1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 260 // If an initial sequence of bits in the result is not needed, the 261 // corresponding bits in the operands are not needed. 262 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 263 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 264 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 265 266 // Carry in a 1 for a subtract, rather than a 0. 267 APInt CarryIn(BitWidth, 0); 268 if (!Add) { 269 // Sum = LHS + ~RHS + 1 270 std::swap(KnownZero2, KnownOne2); 271 CarryIn.setBit(0); 272 } 273 274 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 275 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 276 277 // Compute known bits of the carry. 278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 280 281 // Compute set of known bits (where all three relevant bits are known). 282 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 283 APInt RHSKnown = KnownZero2 | KnownOne2; 284 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 285 APInt Known = LHSKnown & RHSKnown & CarryKnown; 286 287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 288 "known bits of sum differ"); 289 290 // Compute known bits of the result. 291 KnownZero = ~PossibleSumOne & Known; 292 KnownOne = PossibleSumOne & Known; 293 294 // Are we still trying to solve for the sign bit? 295 if (!Known.isNegative()) { 296 if (NSW) { 297 // Adding two non-negative numbers, or subtracting a negative number from 298 // a non-negative one, can't wrap into negative. 299 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 300 KnownZero.setSignBit(); 301 // Adding two negative numbers, or subtracting a non-negative number from 302 // a negative one, can't wrap into non-negative. 303 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 304 KnownOne.setSignBit(); 305 } 306 } 307 } 308 309 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 310 APInt &KnownZero, APInt &KnownOne, 311 APInt &KnownZero2, APInt &KnownOne2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 327 bool isKnownNegativeOp1 = KnownOne.isNegative(); 328 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 356 APInt::getHighBitsSet(BitWidth, LeadZ); 357 358 // Only make use of no-wrap flags if we failed to compute the sign bit 359 // directly. This matters if the multiplication always overflows, in 360 // which case we prefer to follow the result of the direct computation, 361 // though as the program is invoking undefined behaviour we can choose 362 // whatever we like here. 363 if (isKnownNonNegative && !KnownOne.isNegative()) 364 KnownZero.setBit(BitWidth - 1); 365 else if (isKnownNegative && !KnownZero.isNegative()) 366 KnownOne.setBit(BitWidth - 1); 367 } 368 369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 370 APInt &KnownZero, 371 APInt &KnownOne) { 372 unsigned BitWidth = KnownZero.getBitWidth(); 373 unsigned NumRanges = Ranges.getNumOperands() / 2; 374 assert(NumRanges >= 1); 375 376 KnownZero.setAllBits(); 377 KnownOne.setAllBits(); 378 379 for (unsigned i = 0; i < NumRanges; ++i) { 380 ConstantInt *Lower = 381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 382 ConstantInt *Upper = 383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 384 ConstantRange Range(Lower->getValue(), Upper->getValue()); 385 386 // The first CommonPrefixBits of all values in Range are equal. 387 unsigned CommonPrefixBits = 388 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 389 390 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 391 KnownOne &= Range.getUnsignedMax() & Mask; 392 KnownZero &= ~Range.getUnsignedMax() & Mask; 393 } 394 } 395 396 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 397 SmallVector<const Value *, 16> WorkSet(1, I); 398 SmallPtrSet<const Value *, 32> Visited; 399 SmallPtrSet<const Value *, 16> EphValues; 400 401 // The instruction defining an assumption's condition itself is always 402 // considered ephemeral to that assumption (even if it has other 403 // non-ephemeral users). See r246696's test case for an example. 404 if (is_contained(I->operands(), E)) 405 return true; 406 407 while (!WorkSet.empty()) { 408 const Value *V = WorkSet.pop_back_val(); 409 if (!Visited.insert(V).second) 410 continue; 411 412 // If all uses of this value are ephemeral, then so is this value. 413 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 414 if (V == E) 415 return true; 416 417 EphValues.insert(V); 418 if (const User *U = dyn_cast<User>(V)) 419 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 420 J != JE; ++J) { 421 if (isSafeToSpeculativelyExecute(*J)) 422 WorkSet.push_back(*J); 423 } 424 } 425 } 426 427 return false; 428 } 429 430 // Is this an intrinsic that cannot be speculated but also cannot trap? 431 static bool isAssumeLikeIntrinsic(const Instruction *I) { 432 if (const CallInst *CI = dyn_cast<CallInst>(I)) 433 if (Function *F = CI->getCalledFunction()) 434 switch (F->getIntrinsicID()) { 435 default: break; 436 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 437 case Intrinsic::assume: 438 case Intrinsic::dbg_declare: 439 case Intrinsic::dbg_value: 440 case Intrinsic::invariant_start: 441 case Intrinsic::invariant_end: 442 case Intrinsic::lifetime_start: 443 case Intrinsic::lifetime_end: 444 case Intrinsic::objectsize: 445 case Intrinsic::ptr_annotation: 446 case Intrinsic::var_annotation: 447 return true; 448 } 449 450 return false; 451 } 452 453 bool llvm::isValidAssumeForContext(const Instruction *Inv, 454 const Instruction *CxtI, 455 const DominatorTree *DT) { 456 457 // There are two restrictions on the use of an assume: 458 // 1. The assume must dominate the context (or the control flow must 459 // reach the assume whenever it reaches the context). 460 // 2. The context must not be in the assume's set of ephemeral values 461 // (otherwise we will use the assume to prove that the condition 462 // feeding the assume is trivially true, thus causing the removal of 463 // the assume). 464 465 if (DT) { 466 if (DT->dominates(Inv, CxtI)) 467 return true; 468 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 469 // We don't have a DT, but this trivially dominates. 470 return true; 471 } 472 473 // With or without a DT, the only remaining case we will check is if the 474 // instructions are in the same BB. Give up if that is not the case. 475 if (Inv->getParent() != CxtI->getParent()) 476 return false; 477 478 // If we have a dom tree, then we now know that the assume doens't dominate 479 // the other instruction. If we don't have a dom tree then we can check if 480 // the assume is first in the BB. 481 if (!DT) { 482 // Search forward from the assume until we reach the context (or the end 483 // of the block); the common case is that the assume will come first. 484 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 485 IE = Inv->getParent()->end(); I != IE; ++I) 486 if (&*I == CxtI) 487 return true; 488 } 489 490 // The context comes first, but they're both in the same block. Make sure 491 // there is nothing in between that might interrupt the control flow. 492 for (BasicBlock::const_iterator I = 493 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 494 I != IE; ++I) 495 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 496 return false; 497 498 return !isEphemeralValueOf(Inv, CxtI); 499 } 500 501 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 502 APInt &KnownOne, unsigned Depth, 503 const Query &Q) { 504 // Use of assumptions is context-sensitive. If we don't have a context, we 505 // cannot use them! 506 if (!Q.AC || !Q.CxtI) 507 return; 508 509 unsigned BitWidth = KnownZero.getBitWidth(); 510 511 // Note that the patterns below need to be kept in sync with the code 512 // in AssumptionCache::updateAffectedValues. 513 514 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 515 if (!AssumeVH) 516 continue; 517 CallInst *I = cast<CallInst>(AssumeVH); 518 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 519 "Got assumption for the wrong function!"); 520 if (Q.isExcluded(I)) 521 continue; 522 523 // Warning: This loop can end up being somewhat performance sensetive. 524 // We're running this loop for once for each value queried resulting in a 525 // runtime of ~O(#assumes * #values). 526 527 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 528 "must be an assume intrinsic"); 529 530 Value *Arg = I->getArgOperand(0); 531 532 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 533 assert(BitWidth == 1 && "assume operand is not i1?"); 534 KnownZero.clearAllBits(); 535 KnownOne.setAllBits(); 536 return; 537 } 538 if (match(Arg, m_Not(m_Specific(V))) && 539 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 540 assert(BitWidth == 1 && "assume operand is not i1?"); 541 KnownZero.setAllBits(); 542 KnownOne.clearAllBits(); 543 return; 544 } 545 546 // The remaining tests are all recursive, so bail out if we hit the limit. 547 if (Depth == MaxDepth) 548 continue; 549 550 Value *A, *B; 551 auto m_V = m_CombineOr(m_Specific(V), 552 m_CombineOr(m_PtrToInt(m_Specific(V)), 553 m_BitCast(m_Specific(V)))); 554 555 CmpInst::Predicate Pred; 556 ConstantInt *C; 557 // assume(v = a) 558 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 559 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 560 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 561 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 562 KnownZero |= RHSKnownZero; 563 KnownOne |= RHSKnownOne; 564 // assume(v & b = a) 565 } else if (match(Arg, 566 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 567 Pred == ICmpInst::ICMP_EQ && 568 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 569 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 570 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 571 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 572 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 573 574 // For those bits in the mask that are known to be one, we can propagate 575 // known bits from the RHS to V. 576 KnownZero |= RHSKnownZero & MaskKnownOne; 577 KnownOne |= RHSKnownOne & MaskKnownOne; 578 // assume(~(v & b) = a) 579 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 580 m_Value(A))) && 581 Pred == ICmpInst::ICMP_EQ && 582 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 583 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 584 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 585 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 586 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 587 588 // For those bits in the mask that are known to be one, we can propagate 589 // inverted known bits from the RHS to V. 590 KnownZero |= RHSKnownOne & MaskKnownOne; 591 KnownOne |= RHSKnownZero & MaskKnownOne; 592 // assume(v | b = a) 593 } else if (match(Arg, 594 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 595 Pred == ICmpInst::ICMP_EQ && 596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 597 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 598 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 599 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 600 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 601 602 // For those bits in B that are known to be zero, we can propagate known 603 // bits from the RHS to V. 604 KnownZero |= RHSKnownZero & BKnownZero; 605 KnownOne |= RHSKnownOne & BKnownZero; 606 // assume(~(v | b) = a) 607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 608 m_Value(A))) && 609 Pred == ICmpInst::ICMP_EQ && 610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 611 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 612 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 613 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 614 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 615 616 // For those bits in B that are known to be zero, we can propagate 617 // inverted known bits from the RHS to V. 618 KnownZero |= RHSKnownOne & BKnownZero; 619 KnownOne |= RHSKnownZero & BKnownZero; 620 // assume(v ^ b = a) 621 } else if (match(Arg, 622 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 623 Pred == ICmpInst::ICMP_EQ && 624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 625 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 626 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 627 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 628 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 629 630 // For those bits in B that are known to be zero, we can propagate known 631 // bits from the RHS to V. For those bits in B that are known to be one, 632 // we can propagate inverted known bits from the RHS to V. 633 KnownZero |= RHSKnownZero & BKnownZero; 634 KnownOne |= RHSKnownOne & BKnownZero; 635 KnownZero |= RHSKnownOne & BKnownOne; 636 KnownOne |= RHSKnownZero & BKnownOne; 637 // assume(~(v ^ b) = a) 638 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 639 m_Value(A))) && 640 Pred == ICmpInst::ICMP_EQ && 641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 642 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 643 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 644 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 645 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 646 647 // For those bits in B that are known to be zero, we can propagate 648 // inverted known bits from the RHS to V. For those bits in B that are 649 // known to be one, we can propagate known bits from the RHS to V. 650 KnownZero |= RHSKnownOne & BKnownZero; 651 KnownOne |= RHSKnownZero & BKnownZero; 652 KnownZero |= RHSKnownZero & BKnownOne; 653 KnownOne |= RHSKnownOne & BKnownOne; 654 // assume(v << c = a) 655 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 656 m_Value(A))) && 657 Pred == ICmpInst::ICMP_EQ && 658 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 659 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 660 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 661 // For those bits in RHS that are known, we can propagate them to known 662 // bits in V shifted to the right by C. 663 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 664 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 665 // assume(~(v << c) = a) 666 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 667 m_Value(A))) && 668 Pred == ICmpInst::ICMP_EQ && 669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 672 // For those bits in RHS that are known, we can propagate them inverted 673 // to known bits in V shifted to the right by C. 674 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 675 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 676 // assume(v >> c = a) 677 } else if (match(Arg, 678 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 679 m_AShr(m_V, m_ConstantInt(C))), 680 m_Value(A))) && 681 Pred == ICmpInst::ICMP_EQ && 682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 685 // For those bits in RHS that are known, we can propagate them to known 686 // bits in V shifted to the right by C. 687 KnownZero |= RHSKnownZero << C->getZExtValue(); 688 KnownOne |= RHSKnownOne << C->getZExtValue(); 689 // assume(~(v >> c) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 691 m_LShr(m_V, m_ConstantInt(C)), 692 m_AShr(m_V, m_ConstantInt(C)))), 693 m_Value(A))) && 694 Pred == ICmpInst::ICMP_EQ && 695 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 696 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 697 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 698 // For those bits in RHS that are known, we can propagate them inverted 699 // to known bits in V shifted to the right by C. 700 KnownZero |= RHSKnownOne << C->getZExtValue(); 701 KnownOne |= RHSKnownZero << C->getZExtValue(); 702 // assume(v >=_s c) where c is non-negative 703 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 704 Pred == ICmpInst::ICMP_SGE && 705 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 706 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 707 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 708 709 if (RHSKnownZero.isNegative()) { 710 // We know that the sign bit is zero. 711 KnownZero.setSignBit(); 712 } 713 // assume(v >_s c) where c is at least -1. 714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 715 Pred == ICmpInst::ICMP_SGT && 716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 717 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 718 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 719 720 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 721 // We know that the sign bit is zero. 722 KnownZero.setSignBit(); 723 } 724 // assume(v <=_s c) where c is negative 725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 726 Pred == ICmpInst::ICMP_SLE && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 729 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 730 731 if (RHSKnownOne.isNegative()) { 732 // We know that the sign bit is one. 733 KnownOne.setSignBit(); 734 } 735 // assume(v <_s c) where c is non-positive 736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 737 Pred == ICmpInst::ICMP_SLT && 738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 739 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 740 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 741 742 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 743 // We know that the sign bit is one. 744 KnownOne.setSignBit(); 745 } 746 // assume(v <=_u c) 747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 748 Pred == ICmpInst::ICMP_ULE && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 751 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 752 753 // Whatever high bits in c are zero are known to be zero. 754 KnownZero |= 755 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 756 // assume(v <_u c) 757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 758 Pred == ICmpInst::ICMP_ULT && 759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 762 763 // Whatever high bits in c are zero are known to be zero (if c is a power 764 // of 2, then one more). 765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 766 KnownZero |= 767 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 768 else 769 KnownZero |= 770 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 771 } 772 } 773 774 // If assumptions conflict with each other or previous known bits, then we 775 // have a logical fallacy. It's possible that the assumption is not reachable, 776 // so this isn't a real bug. On the other hand, the program may have undefined 777 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 778 // clear out the known bits, try to warn the user, and hope for the best. 779 if ((KnownZero & KnownOne) != 0) { 780 KnownZero.clearAllBits(); 781 KnownOne.clearAllBits(); 782 783 if (Q.ORE) { 784 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 785 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 786 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 787 "have undefined behavior, or compiler may have " 788 "internal error."); 789 } 790 } 791 } 792 793 // Compute known bits from a shift operator, including those with a 794 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 795 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 796 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 797 // functors that, given the known-zero or known-one bits respectively, and a 798 // shift amount, compute the implied known-zero or known-one bits of the shift 799 // operator's result respectively for that shift amount. The results from calling 800 // KZF and KOF are conservatively combined for all permitted shift amounts. 