1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 // This optimization is known to cause performance regressions is some cases, 87 // keep it under a temporary flag for now. 88 static cl::opt<bool> 89 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 90 cl::Hidden, cl::init(true)); 91 92 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 93 /// returns the element type's bitwidth. 94 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 95 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 96 return BitWidth; 97 98 return DL.getPointerTypeSizeInBits(Ty); 99 } 100 101 namespace { 102 103 // Simplifying using an assume can only be done in a particular control-flow 104 // context (the context instruction provides that context). If an assume and 105 // the context instruction are not in the same block then the DT helps in 106 // figuring out if we can use it. 107 struct Query { 108 const DataLayout &DL; 109 AssumptionCache *AC; 110 const Instruction *CxtI; 111 const DominatorTree *DT; 112 113 // Unlike the other analyses, this may be a nullptr because not all clients 114 // provide it currently. 115 OptimizationRemarkEmitter *ORE; 116 117 /// Set of assumptions that should be excluded from further queries. 118 /// This is because of the potential for mutual recursion to cause 119 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 120 /// classic case of this is assume(x = y), which will attempt to determine 121 /// bits in x from bits in y, which will attempt to determine bits in y from 122 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 123 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 124 /// (all of which can call computeKnownBits), and so on. 125 std::array<const Value *, MaxDepth> Excluded; 126 127 unsigned NumExcluded = 0; 128 129 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 130 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 131 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 132 133 Query(const Query &Q, const Value *NewExcl) 134 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 135 NumExcluded(Q.NumExcluded) { 136 Excluded = Q.Excluded; 137 Excluded[NumExcluded++] = NewExcl; 138 assert(NumExcluded <= Excluded.size()); 139 } 140 141 bool isExcluded(const Value *Value) const { 142 if (NumExcluded == 0) 143 return false; 144 auto End = Excluded.begin() + NumExcluded; 145 return std::find(Excluded.begin(), End, Value) != End; 146 } 147 }; 148 149 } // end anonymous namespace 150 151 // Given the provided Value and, potentially, a context instruction, return 152 // the preferred context instruction (if any). 153 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 154 // If we've been provided with a context instruction, then use that (provided 155 // it has been inserted). 156 if (CxtI && CxtI->getParent()) 157 return CxtI; 158 159 // If the value is really an already-inserted instruction, then use that. 160 CxtI = dyn_cast<Instruction>(V); 161 if (CxtI && CxtI->getParent()) 162 return CxtI; 163 164 return nullptr; 165 } 166 167 static void computeKnownBits(const Value *V, KnownBits &Known, 168 unsigned Depth, const Query &Q); 169 170 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 171 const DataLayout &DL, unsigned Depth, 172 AssumptionCache *AC, const Instruction *CxtI, 173 const DominatorTree *DT, 174 OptimizationRemarkEmitter *ORE) { 175 ::computeKnownBits(V, Known, Depth, 176 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 177 } 178 179 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 180 const Query &Q); 181 182 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 183 unsigned Depth, AssumptionCache *AC, 184 const Instruction *CxtI, 185 const DominatorTree *DT, 186 OptimizationRemarkEmitter *ORE) { 187 return ::computeKnownBits(V, Depth, 188 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 189 } 190 191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 192 const DataLayout &DL, 193 AssumptionCache *AC, const Instruction *CxtI, 194 const DominatorTree *DT) { 195 assert(LHS->getType() == RHS->getType() && 196 "LHS and RHS should have the same type"); 197 assert(LHS->getType()->isIntOrIntVectorTy() && 198 "LHS and RHS should be integers"); 199 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 200 KnownBits LHSKnown(IT->getBitWidth()); 201 KnownBits RHSKnown(IT->getBitWidth()); 202 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 203 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 204 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 205 } 206 207 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 208 for (const User *U : CxtI->users()) { 209 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 210 if (IC->isEquality()) 211 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 212 if (C->isNullValue()) 213 continue; 214 return false; 215 } 216 return true; 217 } 218 219 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 220 const Query &Q); 221 222 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 223 bool OrZero, 224 unsigned Depth, AssumptionCache *AC, 225 const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 232 233 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 234 AssumptionCache *AC, const Instruction *CxtI, 235 const DominatorTree *DT) { 236 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 237 } 238 239 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 240 unsigned Depth, 241 AssumptionCache *AC, const Instruction *CxtI, 242 const DominatorTree *DT) { 243 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 244 return Known.isNonNegative(); 245 } 246 247 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 248 AssumptionCache *AC, const Instruction *CxtI, 249 const DominatorTree *DT) { 250 if (auto *CI = dyn_cast<ConstantInt>(V)) 251 return CI->getValue().isStrictlyPositive(); 252 253 // TODO: We'd doing two recursive queries here. We should factor this such 254 // that only a single query is needed. 255 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 256 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 257 } 258 259 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, const Instruction *CxtI, 261 const DominatorTree *DT) { 262 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 263 return Known.isNegative(); 264 } 265 266 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 267 268 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 269 const DataLayout &DL, 270 AssumptionCache *AC, const Instruction *CxtI, 271 const DominatorTree *DT) { 272 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 273 safeCxtI(V1, safeCxtI(V2, CxtI)), 274 DT)); 275 } 276 277 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 278 const Query &Q); 279 280 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 281 const DataLayout &DL, 282 unsigned Depth, AssumptionCache *AC, 283 const Instruction *CxtI, const DominatorTree *DT) { 284 return ::MaskedValueIsZero(V, Mask, Depth, 285 Query(DL, AC, safeCxtI(V, CxtI), DT)); 286 } 287 288 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 289 const Query &Q); 290 291 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 292 unsigned Depth, AssumptionCache *AC, 293 const Instruction *CxtI, 294 const DominatorTree *DT) { 295 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 296 } 297 298 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 299 bool NSW, 300 KnownBits &KnownOut, KnownBits &Known2, 301 unsigned Depth, const Query &Q) { 302 unsigned BitWidth = KnownOut.getBitWidth(); 303 304 // If an initial sequence of bits in the result is not needed, the 305 // corresponding bits in the operands are not needed. 306 KnownBits LHSKnown(BitWidth); 307 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 308 computeKnownBits(Op1, Known2, Depth + 1, Q); 309 310 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 311 } 312 313 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 314 KnownBits &Known, KnownBits &Known2, 315 unsigned Depth, const Query &Q) { 316 unsigned BitWidth = Known.getBitWidth(); 317 computeKnownBits(Op1, Known, Depth + 1, Q); 318 computeKnownBits(Op0, Known2, Depth + 1, Q); 319 320 bool isKnownNegative = false; 321 bool isKnownNonNegative = false; 322 // If the multiplication is known not to overflow, compute the sign bit. 323 if (NSW) { 324 if (Op0 == Op1) { 325 // The product of a number with itself is non-negative. 326 isKnownNonNegative = true; 327 } else { 328 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 329 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 330 bool isKnownNegativeOp1 = Known.isNegative(); 331 bool isKnownNegativeOp0 = Known2.isNegative(); 332 // The product of two numbers with the same sign is non-negative. 333 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 334 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 335 // The product of a negative number and a non-negative number is either 336 // negative or zero. 337 if (!isKnownNonNegative) 338 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 339 isKnownNonZero(Op0, Depth, Q)) || 340 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 341 isKnownNonZero(Op1, Depth, Q)); 342 } 343 } 344 345 // If low bits are zero in either operand, output low known-0 bits. 346 // Also compute a conservative estimate for high known-0 bits. 347 // More trickiness is possible, but this is sufficient for the 348 // interesting case of alignment computation. 349 unsigned TrailZ = Known.countMinTrailingZeros() + 350 Known2.countMinTrailingZeros(); 351 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 352 Known2.countMinLeadingZeros(), 353 BitWidth) - BitWidth; 354 355 TrailZ = std::min(TrailZ, BitWidth); 356 LeadZ = std::min(LeadZ, BitWidth); 357 Known.resetAll(); 358 Known.Zero.setLowBits(TrailZ); 359 Known.Zero.setHighBits(LeadZ); 360 361 // Only make use of no-wrap flags if we failed to compute the sign bit 362 // directly. This matters if the multiplication always overflows, in 363 // which case we prefer to follow the result of the direct computation, 364 // though as the program is invoking undefined behaviour we can choose 365 // whatever we like here. 366 if (isKnownNonNegative && !Known.isNegative()) 367 Known.makeNonNegative(); 368 else if (isKnownNegative && !Known.isNonNegative()) 369 Known.makeNegative(); 370 } 371 372 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 373 KnownBits &Known) { 374 unsigned BitWidth = Known.getBitWidth(); 375 unsigned NumRanges = Ranges.getNumOperands() / 2; 376 assert(NumRanges >= 1); 377 378 Known.Zero.setAllBits(); 379 Known.One.setAllBits(); 380 381 for (unsigned i = 0; i < NumRanges; ++i) { 382 ConstantInt *Lower = 383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 384 ConstantInt *Upper = 385 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 386 ConstantRange Range(Lower->getValue(), Upper->getValue()); 387 388 // The first CommonPrefixBits of all values in Range are equal. 389 unsigned CommonPrefixBits = 390 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 391 392 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 393 Known.One &= Range.getUnsignedMax() & Mask; 394 Known.Zero &= ~Range.getUnsignedMax() & Mask; 395 } 396 } 397 398 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 399 SmallVector<const Value *, 16> WorkSet(1, I); 400 SmallPtrSet<const Value *, 32> Visited; 401 SmallPtrSet<const Value *, 16> EphValues; 402 403 // The instruction defining an assumption's condition itself is always 404 // considered ephemeral to that assumption (even if it has other 405 // non-ephemeral users). See r246696's test case for an example. 406 if (is_contained(I->operands(), E)) 407 return true; 408 409 while (!WorkSet.empty()) { 410 const Value *V = WorkSet.pop_back_val(); 411 if (!Visited.insert(V).second) 412 continue; 413 414 // If all uses of this value are ephemeral, then so is this value. 415 if (llvm::all_of(V->users(), [&](const User *U) { 416 return EphValues.count(U); 417 })) { 418 if (V == E) 419 return true; 420 421 if (V == I || isSafeToSpeculativelyExecute(V)) { 422 EphValues.insert(V); 423 if (const User *U = dyn_cast<User>(V)) 424 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 425 J != JE; ++J) 426 WorkSet.push_back(*J); 427 } 428 } 429 } 430 431 return false; 432 } 433 434 // Is this an intrinsic that cannot be speculated but also cannot trap? 435 static bool isAssumeLikeIntrinsic(const Instruction *I) { 436 if (const CallInst *CI = dyn_cast<CallInst>(I)) 437 if (Function *F = CI->getCalledFunction()) 438 switch (F->getIntrinsicID()) { 439 default: break; 440 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 441 case Intrinsic::assume: 442 case Intrinsic::dbg_declare: 443 case Intrinsic::dbg_value: 444 case Intrinsic::invariant_start: 445 case Intrinsic::invariant_end: 446 case Intrinsic::lifetime_start: 447 case Intrinsic::lifetime_end: 448 case Intrinsic::objectsize: 449 case Intrinsic::ptr_annotation: 450 case Intrinsic::var_annotation: 451 return true; 452 } 453 454 return false; 455 } 456 457 bool llvm::isValidAssumeForContext(const Instruction *Inv, 458 const Instruction *CxtI, 459 const DominatorTree *DT) { 460 // There are two restrictions on the use of an assume: 461 // 1. The assume must dominate the context (or the control flow must 462 // reach the assume whenever it reaches the context). 463 // 2. The context must not be in the assume's set of ephemeral values 464 // (otherwise we will use the assume to prove that the condition 465 // feeding the assume is trivially true, thus causing the removal of 466 // the assume). 467 468 if (DT) { 469 if (DT->dominates(Inv, CxtI)) 470 return true; 471 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 472 // We don't have a DT, but this trivially dominates. 473 return true; 474 } 475 476 // With or without a DT, the only remaining case we will check is if the 477 // instructions are in the same BB. Give up if that is not the case. 478 if (Inv->getParent() != CxtI->getParent()) 479 return false; 480 481 // If we have a dom tree, then we now know that the assume doens't dominate 482 // the other instruction. If we don't have a dom tree then we can check if 483 // the assume is first in the BB. 484 if (!DT) { 485 // Search forward from the assume until we reach the context (or the end 486 // of the block); the common case is that the assume will come first. 