zero if the dividend is zero. 2469 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2470 return isKnownNonZero(X, DemandedElts, Depth, Q); 2471 } 2472 // X + Y. 2473 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2474 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2475 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2476 2477 // If X and Y are both non-negative (as signed values) then their sum is not 2478 // zero unless both X and Y are zero. 2479 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2480 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2481 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2482 return true; 2483 2484 // If X and Y are both negative (as signed values) then their sum is not 2485 // zero unless both X and Y equal INT_MIN. 2486 if (XKnown.isNegative() && YKnown.isNegative()) { 2487 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2488 // The sign bit of X is set. If some other bit is set then X is not equal 2489 // to INT_MIN. 2490 if (XKnown.One.intersects(Mask)) 2491 return true; 2492 // The sign bit of Y is set. If some other bit is set then Y is not equal 2493 // to INT_MIN. 2494 if (YKnown.One.intersects(Mask)) 2495 return true; 2496 } 2497 2498 // The sum of a non-negative number and a power of two is not zero. 2499 if (XKnown.isNonNegative() && 2500 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2501 return true; 2502 if (YKnown.isNonNegative() && 2503 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2504 return true; 2505 } 2506 // X * Y. 2507 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2508 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2509 // If X and Y are non-zero then so is X * Y as long as the multiplication 2510 // does not overflow. 2511 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2512 isKnownNonZero(X, DemandedElts, Depth, Q) && 2513 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2514 return true; 2515 } 2516 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2517 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2518 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2519 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2520 return true; 2521 } 2522 // PHI 2523 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2524 // Try and detect a recurrence that monotonically increases from a 2525 // starting value, as these are common as induction variables. 2526 if (PN->getNumIncomingValues() == 2) { 2527 Value *Start = PN->getIncomingValue(0); 2528 Value *Induction = PN->getIncomingValue(1); 2529 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2530 std::swap(Start, Induction); 2531 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2532 if (!C->isZero() && !C->isNegative()) { 2533 ConstantInt *X; 2534 if (Q.IIQ.UseInstrInfo && 2535 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2536 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2537 !X->isNegative()) 2538 return true; 2539 } 2540 } 2541 } 2542 // Check if all incoming values are non-zero using recursion. 2543 Query RecQ = Q; 2544 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2545 return llvm::all_of(PN->operands(), [&](const Use &U) { 2546 if (U.get() == PN) 2547 return true; 2548 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2549 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2550 }); 2551 } 2552 // ExtractElement 2553 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2554 const Value *Vec = EEI->getVectorOperand(); 2555 const Value *Idx = EEI->getIndexOperand(); 2556 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2557 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2558 unsigned NumElts = VecTy->getNumElements(); 2559 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2560 if (CIdx && CIdx->getValue().ult(NumElts)) 2561 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2562 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2563 } 2564 } 2565 // Freeze 2566 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2567 auto *Op = FI->getOperand(0); 2568 if (isKnownNonZero(Op, Depth, Q) && 2569 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2570 return true; 2571 } 2572 2573 KnownBits Known(BitWidth); 2574 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2575 return Known.One != 0; 2576 } 2577 2578 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2579 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2580 // vector 2581 if (isa<ScalableVectorType>(V->getType())) 2582 return false; 2583 2584 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2585 APInt DemandedElts = 2586 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2587 return isKnownNonZero(V, DemandedElts, Depth, Q); 2588 } 2589 2590 /// Return true if V2 == V1 + X, where X is known non-zero. 2591 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2592 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2593 if (!BO || BO->getOpcode() != Instruction::Add) 2594 return false; 2595 Value *Op = nullptr; 2596 if (V2 == BO->getOperand(0)) 2597 Op = BO->getOperand(1); 2598 else if (V2 == BO->getOperand(1)) 2599 Op = BO->getOperand(0); 2600 else 2601 return false; 2602 return isKnownNonZero(Op, 0, Q); 2603 } 2604 2605 /// Return true if it is known that V1 != V2. 2606 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2607 if (V1 == V2) 2608 return false; 2609 if (V1->getType() != V2->getType()) 2610 // We can't look through casts yet. 2611 return false; 2612 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2613 return true; 2614 2615 if (V1->getType()->isIntOrIntVectorTy()) { 2616 // Are any known bits in V1 contradictory to known bits in V2? If V1 2617 // has a known zero where V2 has a known one, they must not be equal. 2618 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2619 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2620 2621 if (Known1.Zero.intersects(Known2.One) || 2622 Known2.Zero.intersects(Known1.One)) 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2629 /// simplify operations downstream. Mask is known to be zero for bits that V 2630 /// cannot have. 2631 /// 2632 /// This function is defined on values with integer type, values with pointer 2633 /// type, and vectors of integers. In the case 2634 /// where V is a vector, the mask, known zero, and known one values are the 2635 /// same width as the vector element, and the bit is set only if it is true 2636 /// for all of the elements in the vector. 2637 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2638 const Query &Q) { 2639 KnownBits Known(Mask.getBitWidth()); 2640 computeKnownBits(V, Known, Depth, Q); 2641 return Mask.isSubsetOf(Known.Zero); 2642 } 2643 2644 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2645 // Returns the input and lower/upper bounds. 2646 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2647 const APInt *&CLow, const APInt *&CHigh) { 2648 assert(isa<Operator>(Select) && 2649 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2650 "Input should be a Select!"); 2651 2652 const Value *LHS = nullptr, *RHS = nullptr; 2653 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2654 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2655 return false; 2656 2657 if (!match(RHS, m_APInt(CLow))) 2658 return false; 2659 2660 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2661 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2662 if (getInverseMinMaxFlavor(SPF) != SPF2) 2663 return false; 2664 2665 if (!match(RHS2, m_APInt(CHigh))) 2666 return false; 2667 2668 if (SPF == SPF_SMIN) 2669 std::swap(CLow, CHigh); 2670 2671 In = LHS2; 2672 return CLow->sle(*CHigh); 2673 } 2674 2675 /// For vector constants, loop over the elements and find the constant with the 2676 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2677 /// or if any element was not analyzed; otherwise, return the count for the 2678 /// element with the minimum number of sign bits. 2679 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2680 const APInt &DemandedElts, 2681 unsigned TyBits) { 2682 const auto *CV = dyn_cast<Constant>(V); 2683 if (!CV || !isa<FixedVectorType>(CV->getType())) 2684 return 0; 2685 2686 unsigned MinSignBits = TyBits; 2687 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2688 for (unsigned i = 0; i != NumElts; ++i) { 2689 if (!DemandedElts[i]) 2690 continue; 2691 // If we find a non-ConstantInt, bail out. 2692 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2693 if (!Elt) 2694 return 0; 2695 2696 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2697 } 2698 2699 return MinSignBits; 2700 } 2701 2702 static unsigned ComputeNumSignBitsImpl(const Value *V, 2703 const APInt &DemandedElts, 2704 unsigned Depth, const Query &Q); 2705 2706 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2707 unsigned Depth, const Query &Q) { 2708 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2709 assert(Result > 0 && "At least one sign bit needs to be present!"); 2710 return Result; 2711 } 2712 2713 /// Return the number of times the sign bit of the register is replicated into 2714 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2715 /// (itself), but other cases can give us information. For example, immediately 2716 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2717 /// other, so we return 3. For vectors, return the number of sign bits for the 2718 /// vector element with the minimum number of known sign bits of the demanded 2719 /// elements in the vector specified by DemandedElts. 2720 static unsigned ComputeNumSignBitsImpl(const Value *V, 2721 const APInt &DemandedElts, 2722 unsigned Depth, const Query &Q) { 2723 Type *Ty = V->getType(); 2724 2725 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2726 // vector 2727 if (isa<ScalableVectorType>(Ty)) 2728 return 1; 2729 2730 #ifndef NDEBUG 2731 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2732 2733 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2734 assert( 2735 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2736 "DemandedElt width should equal the fixed vector number of elements"); 2737 } else { 2738 assert(DemandedElts == APInt(1, 1) && 2739 "DemandedElt width should be 1 for scalars"); 2740 } 2741 #endif 2742 2743 // We return the minimum number of sign bits that are guaranteed to be present 2744 // in V, so for undef we have to conservatively return 1. We don't have the 2745 // same behavior for poison though -- that's a FIXME today. 2746 2747 Type *ScalarTy = Ty->getScalarType(); 2748 unsigned TyBits = ScalarTy->isPointerTy() ? 2749 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2750 Q.DL.getTypeSizeInBits(ScalarTy); 2751 2752 unsigned Tmp, Tmp2; 2753 unsigned FirstAnswer = 1; 2754 2755 // Note that ConstantInt is handled by the general computeKnownBits case 2756 // below. 2757 2758 if (Depth == MaxAnalysisRecursionDepth) 2759 return 1; 2760 2761 if (auto *U = dyn_cast<Operator>(V)) { 2762 switch (Operator::getOpcode(V)) { 2763 default: break; 2764 case Instruction::SExt: 2765 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2766 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2767 2768 case Instruction::SDiv: { 2769 const APInt *Denominator; 2770 // sdiv X, C -> adds log(C) sign bits. 2771 if (match(U->getOperand(1), m_APInt(Denominator))) { 2772 2773 // Ignore non-positive denominator. 2774 if (!Denominator->isStrictlyPositive()) 2775 break; 2776 2777 // Calculate the incoming numerator bits. 2778 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2779 2780 // Add floor(log(C)) bits to the numerator bits. 2781 return std::min(TyBits, NumBits + Denominator->logBase2()); 2782 } 2783 break; 2784 } 2785 2786 case Instruction::SRem: { 2787 const APInt *Denominator; 2788 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2789 // positive constant. This let us put a lower bound on the number of sign 2790 // bits. 2791 if (match(U->getOperand(1), m_APInt(Denominator))) { 2792 2793 // Ignore non-positive denominator. 2794 if (!Denominator->isStrictlyPositive()) 2795 break; 2796 2797 // Calculate the incoming numerator bits. SRem by a positive constant 2798 // can't lower the number of sign bits. 2799 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2800 2801 // Calculate the leading sign bit constraints by examining the 2802 // denominator. Given that the denominator is positive, there are two 2803 // cases: 2804 // 2805 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2806 // (1 << ceilLogBase2(C)). 2807 // 2808 // 2. the numerator is negative. Then the result range is (-C,0] and 2809 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2810 // 2811 // Thus a lower bound on the number of sign bits is `TyBits - 2812 // ceilLogBase2(C)`. 2813 2814 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2815 return std::max(NumrBits, ResBits); 2816 } 2817 break; 2818 } 2819 2820 case Instruction::AShr: { 2821 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2822 // ashr X, C -> adds C sign bits. Vectors too. 2823 const APInt *ShAmt; 2824 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2825 if (ShAmt->uge(TyBits)) 2826 break; // Bad shift. 2827 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2828 Tmp += ShAmtLimited; 2829 if (Tmp > TyBits) Tmp = TyBits; 2830 } 2831 return Tmp; 2832 } 2833 case Instruction::Shl: { 2834 const APInt *ShAmt; 2835 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2836 // shl destroys sign bits. 2837 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2838 if (ShAmt->uge(TyBits) || // Bad shift. 2839 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2840 Tmp2 = ShAmt->getZExtValue(); 2841 return Tmp - Tmp2; 2842 } 2843 break; 2844 } 2845 case Instruction::And: 2846 case Instruction::Or: 2847 case Instruction::Xor: // NOT is handled here. 2848 // Logical binary ops preserve the number of sign bits at the worst. 2849 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2850 if (Tmp != 1) { 2851 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2852 FirstAnswer = std::min(Tmp, Tmp2); 2853 // We computed what we know about the sign bits as our first 2854 // answer. Now proceed to the generic code that uses 2855 // computeKnownBits, and pick whichever answer is better. 2856 } 2857 break; 2858 2859 case Instruction::Select: { 2860 // If we have a clamp pattern, we know that the number of sign bits will 2861 // be the minimum of the clamp min/max range. 2862 const Value *X; 2863 const APInt *CLow, *CHigh; 2864 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2865 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2866 2867 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2868 if (Tmp == 1) break; 2869 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2870 return std::min(Tmp, Tmp2); 2871 } 2872 2873 case Instruction::Add: 2874 // Add can have at most one carry bit. Thus we know that the output 2875 // is, at worst, one more bit than the inputs. 2876 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2877 if (Tmp == 1) break; 2878 2879 // Special case decrementing a value (ADD X, -1): 2880 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2881 if (CRHS->isAllOnesValue()) { 2882 KnownBits Known(TyBits); 2883 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2884 2885 // If the input is known to be 0 or 1, the output is 0/-1, which is 2886 // all sign bits set. 2887 if ((Known.Zero | 1).isAllOnesValue()) 2888 return TyBits; 2889 2890 // If we are subtracting one from a positive number, there is no carry 2891 // out of the result. 2892 if (Known.isNonNegative()) 2893 return Tmp; 2894 } 2895 2896 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2897 if (Tmp2 == 1) break; 2898 return std::min(Tmp, Tmp2) - 1; 2899 2900 case Instruction::Sub: 2901 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2902 if (Tmp2 == 1) break; 2903 2904 // Handle NEG. 2905 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2906 if (CLHS->isNullValue()) { 2907 KnownBits Known(TyBits); 2908 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2909 // If the input is known to be 0 or 1, the output is 0/-1, which is 2910 // all sign bits set. 2911 if ((Known.Zero | 1).isAllOnesValue()) 2912 return TyBits; 2913 2914 // If the input is known to be positive (the sign bit is known clear), 2915 // the output of the NEG has the same number of sign bits as the 2916 // input. 2917 if (Known.isNonNegative()) 2918 return Tmp2; 2919 2920 // Otherwise, we treat this like a SUB. 2921 } 2922 2923 // Sub can have at most one carry bit. Thus we know that the output 2924 // is, at worst, one more bit than the inputs. 2925 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2926 if (Tmp == 1) break; 2927 return std::min(Tmp, Tmp2) - 1; 2928 2929 case Instruction::Mul: { 2930 // The output of the Mul can be at most twice the valid bits in the 2931 // inputs. 2932 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2933 if (SignBitsOp0 == 1) break; 2934 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2935 if (SignBitsOp1 == 1) break; 2936 unsigned OutValidBits = 2937 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2938 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2939 } 2940 2941 case Instruction::PHI: { 2942 const PHINode *PN = cast<PHINode>(U); 2943 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2944 // Don't analyze large in-degree PHIs. 2945 if (NumIncomingValues > 4) break; 2946 // Unreachable blocks may have zero-operand PHI nodes. 2947 if (NumIncomingValues == 0) break; 2948 2949 // Take the minimum of all incoming values. This can't infinitely loop 2950 // because of our depth threshold. 2951 Query RecQ = Q; 2952 Tmp = TyBits; 2953 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2954 if (Tmp == 1) return Tmp; 2955 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2956 Tmp = std::min( 2957 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2958 } 2959 return Tmp; 2960 } 2961 2962 case Instruction::Trunc: 2963 // FIXME: it's tricky to do anything useful for this, but it is an 2964 // important case for targets like X86. 2965 break; 2966 2967 case Instruction::ExtractElement: 2968 // Look through extract element. At the moment we keep this simple and 2969 // skip tracking the specific element. But at least we might find 2970 // information valid for all elements of the vector (for example if vector 2971 // is sign extended, shifted, etc). 2972 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2973 2974 case Instruction::ShuffleVector: { 2975 // Collect the minimum number of sign bits that are shared by every vector 2976 // element referenced by the shuffle. 2977 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2978 if (!Shuf) { 2979 // FIXME: Add support for shufflevector constant expressions. 2980 return 1; 2981 } 2982 APInt DemandedLHS, DemandedRHS; 2983 // For undef elements, we don't know anything about the common state of 2984 // the shuffle result. 