801 static void computeKnownBitsFromShiftOperator( 802 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 803 APInt &KnownOne2, unsigned Depth, const Query &Q, 804 function_ref<APInt(const APInt &, unsigned)> KZF, 805 function_ref<APInt(const APInt &, unsigned)> KOF) { 806 unsigned BitWidth = KnownZero.getBitWidth(); 807 808 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 809 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 810 811 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 812 KnownZero = KZF(KnownZero, ShiftAmt); 813 KnownOne = KOF(KnownOne, ShiftAmt); 814 // If there is conflict between KnownZero and KnownOne, this must be an 815 // overflowing left shift, so the shift result is undefined. Clear KnownZero 816 // and KnownOne bits so that other code could propagate this undef. 817 if ((KnownZero & KnownOne) != 0) { 818 KnownZero.clearAllBits(); 819 KnownOne.clearAllBits(); 820 } 821 822 return; 823 } 824 825 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 826 827 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 828 // value could be undef, so we don't know anything about it. 829 if ((~KnownZero).uge(BitWidth)) { 830 KnownZero.clearAllBits(); 831 KnownOne.clearAllBits(); 832 return; 833 } 834 835 // Note: We cannot use KnownZero.getLimitedValue() here, because if 836 // BitWidth > 64 and any upper bits are known, we'll end up returning the 837 // limit value (which implies all bits are known). 838 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 839 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 840 841 // It would be more-clearly correct to use the two temporaries for this 842 // calculation. Reusing the APInts here to prevent unnecessary allocations. 843 KnownZero.clearAllBits(); 844 KnownOne.clearAllBits(); 845 846 // If we know the shifter operand is nonzero, we can sometimes infer more 847 // known bits. However this is expensive to compute, so be lazy about it and 848 // only compute it when absolutely necessary. 849 Optional<bool> ShifterOperandIsNonZero; 850 851 // Early exit if we can't constrain any well-defined shift amount. 852 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 853 ShifterOperandIsNonZero = 854 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 855 if (!*ShifterOperandIsNonZero) 856 return; 857 } 858 859 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 860 861 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 862 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 863 // Combine the shifted known input bits only for those shift amounts 864 // compatible with its known constraints. 865 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 866 continue; 867 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 868 continue; 869 // If we know the shifter is nonzero, we may be able to infer more known 870 // bits. This check is sunk down as far as possible to avoid the expensive 871 // call to isKnownNonZero if the cheaper checks above fail. 872 if (ShiftAmt == 0) { 873 if (!ShifterOperandIsNonZero.hasValue()) 874 ShifterOperandIsNonZero = 875 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 876 if (*ShifterOperandIsNonZero) 877 continue; 878 } 879 880 KnownZero &= KZF(KnownZero2, ShiftAmt); 881 KnownOne &= KOF(KnownOne2, ShiftAmt); 882 } 883 884 // If there are no compatible shift amounts, then we've proven that the shift 885 // amount must be >= the BitWidth, and the result is undefined. We could 886 // return anything we'd like, but we need to make sure the sets of known bits 887 // stay disjoint (it should be better for some other code to actually 888 // propagate the undef than to pick a value here using known bits). 889 if ((KnownZero & KnownOne) != 0) { 890 KnownZero.clearAllBits(); 891 KnownOne.clearAllBits(); 892 } 893 } 894 895 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 896 APInt &KnownOne, unsigned Depth, 897 const Query &Q) { 898 unsigned BitWidth = KnownZero.getBitWidth(); 899 900 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 901 switch (I->getOpcode()) { 902 default: break; 903 case Instruction::Load: 904 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 905 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 906 break; 907 case Instruction::And: { 908 // If either the LHS or the RHS are Zero, the result is zero. 909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 911 912 // Output known-1 bits are only known if set in both the LHS & RHS. 913 KnownOne &= KnownOne2; 914 // Output known-0 are known to be clear if zero in either the LHS | RHS. 915 KnownZero |= KnownZero2; 916 917 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 918 // here we handle the more general case of adding any odd number by 919 // matching the form add(x, add(x, y)) where y is odd. 920 // TODO: This could be generalized to clearing any bit set in y where the 921 // following bit is known to be unset in y. 922 Value *Y = nullptr; 923 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 924 m_Value(Y))) || 925 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 926 m_Value(Y)))) { 927 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 928 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 929 if (KnownOne3.countTrailingOnes() > 0) 930 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 931 } 932 break; 933 } 934 case Instruction::Or: { 935 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 936 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 937 938 // Output known-0 bits are only known if clear in both the LHS & RHS. 939 KnownZero &= KnownZero2; 940 // Output known-1 are known to be set if set in either the LHS | RHS. 941 KnownOne |= KnownOne2; 942 break; 943 } 944 case Instruction::Xor: { 945 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 946 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 947 948 // Output known-0 bits are known if clear or set in both the LHS & RHS. 949 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 950 // Output known-1 are known to be set if set in only one of the LHS, RHS. 951 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 952 KnownZero = KnownZeroOut; 953 break; 954 } 955 case Instruction::Mul: { 956 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 957 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 958 KnownOne, KnownZero2, KnownOne2, Depth, Q); 959 break; 960 } 961 case Instruction::UDiv: { 962 // For the purposes of computing leading zeros we can conservatively 963 // treat a udiv as a logical right shift by the power of 2 known to 964 // be less than the denominator. 965 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 966 unsigned LeadZ = KnownZero2.countLeadingOnes(); 967 968 KnownOne2.clearAllBits(); 969 KnownZero2.clearAllBits(); 970 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 971 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 972 if (RHSUnknownLeadingOnes != BitWidth) 973 LeadZ = std::min(BitWidth, 974 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 975 976 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 977 break; 978 } 979 case Instruction::Select: { 980 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 981 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 982 983 const Value *LHS; 984 const Value *RHS; 985 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 986 if (SelectPatternResult::isMinOrMax(SPF)) { 987 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 988 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 989 } else { 990 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 991 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 992 } 993 994 unsigned MaxHighOnes = 0; 995 unsigned MaxHighZeros = 0; 996 if (SPF == SPF_SMAX) { 997 // If both sides are negative, the result is negative. 998 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 999 // We can derive a lower bound on the result by taking the max of the 1000 // leading one bits. 1001 MaxHighOnes = 1002 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1003 // If either side is non-negative, the result is non-negative. 1004 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1005 MaxHighZeros = 1; 1006 } else if (SPF == SPF_SMIN) { 1007 // If both sides are non-negative, the result is non-negative. 1008 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1009 // We can derive an upper bound on the result by taking the max of the 1010 // leading zero bits. 1011 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1012 KnownZero2.countLeadingOnes()); 1013 // If either side is negative, the result is negative. 1014 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1015 MaxHighOnes = 1; 1016 } else if (SPF == SPF_UMAX) { 1017 // We can derive a lower bound on the result by taking the max of the 1018 // leading one bits. 1019 MaxHighOnes = 1020 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1021 } else if (SPF == SPF_UMIN) { 1022 // We can derive an upper bound on the result by taking the max of the 1023 // leading zero bits. 1024 MaxHighZeros = 1025 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1026 } 1027 1028 // Only known if known in both the LHS and RHS. 1029 KnownOne &= KnownOne2; 1030 KnownZero &= KnownZero2; 1031 if (MaxHighOnes > 0) 1032 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1033 if (MaxHighZeros > 0) 1034 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1035 break; 1036 } 1037 case Instruction::FPTrunc: 1038 case Instruction::FPExt: 1039 case Instruction::FPToUI: 1040 case Instruction::FPToSI: 1041 case Instruction::SIToFP: 1042 case Instruction::UIToFP: 1043 break; // Can't work with floating point. 1044 case Instruction::PtrToInt: 1045 case Instruction::IntToPtr: 1046 // Fall through and handle them the same as zext/trunc. 1047 LLVM_FALLTHROUGH; 1048 case Instruction::ZExt: 1049 case Instruction::Trunc: { 1050 Type *SrcTy = I->getOperand(0)->getType(); 1051 1052 unsigned SrcBitWidth; 1053 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1054 // which fall through here. 1055 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1056 1057 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1058 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1059 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1060 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1061 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1062 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1063 // Any top bits are known to be zero. 1064 if (BitWidth > SrcBitWidth) 1065 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1066 break; 1067 } 1068 case Instruction::BitCast: { 1069 Type *SrcTy = I->getOperand(0)->getType(); 1070 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1071 // TODO: For now, not handling conversions like: 1072 // (bitcast i64 %x to <2 x i32>) 1073 !I->getType()->isVectorTy()) { 1074 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1075 break; 1076 } 1077 break; 1078 } 1079 case Instruction::SExt: { 1080 // Compute the bits in the result that are not present in the input. 1081 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1082 1083 KnownZero = KnownZero.trunc(SrcBitWidth); 1084 KnownOne = KnownOne.trunc(SrcBitWidth); 1085 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1086 KnownZero = KnownZero.zext(BitWidth); 1087 KnownOne = KnownOne.zext(BitWidth); 1088 1089 // If the sign bit of the input is known set or clear, then we know the 1090 // top bits of the result. 1091 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1092 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1093 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1094 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1095 break; 1096 } 1097 case Instruction::Shl: { 1098 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1099 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1100 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1101 APInt KZResult = 1102 (KnownZero << ShiftAmt) | 1103 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1104 // If this shift has "nsw" keyword, then the result is either a poison 1105 // value or has the same sign bit as the first operand. 1106 if (NSW && KnownZero.isNegative()) 1107 KZResult.setBit(BitWidth - 1); 1108 return KZResult; 1109 }; 1110 1111 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1112 APInt KOResult = KnownOne << ShiftAmt; 1113 if (NSW && KnownOne.isNegative()) 1114 KOResult.setBit(BitWidth - 1); 1115 return KOResult; 1116 }; 1117 1118 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1119 KnownZero2, KnownOne2, Depth, Q, KZF, 1120 KOF); 1121 break; 1122 } 1123 case Instruction::LShr: { 1124 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1125 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1126 return APIntOps::lshr(KnownZero, ShiftAmt) | 1127 // High bits known zero. 1128 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1129 }; 1130 1131 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1132 return APIntOps::lshr(KnownOne, ShiftAmt); 1133 }; 1134 1135 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1136 KnownZero2, KnownOne2, Depth, Q, KZF, 1137 KOF); 1138 break; 1139 } 1140 case Instruction::AShr: { 1141 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1142 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1143 return APIntOps::ashr(KnownZero, ShiftAmt); 1144 }; 1145 1146 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1147 return APIntOps::ashr(KnownOne, ShiftAmt); 1148 }; 1149 1150 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1151 KnownZero2, KnownOne2, Depth, Q, KZF, 1152 KOF); 1153 break; 1154 } 1155 case Instruction::Sub: { 1156 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1157 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1158 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1159 Q); 1160 break; 1161 } 1162 case Instruction::Add: { 1163 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1164 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1165 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1166 Q); 1167 break; 1168 } 1169 case Instruction::SRem: 1170 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1171 APInt RA = Rem->getValue().abs(); 1172 if (RA.isPowerOf2()) { 1173 APInt LowBits = RA - 1; 1174 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1175 Q); 1176 1177 // The low bits of the first operand are unchanged by the srem. 1178 KnownZero = KnownZero2 & LowBits; 1179 KnownOne = KnownOne2 & LowBits; 1180 1181 // If the first operand is non-negative or has all low bits zero, then 1182 // the upper bits are all zero. 1183 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1184 KnownZero |= ~LowBits; 1185 1186 // If the first operand is negative and not all low bits are zero, then 1187 // the upper bits are all one. 1188 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1189 KnownOne |= ~LowBits; 1190 1191 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1192 } 1193 } 1194 1195 // The sign bit is the LHS's sign bit, except when the result of the 1196 // remainder is zero. 1197 if (KnownZero.isNonNegative()) { 1198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1199 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1200 Q); 1201 // If it's known zero, our sign bit is also zero. 1202 if (LHSKnownZero.isNegative()) 1203 KnownZero.setBit(BitWidth - 1); 1204 } 1205 1206 break; 1207 case Instruction::URem: { 1208 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1209 const APInt &RA = Rem->getValue(); 1210 if (RA.isPowerOf2()) { 1211 APInt LowBits = (RA - 1); 1212 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1213 KnownZero |= ~LowBits; 1214 KnownOne &= LowBits; 1215 break; 1216 } 1217 } 1218 1219 // Since the result is less than or equal to either operand, any leading 1220 // zero bits in either operand must also exist in the result. 1221 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1222 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1223 1224 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1225 KnownZero2.countLeadingOnes()); 1226 KnownOne.clearAllBits(); 1227 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1228 break; 1229 } 1230 1231 case Instruction::Alloca: { 1232 const AllocaInst *AI = cast<AllocaInst>(I); 1233 unsigned Align = AI->getAlignment(); 1234 if (Align == 0) 1235 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1236 1237 if (Align > 0) 1238 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1239 break; 1240 } 1241 case Instruction::GetElementPtr: { 1242 // Analyze all of the subscripts of this getelementptr instruction 1243 // to determine if we can prove known low zero bits. 1244 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1245 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1246 Q); 1247 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1248 1249 gep_type_iterator GTI = gep_type_begin(I); 1250 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1251 Value *Index = I->getOperand(i); 1252 if (StructType *STy = GTI.getStructTypeOrNull()) { 1253 // Handle struct member offset arithmetic. 1254 1255 // Handle case when index is vector zeroinitializer 1256 Constant *CIndex = cast<Constant>(Index); 1257 if (CIndex->isZeroValue()) 1258 continue; 1259 1260 if (CIndex->getType()->isVectorTy()) 1261 Index = CIndex->getSplatValue(); 1262 1263 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1264 const StructLayout *SL = Q.DL.getStructLayout(STy); 1265 uint64_t Offset = SL->getElementOffset(Idx); 1266 TrailZ = std::min<unsigned>(TrailZ, 1267 countTrailingZeros(Offset)); 1268 } else { 1269 // Handle array index arithmetic. 1270 Type *IndexedTy = GTI.getIndexedType(); 1271 if (!IndexedTy->isSized()) { 1272 TrailZ = 0; 1273 break; 1274 } 1275 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1276 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1277 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1278 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1279 TrailZ = std::min(TrailZ, 1280 unsigned(countTrailingZeros(TypeSize) + 1281 LocalKnownZero.countTrailingOnes())); 1282 } 1283 } 1284 1285 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1286 break; 1287 } 1288 case Instruction::PHI: { 1289 const PHINode *P = cast<PHINode>(I); 1290 // Handle the case of a simple two-predecessor recurrence PHI. 1291 // There's a lot more that could theoretically be done here, but 1292 // this is sufficient to catch some interesting cases. 