487 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 488 IE = Inv->getParent()->end(); I != IE; ++I) 489 if (&*I == CxtI) 490 return true; 491 } 492 493 // The context comes first, but they're both in the same block. Make sure 494 // there is nothing in between that might interrupt the control flow. 495 for (BasicBlock::const_iterator I = 496 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 497 I != IE; ++I) 498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 499 return false; 500 501 return !isEphemeralValueOf(Inv, CxtI); 502 } 503 504 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 505 unsigned Depth, const Query &Q) { 506 // Use of assumptions is context-sensitive. If we don't have a context, we 507 // cannot use them! 508 if (!Q.AC || !Q.CxtI) 509 return; 510 511 unsigned BitWidth = Known.getBitWidth(); 512 513 // Note that the patterns below need to be kept in sync with the code 514 // in AssumptionCache::updateAffectedValues. 515 516 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 517 if (!AssumeVH) 518 continue; 519 CallInst *I = cast<CallInst>(AssumeVH); 520 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 521 "Got assumption for the wrong function!"); 522 if (Q.isExcluded(I)) 523 continue; 524 525 // Warning: This loop can end up being somewhat performance sensetive. 526 // We're running this loop for once for each value queried resulting in a 527 // runtime of ~O(#assumes * #values). 528 529 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 530 "must be an assume intrinsic"); 531 532 Value *Arg = I->getArgOperand(0); 533 534 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 535 assert(BitWidth == 1 && "assume operand is not i1?"); 536 Known.setAllOnes(); 537 return; 538 } 539 if (match(Arg, m_Not(m_Specific(V))) && 540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 541 assert(BitWidth == 1 && "assume operand is not i1?"); 542 Known.setAllZero(); 543 return; 544 } 545 546 // The remaining tests are all recursive, so bail out if we hit the limit. 547 if (Depth == MaxDepth) 548 continue; 549 550 Value *A, *B; 551 auto m_V = m_CombineOr(m_Specific(V), 552 m_CombineOr(m_PtrToInt(m_Specific(V)), 553 m_BitCast(m_Specific(V)))); 554 555 CmpInst::Predicate Pred; 556 ConstantInt *C; 557 // assume(v = a) 558 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 559 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 560 KnownBits RHSKnown(BitWidth); 561 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 562 Known.Zero |= RHSKnown.Zero; 563 Known.One |= RHSKnown.One; 564 // assume(v & b = a) 565 } else if (match(Arg, 566 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 567 Pred == ICmpInst::ICMP_EQ && 568 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 569 KnownBits RHSKnown(BitWidth); 570 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 571 KnownBits MaskKnown(BitWidth); 572 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 573 574 // For those bits in the mask that are known to be one, we can propagate 575 // known bits from the RHS to V. 576 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 577 Known.One |= RHSKnown.One & MaskKnown.One; 578 // assume(~(v & b) = a) 579 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 580 m_Value(A))) && 581 Pred == ICmpInst::ICMP_EQ && 582 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 583 KnownBits RHSKnown(BitWidth); 584 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 585 KnownBits MaskKnown(BitWidth); 586 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 587 588 // For those bits in the mask that are known to be one, we can propagate 589 // inverted known bits from the RHS to V. 590 Known.Zero |= RHSKnown.One & MaskKnown.One; 591 Known.One |= RHSKnown.Zero & MaskKnown.One; 592 // assume(v | b = a) 593 } else if (match(Arg, 594 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 595 Pred == ICmpInst::ICMP_EQ && 596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 597 KnownBits RHSKnown(BitWidth); 598 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 599 KnownBits BKnown(BitWidth); 600 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 601 602 // For those bits in B that are known to be zero, we can propagate known 603 // bits from the RHS to V. 604 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 605 Known.One |= RHSKnown.One & BKnown.Zero; 606 // assume(~(v | b) = a) 607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 608 m_Value(A))) && 609 Pred == ICmpInst::ICMP_EQ && 610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 611 KnownBits RHSKnown(BitWidth); 612 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 613 KnownBits BKnown(BitWidth); 614 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 615 616 // For those bits in B that are known to be zero, we can propagate 617 // inverted known bits from the RHS to V. 618 Known.Zero |= RHSKnown.One & BKnown.Zero; 619 Known.One |= RHSKnown.Zero & BKnown.Zero; 620 // assume(v ^ b = a) 621 } else if (match(Arg, 622 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 623 Pred == ICmpInst::ICMP_EQ && 624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 625 KnownBits RHSKnown(BitWidth); 626 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 627 KnownBits BKnown(BitWidth); 628 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 629 630 // For those bits in B that are known to be zero, we can propagate known 631 // bits from the RHS to V. For those bits in B that are known to be one, 632 // we can propagate inverted known bits from the RHS to V. 633 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 634 Known.One |= RHSKnown.One & BKnown.Zero; 635 Known.Zero |= RHSKnown.One & BKnown.One; 636 Known.One |= RHSKnown.Zero & BKnown.One; 637 // assume(~(v ^ b) = a) 638 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 639 m_Value(A))) && 640 Pred == ICmpInst::ICMP_EQ && 641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 642 KnownBits RHSKnown(BitWidth); 643 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 644 KnownBits BKnown(BitWidth); 645 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 646 647 // For those bits in B that are known to be zero, we can propagate 648 // inverted known bits from the RHS to V. For those bits in B that are 649 // known to be one, we can propagate known bits from the RHS to V. 650 Known.Zero |= RHSKnown.One & BKnown.Zero; 651 Known.One |= RHSKnown.Zero & BKnown.Zero; 652 Known.Zero |= RHSKnown.Zero & BKnown.One; 653 Known.One |= RHSKnown.One & BKnown.One; 654 // assume(v << c = a) 655 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 656 m_Value(A))) && 657 Pred == ICmpInst::ICMP_EQ && 658 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 659 KnownBits RHSKnown(BitWidth); 660 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 661 // For those bits in RHS that are known, we can propagate them to known 662 // bits in V shifted to the right by C. 663 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 664 Known.Zero |= RHSKnown.Zero; 665 RHSKnown.One.lshrInPlace(C->getZExtValue()); 666 Known.One |= RHSKnown.One; 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 KnownBits RHSKnown(BitWidth); 673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 RHSKnown.One.lshrInPlace(C->getZExtValue()); 677 Known.Zero |= RHSKnown.One; 678 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 679 Known.One |= RHSKnown.Zero; 680 // assume(v >> c = a) 681 } else if (match(Arg, 682 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 683 m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 KnownBits RHSKnown(BitWidth); 687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 688 // For those bits in RHS that are known, we can propagate them to known 689 // bits in V shifted to the right by C. 690 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 691 Known.One |= RHSKnown.One << C->getZExtValue(); 692 // assume(~(v >> c) = a) 693 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 694 m_Value(A))) && 695 Pred == ICmpInst::ICMP_EQ && 696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 KnownBits RHSKnown(BitWidth); 698 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 699 // For those bits in RHS that are known, we can propagate them inverted 700 // to known bits in V shifted to the right by C. 701 Known.Zero |= RHSKnown.One << C->getZExtValue(); 702 Known.One |= RHSKnown.Zero << C->getZExtValue(); 703 // assume(v >=_s c) where c is non-negative 704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 705 Pred == ICmpInst::ICMP_SGE && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 KnownBits RHSKnown(BitWidth); 708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 709 710 if (RHSKnown.isNonNegative()) { 711 // We know that the sign bit is zero. 712 Known.makeNonNegative(); 713 } 714 // assume(v >_s c) where c is at least -1. 715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 716 Pred == ICmpInst::ICMP_SGT && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 KnownBits RHSKnown(BitWidth); 719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 720 721 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 722 // We know that the sign bit is zero. 723 Known.makeNonNegative(); 724 } 725 // assume(v <=_s c) where c is negative 726 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 727 Pred == ICmpInst::ICMP_SLE && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown(BitWidth); 730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 731 732 if (RHSKnown.isNegative()) { 733 // We know that the sign bit is one. 734 Known.makeNegative(); 735 } 736 // assume(v <_s c) where c is non-positive 737 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 738 Pred == ICmpInst::ICMP_SLT && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 740 KnownBits RHSKnown(BitWidth); 741 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 742 743 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 744 // We know that the sign bit is one. 745 Known.makeNegative(); 746 } 747 // assume(v <=_u c) 748 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 749 Pred == ICmpInst::ICMP_ULE && 750 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 751 KnownBits RHSKnown(BitWidth); 752 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 753 754 // Whatever high bits in c are zero are known to be zero. 755 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 756 // assume(v <_u c) 757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 758 Pred == ICmpInst::ICMP_ULT && 759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 760 KnownBits RHSKnown(BitWidth); 761 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 762 763 // Whatever high bits in c are zero are known to be zero (if c is a power 764 // of 2, then one more). 765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 766 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 767 else 768 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 769 } 770 } 771 772 // If assumptions conflict with each other or previous known bits, then we 773 // have a logical fallacy. It's possible that the assumption is not reachable, 774 // so this isn't a real bug. On the other hand, the program may have undefined 775 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 776 // clear out the known bits, try to warn the user, and hope for the best. 777 if (Known.Zero.intersects(Known.One)) { 778 Known.resetAll(); 779 780 if (Q.ORE) { 781 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 782 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 783 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 784 "have undefined behavior, or compiler may have " 785 "internal error."); 786 } 787 } 788 } 789 790 // Compute known bits from a shift operator, including those with a 791 // non-constant shift amount. Known is the outputs of this function. Known2 is a 792 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 793 // operator-specific functors that, given the known-zero or known-one bits 794 // respectively, and a shift amount, compute the implied known-zero or known-one 795 // bits of the shift operator's result respectively for that shift amount. The 796 // results from calling KZF and KOF are conservatively combined for all 797 // permitted shift amounts. 798 static void computeKnownBitsFromShiftOperator( 799 const Operator *I, KnownBits &Known, KnownBits &Known2, 800 unsigned Depth, const Query &Q, 801 function_ref<APInt(const APInt &, unsigned)> KZF, 802 function_ref<APInt(const APInt &, unsigned)> KOF) { 803 unsigned BitWidth = Known.getBitWidth(); 804 805 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 806 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 807 808 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 809 Known.Zero = KZF(Known.Zero, ShiftAmt); 810 Known.One = KOF(Known.One, ShiftAmt); 811 // If there is conflict between Known.Zero and Known.One, this must be an 812 // overflowing left shift, so the shift result is undefined. Clear Known 813 // bits so that other code could propagate this undef. 814 if ((Known.Zero & Known.One) != 0) 815 Known.resetAll(); 816 817 return; 818 } 819 820 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 821 822 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 823 // value could be undef, so we don't know anything about it. 824 if ((~Known.Zero).uge(BitWidth)) { 825 Known.resetAll(); 826 return; 827 } 828 829 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 830 // BitWidth > 64 and any upper bits are known, we'll end up returning the 831 // limit value (which implies all bits are known). 832 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 833 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 834 835 // It would be more-clearly correct to use the two temporaries for this 836 // calculation. Reusing the APInts here to prevent unnecessary allocations. 837 Known.resetAll(); 838 839 // If we know the shifter operand is nonzero, we can sometimes infer more 840 // known bits. However this is expensive to compute, so be lazy about it and 841 // only compute it when absolutely necessary. 842 Optional<bool> ShifterOperandIsNonZero; 843 844 // Early exit if we can't constrain any well-defined shift amount. 845 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 846 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 847 ShifterOperandIsNonZero = 848 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 849 if (!