2985 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2986 return 1; 2987 Tmp = std::numeric_limits<unsigned>::max(); 2988 if (!!DemandedLHS) { 2989 const Value *LHS = Shuf->getOperand(0); 2990 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2991 } 2992 // If we don't know anything, early out and try computeKnownBits 2993 // fall-back. 2994 if (Tmp == 1) 2995 break; 2996 if (!!DemandedRHS) { 2997 const Value *RHS = Shuf->getOperand(1); 2998 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2999 Tmp = std::min(Tmp, Tmp2); 3000 } 3001 // If we don't know anything, early out and try computeKnownBits 3002 // fall-back. 3003 if (Tmp == 1) 3004 break; 3005 assert(Tmp <= Ty->getScalarSizeInBits() && 3006 "Failed to determine minimum sign bits"); 3007 return Tmp; 3008 } 3009 case Instruction::Call: { 3010 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3011 switch (II->getIntrinsicID()) { 3012 default: break; 3013 case Intrinsic::abs: 3014 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3015 if (Tmp == 1) break; 3016 3017 // Absolute value reduces number of sign bits by at most 1. 3018 return Tmp - 1; 3019 } 3020 } 3021 } 3022 } 3023 } 3024 3025 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3026 // use this information. 3027 3028 // If we can examine all elements of a vector constant successfully, we're 3029 // done (we can't do any better than that). If not, keep trying. 3030 if (unsigned VecSignBits = 3031 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3032 return VecSignBits; 3033 3034 KnownBits Known(TyBits); 3035 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3036 3037 // If we know that the sign bit is either zero or one, determine the number of 3038 // identical bits in the top of the input value. 3039 return std::max(FirstAnswer, Known.countMinSignBits()); 3040 } 3041 3042 /// This function computes the integer multiple of Base that equals V. 3043 /// If successful, it returns true and returns the multiple in 3044 /// Multiple. If unsuccessful, it returns false. It looks 3045 /// through SExt instructions only if LookThroughSExt is true. 3046 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3047 bool LookThroughSExt, unsigned Depth) { 3048 assert(V && "No Value?"); 3049 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3050 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3051 3052 Type *T = V->getType(); 3053 3054 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3055 3056 if (Base == 0) 3057 return false; 3058 3059 if (Base == 1) { 3060 Multiple = V; 3061 return true; 3062 } 3063 3064 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3065 Constant *BaseVal = ConstantInt::get(T, Base); 3066 if (CO && CO == BaseVal) { 3067 // Multiple is 1. 3068 Multiple = ConstantInt::get(T, 1); 3069 return true; 3070 } 3071 3072 if (CI && CI->getZExtValue() % Base == 0) { 3073 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3074 return true; 3075 } 3076 3077 if (Depth == MaxAnalysisRecursionDepth) return false; 3078 3079 Operator *I = dyn_cast<Operator>(V); 3080 if (!I) return false; 3081 3082 switch (I->getOpcode()) { 3083 default: break; 3084 case Instruction::SExt: 3085 if (!LookThroughSExt) return false; 3086 // otherwise fall through to ZExt 3087 LLVM_FALLTHROUGH; 3088 case Instruction::ZExt: 3089 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3090 LookThroughSExt, Depth+1); 3091 case Instruction::Shl: 3092 case Instruction::Mul: { 3093 Value *Op0 = I->getOperand(0); 3094 Value *Op1 = I->getOperand(1); 3095 3096 if (I->getOpcode() == Instruction::Shl) { 3097 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3098 if (!Op1CI) return false; 3099 // Turn Op0 << Op1 into Op0 * 2^Op1 3100 APInt Op1Int = Op1CI->getValue(); 3101 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3102 APInt API(Op1Int.getBitWidth(), 0); 3103 API.setBit(BitToSet); 3104 Op1 = ConstantInt::get(V->getContext(), API); 3105 } 3106 3107 Value *Mul0 = nullptr; 3108 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3109 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3110 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3111 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3112 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3113 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3114 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3115 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3116 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3117 3118 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3119 Multiple = ConstantExpr::getMul(MulC, Op1C); 3120 return true; 3121 } 3122 3123 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3124 if (Mul0CI->getValue() == 1) { 3125 // V == Base * Op1, so return Op1 3126 Multiple = Op1; 3127 return true; 3128 } 3129 } 3130 3131 Value *Mul1 = nullptr; 3132 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3133 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3134 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3135 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3136 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3137 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3138 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3139 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3140 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3141 3142 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3143 Multiple = ConstantExpr::getMul(MulC, Op0C); 3144 return true; 3145 } 3146 3147 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3148 if (Mul1CI->getValue() == 1) { 3149 // V == Base * Op0, so return Op0 3150 Multiple = Op0; 3151 return true; 3152 } 3153 } 3154 } 3155 } 3156 3157 // We could not determine if V is a multiple of Base. 3158 return false; 3159 } 3160 3161 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3162 const TargetLibraryInfo *TLI) { 3163 const Function *F = CB.getCalledFunction(); 3164 if (!F) 3165 return Intrinsic::not_intrinsic; 3166 3167 if (F->isIntrinsic()) 3168 return F->getIntrinsicID(); 3169 3170 // We are going to infer semantics of a library function based on mapping it 3171 // to an LLVM intrinsic. Check that the library function is available from 3172 // this callbase and in this environment. 3173 LibFunc Func; 3174 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3175 !CB.onlyReadsMemory()) 3176 return Intrinsic::not_intrinsic; 3177 3178 switch (Func) { 3179 default: 3180 break; 3181 case LibFunc_sin: 3182 case LibFunc_sinf: 3183 case LibFunc_sinl: 3184 return Intrinsic::sin; 3185 case LibFunc_cos: 3186 case LibFunc_cosf: 3187 case LibFunc_cosl: 3188 return Intrinsic::cos; 3189 case LibFunc_exp: 3190 case LibFunc_expf: 3191 case LibFunc_expl: 3192 return Intrinsic::exp; 3193 case LibFunc_exp2: 3194 case LibFunc_exp2f: 3195 case LibFunc_exp2l: 3196 return Intrinsic::exp2; 3197 case LibFunc_log: 3198 case LibFunc_logf: 3199 case LibFunc_logl: 3200 return Intrinsic::log; 3201 case LibFunc_log10: 3202 case LibFunc_log10f: 3203 case LibFunc_log10l: 3204 return Intrinsic::log10; 3205 case LibFunc_log2: 3206 case LibFunc_log2f: 3207 case LibFunc_log2l: 3208 return Intrinsic::log2; 3209 case LibFunc_fabs: 3210 case LibFunc_fabsf: 3211 case LibFunc_fabsl: 3212 return Intrinsic::fabs; 3213 case LibFunc_fmin: 3214 case LibFunc_fminf: 3215 case LibFunc_fminl: 3216 return Intrinsic::minnum; 3217 case LibFunc_fmax: 3218 case LibFunc_fmaxf: 3219 case LibFunc_fmaxl: 3220 return Intrinsic::maxnum; 3221 case LibFunc_copysign: 3222 case LibFunc_copysignf: 3223 case LibFunc_copysignl: 3224 return Intrinsic::copysign; 3225 case LibFunc_floor: 3226 case LibFunc_floorf: 3227 case LibFunc_floorl: 3228 return Intrinsic::floor; 3229 case LibFunc_ceil: 3230 case LibFunc_ceilf: 3231 case LibFunc_ceill: 3232 return Intrinsic::ceil; 3233 case LibFunc_trunc: 3234 case LibFunc_truncf: 3235 case LibFunc_truncl: 3236 return Intrinsic::trunc; 3237 case LibFunc_rint: 3238 case LibFunc_rintf: 3239 case LibFunc_rintl: 3240 return Intrinsic::rint; 3241 case LibFunc_nearbyint: 3242 case LibFunc_nearbyintf: 3243 case LibFunc_nearbyintl: 3244 return Intrinsic::nearbyint; 3245 case LibFunc_round: 3246 case LibFunc_roundf: 3247 case LibFunc_roundl: 3248 return Intrinsic::round; 3249 case LibFunc_roundeven: 3250 case LibFunc_roundevenf: 3251 case LibFunc_roundevenl: 3252 return Intrinsic::roundeven; 3253 case LibFunc_pow: 3254 case LibFunc_powf: 3255 case LibFunc_powl: 3256 return Intrinsic::pow; 3257 case LibFunc_sqrt: 3258 case LibFunc_sqrtf: 3259 case LibFunc_sqrtl: 3260 return Intrinsic::sqrt; 3261 } 3262 3263 return Intrinsic::not_intrinsic; 3264 } 3265 3266 /// Return true if we can prove that the specified FP value is never equal to 3267 /// -0.0. 3268 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3269 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3270 /// the same as +0.0 in floating-point ops. 3271 /// 3272 /// NOTE: this function will need to be revisited when we support non-default 3273 /// rounding modes! 3274 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3275 unsigned Depth) { 3276 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3277 return !CFP->getValueAPF().isNegZero(); 3278 3279 if (Depth == MaxAnalysisRecursionDepth) 3280 return false; 3281 3282 auto *Op = dyn_cast<Operator>(V); 3283 if (!Op) 3284 return false; 3285 3286 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3287 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3288 return true; 3289 3290 // sitofp and uitofp turn into +0.0 for zero. 3291 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3292 return true; 3293 3294 if (auto *Call = dyn_cast<CallInst>(Op)) { 3295 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3296 switch (IID) { 3297 default: 3298 break; 3299 // sqrt(-0.0) = -0.0, no other negative results are possible. 3300 case Intrinsic::sqrt: 3301 case Intrinsic::canonicalize: 3302 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3303 // fabs(x) != -0.0 3304 case Intrinsic::fabs: 3305 return true; 3306 } 3307 } 3308 3309 return false; 3310 } 3311 3312 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3313 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3314 /// bit despite comparing equal. 3315 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3316 const TargetLibraryInfo *TLI, 3317 bool SignBitOnly, 3318 unsigned Depth) { 3319 // TODO: This function does not do the right thing when SignBitOnly is true 3320 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3321 // which flips the sign bits of NaNs. See 3322 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3323 3324 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3325 return !CFP->getValueAPF().isNegative() || 3326 (!SignBitOnly && CFP->getValueAPF().isZero()); 3327 } 3328 3329 // Handle vector of constants. 3330 if (auto *CV = dyn_cast<Constant>(V)) { 3331 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3332 unsigned NumElts = CVFVTy->getNumElements(); 3333 for (unsigned i = 0; i != NumElts; ++i) { 3334 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3335 if (!CFP) 3336 return false; 3337 if (CFP->getValueAPF().isNegative() && 3338 (SignBitOnly || !CFP->getValueAPF().isZero())) 3339 return false; 3340 } 3341 3342 // All non-negative ConstantFPs. 3343 return true; 3344 } 3345 } 3346 3347 if (Depth == MaxAnalysisRecursionDepth) 3348 return false; 3349 3350 const Operator *I = dyn_cast<Operator>(V); 3351 if (!I) 3352 return false; 3353 3354 switch (I->getOpcode()) { 3355 default: 3356 break; 3357 // Unsigned integers are always nonnegative. 3358 case Instruction::UIToFP: 3359 return true; 3360 case Instruction::FMul: 3361 case Instruction::FDiv: 3362 // X * X is always non-negative or a NaN. 3363 // X / X is always exactly 1.0 or a NaN. 3364 if (I->getOperand(0) == I->getOperand(1) && 3365 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3366 return true; 3367 3368 LLVM_FALLTHROUGH; 3369 case Instruction::FAdd: 3370 case Instruction::FRem: 3371 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3372 Depth + 1) && 3373 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3374 Depth + 1); 3375 case Instruction::Select: 3376 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3377 Depth + 1) && 3378 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3379 Depth + 1); 3380 case Instruction::FPExt: 3381 case Instruction::FPTrunc: 3382 // Widening/narrowing never change sign. 3383 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3384 Depth + 1); 3385 case Instruction::ExtractElement: 3386 // Look through extract element. At the moment we keep this simple and skip 3387 // tracking the specific element. But at least we might find information 3388 // valid for all elements of the vector. 3389 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3390 Depth + 1); 3391 case Instruction::Call: 3392 const auto *CI = cast<CallInst>(I); 3393 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3394 switch (IID) { 3395 default: 3396 break; 3397 case Intrinsic::maxnum: { 3398 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3399 auto isPositiveNum = [&](Value *V) { 3400 if (SignBitOnly) { 3401 // With SignBitOnly, this is tricky because the result of 3402 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3403 // a constant strictly greater than 0.0. 3404 const APFloat *C; 3405 return match(V, m_APFloat(C)) && 3406 *C > APFloat::getZero(C->getSemantics()); 3407 } 3408 3409 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3410 // maxnum can't be ordered-less-than-zero. 3411 return isKnownNeverNaN(V, TLI) && 3412 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3413 }; 3414 3415 // TODO: This could be improved. We could also check that neither operand 3416 // has its sign bit set (and at least 1 is not-NAN?). 3417 return isPositiveNum(V0) || isPositiveNum(V1); 3418 } 3419 3420 case Intrinsic::maximum: 3421 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3422 Depth + 1) || 3423 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3424 Depth + 1); 3425 case Intrinsic::minnum: 3426 case Intrinsic::minimum: 3427 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3428 Depth + 1) && 3429 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3430 Depth + 1); 3431 case Intrinsic::exp: 3432 case Intrinsic::exp2: 3433 case Intrinsic::fabs: 3434 return true; 3435 3436 case Intrinsic::sqrt: 3437 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3438 if (!SignBitOnly) 3439 return true; 3440 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3441 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3442 3443 case Intrinsic::powi: 3444 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3445 // powi(x,n) is non-negative if n is even. 3446 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3447 return true; 3448 } 3449 // TODO: This is not correct. Given that exp is an integer, here are the 3450 // ways that pow can return a negative value: 3451 // 3452 // pow(x, exp) --> negative if exp is odd and x is negative. 3453 // pow(-0, exp) --> -inf if exp is negative odd. 3454 // pow(-0, exp) --> -0 if exp is positive odd. 3455 // pow(-inf, exp) --> -0 if exp is negative odd. 3456 // pow(-inf, exp) --> -inf if exp is positive odd. 3457 // 3458 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3459 // but we must return false if x == -0. Unfortunately we do not currently 3460 // have a way of expressing this constraint. See details in 3461 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3462 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3463 Depth + 1); 3464 3465 case Intrinsic::fma: 3466 case Intrinsic::fmuladd: 3467 // x*x+y is non-negative if y is non-negative. 3468 return I->getOperand(0) == I->getOperand(1) && 3469 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3470 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3471 Depth + 1); 3472 } 3473 break; 3474 } 3475 return false; 3476 } 3477 3478 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3479 const TargetLibraryInfo *TLI) { 3480 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3481 } 3482 3483 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3484 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3485 } 3486 3487 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3488 unsigned Depth) { 3489 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3490 3491 // If we're told that infinities won't happen, assume they won't. 3492 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3493 if (FPMathOp->hasNoInfs()) 3494 return true; 3495 3496 // Handle scalar constants. 3497 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3498 return !CFP->isInfinity(); 3499 3500 if (Depth == MaxAnalysisRecursionDepth) 3501 return false; 3502 3503 if (auto *Inst = dyn_cast<Instruction>(V)) { 3504 switch (Inst->getOpcode()) { 3505 case Instruction::Select: { 3506 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3507 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3508 } 3509 case Instruction::SIToFP: 3510 case Instruction::UIToFP: { 3511 // Get width of largest magnitude integer (remove a bit if signed). 3512 // This still works for a signed minimum value because the largest FP 3513 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3514 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3515 if (Inst->getOpcode() == Instruction::SIToFP) 3516 --IntSize; 3517 3518 // If the exponent of the largest finite FP value can hold the largest 3519 // integer, the result of the cast must be finite. 3520 Type *FPTy = Inst->getType()->getScalarType(); 3521 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3522 } 3523 default: 3524 break; 3525 } 3526 } 3527 3528 // try to handle fixed width vector constants 3529 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3530 if (VFVTy && isa<Constant>(V)) { 3531 // For vectors, verify that each element is not infinity. 3532 unsigned NumElts = VFVTy->getNumElements(); 3533 for (unsigned i = 0; i != NumElts; ++i) { 3534 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3535 if (!Elt) 3536 return false; 3537 if (isa<UndefValue>(Elt)) 3538 continue; 3539 auto *CElt = dyn_cast<ConstantFP>(Elt); 3540 if (!CElt || CElt->isInfinity()) 3541 return false; 3542 } 3543 // All elements were confirmed non-infinity or undefined. 3544 return true; 3545 } 3546 3547 // was not able to prove that V never contains infinity 3548 return false; 3549 } 3550 3551 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3552 unsigned Depth) { 3553 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3554 3555 // If we're told that NaNs won't happen, assume they won't. 3556 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3557 if (FPMathOp->hasNoNaNs()) 3558 return true; 3559 3560 // Handle scalar constants. 