1293 if (P->getNumIncomingValues() == 2) { 1294 for (unsigned i = 0; i != 2; ++i) { 1295 Value *L = P->getIncomingValue(i); 1296 Value *R = P->getIncomingValue(!i); 1297 Operator *LU = dyn_cast<Operator>(L); 1298 if (!LU) 1299 continue; 1300 unsigned Opcode = LU->getOpcode(); 1301 // Check for operations that have the property that if 1302 // both their operands have low zero bits, the result 1303 // will have low zero bits. 1304 if (Opcode == Instruction::Add || 1305 Opcode == Instruction::Sub || 1306 Opcode == Instruction::And || 1307 Opcode == Instruction::Or || 1308 Opcode == Instruction::Mul) { 1309 Value *LL = LU->getOperand(0); 1310 Value *LR = LU->getOperand(1); 1311 // Find a recurrence. 1312 if (LL == I) 1313 L = LR; 1314 else if (LR == I) 1315 L = LL; 1316 else 1317 break; 1318 // Ok, we have a PHI of the form L op= R. Check for low 1319 // zero bits. 1320 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1321 1322 // We need to take the minimum number of known bits 1323 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1324 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1325 1326 KnownZero = APInt::getLowBitsSet( 1327 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1328 KnownZero3.countTrailingOnes())); 1329 1330 if (DontImproveNonNegativePhiBits) 1331 break; 1332 1333 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1334 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1335 // If initial value of recurrence is nonnegative, and we are adding 1336 // a nonnegative number with nsw, the result can only be nonnegative 1337 // or poison value regardless of the number of times we execute the 1338 // add in phi recurrence. If initial value is negative and we are 1339 // adding a negative number with nsw, the result can only be 1340 // negative or poison value. Similar arguments apply to sub and mul. 1341 // 1342 // (add non-negative, non-negative) --> non-negative 1343 // (add negative, negative) --> negative 1344 if (Opcode == Instruction::Add) { 1345 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1346 KnownZero.setBit(BitWidth - 1); 1347 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1348 KnownOne.setBit(BitWidth - 1); 1349 } 1350 1351 // (sub nsw non-negative, negative) --> non-negative 1352 // (sub nsw negative, non-negative) --> negative 1353 else if (Opcode == Instruction::Sub && LL == I) { 1354 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1355 KnownZero.setBit(BitWidth - 1); 1356 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1357 KnownOne.setBit(BitWidth - 1); 1358 } 1359 1360 // (mul nsw non-negative, non-negative) --> non-negative 1361 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1362 KnownZero3.isNegative()) 1363 KnownZero.setBit(BitWidth - 1); 1364 } 1365 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Unreachable blocks may have zero-operand PHI nodes. 1372 if (P->getNumIncomingValues() == 0) 1373 break; 1374 1375 // Otherwise take the unions of the known bit sets of the operands, 1376 // taking conservative care to avoid excessive recursion. 1377 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1378 // Skip if every incoming value references to ourself. 1379 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1380 break; 1381 1382 KnownZero = APInt::getAllOnesValue(BitWidth); 1383 KnownOne = APInt::getAllOnesValue(BitWidth); 1384 for (Value *IncValue : P->incoming_values()) { 1385 // Skip direct self references. 1386 if (IncValue == P) continue; 1387 1388 KnownZero2 = APInt(BitWidth, 0); 1389 KnownOne2 = APInt(BitWidth, 0); 1390 // Recurse, but cap the recursion to one level, because we don't 1391 // want to waste time spinning around in loops. 1392 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1393 KnownZero &= KnownZero2; 1394 KnownOne &= KnownOne2; 1395 // If all bits have been ruled out, there's no need to check 1396 // more operands. 1397 if (!KnownZero && !KnownOne) 1398 break; 1399 } 1400 } 1401 break; 1402 } 1403 case Instruction::Call: 1404 case Instruction::Invoke: 1405 // If range metadata is attached to this call, set known bits from that, 1406 // and then intersect with known bits based on other properties of the 1407 // function. 1408 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1409 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1410 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1411 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1412 KnownZero |= KnownZero2; 1413 KnownOne |= KnownOne2; 1414 } 1415 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1416 switch (II->getIntrinsicID()) { 1417 default: break; 1418 case Intrinsic::bitreverse: 1419 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1420 KnownZero = KnownZero2.reverseBits(); 1421 KnownOne = KnownOne2.reverseBits(); 1422 break; 1423 case Intrinsic::bswap: 1424 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1425 KnownZero |= KnownZero2.byteSwap(); 1426 KnownOne |= KnownOne2.byteSwap(); 1427 break; 1428 case Intrinsic::ctlz: 1429 case Intrinsic::cttz: { 1430 unsigned LowBits = Log2_32(BitWidth)+1; 1431 // If this call is undefined for 0, the result will be less than 2^n. 1432 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1433 LowBits -= 1; 1434 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1435 break; 1436 } 1437 case Intrinsic::ctpop: { 1438 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1439 // We can bound the space the count needs. Also, bits known to be zero 1440 // can't contribute to the population. 1441 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1442 unsigned LeadingZeros = 1443 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1444 assert(LeadingZeros <= BitWidth); 1445 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1446 KnownOne &= ~KnownZero; 1447 // TODO: we could bound KnownOne using the lower bound on the number 1448 // of bits which might be set provided by popcnt KnownOne2. 1449 break; 1450 } 1451 case Intrinsic::x86_sse42_crc32_64_64: 1452 KnownZero |= APInt::getHighBitsSet(64, 32); 1453 break; 1454 } 1455 } 1456 break; 1457 case Instruction::ExtractElement: 1458 // Look through extract element. At the moment we keep this simple and skip 1459 // tracking the specific element. But at least we might find information 1460 // valid for all elements of the vector (for example if vector is sign 1461 // extended, shifted, etc). 1462 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1463 break; 1464 case Instruction::ExtractValue: 1465 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1466 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1467 if (EVI->getNumIndices() != 1) break; 1468 if (EVI->getIndices()[0] == 0) { 1469 switch (II->getIntrinsicID()) { 1470 default: break; 1471 case Intrinsic::uadd_with_overflow: 1472 case Intrinsic::sadd_with_overflow: 1473 computeKnownBitsAddSub(true, II->getArgOperand(0), 1474 II->getArgOperand(1), false, KnownZero, 1475 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1476 break; 1477 case Intrinsic::usub_with_overflow: 1478 case Intrinsic::ssub_with_overflow: 1479 computeKnownBitsAddSub(false, II->getArgOperand(0), 1480 II->getArgOperand(1), false, KnownZero, 1481 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1482 break; 1483 case Intrinsic::umul_with_overflow: 1484 case Intrinsic::smul_with_overflow: 1485 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1486 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1487 Q); 1488 break; 1489 } 1490 } 1491 } 1492 } 1493 } 1494 1495 /// Determine which bits of V are known to be either zero or one and return 1496 /// them in the KnownZero/KnownOne bit sets. 1497 /// 1498 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1499 /// we cannot optimize based on the assumption that it is zero without changing 1500 /// it to be an explicit zero. If we don't change it to zero, other code could 1501 /// optimized based on the contradictory assumption that it is non-zero. 1502 /// Because instcombine aggressively folds operations with undef args anyway, 1503 /// this won't lose us code quality. 1504 /// 1505 /// This function is defined on values with integer type, values with pointer 1506 /// type, and vectors of integers. In the case 1507 /// where V is a vector, known zero, and known one values are the 1508 /// same width as the vector element, and the bit is set only if it is true 1509 /// for all of the elements in the vector. 1510 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1511 unsigned Depth, const Query &Q) { 1512 assert(V && "No Value?"); 1513 assert(Depth <= MaxDepth && "Limit Search Depth"); 1514 unsigned BitWidth = KnownZero.getBitWidth(); 1515 1516 assert((V->getType()->isIntOrIntVectorTy() || 1517 V->getType()->getScalarType()->isPointerTy()) && 1518 "Not integer or pointer type!"); 1519 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1520 (!V->getType()->isIntOrIntVectorTy() || 1521 V->getType()->getScalarSizeInBits() == BitWidth) && 1522 KnownZero.getBitWidth() == BitWidth && 1523 KnownOne.getBitWidth() == BitWidth && 1524 "V, KnownOne and KnownZero should have same BitWidth"); 1525 1526 const APInt *C; 1527 if (match(V, m_APInt(C))) { 1528 // We know all of the bits for a scalar constant or a splat vector constant! 1529 KnownOne = *C; 1530 KnownZero = ~KnownOne; 1531 return; 1532 } 1533 // Null and aggregate-zero are all-zeros. 1534 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1535 KnownOne.clearAllBits(); 1536 KnownZero = APInt::getAllOnesValue(BitWidth); 1537 return; 1538 } 1539 // Handle a constant vector by taking the intersection of the known bits of 1540 // each element. 1541 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1542 // We know that CDS must be a vector of integers. Take the intersection of 1543 // each element. 1544 KnownZero.setAllBits(); KnownOne.setAllBits(); 1545 APInt Elt(KnownZero.getBitWidth(), 0); 1546 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1547 Elt = CDS->getElementAsInteger(i); 1548 KnownZero &= ~Elt; 1549 KnownOne &= Elt; 1550 } 1551 return; 1552 } 1553 1554 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1555 // We know that CV must be a vector of integers. Take the intersection of 1556 // each element. 1557 KnownZero.setAllBits(); KnownOne.setAllBits(); 1558 APInt Elt(KnownZero.getBitWidth(), 0); 1559 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1560 Constant *Element = CV->getAggregateElement(i); 1561 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1562 if (!ElementCI) { 1563 KnownZero.clearAllBits(); 1564 KnownOne.clearAllBits(); 1565 return; 1566 } 1567 Elt = ElementCI->getValue(); 1568 KnownZero &= ~Elt; 1569 KnownOne &= Elt; 1570 } 1571 return; 1572 } 1573 1574 // Start out not knowing anything. 1575 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1576 1577 // We can't imply anything about undefs. 1578 if (isa<UndefValue>(V)) 1579 return; 1580 1581 // There's no point in looking through other users of ConstantData for 1582 // assumptions. Confirm that we've handled them all. 1583 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1584 1585 // Limit search depth. 1586 // All recursive calls that increase depth must come after this. 1587 if (Depth == MaxDepth) 1588 return; 1589 1590 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1591 // the bits of its aliasee. 1592 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1593 if (!GA->isInterposable()) 1594 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1595 return; 1596 } 1597 1598 if (const Operator *I = dyn_cast<Operator>(V)) 1599 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1600 1601 // Aligned pointers have trailing zeros - refine KnownZero set 1602 if (V->getType()->isPointerTy()) { 1603 unsigned Align = V->getPointerAlignment(Q.DL); 1604 if (Align) 1605 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1606 } 1607 1608 // computeKnownBitsFromAssume strictly refines KnownZero and 1609 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1610 1611 // Check whether a nearby assume intrinsic can determine some known bits. 1612 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1613 1614 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1615 } 1616 1617 /// Determine whether the sign bit is known to be zero or one. 1618 /// Convenience wrapper around computeKnownBits. 1619 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1620 unsigned Depth, const Query &Q) { 1621 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1622 if (!BitWidth) { 1623 KnownZero = false; 1624 KnownOne = false; 1625 return; 1626 } 1627 APInt ZeroBits(BitWidth, 0); 1628 APInt OneBits(BitWidth, 0); 1629 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1630 KnownOne = OneBits[BitWidth - 1]; 1631 KnownZero = ZeroBits[BitWidth - 1]; 1632 } 1633 1634 /// Return true if the given value is known to have exactly one 1635 /// bit set when defined. For vectors return true if every element is known to 1636 /// be a power of two when defined. Supports values with integer or pointer 1637 /// types and vectors of integers. 1638 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1639 const Query &Q) { 1640 if (const Constant *C = dyn_cast<Constant>(V)) { 1641 if (C->isNullValue()) 1642 return OrZero; 1643 1644 const APInt *ConstIntOrConstSplatInt; 1645 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1646 return ConstIntOrConstSplatInt->isPowerOf2(); 1647 } 1648 1649 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1650 // it is shifted off the end then the result is undefined. 1651 if (match(V, m_Shl(m_One(), m_Value()))) 1652 return true; 1653 1654 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1655 // bottom. If it is shifted off the bottom then the result is undefined. 1656 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1657 return true; 1658 1659 // The remaining tests are all recursive, so bail out if we hit the limit. 1660 if (Depth++ == MaxDepth) 1661 return false; 1662 1663 Value *X = nullptr, *Y = nullptr; 1664 // A shift left or a logical shift right of a power of two is a power of two 1665 // or zero. 1666 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1667 match(V, m_LShr(m_Value(X), m_Value())))) 1668 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1669 1670 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1671 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1672 1673 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1674 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1675 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1676 1677 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1678 // A power of two and'd with anything is a power of two or zero. 1679 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1680 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1681 return true; 1682 // X & (-X) is always a power of two or zero. 1683 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1684 return true; 1685 return false; 1686 } 1687 1688 // Adding a power-of-two or zero to the same power-of-two or zero yields 1689 // either the original power-of-two, a larger power-of-two or zero. 1690 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1691 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1692 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1693 if (match(X, m_And(m_Specific(Y), m_Value())) || 1694 match(X, m_And(m_Value(), m_Specific(Y)))) 1695 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1696 return true; 1697 if (match(Y, m_And(m_Specific(X), m_Value())) || 1698 match(Y, m_And(m_Value(), m_Specific(X)))) 1699 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1700 return true; 1701 1702 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1703 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1704 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1705 1706 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1707 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1708 // If i8 V is a power of two or zero: 1709 // ZeroBits: 1 1 1 0 1 1 1 1 1710 // ~ZeroBits: 0 0 0 1 0 0 0 0 1711 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1712 // If OrZero isn't set, we cannot give back a zero result. 1713 // Make sure either the LHS or RHS has a bit set. 1714 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1715 return true; 1716 } 1717 } 1718 1719 // An exact divide or right shift can only shift off zero bits, so the result 1720 // is a power of two only if the first operand is a power of two and not 1721 // copying a sign bit (sdiv int_min, 2). 1722 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1723 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1724 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1725 Depth, Q); 1726 } 1727 1728 return false; 1729 } 1730 1731 /// \brief Test whether a GEP's result is known to be non-null. 1732 /// 1733 /// Uses properties inherent in a GEP to try to determine whether it is known 1734 /// to be non-null. 1735 /// 1736 /// Currently this routine does not support vector GEPs. 1737 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1738 const Query &Q) { 1739 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1740 return false; 1741 1742 // FIXME: Support vector-GEPs. 1743 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1744 1745 // If the base pointer is non-null, we cannot walk to a null address with an 1746 // inbounds GEP in address space zero. 1747 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1748 return true; 1749 1750 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1751 // If so, then the GEP cannot produce a null pointer, as doing so would 1752 // inherently violate the inbounds contract within address space zero. 1753 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1754 GTI != GTE; ++GTI) { 1755 // Struct types are easy -- they must always be indexed by a constant. 1756 if (StructType *STy = GTI.getStructTypeOrNull()) { 1757 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1758 unsigned ElementIdx = OpC->getZExtValue(); 1759 const StructLayout *SL = Q.DL.getStructLayout(STy); 1760 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1761 if (ElementOffset > 0) 1762 return true; 1763 continue; 1764 } 1765 1766 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1767 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1768 continue; 1769 1770 // Fast path the constant operand case both for efficiency and so we don't 1771 // increment Depth when just zipping down an all-constant GEP. 1772 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1773 if (!OpC->isZero()) 1774 return true; 1775 continue; 1776 } 1777 1778 // We post-increment Depth here because while isKnownNonZero increments it 1779 // as well, when we pop back up that increment won't persist. We don't want 1780 // to recurse 10k times just because we have 10k GEP operands. We don't 1781 // bail completely out because we want to handle constant GEPs regardless 1782 // of depth. 