*ShifterOperandIsNonZero) 850 return; 851 } 852 853 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 854 855 Known.Zero.setAllBits(); 856 Known.One.setAllBits(); 857 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 858 // Combine the shifted known input bits only for those shift amounts 859 // compatible with its known constraints. 860 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 861 continue; 862 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 863 continue; 864 // If we know the shifter is nonzero, we may be able to infer more known 865 // bits. This check is sunk down as far as possible to avoid the expensive 866 // call to isKnownNonZero if the cheaper checks above fail. 867 if (ShiftAmt == 0) { 868 if (!ShifterOperandIsNonZero.hasValue()) 869 ShifterOperandIsNonZero = 870 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 871 if (*ShifterOperandIsNonZero) 872 continue; 873 } 874 875 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 876 Known.One &= KOF(Known2.One, ShiftAmt); 877 } 878 879 // If there are no compatible shift amounts, then we've proven that the shift 880 // amount must be >= the BitWidth, and the result is undefined. We could 881 // return anything we'd like, but we need to make sure the sets of known bits 882 // stay disjoint (it should be better for some other code to actually 883 // propagate the undef than to pick a value here using known bits). 884 if (Known.Zero.intersects(Known.One)) 885 Known.resetAll(); 886 } 887 888 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 889 unsigned Depth, const Query &Q) { 890 unsigned BitWidth = Known.getBitWidth(); 891 892 KnownBits Known2(Known); 893 switch (I->getOpcode()) { 894 default: break; 895 case Instruction::Load: 896 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 897 computeKnownBitsFromRangeMetadata(*MD, Known); 898 break; 899 case Instruction::And: { 900 // If either the LHS or the RHS are Zero, the result is zero. 901 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 902 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 903 904 // Output known-1 bits are only known if set in both the LHS & RHS. 905 Known.One &= Known2.One; 906 // Output known-0 are known to be clear if zero in either the LHS | RHS. 907 Known.Zero |= Known2.Zero; 908 909 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 910 // here we handle the more general case of adding any odd number by 911 // matching the form add(x, add(x, y)) where y is odd. 912 // TODO: This could be generalized to clearing any bit set in y where the 913 // following bit is known to be unset in y. 914 Value *Y = nullptr; 915 if (!Known.Zero[0] && !Known.One[0] && 916 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 917 m_Value(Y))) || 918 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 919 m_Value(Y))))) { 920 Known2.resetAll(); 921 computeKnownBits(Y, Known2, Depth + 1, Q); 922 if (Known2.countMinTrailingOnes() > 0) 923 Known.Zero.setBit(0); 924 } 925 break; 926 } 927 case Instruction::Or: 928 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 929 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 930 931 // Output known-0 bits are only known if clear in both the LHS & RHS. 932 Known.Zero &= Known2.Zero; 933 // Output known-1 are known to be set if set in either the LHS | RHS. 934 Known.One |= Known2.One; 935 break; 936 case Instruction::Xor: { 937 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 938 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 939 940 // Output known-0 bits are known if clear or set in both the LHS & RHS. 941 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 942 // Output known-1 are known to be set if set in only one of the LHS, RHS. 943 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 944 Known.Zero = std::move(KnownZeroOut); 945 break; 946 } 947 case Instruction::Mul: { 948 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 949 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 950 Known2, Depth, Q); 951 break; 952 } 953 case Instruction::UDiv: { 954 // For the purposes of computing leading zeros we can conservatively 955 // treat a udiv as a logical right shift by the power of 2 known to 956 // be less than the denominator. 957 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 958 unsigned LeadZ = Known2.countMinLeadingZeros(); 959 960 Known2.resetAll(); 961 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 962 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 963 if (RHSMaxLeadingZeros != BitWidth) 964 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 965 966 Known.Zero.setHighBits(LeadZ); 967 break; 968 } 969 case Instruction::Select: { 970 const Value *LHS, *RHS; 971 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 972 if (SelectPatternResult::isMinOrMax(SPF)) { 973 computeKnownBits(RHS, Known, Depth + 1, Q); 974 computeKnownBits(LHS, Known2, Depth + 1, Q); 975 } else { 976 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 977 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 978 } 979 980 unsigned MaxHighOnes = 0; 981 unsigned MaxHighZeros = 0; 982 if (SPF == SPF_SMAX) { 983 // If both sides are negative, the result is negative. 984 if (Known.isNegative() && Known2.isNegative()) 985 // We can derive a lower bound on the result by taking the max of the 986 // leading one bits. 987 MaxHighOnes = 988 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 989 // If either side is non-negative, the result is non-negative. 990 else if (Known.isNonNegative() || Known2.isNonNegative()) 991 MaxHighZeros = 1; 992 } else if (SPF == SPF_SMIN) { 993 // If both sides are non-negative, the result is non-negative. 994 if (Known.isNonNegative() && Known2.isNonNegative()) 995 // We can derive an upper bound on the result by taking the max of the 996 // leading zero bits. 997 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 998 Known2.countMinLeadingZeros()); 999 // If either side is negative, the result is negative. 1000 else if (Known.isNegative() || Known2.isNegative()) 1001 MaxHighOnes = 1; 1002 } else if (SPF == SPF_UMAX) { 1003 // We can derive a lower bound on the result by taking the max of the 1004 // leading one bits. 1005 MaxHighOnes = 1006 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1007 } else if (SPF == SPF_UMIN) { 1008 // We can derive an upper bound on the result by taking the max of the 1009 // leading zero bits. 1010 MaxHighZeros = 1011 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1012 } 1013 1014 // Only known if known in both the LHS and RHS. 1015 Known.One &= Known2.One; 1016 Known.Zero &= Known2.Zero; 1017 if (MaxHighOnes > 0) 1018 Known.One.setHighBits(MaxHighOnes); 1019 if (MaxHighZeros > 0) 1020 Known.Zero.setHighBits(MaxHighZeros); 1021 break; 1022 } 1023 case Instruction::FPTrunc: 1024 case Instruction::FPExt: 1025 case Instruction::FPToUI: 1026 case Instruction::FPToSI: 1027 case Instruction::SIToFP: 1028 case Instruction::UIToFP: 1029 break; // Can't work with floating point. 1030 case Instruction::PtrToInt: 1031 case Instruction::IntToPtr: 1032 // Fall through and handle them the same as zext/trunc. 1033 LLVM_FALLTHROUGH; 1034 case Instruction::ZExt: 1035 case Instruction::Trunc: { 1036 Type *SrcTy = I->getOperand(0)->getType(); 1037 1038 unsigned SrcBitWidth; 1039 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1040 // which fall through here. 1041 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1042 1043 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1044 Known = Known.zextOrTrunc(SrcBitWidth); 1045 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1046 Known = Known.zextOrTrunc(BitWidth); 1047 // Any top bits are known to be zero. 1048 if (BitWidth > SrcBitWidth) 1049 Known.Zero.setBitsFrom(SrcBitWidth); 1050 break; 1051 } 1052 case Instruction::BitCast: { 1053 Type *SrcTy = I->getOperand(0)->getType(); 1054 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1055 // TODO: For now, not handling conversions like: 1056 // (bitcast i64 %x to <2 x i32>) 1057 !I->getType()->isVectorTy()) { 1058 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1059 break; 1060 } 1061 break; 1062 } 1063 case Instruction::SExt: { 1064 // Compute the bits in the result that are not present in the input. 1065 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1066 1067 Known = Known.trunc(SrcBitWidth); 1068 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1069 // If the sign bit of the input is known set or clear, then we know the 1070 // top bits of the result. 1071 Known = Known.sext(BitWidth); 1072 break; 1073 } 1074 case Instruction::Shl: { 1075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1077 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1078 APInt KZResult = KnownZero << ShiftAmt; 1079 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1080 // If this shift has "nsw" keyword, then the result is either a poison 1081 // value or has the same sign bit as the first operand. 1082 if (NSW && KnownZero.isSignBitSet()) 1083 KZResult.setSignBit(); 1084 return KZResult; 1085 }; 1086 1087 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1088 APInt KOResult = KnownOne << ShiftAmt; 1089 if (NSW && KnownOne.isSignBitSet()) 1090 KOResult.setSignBit(); 1091 return KOResult; 1092 }; 1093 1094 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1095 break; 1096 } 1097 case Instruction::LShr: { 1098 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1099 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1100 APInt KZResult = KnownZero.lshr(ShiftAmt); 1101 // High bits known zero. 1102 KZResult.setHighBits(ShiftAmt); 1103 return KZResult; 1104 }; 1105 1106 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1107 return KnownOne.lshr(ShiftAmt); 1108 }; 1109 1110 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1111 break; 1112 } 1113 case Instruction::AShr: { 1114 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1115 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1116 return KnownZero.ashr(ShiftAmt); 1117 }; 1118 1119 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1120 return KnownOne.ashr(ShiftAmt); 1121 }; 1122 1123 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1124 break; 1125 } 1126 case Instruction::Sub: { 1127 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1128 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1129 Known, Known2, Depth, Q); 1130 break; 1131 } 1132 case Instruction::Add: { 1133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1134 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1135 Known, Known2, Depth, Q); 1136 break; 1137 } 1138 case Instruction::SRem: 1139 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1140 APInt RA = Rem->getValue().abs(); 1141 if (RA.isPowerOf2()) { 1142 APInt LowBits = RA - 1; 1143 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1144 1145 // The low bits of the first operand are unchanged by the srem. 1146 Known.Zero = Known2.Zero & LowBits; 1147 Known.One = Known2.One & LowBits; 1148 1149 // If the first operand is non-negative or has all low bits zero, then 1150 // the upper bits are all zero. 1151 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1152 Known.Zero |= ~LowBits; 1153 1154 // If the first operand is negative and not all low bits are zero, then 1155 // the upper bits are all one. 1156 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1157 Known.One |= ~LowBits; 1158 1159 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1160 break; 1161 } 1162 } 1163 1164 // The sign bit is the LHS's sign bit, except when the result of the 1165 // remainder is zero. 1166 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1167 // If it's known zero, our sign bit is also zero. 1168 if (Known2.isNonNegative()) 1169 Known.makeNonNegative(); 1170 1171 break; 1172 case Instruction::URem: { 1173 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1174 const APInt &RA = Rem->getValue(); 1175 if (RA.isPowerOf2()) { 1176 APInt LowBits = (RA - 1); 1177 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1178 Known.Zero |= ~LowBits; 1179 Known.One &= LowBits; 1180 break; 1181 } 1182 } 1183 1184 // Since the result is less than or equal to either operand, any leading 1185 // zero bits in either operand must also exist in the result. 1186 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1187 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1188 1189 unsigned Leaders = 1190 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1191 Known.resetAll(); 1192 Known.Zero.setHighBits(Leaders); 1193 break; 1194 } 1195 1196 case Instruction::Alloca: { 1197 const AllocaInst *AI = cast<AllocaInst>(I); 1198 unsigned Align = AI->getAlignment(); 1199 if (Align == 0) 1200 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1201 1202 if (Align > 0) 1203 Known.Zero.setLowBits(countTrailingZeros(Align)); 1204 break; 1205 } 1206 case Instruction::GetElementPtr: { 1207 // Analyze all of the subscripts of this getelementptr instruction 1208 // to determine if we can prove known low zero bits. 1209 KnownBits LocalKnown(BitWidth); 1210 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1211 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1212 1213 gep_type_iterator GTI = gep_type_begin(I); 1214 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1215 Value *Index = I->getOperand(i); 1216 if (StructType *STy = GTI.getStructTypeOrNull()) { 1217 // Handle struct member offset arithmetic. 1218 1219 // Handle case when index is vector zeroinitializer 1220 Constant *CIndex = cast<Constant>(Index); 1221 if (CIndex->isZeroValue()) 1222 continue; 1223 1224 if (CIndex->getType()->isVectorTy()) 1225 Index = CIndex->getSplatValue(); 1226 1227 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1228 const StructLayout *SL = Q.DL.getStructLayout(STy); 1229 uint64_t Offset = SL->getElementOffset(Idx); 1230 TrailZ = std::min<unsigned>(TrailZ, 1231 countTrailingZeros(Offset)); 1232 } else { 1233 // Handle array index arithmetic. 