3561 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3562 return !CFP->isNaN(); 3563 3564 if (Depth == MaxAnalysisRecursionDepth) 3565 return false; 3566 3567 if (auto *Inst = dyn_cast<Instruction>(V)) { 3568 switch (Inst->getOpcode()) { 3569 case Instruction::FAdd: 3570 case Instruction::FSub: 3571 // Adding positive and negative infinity produces NaN. 3572 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3573 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3574 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3575 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3576 3577 case Instruction::FMul: 3578 // Zero multiplied with infinity produces NaN. 3579 // FIXME: If neither side can be zero fmul never produces NaN. 3580 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3581 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3582 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3583 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3584 3585 case Instruction::FDiv: 3586 case Instruction::FRem: 3587 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3588 return false; 3589 3590 case Instruction::Select: { 3591 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3592 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3593 } 3594 case Instruction::SIToFP: 3595 case Instruction::UIToFP: 3596 return true; 3597 case Instruction::FPTrunc: 3598 case Instruction::FPExt: 3599 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3600 default: 3601 break; 3602 } 3603 } 3604 3605 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3606 switch (II->getIntrinsicID()) { 3607 case Intrinsic::canonicalize: 3608 case Intrinsic::fabs: 3609 case Intrinsic::copysign: 3610 case Intrinsic::exp: 3611 case Intrinsic::exp2: 3612 case Intrinsic::floor: 3613 case Intrinsic::ceil: 3614 case Intrinsic::trunc: 3615 case Intrinsic::rint: 3616 case Intrinsic::nearbyint: 3617 case Intrinsic::round: 3618 case Intrinsic::roundeven: 3619 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3620 case Intrinsic::sqrt: 3621 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3622 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3623 case Intrinsic::minnum: 3624 case Intrinsic::maxnum: 3625 // If either operand is not NaN, the result is not NaN. 3626 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3627 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3628 default: 3629 return false; 3630 } 3631 } 3632 3633 // Try to handle fixed width vector constants 3634 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3635 if (VFVTy && isa<Constant>(V)) { 3636 // For vectors, verify that each element is not NaN. 3637 unsigned NumElts = VFVTy->getNumElements(); 3638 for (unsigned i = 0; i != NumElts; ++i) { 3639 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3640 if (!Elt) 3641 return false; 3642 if (isa<UndefValue>(Elt)) 3643 continue; 3644 auto *CElt = dyn_cast<ConstantFP>(Elt); 3645 if (!CElt || CElt->isNaN()) 3646 return false; 3647 } 3648 // All elements were confirmed not-NaN or undefined. 3649 return true; 3650 } 3651 3652 // Was not able to prove that V never contains NaN 3653 return false; 3654 } 3655 3656 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3657 3658 // All byte-wide stores are splatable, even of arbitrary variables. 3659 if (V->getType()->isIntegerTy(8)) 3660 return V; 3661 3662 LLVMContext &Ctx = V->getContext(); 3663 3664 // Undef don't care. 3665 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3666 if (isa<UndefValue>(V)) 3667 return UndefInt8; 3668 3669 // Return Undef for zero-sized type. 3670 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3671 return UndefInt8; 3672 3673 Constant *C = dyn_cast<Constant>(V); 3674 if (!C) { 3675 // Conceptually, we could handle things like: 3676 // %a = zext i8 %X to i16 3677 // %b = shl i16 %a, 8 3678 // %c = or i16 %a, %b 3679 // but until there is an example that actually needs this, it doesn't seem 3680 // worth worrying about. 3681 return nullptr; 3682 } 3683 3684 // Handle 'null' ConstantArrayZero etc. 3685 if (C->isNullValue()) 3686 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3687 3688 // Constant floating-point values can be handled as integer values if the 3689 // corresponding integer value is "byteable". An important case is 0.0. 3690 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3691 Type *Ty = nullptr; 3692 if (CFP->getType()->isHalfTy()) 3693 Ty = Type::getInt16Ty(Ctx); 3694 else if (CFP->getType()->isFloatTy()) 3695 Ty = Type::getInt32Ty(Ctx); 3696 else if (CFP->getType()->isDoubleTy()) 3697 Ty = Type::getInt64Ty(Ctx); 3698 // Don't handle long double formats, which have strange constraints. 3699 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3700 : nullptr; 3701 } 3702 3703 // We can handle constant integers that are multiple of 8 bits. 3704 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3705 if (CI->getBitWidth() % 8 == 0) { 3706 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3707 if (!CI->getValue().isSplat(8)) 3708 return nullptr; 3709 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3710 } 3711 } 3712 3713 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3714 if (CE->getOpcode() == Instruction::IntToPtr) { 3715 auto PS = DL.getPointerSizeInBits( 3716 cast<PointerType>(CE->getType())->getAddressSpace()); 3717 return isBytewiseValue( 3718 ConstantExpr::getIntegerCast(CE->getOperand(0), 3719 Type::getIntNTy(Ctx, PS), false), 3720 DL); 3721 } 3722 } 3723 3724 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3725 if (LHS == RHS) 3726 return LHS; 3727 if (!LHS || !RHS) 3728 return nullptr; 3729 if (LHS == UndefInt8) 3730 return RHS; 3731 if (RHS == UndefInt8) 3732 return LHS; 3733 return nullptr; 3734 }; 3735 3736 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3737 Value *Val = UndefInt8; 3738 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3739 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3740 return nullptr; 3741 return Val; 3742 } 3743 3744 if (isa<ConstantAggregate>(C)) { 3745 Value *Val = UndefInt8; 3746 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3747 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3748 return nullptr; 3749 return Val; 3750 } 3751 3752 // Don't try to handle the handful of other constants. 3753 return nullptr; 3754 } 3755 3756 // This is the recursive version of BuildSubAggregate. It takes a few different 3757 // arguments. Idxs is the index within the nested struct From that we are 3758 // looking at now (which is of type IndexedType). IdxSkip is the number of 3759 // indices from Idxs that should be left out when inserting into the resulting 3760 // struct. To is the result struct built so far, new insertvalue instructions 3761 // build on that. 3762 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3763 SmallVectorImpl<unsigned> &Idxs, 3764 unsigned IdxSkip, 3765 Instruction *InsertBefore) { 3766 StructType *STy = dyn_cast<StructType>(IndexedType); 3767 if (STy) { 3768 // Save the original To argument so we can modify it 3769 Value *OrigTo = To; 3770 // General case, the type indexed by Idxs is a struct 3771 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3772 // Process each struct element recursively 3773 Idxs.push_back(i); 3774 Value *PrevTo = To; 3775 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3776 InsertBefore); 3777 Idxs.pop_back(); 3778 if (!To) { 3779 // Couldn't find any inserted value for this index? Cleanup 3780 while (PrevTo != OrigTo) { 3781 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3782 PrevTo = Del->getAggregateOperand(); 3783 Del->eraseFromParent(); 3784 } 3785 // Stop processing elements 3786 break; 3787 } 3788 } 3789 // If we successfully found a value for each of our subaggregates 3790 if (To) 3791 return To; 3792 } 3793 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3794 // the struct's elements had a value that was inserted directly. In the latter 3795 // case, perhaps we can't determine each of the subelements individually, but 3796 // we might be able to find the complete struct somewhere. 3797 3798 // Find the value that is at that particular spot 3799 Value *V = FindInsertedValue(From, Idxs); 3800 3801 if (!V) 3802 return nullptr; 3803 3804 // Insert the value in the new (sub) aggregate 3805 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3806 "tmp", InsertBefore); 3807 } 3808 3809 // This helper takes a nested struct and extracts a part of it (which is again a 3810 // struct) into a new value. For example, given the struct: 3811 // { a, { b, { c, d }, e } } 3812 // and the indices "1, 1" this returns 3813 // { c, d }. 3814 // 3815 // It does this by inserting an insertvalue for each element in the resulting 3816 // struct, as opposed to just inserting a single struct. This will only work if 3817 // each of the elements of the substruct are known (ie, inserted into From by an 3818 // insertvalue instruction somewhere). 3819 // 3820 // All inserted insertvalue instructions are inserted before InsertBefore 3821 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3822 Instruction *InsertBefore) { 3823 assert(InsertBefore && "Must have someplace to insert!"); 3824 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3825 idx_range); 3826 Value *To = UndefValue::get(IndexedType); 3827 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3828 unsigned IdxSkip = Idxs.size(); 3829 3830 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3831 } 3832 3833 /// Given an aggregate and a sequence of indices, see if the scalar value 3834 /// indexed is already around as a register, for example if it was inserted 3835 /// directly into the aggregate. 3836 /// 3837 /// If InsertBefore is not null, this function will duplicate (modified) 3838 /// insertvalues when a part of a nested struct is extracted. 3839 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3840 Instruction *InsertBefore) { 3841 // Nothing to index? Just return V then (this is useful at the end of our 3842 // recursion). 3843 if (idx_range.empty()) 3844 return V; 3845 // We have indices, so V should have an indexable type. 3846 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3847 "Not looking at a struct or array?"); 3848 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3849 "Invalid indices for type?"); 3850 3851 if (Constant *C = dyn_cast<Constant>(V)) { 3852 C = C->getAggregateElement(idx_range[0]); 3853 if (!C) return nullptr; 3854 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3855 } 3856 3857 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3858 // Loop the indices for the insertvalue instruction in parallel with the 3859 // requested indices 3860 const unsigned *req_idx = idx_range.begin(); 3861 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3862 i != e; ++i, ++req_idx) { 3863 if (req_idx == idx_range.end()) { 3864 // We can't handle this without inserting insertvalues 3865 if (!InsertBefore) 3866 return nullptr; 3867 3868 // The requested index identifies a part of a nested aggregate. Handle 3869 // this specially. For example, 3870 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3871 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3872 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3873 // This can be changed into 3874 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3875 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3876 // which allows the unused 0,0 element from the nested struct to be 3877 // removed. 3878 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3879 InsertBefore); 3880 } 3881 3882 // This insert value inserts something else than what we are looking for. 3883 // See if the (aggregate) value inserted into has the value we are 3884 // looking for, then. 3885 if (*req_idx != *i) 3886 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3887 InsertBefore); 3888 } 3889 // If we end up here, the indices of the insertvalue match with those 3890 // requested (though possibly only partially). Now we recursively look at 3891 // the inserted value, passing any remaining indices. 3892 return FindInsertedValue(I->getInsertedValueOperand(), 3893 makeArrayRef(req_idx, idx_range.end()), 3894 InsertBefore); 3895 } 3896 3897 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3898 // If we're extracting a value from an aggregate that was extracted from 3899 // something else, we can extract from that something else directly instead. 3900 // However, we will need to chain I's indices with the requested indices. 3901 3902 // Calculate the number of indices required 3903 unsigned size = I->getNumIndices() + idx_range.size(); 3904 // Allocate some space to put the new indices in 3905 SmallVector<unsigned, 5> Idxs; 3906 Idxs.reserve(size); 3907 // Add indices from the extract value instruction 3908 Idxs.append(I->idx_begin(), I->idx_end()); 3909 3910 // Add requested indices 3911 Idxs.append(idx_range.begin(), idx_range.end()); 3912 3913 assert(Idxs.size() == size 3914 && "Number of indices added not correct?"); 3915 3916 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3917 } 3918 // Otherwise, we don't know (such as, extracting from a function return value 3919 // or load instruction) 3920 return nullptr; 3921 } 3922 3923 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3924 unsigned CharSize) { 3925 // Make sure the GEP has exactly three arguments. 3926 if (GEP->getNumOperands() != 3) 3927 return false; 3928 3929 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3930 // CharSize. 3931 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3932 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3933 return false; 3934 3935 // Check to make sure that the first operand of the GEP is an integer and 3936 // has value 0 so that we are sure we're indexing into the initializer. 3937 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3938 if (!FirstIdx || !FirstIdx->isZero()) 3939 return false; 3940 3941 return true; 3942 } 3943 3944 bool llvm::getConstantDataArrayInfo(const Value *V, 3945 ConstantDataArraySlice &Slice, 3946 unsigned ElementSize, uint64_t Offset) { 3947 assert(V); 3948 3949 // Look through bitcast instructions and geps. 3950 V = V->stripPointerCasts(); 3951 3952 // If the value is a GEP instruction or constant expression, treat it as an 3953 // offset. 3954 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3955 // The GEP operator should be based on a pointer to string constant, and is 3956 // indexing into the string constant. 3957 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3958 return false; 3959 3960 // If the second index isn't a ConstantInt, then this is a variable index 3961 // into the array. If this occurs, we can't say anything meaningful about 3962 // the string. 3963 uint64_t StartIdx = 0; 3964 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3965 StartIdx = CI->getZExtValue(); 3966 else 3967 return false; 3968 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3969 StartIdx + Offset); 3970 } 3971 3972 // The GEP instruction, constant or instruction, must reference a global 3973 // variable that is a constant and is initialized. The referenced constant 3974 // initializer is the array that we'll use for optimization. 3975 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3976 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3977 return false; 3978 3979 const ConstantDataArray *Array; 3980 ArrayType *ArrayTy; 3981 if (GV->getInitializer()->isNullValue()) { 3982 Type *GVTy = GV->getValueType(); 3983 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3984 // A zeroinitializer for the array; there is no ConstantDataArray. 3985 Array = nullptr; 3986 } else { 3987 const DataLayout &DL = GV->getParent()->getDataLayout(); 3988 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3989 uint64_t Length = SizeInBytes / (ElementSize / 8); 3990 if (Length <= Offset) 3991 return false; 3992 3993 Slice.Array = nullptr; 3994 Slice.Offset = 0; 3995 Slice.Length = Length - Offset; 3996 return true; 3997 } 3998 } else { 3999 // This must be a ConstantDataArray. 4000 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4001 if (!Array) 4002 return false; 4003 ArrayTy = Array->getType(); 4004 } 4005 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4006 return false; 4007 4008 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4009 if (Offset > NumElts) 4010 return false; 4011 4012 Slice.Array = Array; 4013 Slice.Offset = Offset; 4014 Slice.Length = NumElts - Offset; 4015 return true; 4016 } 4017 4018 /// This function computes the length of a null-terminated C string pointed to 4019 /// by V. If successful, it returns true and returns the string in Str. 4020 /// If unsuccessful, it returns false. 4021 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4022 uint64_t Offset, bool TrimAtNul) { 4023 ConstantDataArraySlice Slice; 4024 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4025 return false; 4026 4027 if (Slice.Array == nullptr) { 4028 if (TrimAtNul) { 4029 Str = StringRef(); 4030 return true; 4031 } 4032 if (Slice.Length == 1) { 4033 Str = StringRef("", 1); 4034 return true; 4035 } 4036 // We cannot instantiate a StringRef as we do not have an appropriate string 4037 // of 0s at hand. 4038 return false; 4039 } 4040 4041 // Start out with the entire array in the StringRef. 4042 Str = Slice.Array->getAsString(); 4043 // Skip over 'offset' bytes. 4044 Str = Str.substr(Slice.Offset); 4045 4046 if (TrimAtNul) { 4047 // Trim off the \0 and anything after it. If the array is not nul 4048 // terminated, we just return the whole end of string. The client may know 4049 // some other way that the string is length-bound. 4050 Str = Str.substr(0, Str.find('\0')); 4051 } 4052 return true; 4053 } 4054 4055 // These next two are very similar to the above, but also look through PHI 4056 // nodes. 4057 // TODO: See if we can integrate these two together. 4058 4059 /// If we can compute the length of the string pointed to by 4060 /// the specified pointer, return 'len+1'. If we can't, return 0. 4061 static uint64_t GetStringLengthH(const Value *V, 4062 SmallPtrSetImpl<const PHINode*> &PHIs, 4063 unsigned CharSize) { 4064 // Look through noop bitcast instructions. 4065 V = V->stripPointerCasts(); 4066 4067 // If this is a PHI node, there are two cases: either we have already seen it 4068 // or we haven't. 4069 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4070 if (!PHIs.insert(PN).second) 4071 return ~0ULL; // already in the set. 4072 4073 // If it was new, see if all the input strings are the same length. 4074 uint64_t LenSoFar = ~0ULL; 4075 for (Value *IncValue : PN->incoming_values()) { 4076 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4077 if (Len == 0) return 0; // Unknown length -> unknown. 