1783 if (Depth++ >= MaxDepth) 1784 continue; 1785 1786 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1787 return true; 1788 } 1789 1790 return false; 1791 } 1792 1793 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1794 /// ensure that the value it's attached to is never Value? 'RangeType' is 1795 /// is the type of the value described by the range. 1796 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1797 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1798 assert(NumRanges >= 1); 1799 for (unsigned i = 0; i < NumRanges; ++i) { 1800 ConstantInt *Lower = 1801 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1802 ConstantInt *Upper = 1803 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1804 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1805 if (Range.contains(Value)) 1806 return false; 1807 } 1808 return true; 1809 } 1810 1811 /// Return true if the given value is known to be non-zero when defined. For 1812 /// vectors, return true if every element is known to be non-zero when 1813 /// defined. For pointers, if the context instruction and dominator tree are 1814 /// specified, perform context-sensitive analysis and return true if the 1815 /// pointer couldn't possibly be null at the specified instruction. 1816 /// Supports values with integer or pointer type and vectors of integers. 1817 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1818 if (auto *C = dyn_cast<Constant>(V)) { 1819 if (C->isNullValue()) 1820 return false; 1821 if (isa<ConstantInt>(C)) 1822 // Must be non-zero due to null test above. 1823 return true; 1824 1825 // For constant vectors, check that all elements are undefined or known 1826 // non-zero to determine that the whole vector is known non-zero. 1827 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1828 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1829 Constant *Elt = C->getAggregateElement(i); 1830 if (!Elt || Elt->isNullValue()) 1831 return false; 1832 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1833 return false; 1834 } 1835 return true; 1836 } 1837 1838 return false; 1839 } 1840 1841 if (auto *I = dyn_cast<Instruction>(V)) { 1842 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1843 // If the possible ranges don't contain zero, then the value is 1844 // definitely non-zero. 1845 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1846 const APInt ZeroValue(Ty->getBitWidth(), 0); 1847 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1848 return true; 1849 } 1850 } 1851 } 1852 1853 // The remaining tests are all recursive, so bail out if we hit the limit. 1854 if (Depth++ >= MaxDepth) 1855 return false; 1856 1857 // Check for pointer simplifications. 1858 if (V->getType()->isPointerTy()) { 1859 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1860 return true; 1861 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1862 if (isGEPKnownNonNull(GEP, Depth, Q)) 1863 return true; 1864 } 1865 1866 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1867 1868 // X | Y != 0 if X != 0 or Y != 0. 1869 Value *X = nullptr, *Y = nullptr; 1870 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1871 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1872 1873 // ext X != 0 if X != 0. 1874 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1875 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1876 1877 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1878 // if the lowest bit is shifted off the end. 1879 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1880 // shl nuw can't remove any non-zero bits. 1881 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1882 if (BO->hasNoUnsignedWrap()) 1883 return isKnownNonZero(X, Depth, Q); 1884 1885 APInt KnownZero(BitWidth, 0); 1886 APInt KnownOne(BitWidth, 0); 1887 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1888 if (KnownOne[0]) 1889 return true; 1890 } 1891 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1892 // defined if the sign bit is shifted off the end. 1893 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1894 // shr exact can only shift out zero bits. 1895 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1896 if (BO->isExact()) 1897 return isKnownNonZero(X, Depth, Q); 1898 1899 bool XKnownNonNegative, XKnownNegative; 1900 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1901 if (XKnownNegative) 1902 return true; 1903 1904 // If the shifter operand is a constant, and all of the bits shifted 1905 // out are known to be zero, and X is known non-zero then at least one 1906 // non-zero bit must remain. 1907 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1908 APInt KnownZero(BitWidth, 0); 1909 APInt KnownOne(BitWidth, 0); 1910 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1911 1912 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1913 // Is there a known one in the portion not shifted out? 1914 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1915 return true; 1916 // Are all the bits to be shifted out known zero? 1917 if (KnownZero.countTrailingOnes() >= ShiftVal) 1918 return isKnownNonZero(X, Depth, Q); 1919 } 1920 } 1921 // div exact can only produce a zero if the dividend is zero. 1922 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1923 return isKnownNonZero(X, Depth, Q); 1924 } 1925 // X + Y. 1926 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1927 bool XKnownNonNegative, XKnownNegative; 1928 bool YKnownNonNegative, YKnownNegative; 1929 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1930 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1931 1932 // If X and Y are both non-negative (as signed values) then their sum is not 1933 // zero unless both X and Y are zero. 1934 if (XKnownNonNegative && YKnownNonNegative) 1935 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1936 return true; 1937 1938 // If X and Y are both negative (as signed values) then their sum is not 1939 // zero unless both X and Y equal INT_MIN. 1940 if (BitWidth && XKnownNegative && YKnownNegative) { 1941 APInt KnownZero(BitWidth, 0); 1942 APInt KnownOne(BitWidth, 0); 1943 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1944 // The sign bit of X is set. If some other bit is set then X is not equal 1945 // to INT_MIN. 1946 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1947 if ((KnownOne & Mask) != 0) 1948 return true; 1949 // The sign bit of Y is set. If some other bit is set then Y is not equal 1950 // to INT_MIN. 1951 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1952 if ((KnownOne & Mask) != 0) 1953 return true; 1954 } 1955 1956 // The sum of a non-negative number and a power of two is not zero. 1957 if (XKnownNonNegative && 1958 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1959 return true; 1960 if (YKnownNonNegative && 1961 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1962 return true; 1963 } 1964 // X * Y. 1965 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1966 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1967 // If X and Y are non-zero then so is X * Y as long as the multiplication 1968 // does not overflow. 1969 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1970 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1971 return true; 1972 } 1973 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1974 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1975 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1976 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1977 return true; 1978 } 1979 // PHI 1980 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1981 // Try and detect a recurrence that monotonically increases from a 1982 // starting value, as these are common as induction variables. 1983 if (PN->getNumIncomingValues() == 2) { 1984 Value *Start = PN->getIncomingValue(0); 1985 Value *Induction = PN->getIncomingValue(1); 1986 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1987 std::swap(Start, Induction); 1988 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1989 if (!C->isZero() && !C->isNegative()) { 1990 ConstantInt *X; 1991 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1992 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1993 !X->isNegative()) 1994 return true; 1995 } 1996 } 1997 } 1998 // Check if all incoming values are non-zero constant. 1999 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2000 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2001 }); 2002 if (AllNonZeroConstants) 2003 return true; 2004 } 2005 2006 if (!BitWidth) return false; 2007 APInt KnownZero(BitWidth, 0); 2008 APInt KnownOne(BitWidth, 0); 2009 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2010 return KnownOne != 0; 2011 } 2012 2013 /// Return true if V2 == V1 + X, where X is known non-zero. 2014 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2015 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2016 if (!BO || BO->getOpcode() != Instruction::Add) 2017 return false; 2018 Value *Op = nullptr; 2019 if (V2 == BO->getOperand(0)) 2020 Op = BO->getOperand(1); 2021 else if (V2 == BO->getOperand(1)) 2022 Op = BO->getOperand(0); 2023 else 2024 return false; 2025 return isKnownNonZero(Op, 0, Q); 2026 } 2027 2028 /// Return true if it is known that V1 != V2. 2029 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2030 if (V1->getType()->isVectorTy() || V1 == V2) 2031 return false; 2032 if (V1->getType() != V2->getType()) 2033 // We can't look through casts yet. 2034 return false; 2035 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2036 return true; 2037 2038 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2039 // Are any known bits in V1 contradictory to known bits in V2? If V1 2040 // has a known zero where V2 has a known one, they must not be equal. 2041 auto BitWidth = Ty->getBitWidth(); 2042 APInt KnownZero1(BitWidth, 0); 2043 APInt KnownOne1(BitWidth, 0); 2044 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2045 APInt KnownZero2(BitWidth, 0); 2046 APInt KnownOne2(BitWidth, 0); 2047 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2048 2049 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2050 if (OppositeBits.getBoolValue()) 2051 return true; 2052 } 2053 return false; 2054 } 2055 2056 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2057 /// simplify operations downstream. Mask is known to be zero for bits that V 2058 /// cannot have. 2059 /// 2060 /// This function is defined on values with integer type, values with pointer 2061 /// type, and vectors of integers. In the case 2062 /// where V is a vector, the mask, known zero, and known one values are the 2063 /// same width as the vector element, and the bit is set only if it is true 2064 /// for all of the elements in the vector. 2065 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2066 const Query &Q) { 2067 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2068 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2069 return (KnownZero & Mask) == Mask; 2070 } 2071 2072 /// For vector constants, loop over the elements and find the constant with the 2073 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2074 /// or if any element was not analyzed; otherwise, return the count for the 2075 /// element with the minimum number of sign bits. 2076 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2077 unsigned TyBits) { 2078 const auto *CV = dyn_cast<Constant>(V); 2079 if (!CV || !CV->getType()->isVectorTy()) 2080 return 0; 2081 2082 unsigned MinSignBits = TyBits; 2083 unsigned NumElts = CV->getType()->getVectorNumElements(); 2084 for (unsigned i = 0; i != NumElts; ++i) { 2085 // If we find a non-ConstantInt, bail out. 2086 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2087 if (!Elt) 2088 return 0; 2089 2090 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2091 APInt EltVal = Elt->getValue(); 2092 if (EltVal.isNegative()) 2093 EltVal = ~EltVal; 2094 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2095 } 2096 2097 return MinSignBits; 2098 } 2099 2100 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2101 const Query &Q); 2102 2103 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2104 const Query &Q) { 2105 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2106 assert(Result > 0 && "At least one sign bit needs to be present!"); 2107 return Result; 2108 } 2109 2110 /// Return the number of times the sign bit of the register is replicated into 2111 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2112 /// (itself), but other cases can give us information. For example, immediately 2113 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2114 /// other, so we return 3. For vectors, return the number of sign bits for the 2115 /// vector element with the mininum number of known sign bits. 2116 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2117 const Query &Q) { 2118 2119 // We return the minimum number of sign bits that are guaranteed to be present 2120 // in V, so for undef we have to conservatively return 1. We don't have the 2121 // same behavior for poison though -- that's a FIXME today. 2122 2123 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2124 unsigned Tmp, Tmp2; 2125 unsigned FirstAnswer = 1; 2126 2127 // Note that ConstantInt is handled by the general computeKnownBits case 2128 // below. 2129 2130 if (Depth == MaxDepth) 2131 return 1; // Limit search depth. 2132 2133 const Operator *U = dyn_cast<Operator>(V); 2134 switch (Operator::getOpcode(V)) { 2135 default: break; 2136 case Instruction::SExt: 2137 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2138 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2139 2140 case Instruction::SDiv: { 2141 const APInt *Denominator; 2142 // sdiv X, C -> adds log(C) sign bits. 2143 if (match(U->getOperand(1), m_APInt(Denominator))) { 2144 2145 // Ignore non-positive denominator. 2146 if (!Denominator->isStrictlyPositive()) 2147 break; 2148 2149 // Calculate the incoming numerator bits. 2150 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2151 2152 // Add floor(log(C)) bits to the numerator bits. 2153 return std::min(TyBits, NumBits + Denominator->logBase2()); 2154 } 2155 break; 2156 } 2157 2158 case Instruction::SRem: { 2159 const APInt *Denominator; 2160 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2161 // positive constant. This let us put a lower bound on the number of sign 2162 // bits. 2163 if (match(U->getOperand(1), m_APInt(Denominator))) { 2164 2165 // Ignore non-positive denominator. 2166 if (!Denominator->isStrictlyPositive()) 2167 break; 2168 2169 // Calculate the incoming numerator bits. SRem by a positive constant 2170 // can't lower the number of sign bits. 2171 unsigned NumrBits = 2172 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2173 2174 // Calculate the leading sign bit constraints by examining the 2175 // denominator. Given that the denominator is positive, there are two 2176 // cases: 2177 // 2178 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2179 // (1 << ceilLogBase2(C)). 2180 // 2181 // 2. the numerator is negative. Then the result range is (-C,0] and 2182 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2183 // 2184 // Thus a lower bound on the number of sign bits is `TyBits - 2185 // ceilLogBase2(C)`. 2186 2187 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2188 return std::max(NumrBits, ResBits); 2189 } 2190 break; 2191 } 2192 2193 case Instruction::AShr: { 2194 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2195 // ashr X, C -> adds C sign bits. Vectors too. 2196 const APInt *ShAmt; 2197 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2198 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2199 if (ShAmtLimited >= TyBits) 2200 break; // Bad shift. 2201 Tmp += ShAmtLimited; 2202 if (Tmp > TyBits) Tmp = TyBits; 2203 } 2204 return Tmp; 2205 } 2206 case Instruction::Shl: { 2207 const APInt *ShAmt; 2208 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2209 // shl destroys sign bits. 2210 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2211 Tmp2 = ShAmt->getZExtValue(); 2212 if (Tmp2 >= TyBits || // Bad shift. 2213 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2214 return Tmp - Tmp2; 2215 } 2216 break; 2217 } 2218 case Instruction::And: 2219 case Instruction::Or: 2220 case Instruction::Xor: // NOT is handled here. 2221 // Logical binary ops preserve the number of sign bits at the worst. 2222 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2223 if (Tmp != 1) { 2224 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2225 FirstAnswer = std::min(Tmp, Tmp2); 2226 // We computed what we know about the sign bits as our first 2227 // answer. Now proceed to the generic code that uses 2228 // computeKnownBits, and pick whichever answer is better. 2229 } 2230 break; 2231 2232 case Instruction::Select: 2233 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2234 if (Tmp == 1) return 1; // Early out. 2235 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2236 return std::min(Tmp, Tmp2); 2237 2238 case Instruction::Add: 2239 // Add can have at most one carry bit. Thus we know that the output 2240 // is, at worst, one more bit than the inputs. 2241 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2242 if (Tmp == 1) return 1; // Early out. 2243 2244 // Special case decrementing a value (ADD X, -1): 2245 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2246 if (CRHS->isAllOnesValue()) { 2247 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2248 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2249 2250 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2251 // sign bits set. 2252 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2253 return TyBits; 2254 2255 // If we are subtracting one from a positive number, there is no carry 2256 // out of the result. 2257 if (KnownZero.isNegative()) 2258 return Tmp; 2259 } 2260 2261 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2262 if (Tmp2 == 1) return 1; 2263 return std::min(Tmp, Tmp2)-1; 2264 2265 case Instruction::Sub: 2266 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2267 if (Tmp2 == 1) return 1; 2268 2269 // Handle NEG. 2270 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2271 if (CLHS->isNullValue()) { 2272 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2273 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2274 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2275 // sign bits set. 2276 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2277 return TyBits; 2278 2279 // If the input is known to be positive (the sign bit is known clear), 2280 // the output of the NEG has the same number of sign bits as the input. 2281 if (KnownZero.isNegative()) 2282 return Tmp2; 2283 2284 // Otherwise, we treat this like a SUB. 2285 } 2286 2287 // Sub can have at most one carry bit. Thus we know that the output 2288 // is, at worst, one more bit than the inputs. 