1234 Type *IndexedTy = GTI.getIndexedType(); 1235 if (!IndexedTy->isSized()) { 1236 TrailZ = 0; 1237 break; 1238 } 1239 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1240 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1241 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1242 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1243 TrailZ = std::min(TrailZ, 1244 unsigned(countTrailingZeros(TypeSize) + 1245 LocalKnown.countMinTrailingZeros())); 1246 } 1247 } 1248 1249 Known.Zero.setLowBits(TrailZ); 1250 break; 1251 } 1252 case Instruction::PHI: { 1253 const PHINode *P = cast<PHINode>(I); 1254 // Handle the case of a simple two-predecessor recurrence PHI. 1255 // There's a lot more that could theoretically be done here, but 1256 // this is sufficient to catch some interesting cases. 1257 if (P->getNumIncomingValues() == 2) { 1258 for (unsigned i = 0; i != 2; ++i) { 1259 Value *L = P->getIncomingValue(i); 1260 Value *R = P->getIncomingValue(!i); 1261 Operator *LU = dyn_cast<Operator>(L); 1262 if (!LU) 1263 continue; 1264 unsigned Opcode = LU->getOpcode(); 1265 // Check for operations that have the property that if 1266 // both their operands have low zero bits, the result 1267 // will have low zero bits. 1268 if (Opcode == Instruction::Add || 1269 Opcode == Instruction::Sub || 1270 Opcode == Instruction::And || 1271 Opcode == Instruction::Or || 1272 Opcode == Instruction::Mul) { 1273 Value *LL = LU->getOperand(0); 1274 Value *LR = LU->getOperand(1); 1275 // Find a recurrence. 1276 if (LL == I) 1277 L = LR; 1278 else if (LR == I) 1279 L = LL; 1280 else 1281 break; 1282 // Ok, we have a PHI of the form L op= R. Check for low 1283 // zero bits. 1284 computeKnownBits(R, Known2, Depth + 1, Q); 1285 1286 // We need to take the minimum number of known bits 1287 KnownBits Known3(Known); 1288 computeKnownBits(L, Known3, Depth + 1, Q); 1289 1290 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1291 Known3.countMinTrailingZeros())); 1292 1293 if (DontImproveNonNegativePhiBits) 1294 break; 1295 1296 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1297 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1298 // If initial value of recurrence is nonnegative, and we are adding 1299 // a nonnegative number with nsw, the result can only be nonnegative 1300 // or poison value regardless of the number of times we execute the 1301 // add in phi recurrence. If initial value is negative and we are 1302 // adding a negative number with nsw, the result can only be 1303 // negative or poison value. Similar arguments apply to sub and mul. 1304 // 1305 // (add non-negative, non-negative) --> non-negative 1306 // (add negative, negative) --> negative 1307 if (Opcode == Instruction::Add) { 1308 if (Known2.isNonNegative() && Known3.isNonNegative()) 1309 Known.makeNonNegative(); 1310 else if (Known2.isNegative() && Known3.isNegative()) 1311 Known.makeNegative(); 1312 } 1313 1314 // (sub nsw non-negative, negative) --> non-negative 1315 // (sub nsw negative, non-negative) --> negative 1316 else if (Opcode == Instruction::Sub && LL == I) { 1317 if (Known2.isNonNegative() && Known3.isNegative()) 1318 Known.makeNonNegative(); 1319 else if (Known2.isNegative() && Known3.isNonNegative()) 1320 Known.makeNegative(); 1321 } 1322 1323 // (mul nsw non-negative, non-negative) --> non-negative 1324 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1325 Known3.isNonNegative()) 1326 Known.makeNonNegative(); 1327 } 1328 1329 break; 1330 } 1331 } 1332 } 1333 1334 // Unreachable blocks may have zero-operand PHI nodes. 1335 if (P->getNumIncomingValues() == 0) 1336 break; 1337 1338 // Otherwise take the unions of the known bit sets of the operands, 1339 // taking conservative care to avoid excessive recursion. 1340 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1341 // Skip if every incoming value references to ourself. 1342 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1343 break; 1344 1345 Known.Zero.setAllBits(); 1346 Known.One.setAllBits(); 1347 for (Value *IncValue : P->incoming_values()) { 1348 // Skip direct self references. 1349 if (IncValue == P) continue; 1350 1351 Known2 = KnownBits(BitWidth); 1352 // Recurse, but cap the recursion to one level, because we don't 1353 // want to waste time spinning around in loops. 1354 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1355 Known.Zero &= Known2.Zero; 1356 Known.One &= Known2.One; 1357 // If all bits have been ruled out, there's no need to check 1358 // more operands. 1359 if (!Known.Zero && !Known.One) 1360 break; 1361 } 1362 } 1363 break; 1364 } 1365 case Instruction::Call: 1366 case Instruction::Invoke: 1367 // If range metadata is attached to this call, set known bits from that, 1368 // and then intersect with known bits based on other properties of the 1369 // function. 1370 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1371 computeKnownBitsFromRangeMetadata(*MD, Known); 1372 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1373 computeKnownBits(RV, Known2, Depth + 1, Q); 1374 Known.Zero |= Known2.Zero; 1375 Known.One |= Known2.One; 1376 } 1377 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1378 switch (II->getIntrinsicID()) { 1379 default: break; 1380 case Intrinsic::bitreverse: 1381 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1382 Known.Zero |= Known2.Zero.reverseBits(); 1383 Known.One |= Known2.One.reverseBits(); 1384 break; 1385 case Intrinsic::bswap: 1386 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1387 Known.Zero |= Known2.Zero.byteSwap(); 1388 Known.One |= Known2.One.byteSwap(); 1389 break; 1390 case Intrinsic::ctlz: { 1391 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1392 // If we have a known 1, its position is our upper bound. 1393 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1394 // If this call is undefined for 0, the result will be less than 2^n. 1395 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1396 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1397 unsigned LowBits = Log2_32(PossibleLZ)+1; 1398 Known.Zero.setBitsFrom(LowBits); 1399 break; 1400 } 1401 case Intrinsic::cttz: { 1402 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1403 // If we have a known 1, its position is our upper bound. 1404 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1405 // If this call is undefined for 0, the result will be less than 2^n. 1406 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1407 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1408 unsigned LowBits = Log2_32(PossibleTZ)+1; 1409 Known.Zero.setBitsFrom(LowBits); 1410 break; 1411 } 1412 case Intrinsic::ctpop: { 1413 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1414 // We can bound the space the count needs. Also, bits known to be zero 1415 // can't contribute to the population. 1416 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1417 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1418 Known.Zero.setBitsFrom(LowBits); 1419 // TODO: we could bound KnownOne using the lower bound on the number 1420 // of bits which might be set provided by popcnt KnownOne2. 1421 break; 1422 } 1423 case Intrinsic::x86_sse42_crc32_64_64: 1424 Known.Zero.setBitsFrom(32); 1425 break; 1426 } 1427 } 1428 break; 1429 case Instruction::ExtractElement: 1430 // Look through extract element. At the moment we keep this simple and skip 1431 // tracking the specific element. But at least we might find information 1432 // valid for all elements of the vector (for example if vector is sign 1433 // extended, shifted, etc). 1434 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1435 break; 1436 case Instruction::ExtractValue: 1437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1438 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1439 if (EVI->getNumIndices() != 1) break; 1440 if (EVI->getIndices()[0] == 0) { 1441 switch (II->getIntrinsicID()) { 1442 default: break; 1443 case Intrinsic::uadd_with_overflow: 1444 case Intrinsic::sadd_with_overflow: 1445 computeKnownBitsAddSub(true, II->getArgOperand(0), 1446 II->getArgOperand(1), false, Known, Known2, 1447 Depth, Q); 1448 break; 1449 case Intrinsic::usub_with_overflow: 1450 case Intrinsic::ssub_with_overflow: 1451 computeKnownBitsAddSub(false, II->getArgOperand(0), 1452 II->getArgOperand(1), false, Known, Known2, 1453 Depth, Q); 1454 break; 1455 case Intrinsic::umul_with_overflow: 1456 case Intrinsic::smul_with_overflow: 1457 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1458 Known, Known2, Depth, Q); 1459 break; 1460 } 1461 } 1462 } 1463 } 1464 } 1465 1466 /// Determine which bits of V are known to be either zero or one and return 1467 /// them. 1468 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1469 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1470 computeKnownBits(V, Known, Depth, Q); 1471 return Known; 1472 } 1473 1474 /// Determine which bits of V are known to be either zero or one and return 1475 /// them in the Known bit set. 1476 /// 1477 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1478 /// we cannot optimize based on the assumption that it is zero without changing 1479 /// it to be an explicit zero. If we don't change it to zero, other code could 1480 /// optimized based on the contradictory assumption that it is non-zero. 1481 /// Because instcombine aggressively folds operations with undef args anyway, 1482 /// this won't lose us code quality. 1483 /// 1484 /// This function is defined on values with integer type, values with pointer 1485 /// type, and vectors of integers. In the case 1486 /// where V is a vector, known zero, and known one values are the 1487 /// same width as the vector element, and the bit is set only if it is true 1488 /// for all of the elements in the vector. 1489 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1490 const Query &Q) { 1491 assert(V && "No Value?"); 1492 assert(Depth <= MaxDepth && "Limit Search Depth"); 1493 unsigned BitWidth = Known.getBitWidth(); 1494 1495 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1496 V->getType()->isPtrOrPtrVectorTy()) && 1497 "Not integer or pointer type!"); 1498 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1499 "V and Known should have same BitWidth"); 1500 (void)BitWidth; 1501 1502 const APInt *C; 1503 if (match(V, m_APInt(C))) { 1504 // We know all of the bits for a scalar constant or a splat vector constant! 1505 Known.One = *C; 1506 Known.Zero = ~Known.One; 1507 return; 1508 } 1509 // Null and aggregate-zero are all-zeros. 1510 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1511 Known.setAllZero(); 1512 return; 1513 } 1514 // Handle a constant vector by taking the intersection of the known bits of 1515 // each element. 1516 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1517 // We know that CDS must be a vector of integers. Take the intersection of 1518 // each element. 1519 Known.Zero.setAllBits(); Known.One.setAllBits(); 1520 APInt Elt(BitWidth, 0); 1521 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1522 Elt = CDS->getElementAsInteger(i); 1523 Known.Zero &= ~Elt; 1524 Known.One &= Elt; 1525 } 1526 return; 1527 } 1528 1529 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1530 // We know that CV must be a vector of integers. Take the intersection of 1531 // each element. 1532 Known.Zero.setAllBits(); Known.One.setAllBits(); 1533 APInt Elt(BitWidth, 0); 1534 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1535 Constant *Element = CV->getAggregateElement(i); 1536 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1537 if (!ElementCI) { 1538 Known.resetAll(); 1539 return; 1540 } 1541 Elt = ElementCI->getValue(); 1542 Known.Zero &= ~Elt; 1543 Known.One &= Elt; 1544 } 1545 return; 1546 } 1547 1548 // Start out not knowing anything. 1549 Known.resetAll(); 1550 1551 // We can't imply anything about undefs. 1552 if (isa<UndefValue>(V)) 1553 return; 1554 1555 // There's no point in looking through other users of ConstantData for 1556 // assumptions. Confirm that we've handled them all. 1557 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1558 1559 // Limit search depth. 1560 // All recursive calls that increase depth must come after this. 1561 if (Depth == MaxDepth) 1562 return; 1563 1564 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1565 // the bits of its aliasee. 1566 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1567 if (!GA->isInterposable()) 1568 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1569 return; 1570 } 1571 1572 if (const Operator *I = dyn_cast<Operator>(V)) 1573 computeKnownBitsFromOperator(I, Known, Depth, Q); 1574 1575 // Aligned pointers have trailing zeros - refine Known.Zero set 1576 if (V->getType()->isPointerTy()) { 1577 unsigned Align = V->getPointerAlignment(Q.DL); 1578 if (Align) 1579 Known.Zero.setLowBits(countTrailingZeros(Align)); 1580 } 1581 1582 // computeKnownBitsFromAssume strictly refines Known. 1583 // Therefore, we run them after computeKnownBitsFromOperator. 1584 1585 // Check whether a nearby assume intrinsic can determine some known bits. 1586 computeKnownBitsFromAssume(V, Known, Depth, Q); 1587 1588 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1589 } 1590 1591 /// Return true if the given value is known to have exactly one 1592 /// bit set when defined. For vectors return true if every element is known to 1593 /// be a power of two when defined. Supports values with integer or pointer 1594 /// types and vectors of integers. 1595 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1596 const Query &Q) { 1597 assert(Depth <= MaxDepth && "Limit Search Depth"); 1598 1599 if (const Constant *C = dyn_cast<Constant>(V)) { 1600 if (C->isNullValue()) 1601 return OrZero; 1602 1603 const APInt *ConstIntOrConstSplatInt; 1604 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1605 return ConstIntOrConstSplatInt->isPowerOf2(); 1606 } 1607 1608 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1609 // it is shifted off the end then the result is undefined. 1610 if (match(V, m_Shl(m_One(), m_Value()))) 1611 return true; 1612 1613 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1614 // the bottom. If it is shifted off the bottom then the result is undefined. 1615 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1616 return true; 1617 1618 // The remaining tests are all recursive, so bail out if we hit the limit. 