4078 4079 if (Len == ~0ULL) continue; 4080 4081 if (Len != LenSoFar && LenSoFar != ~0ULL) 4082 return 0; // Disagree -> unknown. 4083 LenSoFar = Len; 4084 } 4085 4086 // Success, all agree. 4087 return LenSoFar; 4088 } 4089 4090 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4091 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4092 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4093 if (Len1 == 0) return 0; 4094 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4095 if (Len2 == 0) return 0; 4096 if (Len1 == ~0ULL) return Len2; 4097 if (Len2 == ~0ULL) return Len1; 4098 if (Len1 != Len2) return 0; 4099 return Len1; 4100 } 4101 4102 // Otherwise, see if we can read the string. 4103 ConstantDataArraySlice Slice; 4104 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4105 return 0; 4106 4107 if (Slice.Array == nullptr) 4108 return 1; 4109 4110 // Search for nul characters 4111 unsigned NullIndex = 0; 4112 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4113 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4114 break; 4115 } 4116 4117 return NullIndex + 1; 4118 } 4119 4120 /// If we can compute the length of the string pointed to by 4121 /// the specified pointer, return 'len+1'. If we can't, return 0. 4122 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4123 if (!V->getType()->isPointerTy()) 4124 return 0; 4125 4126 SmallPtrSet<const PHINode*, 32> PHIs; 4127 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4128 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4129 // an empty string as a length. 4130 return Len == ~0ULL ? 1 : Len; 4131 } 4132 4133 const Value * 4134 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4135 bool MustPreserveNullness) { 4136 assert(Call && 4137 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4138 if (const Value *RV = Call->getReturnedArgOperand()) 4139 return RV; 4140 // This can be used only as a aliasing property. 4141 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4142 Call, MustPreserveNullness)) 4143 return Call->getArgOperand(0); 4144 return nullptr; 4145 } 4146 4147 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4148 const CallBase *Call, bool MustPreserveNullness) { 4149 switch (Call->getIntrinsicID()) { 4150 case Intrinsic::launder_invariant_group: 4151 case Intrinsic::strip_invariant_group: 4152 case Intrinsic::aarch64_irg: 4153 case Intrinsic::aarch64_tagp: 4154 return true; 4155 case Intrinsic::ptrmask: 4156 return !MustPreserveNullness; 4157 default: 4158 return false; 4159 } 4160 } 4161 4162 /// \p PN defines a loop-variant pointer to an object. Check if the 4163 /// previous iteration of the loop was referring to the same object as \p PN. 4164 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4165 const LoopInfo *LI) { 4166 // Find the loop-defined value. 4167 Loop *L = LI->getLoopFor(PN->getParent()); 4168 if (PN->getNumIncomingValues() != 2) 4169 return true; 4170 4171 // Find the value from previous iteration. 4172 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4173 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4174 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4175 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4176 return true; 4177 4178 // If a new pointer is loaded in the loop, the pointer references a different 4179 // object in every iteration. E.g.: 4180 // for (i) 4181 // int *p = a[i]; 4182 // ... 4183 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4184 if (!L->isLoopInvariant(Load->getPointerOperand())) 4185 return false; 4186 return true; 4187 } 4188 4189 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4190 if (!V->getType()->isPointerTy()) 4191 return V; 4192 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4193 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4194 V = GEP->getPointerOperand(); 4195 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4196 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4197 V = cast<Operator>(V)->getOperand(0); 4198 if (!V->getType()->isPointerTy()) 4199 return V; 4200 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4201 if (GA->isInterposable()) 4202 return V; 4203 V = GA->getAliasee(); 4204 } else { 4205 if (auto *PHI = dyn_cast<PHINode>(V)) { 4206 // Look through single-arg phi nodes created by LCSSA. 4207 if (PHI->getNumIncomingValues() == 1) { 4208 V = PHI->getIncomingValue(0); 4209 continue; 4210 } 4211 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4212 // CaptureTracking can know about special capturing properties of some 4213 // intrinsics like launder.invariant.group, that can't be expressed with 4214 // the attributes, but have properties like returning aliasing pointer. 4215 // Because some analysis may assume that nocaptured pointer is not 4216 // returned from some special intrinsic (because function would have to 4217 // be marked with returns attribute), it is crucial to use this function 4218 // because it should be in sync with CaptureTracking. Not using it may 4219 // cause weird miscompilations where 2 aliasing pointers are assumed to 4220 // noalias. 4221 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4222 V = RP; 4223 continue; 4224 } 4225 } 4226 4227 return V; 4228 } 4229 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4230 } 4231 return V; 4232 } 4233 4234 void llvm::getUnderlyingObjects(const Value *V, 4235 SmallVectorImpl<const Value *> &Objects, 4236 LoopInfo *LI, unsigned MaxLookup) { 4237 SmallPtrSet<const Value *, 4> Visited; 4238 SmallVector<const Value *, 4> Worklist; 4239 Worklist.push_back(V); 4240 do { 4241 const Value *P = Worklist.pop_back_val(); 4242 P = getUnderlyingObject(P, MaxLookup); 4243 4244 if (!Visited.insert(P).second) 4245 continue; 4246 4247 if (auto *SI = dyn_cast<SelectInst>(P)) { 4248 Worklist.push_back(SI->getTrueValue()); 4249 Worklist.push_back(SI->getFalseValue()); 4250 continue; 4251 } 4252 4253 if (auto *PN = dyn_cast<PHINode>(P)) { 4254 // If this PHI changes the underlying object in every iteration of the 4255 // loop, don't look through it. Consider: 4256 // int **A; 4257 // for (i) { 4258 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4259 // Curr = A[i]; 4260 // *Prev, *Curr; 4261 // 4262 // Prev is tracking Curr one iteration behind so they refer to different 4263 // underlying objects. 4264 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4265 isSameUnderlyingObjectInLoop(PN, LI)) 4266 for (Value *IncValue : PN->incoming_values()) 4267 Worklist.push_back(IncValue); 4268 continue; 4269 } 4270 4271 Objects.push_back(P); 4272 } while (!Worklist.empty()); 4273 } 4274 4275 /// This is the function that does the work of looking through basic 4276 /// ptrtoint+arithmetic+inttoptr sequences. 4277 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4278 do { 4279 if (const Operator *U = dyn_cast<Operator>(V)) { 4280 // If we find a ptrtoint, we can transfer control back to the 4281 // regular getUnderlyingObjectFromInt. 4282 if (U->getOpcode() == Instruction::PtrToInt) 4283 return U->getOperand(0); 4284 // If we find an add of a constant, a multiplied value, or a phi, it's 4285 // likely that the other operand will lead us to the base 4286 // object. We don't have to worry about the case where the 4287 // object address is somehow being computed by the multiply, 4288 // because our callers only care when the result is an 4289 // identifiable object. 4290 if (U->getOpcode() != Instruction::Add || 4291 (!isa<ConstantInt>(U->getOperand(1)) && 4292 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4293 !isa<PHINode>(U->getOperand(1)))) 4294 return V; 4295 V = U->getOperand(0); 4296 } else { 4297 return V; 4298 } 4299 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4300 } while (true); 4301 } 4302 4303 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4304 /// ptrtoint+arithmetic+inttoptr sequences. 4305 /// It returns false if unidentified object is found in getUnderlyingObjects. 4306 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4307 SmallVectorImpl<Value *> &Objects) { 4308 SmallPtrSet<const Value *, 16> Visited; 4309 SmallVector<const Value *, 4> Working(1, V); 4310 do { 4311 V = Working.pop_back_val(); 4312 4313 SmallVector<const Value *, 4> Objs; 4314 getUnderlyingObjects(V, Objs); 4315 4316 for (const Value *V : Objs) { 4317 if (!Visited.insert(V).second) 4318 continue; 4319 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4320 const Value *O = 4321 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4322 if (O->getType()->isPointerTy()) { 4323 Working.push_back(O); 4324 continue; 4325 } 4326 } 4327 // If getUnderlyingObjects fails to find an identifiable object, 4328 // getUnderlyingObjectsForCodeGen also fails for safety. 4329 if (!isIdentifiedObject(V)) { 4330 Objects.clear(); 4331 return false; 4332 } 4333 Objects.push_back(const_cast<Value *>(V)); 4334 } 4335 } while (!Working.empty()); 4336 return true; 4337 } 4338 4339 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4340 AllocaInst *Result = nullptr; 4341 SmallPtrSet<Value *, 4> Visited; 4342 SmallVector<Value *, 4> Worklist; 4343 4344 auto AddWork = [&](Value *V) { 4345 if (Visited.insert(V).second) 4346 Worklist.push_back(V); 4347 }; 4348 4349 AddWork(V); 4350 do { 4351 V = Worklist.pop_back_val(); 4352 assert(Visited.count(V)); 4353 4354 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4355 if (Result && Result != AI) 4356 return nullptr; 4357 Result = AI; 4358 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4359 AddWork(CI->getOperand(0)); 4360 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4361 for (Value *IncValue : PN->incoming_values()) 4362 AddWork(IncValue); 4363 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4364 AddWork(SI->getTrueValue()); 4365 AddWork(SI->getFalseValue()); 4366 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4367 if (OffsetZero && !GEP->hasAllZeroIndices()) 4368 return nullptr; 4369 AddWork(GEP->getPointerOperand()); 4370 } else { 4371 return nullptr; 4372 } 4373 } while (!Worklist.empty()); 4374 4375 return Result; 4376 } 4377 4378 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4379 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4380 for (const User *U : V->users()) { 4381 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4382 if (!II) 4383 return false; 4384 4385 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4386 continue; 4387 4388 if (AllowDroppable && II->isDroppable()) 4389 continue; 4390 4391 return false; 4392 } 4393 return true; 4394 } 4395 4396 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4397 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4398 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4399 } 4400 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4401 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4402 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4403 } 4404 4405 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4406 if (!LI.isUnordered()) 4407 return true; 4408 const Function &F = *LI.getFunction(); 4409 // Speculative load may create a race that did not exist in the source. 4410 return F.hasFnAttribute(Attribute::SanitizeThread) || 4411 // Speculative load may load data from dirty regions. 4412 F.hasFnAttribute(Attribute::SanitizeAddress) || 4413 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4414 } 4415 4416 4417 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4418 const Instruction *CtxI, 4419 const DominatorTree *DT) { 4420 const Operator *Inst = dyn_cast<Operator>(V); 4421 if (!Inst) 4422 return false; 4423 4424 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4425 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4426 if (C->canTrap()) 4427 return false; 4428 4429 switch (Inst->getOpcode()) { 4430 default: 4431 return true; 4432 case Instruction::UDiv: 4433 case Instruction::URem: { 4434 // x / y is undefined if y == 0. 4435 const APInt *V; 4436 if (match(Inst->getOperand(1), m_APInt(V))) 4437 return *V != 0; 4438 return false; 4439 } 4440 case Instruction::SDiv: 4441 case Instruction::SRem: { 4442 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4443 const APInt *Numerator, *Denominator; 4444 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4445 return false; 4446 // We cannot hoist this division if the denominator is 0. 4447 if (*Denominator == 0) 4448 return false; 4449 // It's safe to hoist if the denominator is not 0 or -1. 4450 if (*Denominator != -1) 4451 return true; 4452 // At this point we know that the denominator is -1. It is safe to hoist as 4453 // long we know that the numerator is not INT_MIN. 4454 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4455 return !Numerator->isMinSignedValue(); 4456 // The numerator *might* be MinSignedValue. 4457 return false; 4458 } 4459 case Instruction::Load: { 4460 const LoadInst *LI = cast<LoadInst>(Inst); 4461 if (mustSuppressSpeculation(*LI)) 4462 return false; 4463 const DataLayout &DL = LI->getModule()->getDataLayout(); 4464 return isDereferenceableAndAlignedPointer( 4465 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4466 DL, CtxI, DT); 4467 } 4468 case Instruction::Call: { 4469 auto *CI = cast<const CallInst>(Inst); 4470 const Function *Callee = CI->getCalledFunction(); 4471 4472 // The called function could have undefined behavior or side-effects, even 4473 // if marked readnone nounwind. 4474 return Callee && Callee->isSpeculatable(); 4475 } 4476 case Instruction::VAArg: 4477 case Instruction::Alloca: 4478 case Instruction::Invoke: 4479 case Instruction::CallBr: 4480 case Instruction::PHI: 4481 case Instruction::Store: 4482 case Instruction::Ret: 4483 case Instruction::Br: 4484 case Instruction::IndirectBr: 4485 case Instruction::Switch: 4486 case Instruction::Unreachable: 4487 case Instruction::Fence: 4488 case Instruction::AtomicRMW: 4489 case Instruction::AtomicCmpXchg: 4490 case Instruction::LandingPad: 4491 case Instruction::Resume: 4492 case Instruction::CatchSwitch: 4493 case Instruction::CatchPad: 4494 case Instruction::CatchRet: 4495 case Instruction::CleanupPad: 4496 case Instruction::CleanupRet: 4497 return false; // Misc instructions which have effects 4498 } 4499 } 4500 4501 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4502 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4503 } 4504 4505 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4506 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4507 switch (OR) { 4508 case ConstantRange::OverflowResult::MayOverflow: 4509 return OverflowResult::MayOverflow; 4510 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4511 return OverflowResult::AlwaysOverflowsLow; 4512 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4513 return OverflowResult::AlwaysOverflowsHigh; 4514 case ConstantRange::OverflowResult::NeverOverflows: 4515 return OverflowResult::NeverOverflows; 4516 } 4517 llvm_unreachable("Unknown OverflowResult"); 4518 } 4519 4520 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4521 static ConstantRange computeConstantRangeIncludingKnownBits( 4522 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4523 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4524 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4525 KnownBits Known = computeKnownBits( 4526 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4527 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4528 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4529 ConstantRange::PreferredRangeType RangeType = 4530 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4531 return CR1.intersectWith(CR2, RangeType); 4532 } 4533 4534 OverflowResult llvm::computeOverflowForUnsignedMul( 4535 const Value *LHS, const Value *RHS, const DataLayout &DL, 4536 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4537 bool UseInstrInfo) { 4538 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4539 nullptr, UseInstrInfo); 4540 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4541 nullptr, UseInstrInfo); 4542 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4543 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4544 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4545 } 4546 4547 OverflowResult 4548 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4549 const DataLayout &DL, AssumptionCache *AC, 4550 const Instruction *CxtI, 4551 const DominatorTree *DT, bool UseInstrInfo) { 4552 // Multiplying n * m significant bits yields a result of n + m significant 4553 // bits. If the total number of significant bits does not exceed the 4554 // result bit width (minus 1), there is no overflow. 4555 // This means if we have enough leading sign bits in the operands 4556 // we can guarantee that the result does not overflow. 4557 // Ref: "Hacker's Delight" by Henry Warren 4558 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4559 4560 // Note that underestimating the number of sign bits gives a more 4561 // conservative answer. 4562 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4563 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4564 4565 // First handle the easy case: if we have enough sign bits there's 4566 // definitely no overflow. 4567 if (SignBits > BitWidth + 1) 4568 return OverflowResult::NeverOverflows; 4569 4570 // There are two ambiguous cases where there can be no overflow: 4571 // SignBits == BitWidth + 1 and 4572 // SignBits == BitWidth 4573 // The second case is difficult to check, therefore we only handle the 4574 // first case. 4575 if (SignBits == BitWidth + 1) { 4576 // It overflows only when both arguments are negative and the true 4577 // product is exactly the minimum negative number. 4578 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4579 // For simplicity we just check if at least one side is not negative. 4580 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4581 nullptr, UseInstrInfo); 4582 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4583 nullptr, UseInstrInfo); 4584 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4585 return OverflowResult::NeverOverflows; 4586 } 4587 return OverflowResult::MayOverflow; 4588 } 4589 4590 OverflowResult llvm::computeOverflowForUnsignedAdd( 4591 const Value *LHS, const Value *RHS, const DataLayout &DL, 4592 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4593 bool UseInstrInfo) { 4594 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4595 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4596 nullptr, UseInstrInfo); 4597 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4598 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4599 nullptr, UseInstrInfo); 4600 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4601 } 4602 4603 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4604 const Value *RHS, 4605 const AddOperator *Add, 4606 const DataLayout &DL, 4607 AssumptionCache *AC, 4608 const Instruction *CxtI, 4609 const DominatorTree *DT) { 4610 if (Add && Add->hasNoSignedWrap()) { 4611 return OverflowResult::NeverOverflows; 4612 } 4613 4614 // If LHS and RHS each have at least two sign bits, the addition will look 4615 // like 4616 // 4617 // XX..... + 4618 // YY..... 4619 // 4620 // If the carry into the most significant position is 0, X and Y can't both 4621 // be 1 and therefore the carry out of the addition is also 0. 