2289 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2290 if (Tmp == 1) return 1; // Early out. 2291 return std::min(Tmp, Tmp2)-1; 2292 2293 case Instruction::PHI: { 2294 const PHINode *PN = cast<PHINode>(U); 2295 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2296 // Don't analyze large in-degree PHIs. 2297 if (NumIncomingValues > 4) break; 2298 // Unreachable blocks may have zero-operand PHI nodes. 2299 if (NumIncomingValues == 0) break; 2300 2301 // Take the minimum of all incoming values. This can't infinitely loop 2302 // because of our depth threshold. 2303 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2304 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2305 if (Tmp == 1) return Tmp; 2306 Tmp = std::min( 2307 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2308 } 2309 return Tmp; 2310 } 2311 2312 case Instruction::Trunc: 2313 // FIXME: it's tricky to do anything useful for this, but it is an important 2314 // case for targets like X86. 2315 break; 2316 2317 case Instruction::ExtractElement: 2318 // Look through extract element. At the moment we keep this simple and skip 2319 // tracking the specific element. But at least we might find information 2320 // valid for all elements of the vector (for example if vector is sign 2321 // extended, shifted, etc). 2322 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2323 } 2324 2325 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2326 // use this information. 2327 2328 // If we can examine all elements of a vector constant successfully, we're 2329 // done (we can't do any better than that). If not, keep trying. 2330 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2331 return VecSignBits; 2332 2333 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2334 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2335 2336 // If we know that the sign bit is either zero or one, determine the number of 2337 // identical bits in the top of the input value. 2338 if (KnownZero.isNegative()) 2339 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2340 2341 if (KnownOne.isNegative()) 2342 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2343 2344 // computeKnownBits gave us no extra information about the top bits. 2345 return FirstAnswer; 2346 } 2347 2348 /// This function computes the integer multiple of Base that equals V. 2349 /// If successful, it returns true and returns the multiple in 2350 /// Multiple. If unsuccessful, it returns false. It looks 2351 /// through SExt instructions only if LookThroughSExt is true. 2352 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2353 bool LookThroughSExt, unsigned Depth) { 2354 const unsigned MaxDepth = 6; 2355 2356 assert(V && "No Value?"); 2357 assert(Depth <= MaxDepth && "Limit Search Depth"); 2358 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2359 2360 Type *T = V->getType(); 2361 2362 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2363 2364 if (Base == 0) 2365 return false; 2366 2367 if (Base == 1) { 2368 Multiple = V; 2369 return true; 2370 } 2371 2372 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2373 Constant *BaseVal = ConstantInt::get(T, Base); 2374 if (CO && CO == BaseVal) { 2375 // Multiple is 1. 2376 Multiple = ConstantInt::get(T, 1); 2377 return true; 2378 } 2379 2380 if (CI && CI->getZExtValue() % Base == 0) { 2381 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2382 return true; 2383 } 2384 2385 if (Depth == MaxDepth) return false; // Limit search depth. 2386 2387 Operator *I = dyn_cast<Operator>(V); 2388 if (!I) return false; 2389 2390 switch (I->getOpcode()) { 2391 default: break; 2392 case Instruction::SExt: 2393 if (!LookThroughSExt) return false; 2394 // otherwise fall through to ZExt 2395 case Instruction::ZExt: 2396 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2397 LookThroughSExt, Depth+1); 2398 case Instruction::Shl: 2399 case Instruction::Mul: { 2400 Value *Op0 = I->getOperand(0); 2401 Value *Op1 = I->getOperand(1); 2402 2403 if (I->getOpcode() == Instruction::Shl) { 2404 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2405 if (!Op1CI) return false; 2406 // Turn Op0 << Op1 into Op0 * 2^Op1 2407 APInt Op1Int = Op1CI->getValue(); 2408 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2409 APInt API(Op1Int.getBitWidth(), 0); 2410 API.setBit(BitToSet); 2411 Op1 = ConstantInt::get(V->getContext(), API); 2412 } 2413 2414 Value *Mul0 = nullptr; 2415 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2416 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2417 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2418 if (Op1C->getType()->getPrimitiveSizeInBits() < 2419 MulC->getType()->getPrimitiveSizeInBits()) 2420 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2421 if (Op1C->getType()->getPrimitiveSizeInBits() > 2422 MulC->getType()->getPrimitiveSizeInBits()) 2423 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2424 2425 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2426 Multiple = ConstantExpr::getMul(MulC, Op1C); 2427 return true; 2428 } 2429 2430 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2431 if (Mul0CI->getValue() == 1) { 2432 // V == Base * Op1, so return Op1 2433 Multiple = Op1; 2434 return true; 2435 } 2436 } 2437 2438 Value *Mul1 = nullptr; 2439 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2440 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2441 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2442 if (Op0C->getType()->getPrimitiveSizeInBits() < 2443 MulC->getType()->getPrimitiveSizeInBits()) 2444 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2445 if (Op0C->getType()->getPrimitiveSizeInBits() > 2446 MulC->getType()->getPrimitiveSizeInBits()) 2447 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2448 2449 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2450 Multiple = ConstantExpr::getMul(MulC, Op0C); 2451 return true; 2452 } 2453 2454 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2455 if (Mul1CI->getValue() == 1) { 2456 // V == Base * Op0, so return Op0 2457 Multiple = Op0; 2458 return true; 2459 } 2460 } 2461 } 2462 } 2463 2464 // We could not determine if V is a multiple of Base. 2465 return false; 2466 } 2467 2468 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2469 const TargetLibraryInfo *TLI) { 2470 const Function *F = ICS.getCalledFunction(); 2471 if (!F) 2472 return Intrinsic::not_intrinsic; 2473 2474 if (F->isIntrinsic()) 2475 return F->getIntrinsicID(); 2476 2477 if (!TLI) 2478 return Intrinsic::not_intrinsic; 2479 2480 LibFunc Func; 2481 // We're going to make assumptions on the semantics of the functions, check 2482 // that the target knows that it's available in this environment and it does 2483 // not have local linkage. 2484 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2485 return Intrinsic::not_intrinsic; 2486 2487 if (!ICS.onlyReadsMemory()) 2488 return Intrinsic::not_intrinsic; 2489 2490 // Otherwise check if we have a call to a function that can be turned into a 2491 // vector intrinsic. 2492 switch (Func) { 2493 default: 2494 break; 2495 case LibFunc_sin: 2496 case LibFunc_sinf: 2497 case LibFunc_sinl: 2498 return Intrinsic::sin; 2499 case LibFunc_cos: 2500 case LibFunc_cosf: 2501 case LibFunc_cosl: 2502 return Intrinsic::cos; 2503 case LibFunc_exp: 2504 case LibFunc_expf: 2505 case LibFunc_expl: 2506 return Intrinsic::exp; 2507 case LibFunc_exp2: 2508 case LibFunc_exp2f: 2509 case LibFunc_exp2l: 2510 return Intrinsic::exp2; 2511 case LibFunc_log: 2512 case LibFunc_logf: 2513 case LibFunc_logl: 2514 return Intrinsic::log; 2515 case LibFunc_log10: 2516 case LibFunc_log10f: 2517 case LibFunc_log10l: 2518 return Intrinsic::log10; 2519 case LibFunc_log2: 2520 case LibFunc_log2f: 2521 case LibFunc_log2l: 2522 return Intrinsic::log2; 2523 case LibFunc_fabs: 2524 case LibFunc_fabsf: 2525 case LibFunc_fabsl: 2526 return Intrinsic::fabs; 2527 case LibFunc_fmin: 2528 case LibFunc_fminf: 2529 case LibFunc_fminl: 2530 return Intrinsic::minnum; 2531 case LibFunc_fmax: 2532 case LibFunc_fmaxf: 2533 case LibFunc_fmaxl: 2534 return Intrinsic::maxnum; 2535 case LibFunc_copysign: 2536 case LibFunc_copysignf: 2537 case LibFunc_copysignl: 2538 return Intrinsic::copysign; 2539 case LibFunc_floor: 2540 case LibFunc_floorf: 2541 case LibFunc_floorl: 2542 return Intrinsic::floor; 2543 case LibFunc_ceil: 2544 case LibFunc_ceilf: 2545 case LibFunc_ceill: 2546 return Intrinsic::ceil; 2547 case LibFunc_trunc: 2548 case LibFunc_truncf: 2549 case LibFunc_truncl: 2550 return Intrinsic::trunc; 2551 case LibFunc_rint: 2552 case LibFunc_rintf: 2553 case LibFunc_rintl: 2554 return Intrinsic::rint; 2555 case LibFunc_nearbyint: 2556 case LibFunc_nearbyintf: 2557 case LibFunc_nearbyintl: 2558 return Intrinsic::nearbyint; 2559 case LibFunc_round: 2560 case LibFunc_roundf: 2561 case LibFunc_roundl: 2562 return Intrinsic::round; 2563 case LibFunc_pow: 2564 case LibFunc_powf: 2565 case LibFunc_powl: 2566 return Intrinsic::pow; 2567 case LibFunc_sqrt: 2568 case LibFunc_sqrtf: 2569 case LibFunc_sqrtl: 2570 if (ICS->hasNoNaNs()) 2571 return Intrinsic::sqrt; 2572 return Intrinsic::not_intrinsic; 2573 } 2574 2575 return Intrinsic::not_intrinsic; 2576 } 2577 2578 /// Return true if we can prove that the specified FP value is never equal to 2579 /// -0.0. 2580 /// 2581 /// NOTE: this function will need to be revisited when we support non-default 2582 /// rounding modes! 2583 /// 2584 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2585 unsigned Depth) { 2586 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2587 return !CFP->getValueAPF().isNegZero(); 2588 2589 if (Depth == MaxDepth) 2590 return false; // Limit search depth. 2591 2592 const Operator *I = dyn_cast<Operator>(V); 2593 if (!I) return false; 2594 2595 // Check if the nsz fast-math flag is set 2596 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2597 if (FPO->hasNoSignedZeros()) 2598 return true; 2599 2600 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2601 if (I->getOpcode() == Instruction::FAdd) 2602 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2603 if (CFP->isNullValue()) 2604 return true; 2605 2606 // sitofp and uitofp turn into +0.0 for zero. 2607 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2608 return true; 2609 2610 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2611 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2612 switch (IID) { 2613 default: 2614 break; 2615 // sqrt(-0.0) = -0.0, no other negative results are possible. 2616 case Intrinsic::sqrt: 2617 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2618 // fabs(x) != -0.0 2619 case Intrinsic::fabs: 2620 return true; 2621 } 2622 } 2623 2624 return false; 2625 } 2626 2627 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2628 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2629 /// bit despite comparing equal. 2630 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2631 const TargetLibraryInfo *TLI, 2632 bool SignBitOnly, 2633 unsigned Depth) { 2634 // TODO: This function does not do the right thing when SignBitOnly is true 2635 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2636 // which flips the sign bits of NaNs. See 2637 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2638 2639 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2640 return !CFP->getValueAPF().isNegative() || 2641 (!SignBitOnly && CFP->getValueAPF().isZero()); 2642 } 2643 2644 if (Depth == MaxDepth) 2645 return false; // Limit search depth. 2646 2647 const Operator *I = dyn_cast<Operator>(V); 2648 if (!I) 2649 return false; 2650 2651 switch (I->getOpcode()) { 2652 default: 2653 break; 2654 // Unsigned integers are always nonnegative. 2655 case Instruction::UIToFP: 2656 return true; 2657 case Instruction::FMul: 2658 // x*x is always non-negative or a NaN. 2659 if (I->getOperand(0) == I->getOperand(1) && 2660 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2661 return true; 2662 2663 LLVM_FALLTHROUGH; 2664 case Instruction::FAdd: 2665 case Instruction::FDiv: 2666 case Instruction::FRem: 2667 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2668 Depth + 1) && 2669 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2670 Depth + 1); 2671 case Instruction::Select: 2672 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2673 Depth + 1) && 2674 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2675 Depth + 1); 2676 case Instruction::FPExt: 2677 case Instruction::FPTrunc: 2678 // Widening/narrowing never change sign. 2679 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2680 Depth + 1); 2681 case Instruction::Call: 2682 const auto *CI = cast<CallInst>(I); 2683 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2684 switch (IID) { 2685 default: 2686 break; 2687 case Intrinsic::maxnum: 2688 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2689 Depth + 1) || 2690 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2691 Depth + 1); 2692 case Intrinsic::minnum: 2693 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2694 Depth + 1) && 2695 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2696 Depth + 1); 2697 case Intrinsic::exp: 2698 case Intrinsic::exp2: 2699 case Intrinsic::fabs: 2700 return true; 2701 2702 case Intrinsic::sqrt: 2703 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2704 if (!SignBitOnly) 2705 return true; 2706 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2707 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2708 2709 case Intrinsic::powi: 2710 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2711 // powi(x,n) is non-negative if n is even. 2712 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2713 return true; 2714 } 2715 // TODO: This is not correct. Given that exp is an integer, here are the 2716 // ways that pow can return a negative value: 2717 // 2718 // pow(x, exp) --> negative if exp is odd and x is negative. 2719 // pow(-0, exp) --> -inf if exp is negative odd. 2720 // pow(-0, exp) --> -0 if exp is positive odd. 2721 // pow(-inf, exp) --> -0 if exp is negative odd. 2722 // pow(-inf, exp) --> -inf if exp is positive odd. 2723 // 2724 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2725 // but we must return false if x == -0. Unfortunately we do not currently 2726 // have a way of expressing this constraint. See details in 2727 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2728 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2729 Depth + 1); 2730 2731 case Intrinsic::fma: 2732 case Intrinsic::fmuladd: 2733 // x*x+y is non-negative if y is non-negative. 2734 return I->getOperand(0) == I->getOperand(1) && 2735 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2736 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2737 Depth + 1); 2738 } 2739 break; 2740 } 2741 return false; 2742 } 2743 2744 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2745 const TargetLibraryInfo *TLI) { 2746 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2747 } 2748 2749 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2750 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2751 } 2752 2753 /// If the specified value can be set by repeating the same byte in memory, 2754 /// return the i8 value that it is represented with. This is 2755 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2756 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2757 /// byte store (e.g. i16 0x1234), return null. 2758 Value *llvm::isBytewiseValue(Value *V) { 2759 // All byte-wide stores are splatable, even of arbitrary variables. 2760 if (V->getType()->isIntegerTy(8)) return V; 2761 2762 // Handle 'null' ConstantArrayZero etc. 2763 if (Constant *C = dyn_cast<Constant>(V)) 2764 if (C->isNullValue()) 2765 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2766 2767 // Constant float and double values can be handled as integer values if the 2768 // corresponding integer value is "byteable". An important case is 0.0. 2769 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2770 if (CFP->getType()->isFloatTy()) 2771 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2772 if (CFP->getType()->isDoubleTy()) 2773 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2774 // Don't handle long double formats, which have strange constraints. 2775 } 2776 2777 // We can handle constant integers that are multiple of 8 bits. 2778 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2779 if (CI->getBitWidth() % 8 == 0) { 2780 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2781 2782 if (!CI->getValue().isSplat(8)) 2783 return nullptr; 2784 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2785 } 2786 } 2787 2788 // A ConstantDataArray/Vector is splatable if all its members are equal and 2789 // also splatable. 2790 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2791 Value *Elt = CA->getElementAsConstant(0); 2792 Value *Val = isBytewiseValue(Elt); 2793 if (!Val) 2794 return nullptr; 2795 2796 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2797 if (CA->getElementAsConstant(I) != Elt) 2798 return nullptr; 2799 2800 return Val; 2801 } 2802 2803 // Conceptually, we could handle things like: 2804 // %a = zext i8 %X to i16 2805 // %b = shl i16 %a, 8 2806 // %c = or i16 %a, %b 2807 // but until there is an example that actually needs this, it doesn't seem 2808 // worth worrying about. 2809 return nullptr; 2810 } 2811 2812 2813 // This is the recursive version of BuildSubAggregate. It takes a few different 2814 // arguments. Idxs is the index within the nested struct From that we are 2815 // looking at now (which is of type IndexedType). IdxSkip is the number of 2816 // indices from Idxs that should be left out when inserting into the resulting 2817 // struct. To is the result struct built so far, new insertvalue instructions 2818 // build on that. 2819 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2820 SmallVectorImpl<unsigned> &Idxs, 2821 unsigned IdxSkip, 2822 Instruction *InsertBefore) { 2823 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2824 if (STy) { 2825 // Save the original To argument so we can modify it 2826 Value *OrigTo = To; 2827 // General case, the type indexed by Idxs is a struct 2828 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2829 // Process each struct element recursively 2830 Idxs.push_back(i); 2831 Value *PrevTo = To; 2832 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2833 InsertBefore); 2834 Idxs.pop_back(); 2835 if (!To) { 2836 // Couldn't find any inserted value for this index? Cleanup 2837 while (PrevTo != OrigTo) { 2838 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2839 PrevTo = Del->getAggregateOperand(); 2840 Del->eraseFromParent(); 2841 } 2842 // Stop processing elements 2843 break; 2844 } 2845 } 2846 // If we successfully found a value for each of our subaggregates 2847 if (To) 2848 return To; 2849 } 2850 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2851 // the struct's elements had a value that was inserted directly. In the latter 2852 // case, perhaps we can't determine each of the subelements individually, but 2853 // we might be able to find the complete struct somewhere. 