1619 if (Depth++ == MaxDepth) 1620 return false; 1621 1622 Value *X = nullptr, *Y = nullptr; 1623 // A shift left or a logical shift right of a power of two is a power of two 1624 // or zero. 1625 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1626 match(V, m_LShr(m_Value(X), m_Value())))) 1627 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1628 1629 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1630 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1631 1632 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1633 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1634 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1635 1636 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1637 // A power of two and'd with anything is a power of two or zero. 1638 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1639 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1640 return true; 1641 // X & (-X) is always a power of two or zero. 1642 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1643 return true; 1644 return false; 1645 } 1646 1647 // Adding a power-of-two or zero to the same power-of-two or zero yields 1648 // either the original power-of-two, a larger power-of-two or zero. 1649 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1650 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1651 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1652 if (match(X, m_And(m_Specific(Y), m_Value())) || 1653 match(X, m_And(m_Value(), m_Specific(Y)))) 1654 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1655 return true; 1656 if (match(Y, m_And(m_Specific(X), m_Value())) || 1657 match(Y, m_And(m_Value(), m_Specific(X)))) 1658 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1659 return true; 1660 1661 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1662 KnownBits LHSBits(BitWidth); 1663 computeKnownBits(X, LHSBits, Depth, Q); 1664 1665 KnownBits RHSBits(BitWidth); 1666 computeKnownBits(Y, RHSBits, Depth, Q); 1667 // If i8 V is a power of two or zero: 1668 // ZeroBits: 1 1 1 0 1 1 1 1 1669 // ~ZeroBits: 0 0 0 1 0 0 0 0 1670 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1671 // If OrZero isn't set, we cannot give back a zero result. 1672 // Make sure either the LHS or RHS has a bit set. 1673 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1674 return true; 1675 } 1676 } 1677 1678 // An exact divide or right shift can only shift off zero bits, so the result 1679 // is a power of two only if the first operand is a power of two and not 1680 // copying a sign bit (sdiv int_min, 2). 1681 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1682 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1683 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1684 Depth, Q); 1685 } 1686 1687 return false; 1688 } 1689 1690 /// \brief Test whether a GEP's result is known to be non-null. 1691 /// 1692 /// Uses properties inherent in a GEP to try to determine whether it is known 1693 /// to be non-null. 1694 /// 1695 /// Currently this routine does not support vector GEPs. 1696 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1697 const Query &Q) { 1698 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1699 return false; 1700 1701 // FIXME: Support vector-GEPs. 1702 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1703 1704 // If the base pointer is non-null, we cannot walk to a null address with an 1705 // inbounds GEP in address space zero. 1706 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1707 return true; 1708 1709 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1710 // If so, then the GEP cannot produce a null pointer, as doing so would 1711 // inherently violate the inbounds contract within address space zero. 1712 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1713 GTI != GTE; ++GTI) { 1714 // Struct types are easy -- they must always be indexed by a constant. 1715 if (StructType *STy = GTI.getStructTypeOrNull()) { 1716 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1717 unsigned ElementIdx = OpC->getZExtValue(); 1718 const StructLayout *SL = Q.DL.getStructLayout(STy); 1719 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1720 if (ElementOffset > 0) 1721 return true; 1722 continue; 1723 } 1724 1725 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1726 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1727 continue; 1728 1729 // Fast path the constant operand case both for efficiency and so we don't 1730 // increment Depth when just zipping down an all-constant GEP. 1731 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1732 if (!OpC->isZero()) 1733 return true; 1734 continue; 1735 } 1736 1737 // We post-increment Depth here because while isKnownNonZero increments it 1738 // as well, when we pop back up that increment won't persist. We don't want 1739 // to recurse 10k times just because we have 10k GEP operands. We don't 1740 // bail completely out because we want to handle constant GEPs regardless 1741 // of depth. 1742 if (Depth++ >= MaxDepth) 1743 continue; 1744 1745 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1746 return true; 1747 } 1748 1749 return false; 1750 } 1751 1752 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1753 /// ensure that the value it's attached to is never Value? 'RangeType' is 1754 /// is the type of the value described by the range. 1755 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1756 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1757 assert(NumRanges >= 1); 1758 for (unsigned i = 0; i < NumRanges; ++i) { 1759 ConstantInt *Lower = 1760 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1761 ConstantInt *Upper = 1762 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1763 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1764 if (Range.contains(Value)) 1765 return false; 1766 } 1767 return true; 1768 } 1769 1770 /// Return true if the given value is known to be non-zero when defined. For 1771 /// vectors, return true if every element is known to be non-zero when 1772 /// defined. For pointers, if the context instruction and dominator tree are 1773 /// specified, perform context-sensitive analysis and return true if the 1774 /// pointer couldn't possibly be null at the specified instruction. 1775 /// Supports values with integer or pointer type and vectors of integers. 1776 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1777 if (auto *C = dyn_cast<Constant>(V)) { 1778 if (C->isNullValue()) 1779 return false; 1780 if (isa<ConstantInt>(C)) 1781 // Must be non-zero due to null test above. 1782 return true; 1783 1784 // For constant vectors, check that all elements are undefined or known 1785 // non-zero to determine that the whole vector is known non-zero. 1786 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1787 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1788 Constant *Elt = C->getAggregateElement(i); 1789 if (!Elt || Elt->isNullValue()) 1790 return false; 1791 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1792 return false; 1793 } 1794 return true; 1795 } 1796 1797 return false; 1798 } 1799 1800 if (auto *I = dyn_cast<Instruction>(V)) { 1801 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1802 // If the possible ranges don't contain zero, then the value is 1803 // definitely non-zero. 1804 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1805 const APInt ZeroValue(Ty->getBitWidth(), 0); 1806 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1807 return true; 1808 } 1809 } 1810 } 1811 1812 // The remaining tests are all recursive, so bail out if we hit the limit. 1813 if (Depth++ >= MaxDepth) 1814 return false; 1815 1816 // Check for pointer simplifications. 1817 if (V->getType()->isPointerTy()) { 1818 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1819 return true; 1820 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1821 if (isGEPKnownNonNull(GEP, Depth, Q)) 1822 return true; 1823 } 1824 1825 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1826 1827 // X | Y != 0 if X != 0 or Y != 0. 1828 Value *X = nullptr, *Y = nullptr; 1829 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1830 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1831 1832 // ext X != 0 if X != 0. 1833 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1834 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1835 1836 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1837 // if the lowest bit is shifted off the end. 1838 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1839 // shl nuw can't remove any non-zero bits. 1840 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1841 if (BO->hasNoUnsignedWrap()) 1842 return isKnownNonZero(X, Depth, Q); 1843 1844 KnownBits Known(BitWidth); 1845 computeKnownBits(X, Known, Depth, Q); 1846 if (Known.One[0]) 1847 return true; 1848 } 1849 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1850 // defined if the sign bit is shifted off the end. 1851 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1852 // shr exact can only shift out zero bits. 1853 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1854 if (BO->isExact()) 1855 return isKnownNonZero(X, Depth, Q); 1856 1857 KnownBits Known = computeKnownBits(X, Depth, Q); 1858 if (Known.isNegative()) 1859 return true; 1860 1861 // If the shifter operand is a constant, and all of the bits shifted 1862 // out are known to be zero, and X is known non-zero then at least one 1863 // non-zero bit must remain. 1864 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1865 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1866 // Is there a known one in the portion not shifted out? 1867 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1868 return true; 1869 // Are all the bits to be shifted out known zero? 1870 if (Known.countMinTrailingZeros() >= ShiftVal) 1871 return isKnownNonZero(X, Depth, Q); 1872 } 1873 } 1874 // div exact can only produce a zero if the dividend is zero. 1875 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1876 return isKnownNonZero(X, Depth, Q); 1877 } 1878 // X + Y. 1879 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1880 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1881 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1882 1883 // If X and Y are both non-negative (as signed values) then their sum is not 1884 // zero unless both X and Y are zero. 1885 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1886 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1887 return true; 1888 1889 // If X and Y are both negative (as signed values) then their sum is not 1890 // zero unless both X and Y equal INT_MIN. 1891 if (XKnown.isNegative() && YKnown.isNegative()) { 1892 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1893 // The sign bit of X is set. If some other bit is set then X is not equal 1894 // to INT_MIN. 1895 if (XKnown.One.intersects(Mask)) 1896 return true; 1897 // The sign bit of Y is set. If some other bit is set then Y is not equal 1898 // to INT_MIN. 1899 if (YKnown.One.intersects(Mask)) 1900 return true; 1901 } 1902 1903 // The sum of a non-negative number and a power of two is not zero. 1904 if (XKnown.isNonNegative() && 1905 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1906 return true; 1907 if (YKnown.isNonNegative() && 1908 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1909 return true; 1910 } 1911 // X * Y. 1912 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1913 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1914 // If X and Y are non-zero then so is X * Y as long as the multiplication 1915 // does not overflow. 1916 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1917 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1918 return true; 1919 } 1920 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1921 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1922 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1923 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1924 return true; 1925 } 1926 // PHI 1927 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1928 // Try and detect a recurrence that monotonically increases from a 1929 // starting value, as these are common as induction variables. 1930 if (PN->getNumIncomingValues() == 2) { 1931 Value *Start = PN->getIncomingValue(0); 1932 Value *Induction = PN->getIncomingValue(1); 1933 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1934 std::swap(Start, Induction); 1935 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1936 if (!C->isZero() && !C->isNegative()) { 1937 ConstantInt *X; 1938 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1939 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1940 !X->isNegative()) 1941 return true; 1942 } 1943 } 1944 } 1945 // Check if all incoming values are non-zero constant. 1946 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 1947 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 1948 }); 1949 if (AllNonZeroConstants) 1950 return true; 1951 } 1952 1953 KnownBits Known(BitWidth); 1954 computeKnownBits(V, Known, Depth, Q); 1955 return Known.One != 0; 1956 } 1957 1958 /// Return true if V2 == V1 + X, where X is known non-zero. 1959 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1960 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1961 if (!BO || BO->getOpcode() != Instruction::Add) 1962 return false; 1963 Value *Op = nullptr; 1964 if (V2 == BO->getOperand(0)) 1965 Op = BO->getOperand(1); 1966 else if (V2 == BO->getOperand(1)) 1967 Op = BO->getOperand(0); 1968 else 1969 return false; 1970 return isKnownNonZero(Op, 0, Q); 1971 } 1972 1973 /// Return true if it is known that V1 != V2. 1974 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1975 if (V1 == V2) 1976 return false; 1977 if (V1->getType() != V2->getType()) 1978 // We can't look through casts yet. 1979 return false; 1980 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1981 return true; 1982 1983 if (V1->getType()->isIntOrIntVectorTy()) { 1984 // Are any known bits in V1 contradictory to known bits in V2? If V1 1985 // has a known zero where V2 has a known one, they must not be equal. 1986 KnownBits Known1 = computeKnownBits(V1, 0, Q); 1987 KnownBits Known2 = computeKnownBits(V2, 0, Q); 1988 1989 if (Known1.Zero.intersects(Known2.One) || 1990 Known2.Zero.intersects(Known1.One)) 1991 return true; 1992 } 1993 return false; 1994 } 1995 1996 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1997 /// simplify operations downstream. Mask is known to be zero for bits that V 1998 /// cannot have. 1999 /// 2000 /// This function is defined on values with integer type, values with pointer 2001 /// type, and vectors of integers. In the case 2002 /// where V is a vector, the mask, known zero, and known one values are the 2003 /// same width as the vector element, and the bit is set only if it is true 2004 /// for all of the elements in the vector. 