4622 // 4623 // If the carry into the most significant position is 1, X and Y can't both 4624 // be 0 and therefore the carry out of the addition is also 1. 4625 // 4626 // Since the carry into the most significant position is always equal to 4627 // the carry out of the addition, there is no signed overflow. 4628 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4629 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4630 return OverflowResult::NeverOverflows; 4631 4632 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4633 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4634 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4635 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4636 OverflowResult OR = 4637 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4638 if (OR != OverflowResult::MayOverflow) 4639 return OR; 4640 4641 // The remaining code needs Add to be available. Early returns if not so. 4642 if (!Add) 4643 return OverflowResult::MayOverflow; 4644 4645 // If the sign of Add is the same as at least one of the operands, this add 4646 // CANNOT overflow. If this can be determined from the known bits of the 4647 // operands the above signedAddMayOverflow() check will have already done so. 4648 // The only other way to improve on the known bits is from an assumption, so 4649 // call computeKnownBitsFromAssume() directly. 4650 bool LHSOrRHSKnownNonNegative = 4651 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4652 bool LHSOrRHSKnownNegative = 4653 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4654 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4655 KnownBits AddKnown(LHSRange.getBitWidth()); 4656 computeKnownBitsFromAssume( 4657 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4658 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4659 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4660 return OverflowResult::NeverOverflows; 4661 } 4662 4663 return OverflowResult::MayOverflow; 4664 } 4665 4666 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4667 const Value *RHS, 4668 const DataLayout &DL, 4669 AssumptionCache *AC, 4670 const Instruction *CxtI, 4671 const DominatorTree *DT) { 4672 // Checking for conditions implied by dominating conditions may be expensive. 4673 // Limit it to usub_with_overflow calls for now. 4674 if (match(CxtI, 4675 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4676 if (auto C = 4677 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4678 if (*C) 4679 return OverflowResult::NeverOverflows; 4680 return OverflowResult::AlwaysOverflowsLow; 4681 } 4682 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4683 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4684 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4685 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4686 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4687 } 4688 4689 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4690 const Value *RHS, 4691 const DataLayout &DL, 4692 AssumptionCache *AC, 4693 const Instruction *CxtI, 4694 const DominatorTree *DT) { 4695 // If LHS and RHS each have at least two sign bits, the subtraction 4696 // cannot overflow. 4697 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4698 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4699 return OverflowResult::NeverOverflows; 4700 4701 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4702 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4703 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4704 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4705 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4706 } 4707 4708 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4709 const DominatorTree &DT) { 4710 SmallVector<const BranchInst *, 2> GuardingBranches; 4711 SmallVector<const ExtractValueInst *, 2> Results; 4712 4713 for (const User *U : WO->users()) { 4714 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4715 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4716 4717 if (EVI->getIndices()[0] == 0) 4718 Results.push_back(EVI); 4719 else { 4720 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4721 4722 for (const auto *U : EVI->users()) 4723 if (const auto *B = dyn_cast<BranchInst>(U)) { 4724 assert(B->isConditional() && "How else is it using an i1?"); 4725 GuardingBranches.push_back(B); 4726 } 4727 } 4728 } else { 4729 // We are using the aggregate directly in a way we don't want to analyze 4730 // here (storing it to a global, say). 4731 return false; 4732 } 4733 } 4734 4735 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4736 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4737 if (!NoWrapEdge.isSingleEdge()) 4738 return false; 4739 4740 // Check if all users of the add are provably no-wrap. 4741 for (const auto *Result : Results) { 4742 // If the extractvalue itself is not executed on overflow, the we don't 4743 // need to check each use separately, since domination is transitive. 4744 if (DT.dominates(NoWrapEdge, Result->getParent())) 4745 continue; 4746 4747 for (auto &RU : Result->uses()) 4748 if (!DT.dominates(NoWrapEdge, RU)) 4749 return false; 4750 } 4751 4752 return true; 4753 }; 4754 4755 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4756 } 4757 4758 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4759 // See whether I has flags that may create poison 4760 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4761 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4762 return true; 4763 } 4764 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4765 if (ExactOp->isExact()) 4766 return true; 4767 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4768 auto FMF = FP->getFastMathFlags(); 4769 if (FMF.noNaNs() || FMF.noInfs()) 4770 return true; 4771 } 4772 4773 unsigned Opcode = Op->getOpcode(); 4774 4775 // Check whether opcode is a poison/undef-generating operation 4776 switch (Opcode) { 4777 case Instruction::Shl: 4778 case Instruction::AShr: 4779 case Instruction::LShr: { 4780 // Shifts return poison if shiftwidth is larger than the bitwidth. 4781 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4782 SmallVector<Constant *, 4> ShiftAmounts; 4783 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4784 unsigned NumElts = FVTy->getNumElements(); 4785 for (unsigned i = 0; i < NumElts; ++i) 4786 ShiftAmounts.push_back(C->getAggregateElement(i)); 4787 } else if (isa<ScalableVectorType>(C->getType())) 4788 return true; // Can't tell, just return true to be safe 4789 else 4790 ShiftAmounts.push_back(C); 4791 4792 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4793 auto *CI = dyn_cast<ConstantInt>(C); 4794 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4795 }); 4796 return !Safe; 4797 } 4798 return true; 4799 } 4800 case Instruction::FPToSI: 4801 case Instruction::FPToUI: 4802 // fptosi/ui yields poison if the resulting value does not fit in the 4803 // destination type. 4804 return true; 4805 case Instruction::Call: 4806 case Instruction::CallBr: 4807 case Instruction::Invoke: { 4808 const auto *CB = cast<CallBase>(Op); 4809 return !CB->hasRetAttr(Attribute::NoUndef); 4810 } 4811 case Instruction::InsertElement: 4812 case Instruction::ExtractElement: { 4813 // If index exceeds the length of the vector, it returns poison 4814 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4815 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4816 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4817 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4818 return true; 4819 return false; 4820 } 4821 case Instruction::ShuffleVector: { 4822 // shufflevector may return undef. 4823 if (PoisonOnly) 4824 return false; 4825 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4826 ? cast<ConstantExpr>(Op)->getShuffleMask() 4827 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4828 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4829 } 4830 case Instruction::FNeg: 4831 case Instruction::PHI: 4832 case Instruction::Select: 4833 case Instruction::URem: 4834 case Instruction::SRem: 4835 case Instruction::ExtractValue: 4836 case Instruction::InsertValue: 4837 case Instruction::Freeze: 4838 case Instruction::ICmp: 4839 case Instruction::FCmp: 4840 return false; 4841 case Instruction::GetElementPtr: { 4842 const auto *GEP = cast<GEPOperator>(Op); 4843 return GEP->isInBounds(); 4844 } 4845 default: { 4846 const auto *CE = dyn_cast<ConstantExpr>(Op); 4847 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4848 return false; 4849 else if (Instruction::isBinaryOp(Opcode)) 4850 return false; 4851 // Be conservative and return true. 4852 return true; 4853 } 4854 } 4855 } 4856 4857 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4858 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4859 } 4860 4861 bool llvm::canCreatePoison(const Operator *Op) { 4862 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4863 } 4864 4865 static bool programUndefinedIfUndefOrPoison(const Value *V, 4866 bool PoisonOnly); 4867 4868 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4869 AssumptionCache *AC, 4870 const Instruction *CtxI, 4871 const DominatorTree *DT, 4872 unsigned Depth, bool PoisonOnly) { 4873 if (Depth >= MaxAnalysisRecursionDepth) 4874 return false; 4875 4876 if (isa<MetadataAsValue>(V)) 4877 return false; 4878 4879 if (const auto *A = dyn_cast<Argument>(V)) { 4880 if (A->hasAttribute(Attribute::NoUndef)) 4881 return true; 4882 } 4883 4884 if (auto *C = dyn_cast<Constant>(V)) { 4885 if (isa<UndefValue>(C)) 4886 return PoisonOnly; 4887 4888 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4889 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4890 return true; 4891 4892 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4893 return (PoisonOnly || !C->containsUndefElement()) && 4894 !C->containsConstantExpression(); 4895 } 4896 4897 // Strip cast operations from a pointer value. 4898 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4899 // inbounds with zero offset. To guarantee that the result isn't poison, the 4900 // stripped pointer is checked as it has to be pointing into an allocated 4901 // object or be null `null` to ensure `inbounds` getelement pointers with a 4902 // zero offset could not produce poison. 4903 // It can strip off addrspacecast that do not change bit representation as 4904 // well. We believe that such addrspacecast is equivalent to no-op. 4905 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4906 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4907 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4908 return true; 4909 4910 auto OpCheck = [&](const Value *V) { 4911 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4912 PoisonOnly); 4913 }; 4914 4915 if (auto *Opr = dyn_cast<Operator>(V)) { 4916 // If the value is a freeze instruction, then it can never 4917 // be undef or poison. 4918 if (isa<FreezeInst>(V)) 4919 return true; 4920 4921 if (const auto *CB = dyn_cast<CallBase>(V)) { 4922 if (CB->hasRetAttr(Attribute::NoUndef)) 4923 return true; 4924 } 4925 4926 if (const auto *PN = dyn_cast<PHINode>(V)) { 4927 unsigned Num = PN->getNumIncomingValues(); 4928 bool IsWellDefined = true; 4929 for (unsigned i = 0; i < Num; ++i) { 4930 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4931 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4932 DT, Depth + 1, PoisonOnly)) { 4933 IsWellDefined = false; 4934 break; 4935 } 4936 } 4937 if (IsWellDefined) 4938 return true; 4939 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4940 return true; 4941 } 4942 4943 if (auto *I = dyn_cast<LoadInst>(V)) 4944 if (I->getMetadata(LLVMContext::MD_noundef)) 4945 return true; 4946 4947 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4948 return true; 4949 4950 // CxtI may be null or a cloned instruction. 4951 if (!CtxI || !CtxI->getParent() || !DT) 4952 return false; 4953 4954 auto *DNode = DT->getNode(CtxI->getParent()); 4955 if (!DNode) 4956 // Unreachable block 4957 return false; 4958 4959 // If V is used as a branch condition before reaching CtxI, V cannot be 4960 // undef or poison. 4961 // br V, BB1, BB2 4962 // BB1: 4963 // CtxI ; V cannot be undef or poison here 4964 auto *Dominator = DNode->getIDom(); 4965 while (Dominator) { 4966 auto *TI = Dominator->getBlock()->getTerminator(); 4967 4968 Value *Cond = nullptr; 4969 if (auto BI = dyn_cast<BranchInst>(TI)) { 4970 if (BI->isConditional()) 4971 Cond = BI->getCondition(); 4972 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4973 Cond = SI->getCondition(); 4974 } 4975 4976 if (Cond) { 4977 if (Cond == V) 4978 return true; 4979 else if (PoisonOnly && isa<Operator>(Cond)) { 4980 // For poison, we can analyze further 4981 auto *Opr = cast<Operator>(Cond); 4982 if (propagatesPoison(Opr) && 4983 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4984 return true; 4985 } 4986 } 4987 4988 Dominator = Dominator->getIDom(); 4989 } 4990 4991 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4992 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4993 return true; 4994 4995 return false; 4996 } 4997 4998 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4999 const Instruction *CtxI, 5000 const DominatorTree *DT, 5001 unsigned Depth) { 5002 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5003 } 5004 5005 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5006 const Instruction *CtxI, 5007 const DominatorTree *DT, unsigned Depth) { 5008 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5009 } 5010 5011 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5012 const DataLayout &DL, 5013 AssumptionCache *AC, 5014 const Instruction *CxtI, 5015 const DominatorTree *DT) { 5016 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5017 Add, DL, AC, CxtI, DT); 5018 } 5019 5020 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5021 const Value *RHS, 5022 const DataLayout &DL, 5023 AssumptionCache *AC, 5024 const Instruction *CxtI, 5025 const DominatorTree *DT) { 5026 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5027 } 5028 5029 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5030 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5031 // of time because it's possible for another thread to interfere with it for an 5032 // arbitrary length of time, but programs aren't allowed to rely on that. 5033 5034 // If there is no successor, then execution can't transfer to it. 5035 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5036 return !CRI->unwindsToCaller(); 5037 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5038 return !CatchSwitch->unwindsToCaller(); 5039 if (isa<ResumeInst>(I)) 5040 return false; 5041 if (isa<ReturnInst>(I)) 5042 return false; 5043 if (isa<UnreachableInst>(I)) 5044 return false; 5045 5046 // Calls can throw, or contain an infinite loop, or kill the process. 5047 if (const auto *CB = dyn_cast<CallBase>(I)) { 5048 // Call sites that throw have implicit non-local control flow. 5049 if (!CB->doesNotThrow()) 5050 return false; 5051 5052 // A function which doens't throw and has "willreturn" attribute will 5053 // always return. 5054 if (CB->hasFnAttr(Attribute::WillReturn)) 5055 return true; 5056 5057 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5058 // etc. and thus not return. However, LLVM already assumes that 5059 // 5060 // - Thread exiting actions are modeled as writes to memory invisible to 5061 // the program. 5062 // 5063 // - Loops that don't have side effects (side effects are volatile/atomic 5064 // stores and IO) always terminate (see http://llvm.org/PR965). 5065 // Furthermore IO itself is also modeled as writes to memory invisible to 5066 // the program. 5067 // 5068 // We rely on those assumptions here, and use the memory effects of the call 5069 // target as a proxy for checking that it always returns. 5070 5071 // FIXME: This isn't aggressive enough; a call which only writes to a global 5072 // is guaranteed to return. 5073 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5074 } 5075 5076 // Other instructions return normally. 5077 return true; 5078 } 5079 5080 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5081 // TODO: This is slightly conservative for invoke instruction since exiting 5082 // via an exception *is* normal control for them. 5083 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5084 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5085 return false; 5086 return true; 5087 } 5088 5089 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5090 const Loop *L) { 5091 // The loop header is guaranteed to be executed for every iteration. 5092 // 5093 // FIXME: Relax this constraint to cover all basic blocks that are 5094 // guaranteed to be executed at every iteration. 5095 if (I->getParent() != L->getHeader()) return false; 5096 5097 for (const Instruction &LI : *L->getHeader()) { 5098 if (&LI == I) return true; 5099 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5100 } 5101 llvm_unreachable("Instruction not contained in its own parent basic block."); 5102 } 5103 5104 bool llvm::propagatesPoison(const Operator *I) { 5105 switch (I->getOpcode()) { 5106 case Instruction::Freeze: 5107 case Instruction::Select: 5108 case Instruction::PHI: 5109 case Instruction::Call: 5110 case Instruction::Invoke: 5111 return false; 5112 case Instruction::ICmp: 5113 case Instruction::FCmp: 5114 case Instruction::GetElementPtr: 5115 return true; 5116 default: 5117 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5118 return true; 5119 5120 // Be conservative and return false. 5121 return false; 5122 } 5123 } 5124 5125 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5126 SmallPtrSetImpl<const Value *> &Operands) { 5127 switch (I->getOpcode()) { 5128 case Instruction::Store: 5129 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5130 break; 5131 5132 case Instruction::Load: 5133 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5134 break; 5135 5136 case Instruction::AtomicCmpXchg: 5137 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5138 break; 5139 5140 case Instruction::AtomicRMW: 5141 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5142 break; 5143 5144 case Instruction::UDiv: 5145 case Instruction::SDiv: 5146 case Instruction::URem: 5147 case Instruction::SRem: 5148 Operands.insert(I->getOperand(1)); 5149 break; 5150 5151 case Instruction::Call: 5152 case Instruction::Invoke: { 5153 const CallBase *CB = cast<CallBase>(I); 5154 if (CB->isIndirectCall()) 5155 Operands.insert(CB->getCalledOperand()); 5156 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5157 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5158 Operands.insert(CB->getArgOperand(i)); 5159 } 5160 break; 5161 } 5162 5163 default: 5164 break; 5165 } 5166 } 5167 5168 bool llvm::mustTriggerUB(const Instruction *I, 5169 const SmallSet<const Value *, 16>& KnownPoison) { 5170 SmallPtrSet<const Value *, 4> NonPoisonOps; 5171 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5172 5173 for (const auto *V : NonPoisonOps) 5174 if (KnownPoison.count(V)) 5175 return true; 5176 5177 return false; 5178 } 5179 5180 static bool programUndefinedIfUndefOrPoison(const Value *V, 5181 bool PoisonOnly) { 5182 // We currently only look for uses of values within the same basic 5183 // block, as that makes it easier to guarantee that the uses will be 5184 // executed given that Inst is executed. 