2854 2855 // Find the value that is at that particular spot 2856 Value *V = FindInsertedValue(From, Idxs); 2857 2858 if (!V) 2859 return nullptr; 2860 2861 // Insert the value in the new (sub) aggregrate 2862 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2863 "tmp", InsertBefore); 2864 } 2865 2866 // This helper takes a nested struct and extracts a part of it (which is again a 2867 // struct) into a new value. For example, given the struct: 2868 // { a, { b, { c, d }, e } } 2869 // and the indices "1, 1" this returns 2870 // { c, d }. 2871 // 2872 // It does this by inserting an insertvalue for each element in the resulting 2873 // struct, as opposed to just inserting a single struct. This will only work if 2874 // each of the elements of the substruct are known (ie, inserted into From by an 2875 // insertvalue instruction somewhere). 2876 // 2877 // All inserted insertvalue instructions are inserted before InsertBefore 2878 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2879 Instruction *InsertBefore) { 2880 assert(InsertBefore && "Must have someplace to insert!"); 2881 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2882 idx_range); 2883 Value *To = UndefValue::get(IndexedType); 2884 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2885 unsigned IdxSkip = Idxs.size(); 2886 2887 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2888 } 2889 2890 /// Given an aggregrate and an sequence of indices, see if 2891 /// the scalar value indexed is already around as a register, for example if it 2892 /// were inserted directly into the aggregrate. 2893 /// 2894 /// If InsertBefore is not null, this function will duplicate (modified) 2895 /// insertvalues when a part of a nested struct is extracted. 2896 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2897 Instruction *InsertBefore) { 2898 // Nothing to index? Just return V then (this is useful at the end of our 2899 // recursion). 2900 if (idx_range.empty()) 2901 return V; 2902 // We have indices, so V should have an indexable type. 2903 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2904 "Not looking at a struct or array?"); 2905 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2906 "Invalid indices for type?"); 2907 2908 if (Constant *C = dyn_cast<Constant>(V)) { 2909 C = C->getAggregateElement(idx_range[0]); 2910 if (!C) return nullptr; 2911 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2912 } 2913 2914 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2915 // Loop the indices for the insertvalue instruction in parallel with the 2916 // requested indices 2917 const unsigned *req_idx = idx_range.begin(); 2918 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2919 i != e; ++i, ++req_idx) { 2920 if (req_idx == idx_range.end()) { 2921 // We can't handle this without inserting insertvalues 2922 if (!InsertBefore) 2923 return nullptr; 2924 2925 // The requested index identifies a part of a nested aggregate. Handle 2926 // this specially. For example, 2927 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2928 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2929 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2930 // This can be changed into 2931 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2932 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2933 // which allows the unused 0,0 element from the nested struct to be 2934 // removed. 2935 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2936 InsertBefore); 2937 } 2938 2939 // This insert value inserts something else than what we are looking for. 2940 // See if the (aggregate) value inserted into has the value we are 2941 // looking for, then. 2942 if (*req_idx != *i) 2943 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2944 InsertBefore); 2945 } 2946 // If we end up here, the indices of the insertvalue match with those 2947 // requested (though possibly only partially). Now we recursively look at 2948 // the inserted value, passing any remaining indices. 2949 return FindInsertedValue(I->getInsertedValueOperand(), 2950 makeArrayRef(req_idx, idx_range.end()), 2951 InsertBefore); 2952 } 2953 2954 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2955 // If we're extracting a value from an aggregate that was extracted from 2956 // something else, we can extract from that something else directly instead. 2957 // However, we will need to chain I's indices with the requested indices. 2958 2959 // Calculate the number of indices required 2960 unsigned size = I->getNumIndices() + idx_range.size(); 2961 // Allocate some space to put the new indices in 2962 SmallVector<unsigned, 5> Idxs; 2963 Idxs.reserve(size); 2964 // Add indices from the extract value instruction 2965 Idxs.append(I->idx_begin(), I->idx_end()); 2966 2967 // Add requested indices 2968 Idxs.append(idx_range.begin(), idx_range.end()); 2969 2970 assert(Idxs.size() == size 2971 && "Number of indices added not correct?"); 2972 2973 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2974 } 2975 // Otherwise, we don't know (such as, extracting from a function return value 2976 // or load instruction) 2977 return nullptr; 2978 } 2979 2980 /// Analyze the specified pointer to see if it can be expressed as a base 2981 /// pointer plus a constant offset. Return the base and offset to the caller. 2982 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2983 const DataLayout &DL) { 2984 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2985 APInt ByteOffset(BitWidth, 0); 2986 2987 // We walk up the defs but use a visited set to handle unreachable code. In 2988 // that case, we stop after accumulating the cycle once (not that it 2989 // matters). 2990 SmallPtrSet<Value *, 16> Visited; 2991 while (Visited.insert(Ptr).second) { 2992 if (Ptr->getType()->isVectorTy()) 2993 break; 2994 2995 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2996 // If one of the values we have visited is an addrspacecast, then 2997 // the pointer type of this GEP may be different from the type 2998 // of the Ptr parameter which was passed to this function. This 2999 // means when we construct GEPOffset, we need to use the size 3000 // of GEP's pointer type rather than the size of the original 3001 // pointer type. 3002 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3003 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3004 break; 3005 3006 ByteOffset += GEPOffset.getSExtValue(); 3007 3008 Ptr = GEP->getPointerOperand(); 3009 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3010 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3011 Ptr = cast<Operator>(Ptr)->getOperand(0); 3012 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3013 if (GA->isInterposable()) 3014 break; 3015 Ptr = GA->getAliasee(); 3016 } else { 3017 break; 3018 } 3019 } 3020 Offset = ByteOffset.getSExtValue(); 3021 return Ptr; 3022 } 3023 3024 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3025 // Make sure the GEP has exactly three arguments. 3026 if (GEP->getNumOperands() != 3) 3027 return false; 3028 3029 // Make sure the index-ee is a pointer to array of i8. 3030 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3031 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3032 return false; 3033 3034 // Check to make sure that the first operand of the GEP is an integer and 3035 // has value 0 so that we are sure we're indexing into the initializer. 3036 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3037 if (!FirstIdx || !FirstIdx->isZero()) 3038 return false; 3039 3040 return true; 3041 } 3042 3043 /// This function computes the length of a null-terminated C string pointed to 3044 /// by V. If successful, it returns true and returns the string in Str. 3045 /// If unsuccessful, it returns false. 3046 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3047 uint64_t Offset, bool TrimAtNul) { 3048 assert(V); 3049 3050 // Look through bitcast instructions and geps. 3051 V = V->stripPointerCasts(); 3052 3053 // If the value is a GEP instruction or constant expression, treat it as an 3054 // offset. 3055 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3056 // The GEP operator should be based on a pointer to string constant, and is 3057 // indexing into the string constant. 3058 if (!isGEPBasedOnPointerToString(GEP)) 3059 return false; 3060 3061 // If the second index isn't a ConstantInt, then this is a variable index 3062 // into the array. If this occurs, we can't say anything meaningful about 3063 // the string. 3064 uint64_t StartIdx = 0; 3065 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3066 StartIdx = CI->getZExtValue(); 3067 else 3068 return false; 3069 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3070 TrimAtNul); 3071 } 3072 3073 // The GEP instruction, constant or instruction, must reference a global 3074 // variable that is a constant and is initialized. The referenced constant 3075 // initializer is the array that we'll use for optimization. 3076 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3077 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3078 return false; 3079 3080 // Handle the all-zeros case. 3081 if (GV->getInitializer()->isNullValue()) { 3082 // This is a degenerate case. The initializer is constant zero so the 3083 // length of the string must be zero. 3084 Str = ""; 3085 return true; 3086 } 3087 3088 // This must be a ConstantDataArray. 3089 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3090 if (!Array || !Array->isString()) 3091 return false; 3092 3093 // Get the number of elements in the array. 3094 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3095 3096 // Start out with the entire array in the StringRef. 3097 Str = Array->getAsString(); 3098 3099 if (Offset > NumElts) 3100 return false; 3101 3102 // Skip over 'offset' bytes. 3103 Str = Str.substr(Offset); 3104 3105 if (TrimAtNul) { 3106 // Trim off the \0 and anything after it. If the array is not nul 3107 // terminated, we just return the whole end of string. The client may know 3108 // some other way that the string is length-bound. 3109 Str = Str.substr(0, Str.find('\0')); 3110 } 3111 return true; 3112 } 3113 3114 // These next two are very similar to the above, but also look through PHI 3115 // nodes. 3116 // TODO: See if we can integrate these two together. 3117 3118 /// If we can compute the length of the string pointed to by 3119 /// the specified pointer, return 'len+1'. If we can't, return 0. 3120 static uint64_t GetStringLengthH(const Value *V, 3121 SmallPtrSetImpl<const PHINode*> &PHIs) { 3122 // Look through noop bitcast instructions. 3123 V = V->stripPointerCasts(); 3124 3125 // If this is a PHI node, there are two cases: either we have already seen it 3126 // or we haven't. 3127 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3128 if (!PHIs.insert(PN).second) 3129 return ~0ULL; // already in the set. 3130 3131 // If it was new, see if all the input strings are the same length. 3132 uint64_t LenSoFar = ~0ULL; 3133 for (Value *IncValue : PN->incoming_values()) { 3134 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3135 if (Len == 0) return 0; // Unknown length -> unknown. 3136 3137 if (Len == ~0ULL) continue; 3138 3139 if (Len != LenSoFar && LenSoFar != ~0ULL) 3140 return 0; // Disagree -> unknown. 3141 LenSoFar = Len; 3142 } 3143 3144 // Success, all agree. 3145 return LenSoFar; 3146 } 3147 3148 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3149 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3150 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3151 if (Len1 == 0) return 0; 3152 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3153 if (Len2 == 0) return 0; 3154 if (Len1 == ~0ULL) return Len2; 3155 if (Len2 == ~0ULL) return Len1; 3156 if (Len1 != Len2) return 0; 3157 return Len1; 3158 } 3159 3160 // Otherwise, see if we can read the string. 3161 StringRef StrData; 3162 if (!getConstantStringInfo(V, StrData)) 3163 return 0; 3164 3165 return StrData.size()+1; 3166 } 3167 3168 /// If we can compute the length of the string pointed to by 3169 /// the specified pointer, return 'len+1'. If we can't, return 0. 3170 uint64_t llvm::GetStringLength(const Value *V) { 3171 if (!V->getType()->isPointerTy()) return 0; 3172 3173 SmallPtrSet<const PHINode*, 32> PHIs; 3174 uint64_t Len = GetStringLengthH(V, PHIs); 3175 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3176 // an empty string as a length. 3177 return Len == ~0ULL ? 1 : Len; 3178 } 3179 3180 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3181 /// previous iteration of the loop was referring to the same object as \p PN. 3182 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3183 const LoopInfo *LI) { 3184 // Find the loop-defined value. 3185 Loop *L = LI->getLoopFor(PN->getParent()); 3186 if (PN->getNumIncomingValues() != 2) 3187 return true; 3188 3189 // Find the value from previous iteration. 3190 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3191 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3192 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3193 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3194 return true; 3195 3196 // If a new pointer is loaded in the loop, the pointer references a different 3197 // object in every iteration. E.g.: 3198 // for (i) 3199 // int *p = a[i]; 3200 // ... 3201 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3202 if (!L->isLoopInvariant(Load->getPointerOperand())) 3203 return false; 3204 return true; 3205 } 3206 3207 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3208 unsigned MaxLookup) { 3209 if (!V->getType()->isPointerTy()) 3210 return V; 3211 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3212 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3213 V = GEP->getPointerOperand(); 3214 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3215 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3216 V = cast<Operator>(V)->getOperand(0); 3217 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3218 if (GA->isInterposable()) 3219 return V; 3220 V = GA->getAliasee(); 3221 } else { 3222 if (auto CS = CallSite(V)) 3223 if (Value *RV = CS.getReturnedArgOperand()) { 3224 V = RV; 3225 continue; 3226 } 3227 3228 // See if InstructionSimplify knows any relevant tricks. 3229 if (Instruction *I = dyn_cast<Instruction>(V)) 3230 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3231 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3232 V = Simplified; 3233 continue; 3234 } 3235 3236 return V; 3237 } 3238 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3239 } 3240 return V; 3241 } 3242 3243 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3244 const DataLayout &DL, LoopInfo *LI, 3245 unsigned MaxLookup) { 3246 SmallPtrSet<Value *, 4> Visited; 3247 SmallVector<Value *, 4> Worklist; 3248 Worklist.push_back(V); 3249 do { 3250 Value *P = Worklist.pop_back_val(); 3251 P = GetUnderlyingObject(P, DL, MaxLookup); 3252 3253 if (!Visited.insert(P).second) 3254 continue; 3255 3256 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3257 Worklist.push_back(SI->getTrueValue()); 3258 Worklist.push_back(SI->getFalseValue()); 3259 continue; 3260 } 3261 3262 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3263 // If this PHI changes the underlying object in every iteration of the 3264 // loop, don't look through it. Consider: 3265 // int **A; 3266 // for (i) { 3267 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3268 // Curr = A[i]; 3269 // *Prev, *Curr; 3270 // 3271 // Prev is tracking Curr one iteration behind so they refer to different 3272 // underlying objects. 3273 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3274 isSameUnderlyingObjectInLoop(PN, LI)) 3275 for (Value *IncValue : PN->incoming_values()) 3276 Worklist.push_back(IncValue); 3277 continue; 3278 } 3279 3280 Objects.push_back(P); 3281 } while (!Worklist.empty()); 3282 } 3283 3284 /// Return true if the only users of this pointer are lifetime markers. 3285 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3286 for (const User *U : V->users()) { 3287 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3288 if (!II) return false; 3289 3290 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3291 II->getIntrinsicID() != Intrinsic::lifetime_end) 3292 return false; 3293 } 3294 return true; 3295 } 3296 3297 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3298 const Instruction *CtxI, 3299 const DominatorTree *DT) { 3300 const Operator *Inst = dyn_cast<Operator>(V); 3301 if (!Inst) 3302 return false; 3303 3304 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3305 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3306 if (C->canTrap()) 3307 return false; 3308 3309 switch (Inst->getOpcode()) { 3310 default: 3311 return true; 3312 case Instruction::UDiv: 3313 case Instruction::URem: { 3314 // x / y is undefined if y == 0. 3315 const APInt *V; 3316 if (match(Inst->getOperand(1), m_APInt(V))) 3317 return *V != 0; 3318 return false; 3319 } 3320 case Instruction::SDiv: 3321 case Instruction::SRem: { 3322 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3323 const APInt *Numerator, *Denominator; 3324 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3325 return false; 3326 // We cannot hoist this division if the denominator is 0. 3327 if (*Denominator == 0) 3328 return false; 3329 // It's safe to hoist if the denominator is not 0 or -1. 3330 if (*Denominator != -1) 3331 return true; 3332 // At this point we know that the denominator is -1. It is safe to hoist as 3333 // long we know that the numerator is not INT_MIN. 3334 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3335 return !Numerator->isMinSignedValue(); 3336 // The numerator *might* be MinSignedValue. 3337 return false; 3338 } 3339 case Instruction::Load: { 3340 const LoadInst *LI = cast<LoadInst>(Inst); 3341 if (!LI->isUnordered() || 3342 // Speculative load may create a race that did not exist in the source. 3343 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3344 // Speculative load may load data from dirty regions. 3345 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3346 return false; 3347 const DataLayout &DL = LI->getModule()->getDataLayout(); 3348 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3349 LI->getAlignment(), DL, CtxI, DT); 3350 } 3351 case Instruction::Call: { 3352 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3353 switch (II->getIntrinsicID()) { 3354 // These synthetic intrinsics have no side-effects and just mark 3355 // information about their operands. 3356 // FIXME: There are other no-op synthetic instructions that potentially 3357 // should be considered at least *safe* to speculate... 3358 case Intrinsic::dbg_declare: 3359 case Intrinsic::dbg_value: 3360 return true; 3361 3362 case Intrinsic::bitreverse: 3363 case Intrinsic::bswap: 3364 case Intrinsic::ctlz: 3365 case Intrinsic::ctpop: 3366 case Intrinsic::cttz: 3367 case Intrinsic::objectsize: 3368 case Intrinsic::sadd_with_overflow: 3369 case Intrinsic::smul_with_overflow: 3370 case Intrinsic::ssub_with_overflow: 3371 case Intrinsic::uadd_with_overflow: 3372 case Intrinsic::umul_with_overflow: 3373 case Intrinsic::usub_with_overflow: 3374 return true; 3375 // These intrinsics are defined to have the same behavior as libm 3376 // functions except for setting errno. 