2005 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2006 const Query &Q) { 2007 KnownBits Known(Mask.getBitWidth()); 2008 computeKnownBits(V, Known, Depth, Q); 2009 return Mask.isSubsetOf(Known.Zero); 2010 } 2011 2012 /// For vector constants, loop over the elements and find the constant with the 2013 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2014 /// or if any element was not analyzed; otherwise, return the count for the 2015 /// element with the minimum number of sign bits. 2016 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2017 unsigned TyBits) { 2018 const auto *CV = dyn_cast<Constant>(V); 2019 if (!CV || !CV->getType()->isVectorTy()) 2020 return 0; 2021 2022 unsigned MinSignBits = TyBits; 2023 unsigned NumElts = CV->getType()->getVectorNumElements(); 2024 for (unsigned i = 0; i != NumElts; ++i) { 2025 // If we find a non-ConstantInt, bail out. 2026 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2027 if (!Elt) 2028 return 0; 2029 2030 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2031 APInt EltVal = Elt->getValue(); 2032 if (EltVal.isNegative()) 2033 EltVal = ~EltVal; 2034 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2035 } 2036 2037 return MinSignBits; 2038 } 2039 2040 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2041 const Query &Q); 2042 2043 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2044 const Query &Q) { 2045 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2046 assert(Result > 0 && "At least one sign bit needs to be present!"); 2047 return Result; 2048 } 2049 2050 /// Return the number of times the sign bit of the register is replicated into 2051 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2052 /// (itself), but other cases can give us information. For example, immediately 2053 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2054 /// other, so we return 3. For vectors, return the number of sign bits for the 2055 /// vector element with the mininum number of known sign bits. 2056 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2057 const Query &Q) { 2058 assert(Depth <= MaxDepth && "Limit Search Depth"); 2059 2060 // We return the minimum number of sign bits that are guaranteed to be present 2061 // in V, so for undef we have to conservatively return 1. We don't have the 2062 // same behavior for poison though -- that's a FIXME today. 2063 2064 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2065 unsigned Tmp, Tmp2; 2066 unsigned FirstAnswer = 1; 2067 2068 // Note that ConstantInt is handled by the general computeKnownBits case 2069 // below. 2070 2071 if (Depth == MaxDepth) 2072 return 1; // Limit search depth. 2073 2074 const Operator *U = dyn_cast<Operator>(V); 2075 switch (Operator::getOpcode(V)) { 2076 default: break; 2077 case Instruction::SExt: 2078 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2079 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2080 2081 case Instruction::SDiv: { 2082 const APInt *Denominator; 2083 // sdiv X, C -> adds log(C) sign bits. 2084 if (match(U->getOperand(1), m_APInt(Denominator))) { 2085 2086 // Ignore non-positive denominator. 2087 if (!Denominator->isStrictlyPositive()) 2088 break; 2089 2090 // Calculate the incoming numerator bits. 2091 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2092 2093 // Add floor(log(C)) bits to the numerator bits. 2094 return std::min(TyBits, NumBits + Denominator->logBase2()); 2095 } 2096 break; 2097 } 2098 2099 case Instruction::SRem: { 2100 const APInt *Denominator; 2101 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2102 // positive constant. This let us put a lower bound on the number of sign 2103 // bits. 2104 if (match(U->getOperand(1), m_APInt(Denominator))) { 2105 2106 // Ignore non-positive denominator. 2107 if (!Denominator->isStrictlyPositive()) 2108 break; 2109 2110 // Calculate the incoming numerator bits. SRem by a positive constant 2111 // can't lower the number of sign bits. 2112 unsigned NumrBits = 2113 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2114 2115 // Calculate the leading sign bit constraints by examining the 2116 // denominator. Given that the denominator is positive, there are two 2117 // cases: 2118 // 2119 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2120 // (1 << ceilLogBase2(C)). 2121 // 2122 // 2. the numerator is negative. Then the result range is (-C,0] and 2123 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2124 // 2125 // Thus a lower bound on the number of sign bits is `TyBits - 2126 // ceilLogBase2(C)`. 2127 2128 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2129 return std::max(NumrBits, ResBits); 2130 } 2131 break; 2132 } 2133 2134 case Instruction::AShr: { 2135 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2136 // ashr X, C -> adds C sign bits. Vectors too. 2137 const APInt *ShAmt; 2138 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2139 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2140 if (ShAmtLimited >= TyBits) 2141 break; // Bad shift. 2142 Tmp += ShAmtLimited; 2143 if (Tmp > TyBits) Tmp = TyBits; 2144 } 2145 return Tmp; 2146 } 2147 case Instruction::Shl: { 2148 const APInt *ShAmt; 2149 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2150 // shl destroys sign bits. 2151 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2152 Tmp2 = ShAmt->getZExtValue(); 2153 if (Tmp2 >= TyBits || // Bad shift. 2154 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2155 return Tmp - Tmp2; 2156 } 2157 break; 2158 } 2159 case Instruction::And: 2160 case Instruction::Or: 2161 case Instruction::Xor: // NOT is handled here. 2162 // Logical binary ops preserve the number of sign bits at the worst. 2163 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2164 if (Tmp != 1) { 2165 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2166 FirstAnswer = std::min(Tmp, Tmp2); 2167 // We computed what we know about the sign bits as our first 2168 // answer. Now proceed to the generic code that uses 2169 // computeKnownBits, and pick whichever answer is better. 2170 } 2171 break; 2172 2173 case Instruction::Select: 2174 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2175 if (Tmp == 1) return 1; // Early out. 2176 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2177 return std::min(Tmp, Tmp2); 2178 2179 case Instruction::Add: 2180 // Add can have at most one carry bit. Thus we know that the output 2181 // is, at worst, one more bit than the inputs. 2182 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2183 if (Tmp == 1) return 1; // Early out. 2184 2185 // Special case decrementing a value (ADD X, -1): 2186 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2187 if (CRHS->isAllOnesValue()) { 2188 KnownBits Known(TyBits); 2189 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2190 2191 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2192 // sign bits set. 2193 if ((Known.Zero | 1).isAllOnesValue()) 2194 return TyBits; 2195 2196 // If we are subtracting one from a positive number, there is no carry 2197 // out of the result. 2198 if (Known.isNonNegative()) 2199 return Tmp; 2200 } 2201 2202 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2203 if (Tmp2 == 1) return 1; 2204 return std::min(Tmp, Tmp2)-1; 2205 2206 case Instruction::Sub: 2207 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2208 if (Tmp2 == 1) return 1; 2209 2210 // Handle NEG. 2211 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2212 if (CLHS->isNullValue()) { 2213 KnownBits Known(TyBits); 2214 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2215 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2216 // sign bits set. 2217 if ((Known.Zero | 1).isAllOnesValue()) 2218 return TyBits; 2219 2220 // If the input is known to be positive (the sign bit is known clear), 2221 // the output of the NEG has the same number of sign bits as the input. 2222 if (Known.isNonNegative()) 2223 return Tmp2; 2224 2225 // Otherwise, we treat this like a SUB. 2226 } 2227 2228 // Sub can have at most one carry bit. Thus we know that the output 2229 // is, at worst, one more bit than the inputs. 2230 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2231 if (Tmp == 1) return 1; // Early out. 2232 return std::min(Tmp, Tmp2)-1; 2233 2234 case Instruction::Mul: { 2235 // The output of the Mul can be at most twice the valid bits in the inputs. 2236 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2237 if (SignBitsOp0 == 1) return 1; // Early out. 2238 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2239 if (SignBitsOp1 == 1) return 1; 2240 unsigned OutValidBits = 2241 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2242 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2243 } 2244 2245 case Instruction::PHI: { 2246 const PHINode *PN = cast<PHINode>(U); 2247 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2248 // Don't analyze large in-degree PHIs. 2249 if (NumIncomingValues > 4) break; 2250 // Unreachable blocks may have zero-operand PHI nodes. 2251 if (NumIncomingValues == 0) break; 2252 2253 // Take the minimum of all incoming values. This can't infinitely loop 2254 // because of our depth threshold. 2255 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2256 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2257 if (Tmp == 1) return Tmp; 2258 Tmp = std::min( 2259 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2260 } 2261 return Tmp; 2262 } 2263 2264 case Instruction::Trunc: 2265 // FIXME: it's tricky to do anything useful for this, but it is an important 2266 // case for targets like X86. 2267 break; 2268 2269 case Instruction::ExtractElement: 2270 // Look through extract element. At the moment we keep this simple and skip 2271 // tracking the specific element. But at least we might find information 2272 // valid for all elements of the vector (for example if vector is sign 2273 // extended, shifted, etc). 2274 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2275 } 2276 2277 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2278 // use this information. 2279 2280 // If we can examine all elements of a vector constant successfully, we're 2281 // done (we can't do any better than that). If not, keep trying. 2282 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2283 return VecSignBits; 2284 2285 KnownBits Known(TyBits); 2286 computeKnownBits(V, Known, Depth, Q); 2287 2288 // If we know that the sign bit is either zero or one, determine the number of 2289 // identical bits in the top of the input value. 2290 return std::max(FirstAnswer, Known.countMinSignBits()); 2291 } 2292 2293 /// This function computes the integer multiple of Base that equals V. 2294 /// If successful, it returns true and returns the multiple in 2295 /// Multiple. If unsuccessful, it returns false. It looks 2296 /// through SExt instructions only if LookThroughSExt is true. 2297 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2298 bool LookThroughSExt, unsigned Depth) { 2299 const unsigned MaxDepth = 6; 2300 2301 assert(V && "No Value?"); 2302 assert(Depth <= MaxDepth && "Limit Search Depth"); 2303 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2304 2305 Type *T = V->getType(); 2306 2307 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2308 2309 if (Base == 0) 2310 return false; 2311 2312 if (Base == 1) { 2313 Multiple = V; 2314 return true; 2315 } 2316 2317 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2318 Constant *BaseVal = ConstantInt::get(T, Base); 2319 if (CO && CO == BaseVal) { 2320 // Multiple is 1. 2321 Multiple = ConstantInt::get(T, 1); 2322 return true; 2323 } 2324 2325 if (CI && CI->getZExtValue() % Base == 0) { 2326 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2327 return true; 2328 } 2329 2330 if (Depth == MaxDepth) return false; // Limit search depth. 2331 2332 Operator *I = dyn_cast<Operator>(V); 2333 if (!I) return false; 2334 2335 switch (I->getOpcode()) { 2336 default: break; 2337 case Instruction::SExt: 2338 if (!LookThroughSExt) return false; 2339 // otherwise fall through to ZExt 2340 LLVM_FALLTHROUGH; 2341 case Instruction::ZExt: 2342 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2343 LookThroughSExt, Depth+1); 2344 case Instruction::Shl: 2345 case Instruction::Mul: { 2346 Value *Op0 = I->getOperand(0); 2347 Value *Op1 = I->getOperand(1); 2348 2349 if (I->getOpcode() == Instruction::Shl) { 2350 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2351 if (!Op1CI) return false; 2352 // Turn Op0 << Op1 into Op0 * 2^Op1 2353 APInt Op1Int = Op1CI->getValue(); 2354 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2355 APInt API(Op1Int.getBitWidth(), 0); 2356 API.setBit(BitToSet); 2357 Op1 = ConstantInt::get(V->getContext(), API); 2358 } 2359 2360 Value *Mul0 = nullptr; 2361 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2362 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2363 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2364 if (Op1C->getType()->getPrimitiveSizeInBits() < 2365 MulC->getType()->getPrimitiveSizeInBits()) 2366 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2367 if (Op1C->getType()->getPrimitiveSizeInBits() > 2368 MulC->getType()->getPrimitiveSizeInBits()) 2369 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2370 2371 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2372 Multiple = ConstantExpr::getMul(MulC, Op1C); 2373 return true; 2374 } 2375 2376 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2377 if (Mul0CI->getValue() == 1) { 2378 // V == Base * Op1, so return Op1 2379 Multiple = Op1; 2380 return true; 2381 } 2382 } 2383 2384 Value *Mul1 = nullptr; 2385 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2386 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2387 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2388 if (Op0C->getType()->getPrimitiveSizeInBits() < 2389 MulC->getType()->getPrimitiveSizeInBits()) 2390 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2391 if (Op0C->getType()->getPrimitiveSizeInBits() > 2392 MulC->getType()->getPrimitiveSizeInBits()) 2393 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2394 2395 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2396 Multiple = ConstantExpr::getMul(MulC, Op0C); 2397 return true; 2398 } 2399 2400 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2401 if (Mul1CI->getValue() == 1) { 2402 // V == Base * Op0, so return Op0 2403 Multiple = Op0; 2404 return true; 2405 } 2406 } 2407 } 2408 } 2409 2410 // We could not determine if V is a multiple of Base. 2411 return false; 2412 } 2413 2414 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2415 const TargetLibraryInfo *TLI) { 2416 const Function *F = ICS.getCalledFunction(); 2417 if (!F) 2418 return Intrinsic::not_intrinsic; 2419 2420 if (F->isIntrinsic()) 2421 return F->getIntrinsicID(); 2422 2423 if (!TLI) 2424 return Intrinsic::not_intrinsic; 2425 2426 LibFunc Func; 2427 // We're going to make assumptions on the semantics of the functions, check 2428 // that the target knows that it's available in this environment and it does 2429 // not have local linkage. 