5185 // 5186 // FIXME: Expand this to consider uses beyond the same basic block. To do 5187 // this, look out for the distinction between post-dominance and strong 5188 // post-dominance. 5189 const BasicBlock *BB = nullptr; 5190 BasicBlock::const_iterator Begin; 5191 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5192 BB = Inst->getParent(); 5193 Begin = Inst->getIterator(); 5194 Begin++; 5195 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5196 BB = &Arg->getParent()->getEntryBlock(); 5197 Begin = BB->begin(); 5198 } else { 5199 return false; 5200 } 5201 5202 BasicBlock::const_iterator End = BB->end(); 5203 5204 if (!PoisonOnly) { 5205 // Be conservative & just check whether a value is passed to a noundef 5206 // argument. 5207 // Instructions that raise UB with a poison operand are well-defined 5208 // or have unclear semantics when the input is partially undef. 5209 // For example, 'udiv x, (undef | 1)' isn't UB. 5210 5211 for (auto &I : make_range(Begin, End)) { 5212 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5213 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5214 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5215 CB->getArgOperand(i) == V) 5216 return true; 5217 } 5218 } 5219 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5220 break; 5221 } 5222 return false; 5223 } 5224 5225 // Set of instructions that we have proved will yield poison if Inst 5226 // does. 5227 SmallSet<const Value *, 16> YieldsPoison; 5228 SmallSet<const BasicBlock *, 4> Visited; 5229 5230 YieldsPoison.insert(V); 5231 auto Propagate = [&](const User *User) { 5232 if (propagatesPoison(cast<Operator>(User))) 5233 YieldsPoison.insert(User); 5234 }; 5235 for_each(V->users(), Propagate); 5236 Visited.insert(BB); 5237 5238 unsigned Iter = 0; 5239 while (Iter++ < MaxAnalysisRecursionDepth) { 5240 for (auto &I : make_range(Begin, End)) { 5241 if (mustTriggerUB(&I, YieldsPoison)) 5242 return true; 5243 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5244 return false; 5245 5246 // Mark poison that propagates from I through uses of I. 5247 if (YieldsPoison.count(&I)) 5248 for_each(I.users(), Propagate); 5249 } 5250 5251 if (auto *NextBB = BB->getSingleSuccessor()) { 5252 if (Visited.insert(NextBB).second) { 5253 BB = NextBB; 5254 Begin = BB->getFirstNonPHI()->getIterator(); 5255 End = BB->end(); 5256 continue; 5257 } 5258 } 5259 5260 break; 5261 } 5262 return false; 5263 } 5264 5265 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5266 return ::programUndefinedIfUndefOrPoison(Inst, false); 5267 } 5268 5269 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5270 return ::programUndefinedIfUndefOrPoison(Inst, true); 5271 } 5272 5273 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5274 if (FMF.noNaNs()) 5275 return true; 5276 5277 if (auto *C = dyn_cast<ConstantFP>(V)) 5278 return !C->isNaN(); 5279 5280 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5281 if (!C->getElementType()->isFloatingPointTy()) 5282 return false; 5283 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5284 if (C->getElementAsAPFloat(I).isNaN()) 5285 return false; 5286 } 5287 return true; 5288 } 5289 5290 if (isa<ConstantAggregateZero>(V)) 5291 return true; 5292 5293 return false; 5294 } 5295 5296 static bool isKnownNonZero(const Value *V) { 5297 if (auto *C = dyn_cast<ConstantFP>(V)) 5298 return !C->isZero(); 5299 5300 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5301 if (!C->getElementType()->isFloatingPointTy()) 5302 return false; 5303 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5304 if (C->getElementAsAPFloat(I).isZero()) 5305 return false; 5306 } 5307 return true; 5308 } 5309 5310 return false; 5311 } 5312 5313 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5314 /// Given non-min/max outer cmp/select from the clamp pattern this 5315 /// function recognizes if it can be substitued by a "canonical" min/max 5316 /// pattern. 5317 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5318 Value *CmpLHS, Value *CmpRHS, 5319 Value *TrueVal, Value *FalseVal, 5320 Value *&LHS, Value *&RHS) { 5321 // Try to match 5322 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5323 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5324 // and return description of the outer Max/Min. 5325 5326 // First, check if select has inverse order: 5327 if (CmpRHS == FalseVal) { 5328 std::swap(TrueVal, FalseVal); 5329 Pred = CmpInst::getInversePredicate(Pred); 5330 } 5331 5332 // Assume success now. If there's no match, callers should not use these anyway. 5333 LHS = TrueVal; 5334 RHS = FalseVal; 5335 5336 const APFloat *FC1; 5337 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5338 return {SPF_UNKNOWN, SPNB_NA, false}; 5339 5340 const APFloat *FC2; 5341 switch (Pred) { 5342 case CmpInst::FCMP_OLT: 5343 case CmpInst::FCMP_OLE: 5344 case CmpInst::FCMP_ULT: 5345 case CmpInst::FCMP_ULE: 5346 if (match(FalseVal, 5347 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5348 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5349 *FC1 < *FC2) 5350 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5351 break; 5352 case CmpInst::FCMP_OGT: 5353 case CmpInst::FCMP_OGE: 5354 case CmpInst::FCMP_UGT: 5355 case CmpInst::FCMP_UGE: 5356 if (match(FalseVal, 5357 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5358 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5359 *FC1 > *FC2) 5360 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5361 break; 5362 default: 5363 break; 5364 } 5365 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 } 5368 5369 /// Recognize variations of: 5370 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5371 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5372 Value *CmpLHS, Value *CmpRHS, 5373 Value *TrueVal, Value *FalseVal) { 5374 // Swap the select operands and predicate to match the patterns below. 5375 if (CmpRHS != TrueVal) { 5376 Pred = ICmpInst::getSwappedPredicate(Pred); 5377 std::swap(TrueVal, FalseVal); 5378 } 5379 const APInt *C1; 5380 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5381 const APInt *C2; 5382 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5383 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5384 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5385 return {SPF_SMAX, SPNB_NA, false}; 5386 5387 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5388 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5389 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5390 return {SPF_SMIN, SPNB_NA, false}; 5391 5392 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5393 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5394 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5395 return {SPF_UMAX, SPNB_NA, false}; 5396 5397 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5398 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5399 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5400 return {SPF_UMIN, SPNB_NA, false}; 5401 } 5402 return {SPF_UNKNOWN, SPNB_NA, false}; 5403 } 5404 5405 /// Recognize variations of: 5406 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5407 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5408 Value *CmpLHS, Value *CmpRHS, 5409 Value *TVal, Value *FVal, 5410 unsigned Depth) { 5411 // TODO: Allow FP min/max with nnan/nsz. 5412 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5413 5414 Value *A = nullptr, *B = nullptr; 5415 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5416 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5417 return {SPF_UNKNOWN, SPNB_NA, false}; 5418 5419 Value *C = nullptr, *D = nullptr; 5420 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5421 if (L.Flavor != R.Flavor) 5422 return {SPF_UNKNOWN, SPNB_NA, false}; 5423 5424 // We have something like: x Pred y ? min(a, b) : min(c, d). 5425 // Try to match the compare to the min/max operations of the select operands. 5426 // First, make sure we have the right compare predicate. 5427 switch (L.Flavor) { 5428 case SPF_SMIN: 5429 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5430 Pred = ICmpInst::getSwappedPredicate(Pred); 5431 std::swap(CmpLHS, CmpRHS); 5432 } 5433 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5434 break; 5435 return {SPF_UNKNOWN, SPNB_NA, false}; 5436 case SPF_SMAX: 5437 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5438 Pred = ICmpInst::getSwappedPredicate(Pred); 5439 std::swap(CmpLHS, CmpRHS); 5440 } 5441 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5442 break; 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 case SPF_UMIN: 5445 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5446 Pred = ICmpInst::getSwappedPredicate(Pred); 5447 std::swap(CmpLHS, CmpRHS); 5448 } 5449 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5450 break; 5451 return {SPF_UNKNOWN, SPNB_NA, false}; 5452 case SPF_UMAX: 5453 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5454 Pred = ICmpInst::getSwappedPredicate(Pred); 5455 std::swap(CmpLHS, CmpRHS); 5456 } 5457 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5458 break; 5459 return {SPF_UNKNOWN, SPNB_NA, false}; 5460 default: 5461 return {SPF_UNKNOWN, SPNB_NA, false}; 5462 } 5463 5464 // If there is a common operand in the already matched min/max and the other 5465 // min/max operands match the compare operands (either directly or inverted), 5466 // then this is min/max of the same flavor. 5467 5468 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5469 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5470 if (D == B) { 5471 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5472 match(A, m_Not(m_Specific(CmpRHS))))) 5473 return {L.Flavor, SPNB_NA, false}; 5474 } 5475 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5476 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5477 if (C == B) { 5478 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5479 match(A, m_Not(m_Specific(CmpRHS))))) 5480 return {L.Flavor, SPNB_NA, false}; 5481 } 5482 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5483 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5484 if (D == A) { 5485 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5486 match(B, m_Not(m_Specific(CmpRHS))))) 5487 return {L.Flavor, SPNB_NA, false}; 5488 } 5489 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5490 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5491 if (C == A) { 5492 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5493 match(B, m_Not(m_Specific(CmpRHS))))) 5494 return {L.Flavor, SPNB_NA, false}; 5495 } 5496 5497 return {SPF_UNKNOWN, SPNB_NA, false}; 5498 } 5499 5500 /// If the input value is the result of a 'not' op, constant integer, or vector 5501 /// splat of a constant integer, return the bitwise-not source value. 5502 /// TODO: This could be extended to handle non-splat vector integer constants. 5503 static Value *getNotValue(Value *V) { 5504 Value *NotV; 5505 if (match(V, m_Not(m_Value(NotV)))) 5506 return NotV; 5507 5508 const APInt *C; 5509 if (match(V, m_APInt(C))) 5510 return ConstantInt::get(V->getType(), ~(*C)); 5511 5512 return nullptr; 5513 } 5514 5515 /// Match non-obvious integer minimum and maximum sequences. 5516 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5517 Value *CmpLHS, Value *CmpRHS, 5518 Value *TrueVal, Value *FalseVal, 5519 Value *&LHS, Value *&RHS, 5520 unsigned Depth) { 5521 // Assume success. If there's no match, callers should not use these anyway. 5522 LHS = TrueVal; 5523 RHS = FalseVal; 5524 5525 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5526 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5527 return SPR; 5528 5529 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5530 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5531 return SPR; 5532 5533 // Look through 'not' ops to find disguised min/max. 5534 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5535 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5536 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5537 switch (Pred) { 5538 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5539 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5540 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5541 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5542 default: break; 5543 } 5544 } 5545 5546 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5547 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5548 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5549 switch (Pred) { 5550 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5551 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5552 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5553 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5554 default: break; 5555 } 5556 } 5557 5558 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5559 return {SPF_UNKNOWN, SPNB_NA, false}; 5560 5561 // Z = X -nsw Y 5562 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5563 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5564 if (match(TrueVal, m_Zero()) && 5565 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5566 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5567 5568 // Z = X -nsw Y 5569 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5570 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5571 if (match(FalseVal, m_Zero()) && 5572 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5573 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5574 5575 const APInt *C1; 5576 if (!match(CmpRHS, m_APInt(C1))) 5577 return {SPF_UNKNOWN, SPNB_NA, false}; 5578 5579 // An unsigned min/max can be written with a signed compare. 5580 const APInt *C2; 5581 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5582 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5583 // Is the sign bit set? 5584 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5585 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5586 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5587 C2->isMaxSignedValue()) 5588 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5589 5590 // Is the sign bit clear? 5591 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5592 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5593 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5594 C2->isMinSignedValue()) 5595 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5596 } 5597 5598 return {SPF_UNKNOWN, SPNB_NA, false}; 5599 } 5600 5601 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5602 assert(X && Y && "Invalid operand"); 5603 5604 // X = sub (0, Y) || X = sub nsw (0, Y) 5605 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5606 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5607 return true; 5608 5609 // Y = sub (0, X) || Y = sub nsw (0, X) 5610 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5611 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5612 return true; 5613 5614 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5615 Value *A, *B; 5616 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5617 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5618 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5619 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5620 } 5621 5622 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5623 FastMathFlags FMF, 5624 Value *CmpLHS, Value *CmpRHS, 5625 Value *TrueVal, Value *FalseVal, 5626 Value *&LHS, Value *&RHS, 5627 unsigned Depth) { 5628 if (CmpInst::isFPPredicate(Pred)) { 5629 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5630 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5631 // purpose of identifying min/max. Disregard vector constants with undefined 5632 // elements because those can not be back-propagated for analysis. 5633 Value *OutputZeroVal = nullptr; 5634 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5635 !cast<Constant>(TrueVal)->containsUndefElement()) 5636 OutputZeroVal = TrueVal; 5637 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5638 !cast<Constant>(FalseVal)->containsUndefElement()) 5639 OutputZeroVal = FalseVal; 5640 5641 if (OutputZeroVal) { 5642 if (match(CmpLHS, m_AnyZeroFP())) 5643 CmpLHS = OutputZeroVal; 5644 if (match(CmpRHS, m_AnyZeroFP())) 5645 CmpRHS = OutputZeroVal; 5646 } 5647 } 5648 5649 LHS = CmpLHS; 5650 RHS = CmpRHS; 5651 5652 // Signed zero may return inconsistent results between implementations. 5653 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5654 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5655 // Therefore, we behave conservatively and only proceed if at least one of the 5656 // operands is known to not be zero or if we don't care about signed zero. 5657 switch (Pred) { 5658 default: break; 5659 // FIXME: Include OGT/OLT/UGT/ULT. 5660 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5661 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5662 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5663 !isKnownNonZero(CmpRHS)) 5664 return {SPF_UNKNOWN, SPNB_NA, false}; 5665 } 5666 5667 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5668 bool Ordered = false; 5669 5670 // When given one NaN and one non-NaN input: 5671 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5672 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5673 // ordered comparison fails), which could be NaN or non-NaN. 5674 // so here we discover exactly what NaN behavior is required/accepted. 5675 if (CmpInst::isFPPredicate(Pred)) { 5676 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5677 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5678 5679 if (LHSSafe && RHSSafe) { 5680 // Both operands are known non-NaN. 5681 NaNBehavior = SPNB_RETURNS_ANY; 5682 } else if (CmpInst::isOrdered(Pred)) { 5683 // An ordered comparison will return false when given a NaN, so it 5684 // returns the RHS. 5685 Ordered = true; 5686 if (LHSSafe) 5687 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5688 NaNBehavior = SPNB_RETURNS_NAN; 5689 else if (RHSSafe) 5690 NaNBehavior = SPNB_RETURNS_OTHER; 5691 else 5692 // Completely unsafe. 