3377 case Intrinsic::sqrt: 3378 case Intrinsic::fma: 3379 case Intrinsic::fmuladd: 3380 return true; 3381 // These intrinsics are defined to have the same behavior as libm 3382 // functions, and the corresponding libm functions never set errno. 3383 case Intrinsic::trunc: 3384 case Intrinsic::copysign: 3385 case Intrinsic::fabs: 3386 case Intrinsic::minnum: 3387 case Intrinsic::maxnum: 3388 return true; 3389 // These intrinsics are defined to have the same behavior as libm 3390 // functions, which never overflow when operating on the IEEE754 types 3391 // that we support, and never set errno otherwise. 3392 case Intrinsic::ceil: 3393 case Intrinsic::floor: 3394 case Intrinsic::nearbyint: 3395 case Intrinsic::rint: 3396 case Intrinsic::round: 3397 return true; 3398 // These intrinsics do not correspond to any libm function, and 3399 // do not set errno. 3400 case Intrinsic::powi: 3401 return true; 3402 // TODO: are convert_{from,to}_fp16 safe? 3403 // TODO: can we list target-specific intrinsics here? 3404 default: break; 3405 } 3406 } 3407 return false; // The called function could have undefined behavior or 3408 // side-effects, even if marked readnone nounwind. 3409 } 3410 case Instruction::VAArg: 3411 case Instruction::Alloca: 3412 case Instruction::Invoke: 3413 case Instruction::PHI: 3414 case Instruction::Store: 3415 case Instruction::Ret: 3416 case Instruction::Br: 3417 case Instruction::IndirectBr: 3418 case Instruction::Switch: 3419 case Instruction::Unreachable: 3420 case Instruction::Fence: 3421 case Instruction::AtomicRMW: 3422 case Instruction::AtomicCmpXchg: 3423 case Instruction::LandingPad: 3424 case Instruction::Resume: 3425 case Instruction::CatchSwitch: 3426 case Instruction::CatchPad: 3427 case Instruction::CatchRet: 3428 case Instruction::CleanupPad: 3429 case Instruction::CleanupRet: 3430 return false; // Misc instructions which have effects 3431 } 3432 } 3433 3434 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3435 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3436 } 3437 3438 /// Return true if we know that the specified value is never null. 3439 bool llvm::isKnownNonNull(const Value *V) { 3440 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3441 3442 // Alloca never returns null, malloc might. 3443 if (isa<AllocaInst>(V)) return true; 3444 3445 // A byval, inalloca, or nonnull argument is never null. 3446 if (const Argument *A = dyn_cast<Argument>(V)) 3447 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3448 3449 // A global variable in address space 0 is non null unless extern weak 3450 // or an absolute symbol reference. Other address spaces may have null as a 3451 // valid address for a global, so we can't assume anything. 3452 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3453 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3454 GV->getType()->getAddressSpace() == 0; 3455 3456 // A Load tagged with nonnull metadata is never null. 3457 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3458 return LI->getMetadata(LLVMContext::MD_nonnull); 3459 3460 if (auto CS = ImmutableCallSite(V)) 3461 if (CS.isReturnNonNull()) 3462 return true; 3463 3464 return false; 3465 } 3466 3467 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3468 const Instruction *CtxI, 3469 const DominatorTree *DT) { 3470 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3471 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3472 assert(CtxI && "Context instruction required for analysis"); 3473 assert(DT && "Dominator tree required for analysis"); 3474 3475 unsigned NumUsesExplored = 0; 3476 for (auto *U : V->users()) { 3477 // Avoid massive lists 3478 if (NumUsesExplored >= DomConditionsMaxUses) 3479 break; 3480 NumUsesExplored++; 3481 3482 // If the value is used as an argument to a call or invoke, then argument 3483 // attributes may provide an answer about null-ness. 3484 if (auto CS = ImmutableCallSite(U)) 3485 if (auto *CalledFunc = CS.getCalledFunction()) 3486 for (const Argument &Arg : CalledFunc->args()) 3487 if (CS.getArgOperand(Arg.getArgNo()) == V && 3488 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3489 return true; 3490 3491 // Consider only compare instructions uniquely controlling a branch 3492 CmpInst::Predicate Pred; 3493 if (!match(const_cast<User *>(U), 3494 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3495 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3496 continue; 3497 3498 for (auto *CmpU : U->users()) { 3499 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3500 assert(BI->isConditional() && "uses a comparison!"); 3501 3502 BasicBlock *NonNullSuccessor = 3503 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3504 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3505 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3506 return true; 3507 } else if (Pred == ICmpInst::ICMP_NE && 3508 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3509 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3510 return true; 3511 } 3512 } 3513 } 3514 3515 return false; 3516 } 3517 3518 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3519 const DominatorTree *DT) { 3520 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3521 return false; 3522 3523 if (isKnownNonNull(V)) 3524 return true; 3525 3526 if (!CtxI || !DT) 3527 return false; 3528 3529 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3530 } 3531 3532 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3533 const Value *RHS, 3534 const DataLayout &DL, 3535 AssumptionCache *AC, 3536 const Instruction *CxtI, 3537 const DominatorTree *DT) { 3538 // Multiplying n * m significant bits yields a result of n + m significant 3539 // bits. If the total number of significant bits does not exceed the 3540 // result bit width (minus 1), there is no overflow. 3541 // This means if we have enough leading zero bits in the operands 3542 // we can guarantee that the result does not overflow. 3543 // Ref: "Hacker's Delight" by Henry Warren 3544 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3545 APInt LHSKnownZero(BitWidth, 0); 3546 APInt LHSKnownOne(BitWidth, 0); 3547 APInt RHSKnownZero(BitWidth, 0); 3548 APInt RHSKnownOne(BitWidth, 0); 3549 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3550 DT); 3551 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3552 DT); 3553 // Note that underestimating the number of zero bits gives a more 3554 // conservative answer. 3555 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3556 RHSKnownZero.countLeadingOnes(); 3557 // First handle the easy case: if we have enough zero bits there's 3558 // definitely no overflow. 3559 if (ZeroBits >= BitWidth) 3560 return OverflowResult::NeverOverflows; 3561 3562 // Get the largest possible values for each operand. 3563 APInt LHSMax = ~LHSKnownZero; 3564 APInt RHSMax = ~RHSKnownZero; 3565 3566 // We know the multiply operation doesn't overflow if the maximum values for 3567 // each operand will not overflow after we multiply them together. 3568 bool MaxOverflow; 3569 LHSMax.umul_ov(RHSMax, MaxOverflow); 3570 if (!MaxOverflow) 3571 return OverflowResult::NeverOverflows; 3572 3573 // We know it always overflows if multiplying the smallest possible values for 3574 // the operands also results in overflow. 3575 bool MinOverflow; 3576 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3577 if (MinOverflow) 3578 return OverflowResult::AlwaysOverflows; 3579 3580 return OverflowResult::MayOverflow; 3581 } 3582 3583 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3584 const Value *RHS, 3585 const DataLayout &DL, 3586 AssumptionCache *AC, 3587 const Instruction *CxtI, 3588 const DominatorTree *DT) { 3589 bool LHSKnownNonNegative, LHSKnownNegative; 3590 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3591 AC, CxtI, DT); 3592 if (LHSKnownNonNegative || LHSKnownNegative) { 3593 bool RHSKnownNonNegative, RHSKnownNegative; 3594 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3595 AC, CxtI, DT); 3596 3597 if (LHSKnownNegative && RHSKnownNegative) { 3598 // The sign bit is set in both cases: this MUST overflow. 3599 // Create a simple add instruction, and insert it into the struct. 3600 return OverflowResult::AlwaysOverflows; 3601 } 3602 3603 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3604 // The sign bit is clear in both cases: this CANNOT overflow. 3605 // Create a simple add instruction, and insert it into the struct. 3606 return OverflowResult::NeverOverflows; 3607 } 3608 } 3609 3610 return OverflowResult::MayOverflow; 3611 } 3612 3613 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3614 const Value *RHS, 3615 const AddOperator *Add, 3616 const DataLayout &DL, 3617 AssumptionCache *AC, 3618 const Instruction *CxtI, 3619 const DominatorTree *DT) { 3620 if (Add && Add->hasNoSignedWrap()) { 3621 return OverflowResult::NeverOverflows; 3622 } 3623 3624 bool LHSKnownNonNegative, LHSKnownNegative; 3625 bool RHSKnownNonNegative, RHSKnownNegative; 3626 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3627 AC, CxtI, DT); 3628 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3629 AC, CxtI, DT); 3630 3631 if ((LHSKnownNonNegative && RHSKnownNegative) || 3632 (LHSKnownNegative && RHSKnownNonNegative)) { 3633 // The sign bits are opposite: this CANNOT overflow. 3634 return OverflowResult::NeverOverflows; 3635 } 3636 3637 // The remaining code needs Add to be available. Early returns if not so. 3638 if (!Add) 3639 return OverflowResult::MayOverflow; 3640 3641 // If the sign of Add is the same as at least one of the operands, this add 3642 // CANNOT overflow. This is particularly useful when the sum is 3643 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3644 // operands. 3645 bool LHSOrRHSKnownNonNegative = 3646 (LHSKnownNonNegative || RHSKnownNonNegative); 3647 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3648 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3649 bool AddKnownNonNegative, AddKnownNegative; 3650 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3651 /*Depth=*/0, AC, CxtI, DT); 3652 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3653 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3654 return OverflowResult::NeverOverflows; 3655 } 3656 } 3657 3658 return OverflowResult::MayOverflow; 3659 } 3660 3661 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3662 const DominatorTree &DT) { 3663 #ifndef NDEBUG 3664 auto IID = II->getIntrinsicID(); 3665 assert((IID == Intrinsic::sadd_with_overflow || 3666 IID == Intrinsic::uadd_with_overflow || 3667 IID == Intrinsic::ssub_with_overflow || 3668 IID == Intrinsic::usub_with_overflow || 3669 IID == Intrinsic::smul_with_overflow || 3670 IID == Intrinsic::umul_with_overflow) && 3671 "Not an overflow intrinsic!"); 3672 #endif 3673 3674 SmallVector<const BranchInst *, 2> GuardingBranches; 3675 SmallVector<const ExtractValueInst *, 2> Results; 3676 3677 for (const User *U : II->users()) { 3678 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3679 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3680 3681 if (EVI->getIndices()[0] == 0) 3682 Results.push_back(EVI); 3683 else { 3684 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3685 3686 for (const auto *U : EVI->users()) 3687 if (const auto *B = dyn_cast<BranchInst>(U)) { 3688 assert(B->isConditional() && "How else is it using an i1?"); 3689 GuardingBranches.push_back(B); 3690 } 3691 } 3692 } else { 3693 // We are using the aggregate directly in a way we don't want to analyze 3694 // here (storing it to a global, say). 3695 return false; 3696 } 3697 } 3698 3699 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3700 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3701 if (!NoWrapEdge.isSingleEdge()) 3702 return false; 3703 3704 // Check if all users of the add are provably no-wrap. 3705 for (const auto *Result : Results) { 3706 // If the extractvalue itself is not executed on overflow, the we don't 3707 // need to check each use separately, since domination is transitive. 3708 if (DT.dominates(NoWrapEdge, Result->getParent())) 3709 continue; 3710 3711 for (auto &RU : Result->uses()) 3712 if (!DT.dominates(NoWrapEdge, RU)) 3713 return false; 3714 } 3715 3716 return true; 3717 }; 3718 3719 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3720 } 3721 3722 3723 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3724 const DataLayout &DL, 3725 AssumptionCache *AC, 3726 const Instruction *CxtI, 3727 const DominatorTree *DT) { 3728 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3729 Add, DL, AC, CxtI, DT); 3730 } 3731 3732 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3733 const Value *RHS, 3734 const DataLayout &DL, 3735 AssumptionCache *AC, 3736 const Instruction *CxtI, 3737 const DominatorTree *DT) { 3738 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3739 } 3740 3741 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3742 // A memory operation returns normally if it isn't volatile. A volatile 3743 // operation is allowed to trap. 3744 // 3745 // An atomic operation isn't guaranteed to return in a reasonable amount of 3746 // time because it's possible for another thread to interfere with it for an 3747 // arbitrary length of time, but programs aren't allowed to rely on that. 3748 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3749 return !LI->isVolatile(); 3750 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3751 return !SI->isVolatile(); 3752 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3753 return !CXI->isVolatile(); 3754 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3755 return !RMWI->isVolatile(); 3756 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3757 return !MII->isVolatile(); 3758 3759 // If there is no successor, then execution can't transfer to it. 3760 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3761 return !CRI->unwindsToCaller(); 3762 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3763 return !CatchSwitch->unwindsToCaller(); 3764 if (isa<ResumeInst>(I)) 3765 return false; 3766 if (isa<ReturnInst>(I)) 3767 return false; 3768 if (isa<UnreachableInst>(I)) 3769 return false; 3770 3771 // Calls can throw, or contain an infinite loop, or kill the process. 3772 if (auto CS = ImmutableCallSite(I)) { 3773 // Call sites that throw have implicit non-local control flow. 3774 if (!CS.doesNotThrow()) 3775 return false; 3776 3777 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3778 // etc. and thus not return. However, LLVM already assumes that 3779 // 3780 // - Thread exiting actions are modeled as writes to memory invisible to 3781 // the program. 3782 // 3783 // - Loops that don't have side effects (side effects are volatile/atomic 3784 // stores and IO) always terminate (see http://llvm.org/PR965). 3785 // Furthermore IO itself is also modeled as writes to memory invisible to 3786 // the program. 3787 // 3788 // We rely on those assumptions here, and use the memory effects of the call 3789 // target as a proxy for checking that it always returns. 3790 3791 // FIXME: This isn't aggressive enough; a call which only writes to a global 3792 // is guaranteed to return. 3793 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3794 match(I, m_Intrinsic<Intrinsic::assume>()); 3795 } 3796 3797 // Other instructions return normally. 3798 return true; 3799 } 3800 3801 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3802 const Loop *L) { 3803 // The loop header is guaranteed to be executed for every iteration. 3804 // 3805 // FIXME: Relax this constraint to cover all basic blocks that are 3806 // guaranteed to be executed at every iteration. 3807 if (I->getParent() != L->getHeader()) return false; 3808 3809 for (const Instruction &LI : *L->getHeader()) { 3810 if (&LI == I) return true; 3811 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3812 } 3813 llvm_unreachable("Instruction not contained in its own parent basic block."); 3814 } 3815 3816 bool llvm::propagatesFullPoison(const Instruction *I) { 3817 switch (I->getOpcode()) { 3818 case Instruction::Add: 3819 case Instruction::Sub: 3820 case Instruction::Xor: 3821 case Instruction::Trunc: 3822 case Instruction::BitCast: 3823 case Instruction::AddrSpaceCast: 3824 case Instruction::Mul: 3825 case Instruction::Shl: 3826 case Instruction::GetElementPtr: 3827 // These operations all propagate poison unconditionally. Note that poison 3828 // is not any particular value, so xor or subtraction of poison with 3829 // itself still yields poison, not zero. 3830 return true; 3831 3832 case Instruction::AShr: 3833 case Instruction::SExt: 3834 // For these operations, one bit of the input is replicated across 3835 // multiple output bits. A replicated poison bit is still poison. 3836 return true; 3837 3838 case Instruction::ICmp: 3839 // Comparing poison with any value yields poison. This is why, for 3840 // instance, x s< (x +nsw 1) can be folded to true. 3841 return true; 3842 3843 default: 3844 return false; 3845 } 3846 } 3847 3848 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3849 switch (I->getOpcode()) { 3850 case Instruction::Store: 3851 return cast<StoreInst>(I)->getPointerOperand(); 3852 3853 case Instruction::Load: 3854 return cast<LoadInst>(I)->getPointerOperand(); 3855 3856 case Instruction::AtomicCmpXchg: 3857 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3858 3859 case Instruction::AtomicRMW: 3860 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3861 3862 case Instruction::UDiv: 3863 case Instruction::SDiv: 3864 case Instruction::URem: 3865 case Instruction::SRem: 3866 return I->getOperand(1); 3867 3868 default: 3869 return nullptr; 3870 } 3871 } 3872 3873 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3874 // We currently only look for uses of poison values within the same basic 3875 // block, as that makes it easier to guarantee that the uses will be 3876 // executed given that PoisonI is executed. 3877 // 3878 // FIXME: Expand this to consider uses beyond the same basic block. To do 3879 // this, look out for the distinction between post-dominance and strong 3880 // post-dominance. 