2430 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2431 return Intrinsic::not_intrinsic; 2432 2433 if (!ICS.onlyReadsMemory()) 2434 return Intrinsic::not_intrinsic; 2435 2436 // Otherwise check if we have a call to a function that can be turned into a 2437 // vector intrinsic. 2438 switch (Func) { 2439 default: 2440 break; 2441 case LibFunc_sin: 2442 case LibFunc_sinf: 2443 case LibFunc_sinl: 2444 return Intrinsic::sin; 2445 case LibFunc_cos: 2446 case LibFunc_cosf: 2447 case LibFunc_cosl: 2448 return Intrinsic::cos; 2449 case LibFunc_exp: 2450 case LibFunc_expf: 2451 case LibFunc_expl: 2452 return Intrinsic::exp; 2453 case LibFunc_exp2: 2454 case LibFunc_exp2f: 2455 case LibFunc_exp2l: 2456 return Intrinsic::exp2; 2457 case LibFunc_log: 2458 case LibFunc_logf: 2459 case LibFunc_logl: 2460 return Intrinsic::log; 2461 case LibFunc_log10: 2462 case LibFunc_log10f: 2463 case LibFunc_log10l: 2464 return Intrinsic::log10; 2465 case LibFunc_log2: 2466 case LibFunc_log2f: 2467 case LibFunc_log2l: 2468 return Intrinsic::log2; 2469 case LibFunc_fabs: 2470 case LibFunc_fabsf: 2471 case LibFunc_fabsl: 2472 return Intrinsic::fabs; 2473 case LibFunc_fmin: 2474 case LibFunc_fminf: 2475 case LibFunc_fminl: 2476 return Intrinsic::minnum; 2477 case LibFunc_fmax: 2478 case LibFunc_fmaxf: 2479 case LibFunc_fmaxl: 2480 return Intrinsic::maxnum; 2481 case LibFunc_copysign: 2482 case LibFunc_copysignf: 2483 case LibFunc_copysignl: 2484 return Intrinsic::copysign; 2485 case LibFunc_floor: 2486 case LibFunc_floorf: 2487 case LibFunc_floorl: 2488 return Intrinsic::floor; 2489 case LibFunc_ceil: 2490 case LibFunc_ceilf: 2491 case LibFunc_ceill: 2492 return Intrinsic::ceil; 2493 case LibFunc_trunc: 2494 case LibFunc_truncf: 2495 case LibFunc_truncl: 2496 return Intrinsic::trunc; 2497 case LibFunc_rint: 2498 case LibFunc_rintf: 2499 case LibFunc_rintl: 2500 return Intrinsic::rint; 2501 case LibFunc_nearbyint: 2502 case LibFunc_nearbyintf: 2503 case LibFunc_nearbyintl: 2504 return Intrinsic::nearbyint; 2505 case LibFunc_round: 2506 case LibFunc_roundf: 2507 case LibFunc_roundl: 2508 return Intrinsic::round; 2509 case LibFunc_pow: 2510 case LibFunc_powf: 2511 case LibFunc_powl: 2512 return Intrinsic::pow; 2513 case LibFunc_sqrt: 2514 case LibFunc_sqrtf: 2515 case LibFunc_sqrtl: 2516 if (ICS->hasNoNaNs()) 2517 return Intrinsic::sqrt; 2518 return Intrinsic::not_intrinsic; 2519 } 2520 2521 return Intrinsic::not_intrinsic; 2522 } 2523 2524 /// Return true if we can prove that the specified FP value is never equal to 2525 /// -0.0. 2526 /// 2527 /// NOTE: this function will need to be revisited when we support non-default 2528 /// rounding modes! 2529 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2530 unsigned Depth) { 2531 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2532 return !CFP->getValueAPF().isNegZero(); 2533 2534 if (Depth == MaxDepth) 2535 return false; // Limit search depth. 2536 2537 const Operator *I = dyn_cast<Operator>(V); 2538 if (!I) return false; 2539 2540 // Check if the nsz fast-math flag is set 2541 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2542 if (FPO->hasNoSignedZeros()) 2543 return true; 2544 2545 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2546 if (I->getOpcode() == Instruction::FAdd) 2547 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2548 if (CFP->isNullValue()) 2549 return true; 2550 2551 // sitofp and uitofp turn into +0.0 for zero. 2552 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2553 return true; 2554 2555 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2556 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2557 switch (IID) { 2558 default: 2559 break; 2560 // sqrt(-0.0) = -0.0, no other negative results are possible. 2561 case Intrinsic::sqrt: 2562 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2563 // fabs(x) != -0.0 2564 case Intrinsic::fabs: 2565 return true; 2566 } 2567 } 2568 2569 return false; 2570 } 2571 2572 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2573 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2574 /// bit despite comparing equal. 2575 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2576 const TargetLibraryInfo *TLI, 2577 bool SignBitOnly, 2578 unsigned Depth) { 2579 // TODO: This function does not do the right thing when SignBitOnly is true 2580 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2581 // which flips the sign bits of NaNs. See 2582 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2583 2584 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2585 return !CFP->getValueAPF().isNegative() || 2586 (!SignBitOnly && CFP->getValueAPF().isZero()); 2587 } 2588 2589 if (Depth == MaxDepth) 2590 return false; // Limit search depth. 2591 2592 const Operator *I = dyn_cast<Operator>(V); 2593 if (!I) 2594 return false; 2595 2596 switch (I->getOpcode()) { 2597 default: 2598 break; 2599 // Unsigned integers are always nonnegative. 2600 case Instruction::UIToFP: 2601 return true; 2602 case Instruction::FMul: 2603 // x*x is always non-negative or a NaN. 2604 if (I->getOperand(0) == I->getOperand(1) && 2605 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2606 return true; 2607 2608 LLVM_FALLTHROUGH; 2609 case Instruction::FAdd: 2610 case Instruction::FDiv: 2611 case Instruction::FRem: 2612 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2613 Depth + 1) && 2614 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2615 Depth + 1); 2616 case Instruction::Select: 2617 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2618 Depth + 1) && 2619 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2620 Depth + 1); 2621 case Instruction::FPExt: 2622 case Instruction::FPTrunc: 2623 // Widening/narrowing never change sign. 2624 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2625 Depth + 1); 2626 case Instruction::Call: 2627 const auto *CI = cast<CallInst>(I); 2628 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2629 switch (IID) { 2630 default: 2631 break; 2632 case Intrinsic::maxnum: 2633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2634 Depth + 1) || 2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2636 Depth + 1); 2637 case Intrinsic::minnum: 2638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2639 Depth + 1) && 2640 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2641 Depth + 1); 2642 case Intrinsic::exp: 2643 case Intrinsic::exp2: 2644 case Intrinsic::fabs: 2645 return true; 2646 2647 case Intrinsic::sqrt: 2648 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2649 if (!SignBitOnly) 2650 return true; 2651 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2652 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2653 2654 case Intrinsic::powi: 2655 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2656 // powi(x,n) is non-negative if n is even. 2657 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2658 return true; 2659 } 2660 // TODO: This is not correct. Given that exp is an integer, here are the 2661 // ways that pow can return a negative value: 2662 // 2663 // pow(x, exp) --> negative if exp is odd and x is negative. 2664 // pow(-0, exp) --> -inf if exp is negative odd. 2665 // pow(-0, exp) --> -0 if exp is positive odd. 2666 // pow(-inf, exp) --> -0 if exp is negative odd. 2667 // pow(-inf, exp) --> -inf if exp is positive odd. 2668 // 2669 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2670 // but we must return false if x == -0. Unfortunately we do not currently 2671 // have a way of expressing this constraint. See details in 2672 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2673 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2674 Depth + 1); 2675 2676 case Intrinsic::fma: 2677 case Intrinsic::fmuladd: 2678 // x*x+y is non-negative if y is non-negative. 2679 return I->getOperand(0) == I->getOperand(1) && 2680 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2681 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2682 Depth + 1); 2683 } 2684 break; 2685 } 2686 return false; 2687 } 2688 2689 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2690 const TargetLibraryInfo *TLI) { 2691 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2692 } 2693 2694 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2695 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2696 } 2697 2698 bool llvm::isKnownNeverNaN(const Value *V) { 2699 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2700 2701 // If we're told that NaNs won't happen, assume they won't. 2702 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2703 if (FPMathOp->hasNoNaNs()) 2704 return true; 2705 2706 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2707 // functions. For example, the result of sitofp is never NaN. 2708 2709 // Handle scalar constants. 2710 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2711 return !CFP->isNaN(); 2712 2713 // Bail out for constant expressions, but try to handle vector constants. 2714 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2715 return false; 2716 2717 // For vectors, verify that each element is not NaN. 2718 unsigned NumElts = V->getType()->getVectorNumElements(); 2719 for (unsigned i = 0; i != NumElts; ++i) { 2720 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2721 if (!Elt) 2722 return false; 2723 if (isa<UndefValue>(Elt)) 2724 continue; 2725 auto *CElt = dyn_cast<ConstantFP>(Elt); 2726 if (!CElt || CElt->isNaN()) 2727 return false; 2728 } 2729 // All elements were confirmed not-NaN or undefined. 2730 return true; 2731 } 2732 2733 /// If the specified value can be set by repeating the same byte in memory, 2734 /// return the i8 value that it is represented with. This is 2735 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2736 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2737 /// byte store (e.g. i16 0x1234), return null. 2738 Value *llvm::isBytewiseValue(Value *V) { 2739 // All byte-wide stores are splatable, even of arbitrary variables. 2740 if (V->getType()->isIntegerTy(8)) return V; 2741 2742 // Handle 'null' ConstantArrayZero etc. 2743 if (Constant *C = dyn_cast<Constant>(V)) 2744 if (C->isNullValue()) 2745 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2746 2747 // Constant float and double values can be handled as integer values if the 2748 // corresponding integer value is "byteable". An important case is 0.0. 2749 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2750 if (CFP->getType()->isFloatTy()) 2751 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2752 if (CFP->getType()->isDoubleTy()) 2753 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2754 // Don't handle long double formats, which have strange constraints. 2755 } 2756 2757 // We can handle constant integers that are multiple of 8 bits. 2758 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2759 if (CI->getBitWidth() % 8 == 0) { 2760 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2761 2762 if (!CI->getValue().isSplat(8)) 2763 return nullptr; 2764 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2765 } 2766 } 2767 2768 // A ConstantDataArray/Vector is splatable if all its members are equal and 2769 // also splatable. 2770 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2771 Value *Elt = CA->getElementAsConstant(0); 2772 Value *Val = isBytewiseValue(Elt); 2773 if (!Val) 2774 return nullptr; 2775 2776 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2777 if (CA->getElementAsConstant(I) != Elt) 2778 return nullptr; 2779 2780 return Val; 2781 } 2782 2783 // Conceptually, we could handle things like: 2784 // %a = zext i8 %X to i16 2785 // %b = shl i16 %a, 8 2786 // %c = or i16 %a, %b 2787 // but until there is an example that actually needs this, it doesn't seem 2788 // worth worrying about. 2789 return nullptr; 2790 } 2791 2792 // This is the recursive version of BuildSubAggregate. It takes a few different 2793 // arguments. Idxs is the index within the nested struct From that we are 2794 // looking at now (which is of type IndexedType). IdxSkip is the number of 2795 // indices from Idxs that should be left out when inserting into the resulting 2796 // struct. To is the result struct built so far, new insertvalue instructions 2797 // build on that. 2798 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2799 SmallVectorImpl<unsigned> &Idxs, 2800 unsigned IdxSkip, 2801 Instruction *InsertBefore) { 2802 StructType *STy = dyn_cast<StructType>(IndexedType); 2803 if (STy) { 2804 // Save the original To argument so we can modify it 2805 Value *OrigTo = To; 2806 // General case, the type indexed by Idxs is a struct 2807 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2808 // Process each struct element recursively 2809 Idxs.push_back(i); 2810 Value *PrevTo = To; 2811 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2812 InsertBefore); 2813 Idxs.pop_back(); 2814 if (!To) { 2815 // Couldn't find any inserted value for this index? Cleanup 2816 while (PrevTo != OrigTo) { 2817 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2818 PrevTo = Del->getAggregateOperand(); 2819 Del->eraseFromParent(); 2820 } 2821 // Stop processing elements 2822 break; 2823 } 2824 } 2825 // If we successfully found a value for each of our subaggregates 2826 if (To) 2827 return To; 2828 } 2829 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2830 // the struct's elements had a value that was inserted directly. In the latter 2831 // case, perhaps we can't determine each of the subelements individually, but 2832 // we might be able to find the complete struct somewhere. 