5693 return {SPF_UNKNOWN, SPNB_NA, false}; 5694 } else { 5695 Ordered = false; 5696 // An unordered comparison will return true when given a NaN, so it 5697 // returns the LHS. 5698 if (LHSSafe) 5699 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5700 NaNBehavior = SPNB_RETURNS_OTHER; 5701 else if (RHSSafe) 5702 NaNBehavior = SPNB_RETURNS_NAN; 5703 else 5704 // Completely unsafe. 5705 return {SPF_UNKNOWN, SPNB_NA, false}; 5706 } 5707 } 5708 5709 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5710 std::swap(CmpLHS, CmpRHS); 5711 Pred = CmpInst::getSwappedPredicate(Pred); 5712 if (NaNBehavior == SPNB_RETURNS_NAN) 5713 NaNBehavior = SPNB_RETURNS_OTHER; 5714 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5715 NaNBehavior = SPNB_RETURNS_NAN; 5716 Ordered = !Ordered; 5717 } 5718 5719 // ([if]cmp X, Y) ? X : Y 5720 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5721 switch (Pred) { 5722 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5723 case ICmpInst::ICMP_UGT: 5724 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5725 case ICmpInst::ICMP_SGT: 5726 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5727 case ICmpInst::ICMP_ULT: 5728 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5729 case ICmpInst::ICMP_SLT: 5730 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5731 case FCmpInst::FCMP_UGT: 5732 case FCmpInst::FCMP_UGE: 5733 case FCmpInst::FCMP_OGT: 5734 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5735 case FCmpInst::FCMP_ULT: 5736 case FCmpInst::FCMP_ULE: 5737 case FCmpInst::FCMP_OLT: 5738 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5739 } 5740 } 5741 5742 if (isKnownNegation(TrueVal, FalseVal)) { 5743 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5744 // match against either LHS or sext(LHS). 5745 auto MaybeSExtCmpLHS = 5746 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5747 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5748 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5749 if (match(TrueVal, MaybeSExtCmpLHS)) { 5750 // Set the return values. If the compare uses the negated value (-X >s 0), 5751 // swap the return values because the negated value is always 'RHS'. 5752 LHS = TrueVal; 5753 RHS = FalseVal; 5754 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5755 std::swap(LHS, RHS); 5756 5757 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5758 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5759 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5760 return {SPF_ABS, SPNB_NA, false}; 5761 5762 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5763 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5764 return {SPF_ABS, SPNB_NA, false}; 5765 5766 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5767 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5768 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5769 return {SPF_NABS, SPNB_NA, false}; 5770 } 5771 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5772 // Set the return values. If the compare uses the negated value (-X >s 0), 5773 // swap the return values because the negated value is always 'RHS'. 5774 LHS = FalseVal; 5775 RHS = TrueVal; 5776 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5777 std::swap(LHS, RHS); 5778 5779 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5780 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5781 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5782 return {SPF_NABS, SPNB_NA, false}; 5783 5784 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5785 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5786 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5787 return {SPF_ABS, SPNB_NA, false}; 5788 } 5789 } 5790 5791 if (CmpInst::isIntPredicate(Pred)) 5792 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5793 5794 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5795 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5796 // semantics than minNum. Be conservative in such case. 5797 if (NaNBehavior != SPNB_RETURNS_ANY || 5798 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5799 !isKnownNonZero(CmpRHS))) 5800 return {SPF_UNKNOWN, SPNB_NA, false}; 5801 5802 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5803 } 5804 5805 /// Helps to match a select pattern in case of a type mismatch. 5806 /// 5807 /// The function processes the case when type of true and false values of a 5808 /// select instruction differs from type of the cmp instruction operands because 5809 /// of a cast instruction. The function checks if it is legal to move the cast 5810 /// operation after "select". If yes, it returns the new second value of 5811 /// "select" (with the assumption that cast is moved): 5812 /// 1. As operand of cast instruction when both values of "select" are same cast 5813 /// instructions. 5814 /// 2. As restored constant (by applying reverse cast operation) when the first 5815 /// value of the "select" is a cast operation and the second value is a 5816 /// constant. 5817 /// NOTE: We return only the new second value because the first value could be 5818 /// accessed as operand of cast instruction. 5819 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5820 Instruction::CastOps *CastOp) { 5821 auto *Cast1 = dyn_cast<CastInst>(V1); 5822 if (!Cast1) 5823 return nullptr; 5824 5825 *CastOp = Cast1->getOpcode(); 5826 Type *SrcTy = Cast1->getSrcTy(); 5827 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5828 // If V1 and V2 are both the same cast from the same type, look through V1. 5829 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5830 return Cast2->getOperand(0); 5831 return nullptr; 5832 } 5833 5834 auto *C = dyn_cast<Constant>(V2); 5835 if (!C) 5836 return nullptr; 5837 5838 Constant *CastedTo = nullptr; 5839 switch (*CastOp) { 5840 case Instruction::ZExt: 5841 if (CmpI->isUnsigned()) 5842 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5843 break; 5844 case Instruction::SExt: 5845 if (CmpI->isSigned()) 5846 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5847 break; 5848 case Instruction::Trunc: 5849 Constant *CmpConst; 5850 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5851 CmpConst->getType() == SrcTy) { 5852 // Here we have the following case: 5853 // 5854 // %cond = cmp iN %x, CmpConst 5855 // %tr = trunc iN %x to iK 5856 // %narrowsel = select i1 %cond, iK %t, iK C 5857 // 5858 // We can always move trunc after select operation: 5859 // 5860 // %cond = cmp iN %x, CmpConst 5861 // %widesel = select i1 %cond, iN %x, iN CmpConst 5862 // %tr = trunc iN %widesel to iK 5863 // 5864 // Note that C could be extended in any way because we don't care about 5865 // upper bits after truncation. It can't be abs pattern, because it would 5866 // look like: 5867 // 5868 // select i1 %cond, x, -x. 5869 // 5870 // So only min/max pattern could be matched. Such match requires widened C 5871 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5872 // CmpConst == C is checked below. 5873 CastedTo = CmpConst; 5874 } else { 5875 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5876 } 5877 break; 5878 case Instruction::FPTrunc: 5879 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5880 break; 5881 case Instruction::FPExt: 5882 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5883 break; 5884 case Instruction::FPToUI: 5885 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5886 break; 5887 case Instruction::FPToSI: 5888 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5889 break; 5890 case Instruction::UIToFP: 5891 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5892 break; 5893 case Instruction::SIToFP: 5894 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5895 break; 5896 default: 5897 break; 5898 } 5899 5900 if (!CastedTo) 5901 return nullptr; 5902 5903 // Make sure the cast doesn't lose any information. 5904 Constant *CastedBack = 5905 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5906 if (CastedBack != C) 5907 return nullptr; 5908 5909 return CastedTo; 5910 } 5911 5912 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5913 Instruction::CastOps *CastOp, 5914 unsigned Depth) { 5915 if (Depth >= MaxAnalysisRecursionDepth) 5916 return {SPF_UNKNOWN, SPNB_NA, false}; 5917 5918 SelectInst *SI = dyn_cast<SelectInst>(V); 5919 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5920 5921 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5922 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5923 5924 Value *TrueVal = SI->getTrueValue(); 5925 Value *FalseVal = SI->getFalseValue(); 5926 5927 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5928 CastOp, Depth); 5929 } 5930 5931 SelectPatternResult llvm::matchDecomposedSelectPattern( 5932 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5933 Instruction::CastOps *CastOp, unsigned Depth) { 5934 CmpInst::Predicate Pred = CmpI->getPredicate(); 5935 Value *CmpLHS = CmpI->getOperand(0); 5936 Value *CmpRHS = CmpI->getOperand(1); 5937 FastMathFlags FMF; 5938 if (isa<FPMathOperator>(CmpI)) 5939 FMF = CmpI->getFastMathFlags(); 5940 5941 // Bail out early. 5942 if (CmpI->isEquality()) 5943 return {SPF_UNKNOWN, SPNB_NA, false}; 5944 5945 // Deal with type mismatches. 5946 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5947 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5948 // If this is a potential fmin/fmax with a cast to integer, then ignore 5949 // -0.0 because there is no corresponding integer value. 5950 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5951 FMF.setNoSignedZeros(); 5952 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5953 cast<CastInst>(TrueVal)->getOperand(0), C, 5954 LHS, RHS, Depth); 5955 } 5956 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5957 // If this is a potential fmin/fmax with a cast to integer, then ignore 5958 // -0.0 because there is no corresponding integer value. 5959 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5960 FMF.setNoSignedZeros(); 5961 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5962 C, cast<CastInst>(FalseVal)->getOperand(0), 5963 LHS, RHS, Depth); 5964 } 5965 } 5966 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5967 LHS, RHS, Depth); 5968 } 5969 5970 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5971 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5972 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5973 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5974 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5975 if (SPF == SPF_FMINNUM) 5976 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5977 if (SPF == SPF_FMAXNUM) 5978 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5979 llvm_unreachable("unhandled!"); 5980 } 5981 5982 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5983 if (SPF == SPF_SMIN) return SPF_SMAX; 5984 if (SPF == SPF_UMIN) return SPF_UMAX; 5985 if (SPF == SPF_SMAX) return SPF_SMIN; 5986 if (SPF == SPF_UMAX) return SPF_UMIN; 5987 llvm_unreachable("unhandled!"); 5988 } 5989 5990 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5991 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5992 } 5993 5994 /// Return true if "icmp Pred LHS RHS" is always true. 5995 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5996 const Value *RHS, const DataLayout &DL, 5997 unsigned Depth) { 5998 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5999 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6000 return true; 6001 6002 switch (Pred) { 6003 default: 6004 return false; 6005 6006 case CmpInst::ICMP_SLE: { 6007 const APInt *C; 6008 6009 // LHS s<= LHS +_{nsw} C if C >= 0 6010 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6011 return !C->isNegative(); 6012 return false; 6013 } 6014 6015 case CmpInst::ICMP_ULE: { 6016 const APInt *C; 6017 6018 // LHS u<= LHS +_{nuw} C for any C 6019 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6020 return true; 6021 6022 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6023 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6024 const Value *&X, 6025 const APInt *&CA, const APInt *&CB) { 6026 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6027 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6028 return true; 6029 6030 // If X & C == 0 then (X | C) == X +_{nuw} C 6031 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6032 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6033 KnownBits Known(CA->getBitWidth()); 6034 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6035 /*CxtI*/ nullptr, /*DT*/ nullptr); 6036 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6037 return true; 6038 } 6039 6040 return false; 6041 }; 6042 6043 const Value *X; 6044 const APInt *CLHS, *CRHS; 6045 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6046 return CLHS->ule(*CRHS); 6047 6048 return false; 6049 } 6050 } 6051 } 6052 6053 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6054 /// ALHS ARHS" is true. Otherwise, return None. 6055 static Optional<bool> 6056 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6057 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6058 const DataLayout &DL, unsigned Depth) { 6059 switch (Pred) { 6060 default: 6061 return None; 6062 6063 case CmpInst::ICMP_SLT: 6064 case CmpInst::ICMP_SLE: 6065 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6066 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6067 return true; 6068 return None; 6069 6070 case CmpInst::ICMP_ULT: 6071 case CmpInst::ICMP_ULE: 6072 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6073 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6074 return true; 6075 return None; 6076 } 6077 } 6078 6079 /// Return true if the operands of the two compares match. IsSwappedOps is true 6080 /// when the operands match, but are swapped. 6081 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6082 const Value *BLHS, const Value *BRHS, 6083 bool &IsSwappedOps) { 6084 6085 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6086 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6087 return IsMatchingOps || IsSwappedOps; 6088 } 6089 6090 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6091 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6092 /// Otherwise, return None if we can't infer anything. 6093 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6094 CmpInst::Predicate BPred, 6095 bool AreSwappedOps) { 6096 // Canonicalize the predicate as if the operands were not commuted. 6097 if (AreSwappedOps) 6098 BPred = ICmpInst::getSwappedPredicate(BPred); 6099 6100 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6101 return true; 6102 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6103 return false; 6104 6105 return None; 6106 } 6107 6108 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6109 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6110 /// Otherwise, return None if we can't infer anything. 6111 static Optional<bool> 6112 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6113 const ConstantInt *C1, 6114 CmpInst::Predicate BPred, 6115 const ConstantInt *C2) { 6116 ConstantRange DomCR = 6117 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6118 ConstantRange CR = 6119 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6120 ConstantRange Intersection = DomCR.intersectWith(CR); 6121 ConstantRange Difference = DomCR.difference(CR); 6122 if (Intersection.isEmptySet()) 6123 return false; 6124 if (Difference.isEmptySet()) 6125 return true; 6126 return None; 6127 } 6128 6129 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6130 /// false. Otherwise, return None if we can't infer anything. 6131 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6132 CmpInst::Predicate BPred, 6133 const Value *BLHS, const Value *BRHS, 6134 const DataLayout &DL, bool LHSIsTrue, 6135 unsigned Depth) { 6136 Value *ALHS = LHS->getOperand(0); 6137 Value *ARHS = LHS->getOperand(1); 6138 6139 // The rest of the logic assumes the LHS condition is true. If that's not the 6140 // case, invert the predicate to make it so. 6141 CmpInst::Predicate APred = 6142 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6143 6144 // Can we infer anything when the two compares have matching operands? 6145 bool AreSwappedOps; 6146 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6147 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6148 APred, BPred, AreSwappedOps)) 6149 return Implication; 6150 // No amount of additional analysis will infer the second condition, so 6151 // early exit. 6152 return None; 6153 } 6154 6155 // Can we infer anything when the LHS operands match and the RHS operands are 6156 // constants (not necessarily matching)? 6157 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6158 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6159 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6160 return Implication; 6161 // No amount of additional analysis will infer the second condition, so 6162 // early exit. 6163 return None; 6164 } 6165 6166 if (APred == BPred) 6167 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6168 return None; 6169 } 6170 6171 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6172 /// false. Otherwise, return None if we can't infer anything. We expect the 6173 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6174 static Optional<bool> 6175 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6176 const Value *RHSOp0, const Value *RHSOp1, 6177 6178 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6179 // The LHS must be an 'or' or an 'and' instruction. 6180 assert((LHS->getOpcode() == Instruction::And || 6181 LHS->getOpcode() == Instruction::Or) && 6182 "Expected LHS to be 'and' or 'or'."); 6183 6184 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6185 6186 // If the result of an 'or' is false, then we know both legs of the 'or' are 6187 // false. Similarly, if the result of an 'and' is true, then we know both 6188 // legs of the 'and' are true. 6189 Value *ALHS, *ARHS; 6190 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6191 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6192 // FIXME: Make this non-recursion. 6193 if (Optional<bool> Implication = isImpliedCondition( 6194 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6195 return Implication; 6196 if (Optional<bool> Implication = isImpliedCondition( 6197 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6198 return Implication; 6199 return None; 6200 } 6201 return None; 6202 } 6203 6204 Optional<bool> 6205 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6206 const Value *RHSOp0, const Value *RHSOp1, 6207 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6208 // Bail out when we hit the limit. 6209 if (Depth == MaxAnalysisRecursionDepth) 6210 return None; 6211 6212 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6213 // example. 