3881 const BasicBlock *BB = PoisonI->getParent(); 3882 3883 // Set of instructions that we have proved will yield poison if PoisonI 3884 // does. 3885 SmallSet<const Value *, 16> YieldsPoison; 3886 SmallSet<const BasicBlock *, 4> Visited; 3887 YieldsPoison.insert(PoisonI); 3888 Visited.insert(PoisonI->getParent()); 3889 3890 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3891 3892 unsigned Iter = 0; 3893 while (Iter++ < MaxDepth) { 3894 for (auto &I : make_range(Begin, End)) { 3895 if (&I != PoisonI) { 3896 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3897 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3898 return true; 3899 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3900 return false; 3901 } 3902 3903 // Mark poison that propagates from I through uses of I. 3904 if (YieldsPoison.count(&I)) { 3905 for (const User *User : I.users()) { 3906 const Instruction *UserI = cast<Instruction>(User); 3907 if (propagatesFullPoison(UserI)) 3908 YieldsPoison.insert(User); 3909 } 3910 } 3911 } 3912 3913 if (auto *NextBB = BB->getSingleSuccessor()) { 3914 if (Visited.insert(NextBB).second) { 3915 BB = NextBB; 3916 Begin = BB->getFirstNonPHI()->getIterator(); 3917 End = BB->end(); 3918 continue; 3919 } 3920 } 3921 3922 break; 3923 }; 3924 return false; 3925 } 3926 3927 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3928 if (FMF.noNaNs()) 3929 return true; 3930 3931 if (auto *C = dyn_cast<ConstantFP>(V)) 3932 return !C->isNaN(); 3933 return false; 3934 } 3935 3936 static bool isKnownNonZero(const Value *V) { 3937 if (auto *C = dyn_cast<ConstantFP>(V)) 3938 return !C->isZero(); 3939 return false; 3940 } 3941 3942 /// Match non-obvious integer minimum and maximum sequences. 3943 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3944 Value *CmpLHS, Value *CmpRHS, 3945 Value *TrueVal, Value *FalseVal, 3946 Value *&LHS, Value *&RHS) { 3947 // Assume success. If there's no match, callers should not use these anyway. 3948 LHS = TrueVal; 3949 RHS = FalseVal; 3950 3951 // Recognize variations of: 3952 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3953 const APInt *C1; 3954 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3955 const APInt *C2; 3956 3957 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3958 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3959 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3960 return {SPF_SMAX, SPNB_NA, false}; 3961 3962 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3963 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3964 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3965 return {SPF_SMIN, SPNB_NA, false}; 3966 3967 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3968 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3969 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3970 return {SPF_UMAX, SPNB_NA, false}; 3971 3972 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3973 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3974 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3975 return {SPF_UMIN, SPNB_NA, false}; 3976 } 3977 3978 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3979 return {SPF_UNKNOWN, SPNB_NA, false}; 3980 3981 // Z = X -nsw Y 3982 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3983 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3984 if (match(TrueVal, m_Zero()) && 3985 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3986 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3987 3988 // Z = X -nsw Y 3989 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3990 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3991 if (match(FalseVal, m_Zero()) && 3992 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3993 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3994 3995 if (!match(CmpRHS, m_APInt(C1))) 3996 return {SPF_UNKNOWN, SPNB_NA, false}; 3997 3998 // An unsigned min/max can be written with a signed compare. 3999 const APInt *C2; 4000 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4001 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4002 // Is the sign bit set? 4003 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4004 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4005 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4006 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4007 4008 // Is the sign bit clear? 4009 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4010 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4011 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4012 C2->isMinSignedValue()) 4013 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4014 } 4015 4016 // Look through 'not' ops to find disguised signed min/max. 4017 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4018 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4019 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4020 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4021 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4022 4023 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4024 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4025 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4026 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4027 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4028 4029 return {SPF_UNKNOWN, SPNB_NA, false}; 4030 } 4031 4032 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4033 FastMathFlags FMF, 4034 Value *CmpLHS, Value *CmpRHS, 4035 Value *TrueVal, Value *FalseVal, 4036 Value *&LHS, Value *&RHS) { 4037 LHS = CmpLHS; 4038 RHS = CmpRHS; 4039 4040 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4041 // return inconsistent results between implementations. 4042 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4043 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4044 // Therefore we behave conservatively and only proceed if at least one of the 4045 // operands is known to not be zero, or if we don't care about signed zeroes. 4046 switch (Pred) { 4047 default: break; 4048 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4049 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4050 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4051 !isKnownNonZero(CmpRHS)) 4052 return {SPF_UNKNOWN, SPNB_NA, false}; 4053 } 4054 4055 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4056 bool Ordered = false; 4057 4058 // When given one NaN and one non-NaN input: 4059 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4060 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4061 // ordered comparison fails), which could be NaN or non-NaN. 4062 // so here we discover exactly what NaN behavior is required/accepted. 4063 if (CmpInst::isFPPredicate(Pred)) { 4064 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4065 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4066 4067 if (LHSSafe && RHSSafe) { 4068 // Both operands are known non-NaN. 4069 NaNBehavior = SPNB_RETURNS_ANY; 4070 } else if (CmpInst::isOrdered(Pred)) { 4071 // An ordered comparison will return false when given a NaN, so it 4072 // returns the RHS. 4073 Ordered = true; 4074 if (LHSSafe) 4075 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4076 NaNBehavior = SPNB_RETURNS_NAN; 4077 else if (RHSSafe) 4078 NaNBehavior = SPNB_RETURNS_OTHER; 4079 else 4080 // Completely unsafe. 4081 return {SPF_UNKNOWN, SPNB_NA, false}; 4082 } else { 4083 Ordered = false; 4084 // An unordered comparison will return true when given a NaN, so it 4085 // returns the LHS. 4086 if (LHSSafe) 4087 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4088 NaNBehavior = SPNB_RETURNS_OTHER; 4089 else if (RHSSafe) 4090 NaNBehavior = SPNB_RETURNS_NAN; 4091 else 4092 // Completely unsafe. 4093 return {SPF_UNKNOWN, SPNB_NA, false}; 4094 } 4095 } 4096 4097 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4098 std::swap(CmpLHS, CmpRHS); 4099 Pred = CmpInst::getSwappedPredicate(Pred); 4100 if (NaNBehavior == SPNB_RETURNS_NAN) 4101 NaNBehavior = SPNB_RETURNS_OTHER; 4102 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4103 NaNBehavior = SPNB_RETURNS_NAN; 4104 Ordered = !Ordered; 4105 } 4106 4107 // ([if]cmp X, Y) ? X : Y 4108 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4109 switch (Pred) { 4110 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4111 case ICmpInst::ICMP_UGT: 4112 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4113 case ICmpInst::ICMP_SGT: 4114 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4115 case ICmpInst::ICMP_ULT: 4116 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4117 case ICmpInst::ICMP_SLT: 4118 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4119 case FCmpInst::FCMP_UGT: 4120 case FCmpInst::FCMP_UGE: 4121 case FCmpInst::FCMP_OGT: 4122 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4123 case FCmpInst::FCMP_ULT: 4124 case FCmpInst::FCMP_ULE: 4125 case FCmpInst::FCMP_OLT: 4126 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4127 } 4128 } 4129 4130 const APInt *C1; 4131 if (match(CmpRHS, m_APInt(C1))) { 4132 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4133 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4134 4135 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4136 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4137 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4138 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4139 } 4140 4141 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4142 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4143 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4144 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4145 } 4146 } 4147 } 4148 4149 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4150 } 4151 4152 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4153 Instruction::CastOps *CastOp) { 4154 auto *Cast1 = dyn_cast<CastInst>(V1); 4155 if (!Cast1) 4156 return nullptr; 4157 4158 *CastOp = Cast1->getOpcode(); 4159 Type *SrcTy = Cast1->getSrcTy(); 4160 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4161 // If V1 and V2 are both the same cast from the same type, look through V1. 4162 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4163 return Cast2->getOperand(0); 4164 return nullptr; 4165 } 4166 4167 auto *C = dyn_cast<Constant>(V2); 4168 if (!C) 4169 return nullptr; 4170 4171 Constant *CastedTo = nullptr; 4172 switch (*CastOp) { 4173 case Instruction::ZExt: 4174 if (CmpI->isUnsigned()) 4175 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4176 break; 4177 case Instruction::SExt: 4178 if (CmpI->isSigned()) 4179 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4180 break; 4181 case Instruction::Trunc: 4182 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4183 break; 4184 case Instruction::FPTrunc: 4185 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4186 break; 4187 case Instruction::FPExt: 4188 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4189 break; 4190 case Instruction::FPToUI: 4191 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4192 break; 4193 case Instruction::FPToSI: 4194 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4195 break; 4196 case Instruction::UIToFP: 4197 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4198 break; 4199 case Instruction::SIToFP: 4200 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4201 break; 4202 default: 4203 break; 4204 } 4205 4206 if (!CastedTo) 4207 return nullptr; 4208 4209 // Make sure the cast doesn't lose any information. 4210 Constant *CastedBack = 4211 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4212 if (CastedBack != C) 4213 return nullptr; 4214 4215 return CastedTo; 4216 } 4217 4218 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4219 Instruction::CastOps *CastOp) { 4220 SelectInst *SI = dyn_cast<SelectInst>(V); 4221 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4222 4223 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4224 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4225 4226 CmpInst::Predicate Pred = CmpI->getPredicate(); 4227 Value *CmpLHS = CmpI->getOperand(0); 4228 Value *CmpRHS = CmpI->getOperand(1); 4229 Value *TrueVal = SI->getTrueValue(); 4230 Value *FalseVal = SI->getFalseValue(); 4231 FastMathFlags FMF; 4232 if (isa<FPMathOperator>(CmpI)) 4233 FMF = CmpI->getFastMathFlags(); 4234 4235 // Bail out early. 4236 if (CmpI->isEquality()) 4237 return {SPF_UNKNOWN, SPNB_NA, false}; 4238 4239 // Deal with type mismatches. 4240 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4241 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4242 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4243 cast<CastInst>(TrueVal)->getOperand(0), C, 4244 LHS, RHS); 4245 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4246 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4247 C, cast<CastInst>(FalseVal)->getOperand(0), 4248 LHS, RHS); 4249 } 4250 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4251 LHS, RHS); 4252 } 4253 4254 /// Return true if "icmp Pred LHS RHS" is always true. 4255 static bool isTruePredicate(CmpInst::Predicate Pred, 4256 const Value *LHS, const Value *RHS, 4257 const DataLayout &DL, unsigned Depth, 4258 AssumptionCache *AC, const Instruction *CxtI, 4259 const DominatorTree *DT) { 4260 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4261 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4262 return true; 4263 4264 switch (Pred) { 4265 default: 4266 return false; 4267 4268 case CmpInst::ICMP_SLE: { 4269 const APInt *C; 4270 4271 // LHS s<= LHS +_{nsw} C if C >= 0 4272 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4273 return !C->isNegative(); 4274 return false; 4275 } 4276 4277 case CmpInst::ICMP_ULE: { 4278 const APInt *C; 4279 4280 // LHS u<= LHS +_{nuw} C for any C 4281 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4282 return true; 4283 4284 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4285 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4286 const Value *&X, 4287 const APInt *&CA, const APInt *&CB) { 4288 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4289 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4290 return true; 4291 4292 // If X & C == 0 then (X | C) == X +_{nuw} C 4293 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4294 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4295 unsigned BitWidth = CA->getBitWidth(); 4296 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4297 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4298 4299 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4300 return true; 4301 } 4302 4303 return false; 4304 }; 4305 4306 const Value *X; 4307 const APInt *CLHS, *CRHS; 4308 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4309 return CLHS->ule(*CRHS); 4310 4311 return false; 4312 } 4313 } 4314 } 4315 4316 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4317 /// ALHS ARHS" is true. Otherwise, return None. 4318 static Optional<bool> 4319 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4320 const Value *ARHS, const Value *BLHS, 4321 const Value *BRHS, const DataLayout &DL, 4322 unsigned Depth, AssumptionCache *AC, 4323 const Instruction *CxtI, const DominatorTree *DT) { 4324 switch (Pred) { 4325 default: 4326 return None; 4327 4328 case CmpInst::ICMP_SLT: 4329 case CmpInst::ICMP_SLE: 4330 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4331 DT) && 4332 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4333 return true; 4334 return None; 4335 4336 case CmpInst::ICMP_ULT: 4337 case CmpInst::ICMP_ULE: 4338 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4339 DT) && 4340 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4341 return true; 4342 return None; 4343 } 4344 } 4345 4346 /// Return true if the operands of the two compares match. IsSwappedOps is true 4347 /// when the operands match, but are swapped. 4348 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4349 const Value *BLHS, const Value *BRHS, 4350 bool &IsSwappedOps) { 4351 4352 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4353 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4354 return IsMatchingOps || IsSwappedOps; 4355 } 4356 4357 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4358 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4359 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4360 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4361 const Value *ALHS, 4362 const Value *ARHS, 4363 CmpInst::Predicate BPred, 4364 const Value *BLHS, 4365 const Value *BRHS, 4366 bool IsSwappedOps) { 4367 // Canonicalize the operands so they're matching. 4368 if (IsSwappedOps) { 4369 std::swap(BLHS, BRHS); 4370 BPred = ICmpInst::getSwappedPredicate(BPred); 4371 } 4372 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4373 return true; 4374 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4375 return false; 4376 4377 return None; 4378 } 4379 4380 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4381 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4382 /// C2" is false. Otherwise, return None if we can't infer anything. 4383 static Optional<bool> 4384 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4385 const ConstantInt *C1, 4386 CmpInst::Predicate BPred, 4387 const Value *BLHS, const ConstantInt *C2) { 4388 assert(ALHS == BLHS && "LHS operands must match."); 4389 ConstantRange DomCR = 4390 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4391 ConstantRange CR = 4392 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4393 ConstantRange Intersection = DomCR.intersectWith(CR); 4394 ConstantRange Difference = DomCR.difference(CR); 4395 if (Intersection.isEmptySet()) 4396 return false; 4397 if (Difference.isEmptySet()) 4398 return true; 4399 return None; 4400 } 4401 4402 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4403 const DataLayout &DL, bool InvertAPred, 4404 unsigned Depth, AssumptionCache *AC, 4405 const Instruction *CxtI, 4406 const DominatorTree *DT) { 4407 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4408 if (LHS->getType() != RHS->getType()) 4409 return None; 4410 4411 Type *OpTy = LHS->getType(); 4412 assert(OpTy->getScalarType()->isIntegerTy(1)); 4413 4414 // LHS ==> RHS by definition 4415 if (!InvertAPred && LHS == RHS) 4416 return true; 4417 4418 if (OpTy->isVectorTy()) 4419 // TODO: extending the code below to handle vectors 4420 return None; 4421 assert(OpTy->isIntegerTy(1) && "implied by above"); 4422 4423 ICmpInst::Predicate APred, BPred; 4424 Value *ALHS, *ARHS; 4425 Value *BLHS, *BRHS; 4426 4427 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4428 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4429 return None; 4430 4431 if (InvertAPred) 4432 APred = CmpInst::getInversePredicate(APred); 4433 4434 // Can we infer anything when the two compares have matching operands? 4435 bool IsSwappedOps; 4436 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4437 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4438 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4439 return Implication; 4440 // No amount of additional analysis will infer the second condition, so 4441 // early exit. 4442 return None; 4443 } 4444 4445 // Can we infer anything when the LHS operands match and the RHS operands are 4446 // constants (not necessarily matching)? 4447 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4448 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4449 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4450 cast<ConstantInt>(BRHS))) 4451 return Implication; 4452 // No amount of additional analysis will infer the second condition, so 4453 // early exit. 4454 return None; 4455 } 4456 4457 if (APred == BPred) 4458 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4459 CxtI, DT); 4460 4461 return None; 4462 } 4463