6214 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6215 return None; 6216 6217 Type *OpTy = LHS->getType(); 6218 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6219 6220 // FIXME: Extending the code below to handle vectors. 6221 if (OpTy->isVectorTy()) 6222 return None; 6223 6224 assert(OpTy->isIntegerTy(1) && "implied by above"); 6225 6226 // Both LHS and RHS are icmps. 6227 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6228 if (LHSCmp) 6229 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6230 Depth); 6231 6232 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6233 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6234 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6235 if (LHSBO) { 6236 if ((LHSBO->getOpcode() == Instruction::And || 6237 LHSBO->getOpcode() == Instruction::Or)) 6238 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6239 Depth); 6240 } 6241 return None; 6242 } 6243 6244 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6245 const DataLayout &DL, bool LHSIsTrue, 6246 unsigned Depth) { 6247 // LHS ==> RHS by definition 6248 if (LHS == RHS) 6249 return LHSIsTrue; 6250 6251 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6252 if (RHSCmp) 6253 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6254 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6255 LHSIsTrue, Depth); 6256 return None; 6257 } 6258 6259 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6260 // condition dominating ContextI or nullptr, if no condition is found. 6261 static std::pair<Value *, bool> 6262 getDomPredecessorCondition(const Instruction *ContextI) { 6263 if (!ContextI || !ContextI->getParent()) 6264 return {nullptr, false}; 6265 6266 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6267 // dominator tree (eg, from a SimplifyQuery) instead? 6268 const BasicBlock *ContextBB = ContextI->getParent(); 6269 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6270 if (!PredBB) 6271 return {nullptr, false}; 6272 6273 // We need a conditional branch in the predecessor. 6274 Value *PredCond; 6275 BasicBlock *TrueBB, *FalseBB; 6276 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6277 return {nullptr, false}; 6278 6279 // The branch should get simplified. Don't bother simplifying this condition. 6280 if (TrueBB == FalseBB) 6281 return {nullptr, false}; 6282 6283 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6284 "Predecessor block does not point to successor?"); 6285 6286 // Is this condition implied by the predecessor condition? 6287 return {PredCond, TrueBB == ContextBB}; 6288 } 6289 6290 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6291 const Instruction *ContextI, 6292 const DataLayout &DL) { 6293 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6294 auto PredCond = getDomPredecessorCondition(ContextI); 6295 if (PredCond.first) 6296 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6297 return None; 6298 } 6299 6300 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6301 const Value *LHS, const Value *RHS, 6302 const Instruction *ContextI, 6303 const DataLayout &DL) { 6304 auto PredCond = getDomPredecessorCondition(ContextI); 6305 if (PredCond.first) 6306 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6307 PredCond.second); 6308 return None; 6309 } 6310 6311 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6312 APInt &Upper, const InstrInfoQuery &IIQ) { 6313 unsigned Width = Lower.getBitWidth(); 6314 const APInt *C; 6315 switch (BO.getOpcode()) { 6316 case Instruction::Add: 6317 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6318 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6319 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6320 // 'add nuw x, C' produces [C, UINT_MAX]. 6321 Lower = *C; 6322 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6323 if (C->isNegative()) { 6324 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6325 Lower = APInt::getSignedMinValue(Width); 6326 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6327 } else { 6328 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6329 Lower = APInt::getSignedMinValue(Width) + *C; 6330 Upper = APInt::getSignedMaxValue(Width) + 1; 6331 } 6332 } 6333 } 6334 break; 6335 6336 case Instruction::And: 6337 if (match(BO.getOperand(1), m_APInt(C))) 6338 // 'and x, C' produces [0, C]. 6339 Upper = *C + 1; 6340 break; 6341 6342 case Instruction::Or: 6343 if (match(BO.getOperand(1), m_APInt(C))) 6344 // 'or x, C' produces [C, UINT_MAX]. 6345 Lower = *C; 6346 break; 6347 6348 case Instruction::AShr: 6349 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6350 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6351 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6352 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6353 } else if (match(BO.getOperand(0), m_APInt(C))) { 6354 unsigned ShiftAmount = Width - 1; 6355 if (!C->isNullValue() && IIQ.isExact(&BO)) 6356 ShiftAmount = C->countTrailingZeros(); 6357 if (C->isNegative()) { 6358 // 'ashr C, x' produces [C, C >> (Width-1)] 6359 Lower = *C; 6360 Upper = C->ashr(ShiftAmount) + 1; 6361 } else { 6362 // 'ashr C, x' produces [C >> (Width-1), C] 6363 Lower = C->ashr(ShiftAmount); 6364 Upper = *C + 1; 6365 } 6366 } 6367 break; 6368 6369 case Instruction::LShr: 6370 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6371 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6372 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6373 } else if (match(BO.getOperand(0), m_APInt(C))) { 6374 // 'lshr C, x' produces [C >> (Width-1), C]. 6375 unsigned ShiftAmount = Width - 1; 6376 if (!C->isNullValue() && IIQ.isExact(&BO)) 6377 ShiftAmount = C->countTrailingZeros(); 6378 Lower = C->lshr(ShiftAmount); 6379 Upper = *C + 1; 6380 } 6381 break; 6382 6383 case Instruction::Shl: 6384 if (match(BO.getOperand(0), m_APInt(C))) { 6385 if (IIQ.hasNoUnsignedWrap(&BO)) { 6386 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6387 Lower = *C; 6388 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6389 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6390 if (C->isNegative()) { 6391 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6392 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6393 Lower = C->shl(ShiftAmount); 6394 Upper = *C + 1; 6395 } else { 6396 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6397 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6398 Lower = *C; 6399 Upper = C->shl(ShiftAmount) + 1; 6400 } 6401 } 6402 } 6403 break; 6404 6405 case Instruction::SDiv: 6406 if (match(BO.getOperand(1), m_APInt(C))) { 6407 APInt IntMin = APInt::getSignedMinValue(Width); 6408 APInt IntMax = APInt::getSignedMaxValue(Width); 6409 if (C->isAllOnesValue()) { 6410 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6411 // where C != -1 and C != 0 and C != 1 6412 Lower = IntMin + 1; 6413 Upper = IntMax + 1; 6414 } else if (C->countLeadingZeros() < Width - 1) { 6415 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6416 // where C != -1 and C != 0 and C != 1 6417 Lower = IntMin.sdiv(*C); 6418 Upper = IntMax.sdiv(*C); 6419 if (Lower.sgt(Upper)) 6420 std::swap(Lower, Upper); 6421 Upper = Upper + 1; 6422 assert(Upper != Lower && "Upper part of range has wrapped!"); 6423 } 6424 } else if (match(BO.getOperand(0), m_APInt(C))) { 6425 if (C->isMinSignedValue()) { 6426 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6427 Lower = *C; 6428 Upper = Lower.lshr(1) + 1; 6429 } else { 6430 // 'sdiv C, x' produces [-|C|, |C|]. 6431 Upper = C->abs() + 1; 6432 Lower = (-Upper) + 1; 6433 } 6434 } 6435 break; 6436 6437 case Instruction::UDiv: 6438 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6439 // 'udiv x, C' produces [0, UINT_MAX / C]. 6440 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6441 } else if (match(BO.getOperand(0), m_APInt(C))) { 6442 // 'udiv C, x' produces [0, C]. 6443 Upper = *C + 1; 6444 } 6445 break; 6446 6447 case Instruction::SRem: 6448 if (match(BO.getOperand(1), m_APInt(C))) { 6449 // 'srem x, C' produces (-|C|, |C|). 6450 Upper = C->abs(); 6451 Lower = (-Upper) + 1; 6452 } 6453 break; 6454 6455 case Instruction::URem: 6456 if (match(BO.getOperand(1), m_APInt(C))) 6457 // 'urem x, C' produces [0, C). 6458 Upper = *C; 6459 break; 6460 6461 default: 6462 break; 6463 } 6464 } 6465 6466 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6467 APInt &Upper) { 6468 unsigned Width = Lower.getBitWidth(); 6469 const APInt *C; 6470 switch (II.getIntrinsicID()) { 6471 case Intrinsic::ctpop: 6472 case Intrinsic::ctlz: 6473 case Intrinsic::cttz: 6474 // Maximum of set/clear bits is the bit width. 6475 assert(Lower == 0 && "Expected lower bound to be zero"); 6476 Upper = Width + 1; 6477 break; 6478 case Intrinsic::uadd_sat: 6479 // uadd.sat(x, C) produces [C, UINT_MAX]. 6480 if (match(II.getOperand(0), m_APInt(C)) || 6481 match(II.getOperand(1), m_APInt(C))) 6482 Lower = *C; 6483 break; 6484 case Intrinsic::sadd_sat: 6485 if (match(II.getOperand(0), m_APInt(C)) || 6486 match(II.getOperand(1), m_APInt(C))) { 6487 if (C->isNegative()) { 6488 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6489 Lower = APInt::getSignedMinValue(Width); 6490 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6491 } else { 6492 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6493 Lower = APInt::getSignedMinValue(Width) + *C; 6494 Upper = APInt::getSignedMaxValue(Width) + 1; 6495 } 6496 } 6497 break; 6498 case Intrinsic::usub_sat: 6499 // usub.sat(C, x) produces [0, C]. 6500 if (match(II.getOperand(0), m_APInt(C))) 6501 Upper = *C + 1; 6502 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6503 else if (match(II.getOperand(1), m_APInt(C))) 6504 Upper = APInt::getMaxValue(Width) - *C + 1; 6505 break; 6506 case Intrinsic::ssub_sat: 6507 if (match(II.getOperand(0), m_APInt(C))) { 6508 if (C->isNegative()) { 6509 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6510 Lower = APInt::getSignedMinValue(Width); 6511 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6512 } else { 6513 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6514 Lower = *C - APInt::getSignedMaxValue(Width); 6515 Upper = APInt::getSignedMaxValue(Width) + 1; 6516 } 6517 } else if (match(II.getOperand(1), m_APInt(C))) { 6518 if (C->isNegative()) { 6519 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6520 Lower = APInt::getSignedMinValue(Width) - *C; 6521 Upper = APInt::getSignedMaxValue(Width) + 1; 6522 } else { 6523 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6524 Lower = APInt::getSignedMinValue(Width); 6525 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6526 } 6527 } 6528 break; 6529 case Intrinsic::umin: 6530 case Intrinsic::umax: 6531 case Intrinsic::smin: 6532 case Intrinsic::smax: 6533 if (!match(II.getOperand(0), m_APInt(C)) && 6534 !match(II.getOperand(1), m_APInt(C))) 6535 break; 6536 6537 switch (II.getIntrinsicID()) { 6538 case Intrinsic::umin: 6539 Upper = *C + 1; 6540 break; 6541 case Intrinsic::umax: 6542 Lower = *C; 6543 break; 6544 case Intrinsic::smin: 6545 Lower = APInt::getSignedMinValue(Width); 6546 Upper = *C + 1; 6547 break; 6548 case Intrinsic::smax: 6549 Lower = *C; 6550 Upper = APInt::getSignedMaxValue(Width) + 1; 6551 break; 6552 default: 6553 llvm_unreachable("Must be min/max intrinsic"); 6554 } 6555 break; 6556 case Intrinsic::abs: 6557 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6558 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6559 if (match(II.getOperand(1), m_One())) 6560 Upper = APInt::getSignedMaxValue(Width) + 1; 6561 else 6562 Upper = APInt::getSignedMinValue(Width) + 1; 6563 break; 6564 default: 6565 break; 6566 } 6567 } 6568 6569 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6570 APInt &Upper, const InstrInfoQuery &IIQ) { 6571 const Value *LHS = nullptr, *RHS = nullptr; 6572 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6573 if (R.Flavor == SPF_UNKNOWN) 6574 return; 6575 6576 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6577 6578 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6579 // If the negation part of the abs (in RHS) has the NSW flag, 6580 // then the result of abs(X) is [0..SIGNED_MAX], 6581 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6582 Lower = APInt::getNullValue(BitWidth); 6583 if (match(RHS, m_Neg(m_Specific(LHS))) && 6584 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6585 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6586 else 6587 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6588 return; 6589 } 6590 6591 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6592 // The result of -abs(X) is <= 0. 6593 Lower = APInt::getSignedMinValue(BitWidth); 6594 Upper = APInt(BitWidth, 1); 6595 return; 6596 } 6597 6598 const APInt *C; 6599 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6600 return; 6601 6602 switch (R.Flavor) { 6603 case SPF_UMIN: 6604 Upper = *C + 1; 6605 break; 6606 case SPF_UMAX: 6607 Lower = *C; 6608 break; 6609 case SPF_SMIN: 6610 Lower = APInt::getSignedMinValue(BitWidth); 6611 Upper = *C + 1; 6612 break; 6613 case SPF_SMAX: 6614 Lower = *C; 6615 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6616 break; 6617 default: 6618 break; 6619 } 6620 } 6621 6622 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6623 AssumptionCache *AC, 6624 const Instruction *CtxI, 6625 unsigned Depth) { 6626 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6627 6628 if (Depth == MaxAnalysisRecursionDepth) 6629 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6630 6631 const APInt *C; 6632 if (match(V, m_APInt(C))) 6633 return ConstantRange(*C); 6634 6635 InstrInfoQuery IIQ(UseInstrInfo); 6636 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6637 APInt Lower = APInt(BitWidth, 0); 6638 APInt Upper = APInt(BitWidth, 0); 6639 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6640 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6641 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6642 setLimitsForIntrinsic(*II, Lower, Upper); 6643 else if (auto *SI = dyn_cast<SelectInst>(V)) 6644 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6645 6646 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6647 6648 if (auto *I = dyn_cast<Instruction>(V)) 6649 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6650 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6651 6652 if (CtxI && AC) { 6653 // Try to restrict the range based on information from assumptions. 6654 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6655 if (!AssumeVH) 6656 continue; 6657 CallInst *I = cast<CallInst>(AssumeVH); 6658 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6659 "Got assumption for the wrong function!"); 6660 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6661 "must be an assume intrinsic"); 6662 6663 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6664 continue; 6665 Value *Arg = I->getArgOperand(0); 6666 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6667 // Currently we just use information from comparisons. 6668 if (!Cmp || Cmp->getOperand(0) != V) 6669 continue; 6670 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6671 AC, I, Depth + 1); 6672 CR = CR.intersectWith( 6673 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6674 } 6675 } 6676 6677 return CR; 6678 } 6679 6680 static Optional<int64_t> 6681 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6682 // Skip over the first indices. 6683 gep_type_iterator GTI = gep_type_begin(GEP); 6684 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6685 /*skip along*/; 6686 6687 // Compute the offset implied by the rest of the indices. 6688 int64_t Offset = 0; 6689 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6690 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6691 if (!OpC) 6692 return None; 6693 if (OpC->isZero()) 6694 continue; // No offset. 6695 6696 // Handle struct indices, which add their field offset to the pointer. 6697 if (StructType *STy = GTI.getStructTypeOrNull()) { 6698 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6699 continue; 6700 } 6701 6702 // Otherwise, we have a sequential type like an array or fixed-length 6703 // vector. Multiply the index by the ElementSize. 6704 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6705 if (Size.isScalable()) 6706 return None; 6707 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6708 } 6709 6710 return Offset; 6711 } 6712 6713 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6714 const DataLayout &DL) { 6715 Ptr1 = Ptr1->stripPointerCasts(); 6716 Ptr2 = Ptr2->stripPointerCasts(); 6717 6718 // Handle the trivial case first. 6719 if (Ptr1 == Ptr2) { 6720 return 0; 6721 } 6722 6723 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6724 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6725 6726 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6727 // as in "P" and "gep P, 1". 6728 // Also do this iteratively to handle the the following case: 6729 // Ptr_t1 = GEP Ptr1, c1 6730 // Ptr_t2 = GEP Ptr_t1, c2 6731 // Ptr2 = GEP Ptr_t2, c3 6732 // where we will return c1+c2+c3. 6733 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6734 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6735 // are the same, and return the difference between offsets. 6736 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6737 const Value *Ptr) -> Optional<int64_t> { 6738 const GEPOperator *GEP_T = GEP; 6739 int64_t OffsetVal = 0; 6740 bool HasSameBase = false; 6741 while (GEP_T) { 6742 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6743 if (!Offset) 6744 return None; 6745 OffsetVal += *Offset; 6746 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6747 if (Op0 == Ptr) { 6748 HasSameBase = true; 6749 break; 6750 } 6751 GEP_T = dyn_cast<GEPOperator>(Op0); 6752 } 6753 if (!HasSameBase) 6754 return None; 6755 return OffsetVal; 6756 }; 6757 6758 if (GEP1) { 6759 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6760 if (Offset) 6761 return -*Offset; 6762 } 6763 if (GEP2) { 6764 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6765 if (Offset) 6766 return Offset; 6767 } 6768 6769 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6770 // base. After that base, they may have some number of common (and 6771 // potentially variable) indices. After that they handle some constant 6772 // offset, which determines their offset from each other. At this point, we 6773 // handle no other case. 6774 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6775 return None; 6776 6777 // Skip any common indices and track the GEP types. 6778 unsigned Idx = 1; 6779 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6780 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6781 break; 6782 6783 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6784 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6785 if (!Offset1 || !Offset2) 6786 return None; 6787 return *Offset2 - *Offset1; 6788 } 6789