2833 2834 // Find the value that is at that particular spot 2835 Value *V = FindInsertedValue(From, Idxs); 2836 2837 if (!V) 2838 return nullptr; 2839 2840 // Insert the value in the new (sub) aggregrate 2841 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2842 "tmp", InsertBefore); 2843 } 2844 2845 // This helper takes a nested struct and extracts a part of it (which is again a 2846 // struct) into a new value. For example, given the struct: 2847 // { a, { b, { c, d }, e } } 2848 // and the indices "1, 1" this returns 2849 // { c, d }. 2850 // 2851 // It does this by inserting an insertvalue for each element in the resulting 2852 // struct, as opposed to just inserting a single struct. This will only work if 2853 // each of the elements of the substruct are known (ie, inserted into From by an 2854 // insertvalue instruction somewhere). 2855 // 2856 // All inserted insertvalue instructions are inserted before InsertBefore 2857 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2858 Instruction *InsertBefore) { 2859 assert(InsertBefore && "Must have someplace to insert!"); 2860 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2861 idx_range); 2862 Value *To = UndefValue::get(IndexedType); 2863 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2864 unsigned IdxSkip = Idxs.size(); 2865 2866 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2867 } 2868 2869 /// Given an aggregrate and an sequence of indices, see if 2870 /// the scalar value indexed is already around as a register, for example if it 2871 /// were inserted directly into the aggregrate. 2872 /// 2873 /// If InsertBefore is not null, this function will duplicate (modified) 2874 /// insertvalues when a part of a nested struct is extracted. 2875 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2876 Instruction *InsertBefore) { 2877 // Nothing to index? Just return V then (this is useful at the end of our 2878 // recursion). 2879 if (idx_range.empty()) 2880 return V; 2881 // We have indices, so V should have an indexable type. 2882 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2883 "Not looking at a struct or array?"); 2884 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2885 "Invalid indices for type?"); 2886 2887 if (Constant *C = dyn_cast<Constant>(V)) { 2888 C = C->getAggregateElement(idx_range[0]); 2889 if (!C) return nullptr; 2890 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2891 } 2892 2893 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2894 // Loop the indices for the insertvalue instruction in parallel with the 2895 // requested indices 2896 const unsigned *req_idx = idx_range.begin(); 2897 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2898 i != e; ++i, ++req_idx) { 2899 if (req_idx == idx_range.end()) { 2900 // We can't handle this without inserting insertvalues 2901 if (!InsertBefore) 2902 return nullptr; 2903 2904 // The requested index identifies a part of a nested aggregate. Handle 2905 // this specially. For example, 2906 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2907 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2908 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2909 // This can be changed into 2910 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2911 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2912 // which allows the unused 0,0 element from the nested struct to be 2913 // removed. 2914 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2915 InsertBefore); 2916 } 2917 2918 // This insert value inserts something else than what we are looking for. 2919 // See if the (aggregate) value inserted into has the value we are 2920 // looking for, then. 2921 if (*req_idx != *i) 2922 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2923 InsertBefore); 2924 } 2925 // If we end up here, the indices of the insertvalue match with those 2926 // requested (though possibly only partially). Now we recursively look at 2927 // the inserted value, passing any remaining indices. 2928 return FindInsertedValue(I->getInsertedValueOperand(), 2929 makeArrayRef(req_idx, idx_range.end()), 2930 InsertBefore); 2931 } 2932 2933 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2934 // If we're extracting a value from an aggregate that was extracted from 2935 // something else, we can extract from that something else directly instead. 2936 // However, we will need to chain I's indices with the requested indices. 2937 2938 // Calculate the number of indices required 2939 unsigned size = I->getNumIndices() + idx_range.size(); 2940 // Allocate some space to put the new indices in 2941 SmallVector<unsigned, 5> Idxs; 2942 Idxs.reserve(size); 2943 // Add indices from the extract value instruction 2944 Idxs.append(I->idx_begin(), I->idx_end()); 2945 2946 // Add requested indices 2947 Idxs.append(idx_range.begin(), idx_range.end()); 2948 2949 assert(Idxs.size() == size 2950 && "Number of indices added not correct?"); 2951 2952 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2953 } 2954 // Otherwise, we don't know (such as, extracting from a function return value 2955 // or load instruction) 2956 return nullptr; 2957 } 2958 2959 /// Analyze the specified pointer to see if it can be expressed as a base 2960 /// pointer plus a constant offset. Return the base and offset to the caller. 2961 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2962 const DataLayout &DL) { 2963 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2964 APInt ByteOffset(BitWidth, 0); 2965 2966 // We walk up the defs but use a visited set to handle unreachable code. In 2967 // that case, we stop after accumulating the cycle once (not that it 2968 // matters). 2969 SmallPtrSet<Value *, 16> Visited; 2970 while (Visited.insert(Ptr).second) { 2971 if (Ptr->getType()->isVectorTy()) 2972 break; 2973 2974 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2975 // If one of the values we have visited is an addrspacecast, then 2976 // the pointer type of this GEP may be different from the type 2977 // of the Ptr parameter which was passed to this function. This 2978 // means when we construct GEPOffset, we need to use the size 2979 // of GEP's pointer type rather than the size of the original 2980 // pointer type. 2981 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2982 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2983 break; 2984 2985 ByteOffset += GEPOffset.getSExtValue(); 2986 2987 Ptr = GEP->getPointerOperand(); 2988 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2989 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2990 Ptr = cast<Operator>(Ptr)->getOperand(0); 2991 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2992 if (GA->isInterposable()) 2993 break; 2994 Ptr = GA->getAliasee(); 2995 } else { 2996 break; 2997 } 2998 } 2999 Offset = ByteOffset.getSExtValue(); 3000 return Ptr; 3001 } 3002 3003 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3004 unsigned CharSize) { 3005 // Make sure the GEP has exactly three arguments. 3006 if (GEP->getNumOperands() != 3) 3007 return false; 3008 3009 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3010 // CharSize. 3011 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3012 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3013 return false; 3014 3015 // Check to make sure that the first operand of the GEP is an integer and 3016 // has value 0 so that we are sure we're indexing into the initializer. 3017 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3018 if (!FirstIdx || !FirstIdx->isZero()) 3019 return false; 3020 3021 return true; 3022 } 3023 3024 bool llvm::getConstantDataArrayInfo(const Value *V, 3025 ConstantDataArraySlice &Slice, 3026 unsigned ElementSize, uint64_t Offset) { 3027 assert(V); 3028 3029 // Look through bitcast instructions and geps. 3030 V = V->stripPointerCasts(); 3031 3032 // If the value is a GEP instruction or constant expression, treat it as an 3033 // offset. 3034 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3035 // The GEP operator should be based on a pointer to string constant, and is 3036 // indexing into the string constant. 3037 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3038 return false; 3039 3040 // If the second index isn't a ConstantInt, then this is a variable index 3041 // into the array. If this occurs, we can't say anything meaningful about 3042 // the string. 3043 uint64_t StartIdx = 0; 3044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3045 StartIdx = CI->getZExtValue(); 3046 else 3047 return false; 3048 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3049 StartIdx + Offset); 3050 } 3051 3052 // The GEP instruction, constant or instruction, must reference a global 3053 // variable that is a constant and is initialized. The referenced constant 3054 // initializer is the array that we'll use for optimization. 3055 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3056 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3057 return false; 3058 3059 const ConstantDataArray *Array; 3060 ArrayType *ArrayTy; 3061 if (GV->getInitializer()->isNullValue()) { 3062 Type *GVTy = GV->getValueType(); 3063 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3064 // A zeroinitializer for the array; there is no ConstantDataArray. 3065 Array = nullptr; 3066 } else { 3067 const DataLayout &DL = GV->getParent()->getDataLayout(); 3068 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3069 uint64_t Length = SizeInBytes / (ElementSize / 8); 3070 if (Length <= Offset) 3071 return false; 3072 3073 Slice.Array = nullptr; 3074 Slice.Offset = 0; 3075 Slice.Length = Length - Offset; 3076 return true; 3077 } 3078 } else { 3079 // This must be a ConstantDataArray. 3080 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3081 if (!Array) 3082 return false; 3083 ArrayTy = Array->getType(); 3084 } 3085 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3086 return false; 3087 3088 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3089 if (Offset > NumElts) 3090 return false; 3091 3092 Slice.Array = Array; 3093 Slice.Offset = Offset; 3094 Slice.Length = NumElts - Offset; 3095 return true; 3096 } 3097 3098 /// This function computes the length of a null-terminated C string pointed to 3099 /// by V. If successful, it returns true and returns the string in Str. 3100 /// If unsuccessful, it returns false. 3101 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3102 uint64_t Offset, bool TrimAtNul) { 3103 ConstantDataArraySlice Slice; 3104 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3105 return false; 3106 3107 if (Slice.Array == nullptr) { 3108 if (TrimAtNul) { 3109 Str = StringRef(); 3110 return true; 3111 } 3112 if (Slice.Length == 1) { 3113 Str = StringRef("", 1); 3114 return true; 3115 } 3116 // We cannot instantiate a StringRef as we do not have an appropriate string 3117 // of 0s at hand. 3118 return false; 3119 } 3120 3121 // Start out with the entire array in the StringRef. 3122 Str = Slice.Array->getAsString(); 3123 // Skip over 'offset' bytes. 3124 Str = Str.substr(Slice.Offset); 3125 3126 if (TrimAtNul) { 3127 // Trim off the \0 and anything after it. If the array is not nul 3128 // terminated, we just return the whole end of string. The client may know 3129 // some other way that the string is length-bound. 3130 Str = Str.substr(0, Str.find('\0')); 3131 } 3132 return true; 3133 } 3134 3135 // These next two are very similar to the above, but also look through PHI 3136 // nodes. 3137 // TODO: See if we can integrate these two together. 3138 3139 /// If we can compute the length of the string pointed to by 3140 /// the specified pointer, return 'len+1'. If we can't, return 0. 3141 static uint64_t GetStringLengthH(const Value *V, 3142 SmallPtrSetImpl<const PHINode*> &PHIs, 3143 unsigned CharSize) { 3144 // Look through noop bitcast instructions. 3145 V = V->stripPointerCasts(); 3146 3147 // If this is a PHI node, there are two cases: either we have already seen it 3148 // or we haven't. 3149 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3150 if (!PHIs.insert(PN).second) 3151 return ~0ULL; // already in the set. 3152 3153 // If it was new, see if all the input strings are the same length. 3154 uint64_t LenSoFar = ~0ULL; 3155 for (Value *IncValue : PN->incoming_values()) { 3156 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3157 if (Len == 0) return 0; // Unknown length -> unknown. 3158 3159 if (Len == ~0ULL) continue; 3160 3161 if (Len != LenSoFar && LenSoFar != ~0ULL) 3162 return 0; // Disagree -> unknown. 3163 LenSoFar = Len; 3164 } 3165 3166 // Success, all agree. 3167 return LenSoFar; 3168 } 3169 3170 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3171 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3172 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3173 if (Len1 == 0) return 0; 3174 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3175 if (Len2 == 0) return 0; 3176 if (Len1 == ~0ULL) return Len2; 3177 if (Len2 == ~0ULL) return Len1; 3178 if (Len1 != Len2) return 0; 3179 return Len1; 3180 } 3181 3182 // Otherwise, see if we can read the string. 3183 ConstantDataArraySlice Slice; 3184 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3185 return 0; 3186 3187 if (Slice.Array == nullptr) 3188 return 1; 3189 3190 // Search for nul characters 3191 unsigned NullIndex = 0; 3192 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3193 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3194 break; 3195 } 3196 3197 return NullIndex + 1; 3198 } 3199 3200 /// If we can compute the length of the string pointed to by 3201 /// the specified pointer, return 'len+1'. If we can't, return 0. 3202 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3203 if (!V->getType()->isPointerTy()) return 0; 3204 3205 SmallPtrSet<const PHINode*, 32> PHIs; 3206 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3207 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3208 // an empty string as a length. 3209 return Len == ~0ULL ? 1 : Len; 3210 } 3211 3212 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3213 /// previous iteration of the loop was referring to the same object as \p PN. 3214 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3215 const LoopInfo *LI) { 3216 // Find the loop-defined value. 3217 Loop *L = LI->getLoopFor(PN->getParent()); 3218 if (PN->getNumIncomingValues() != 2) 3219 return true; 3220 3221 // Find the value from previous iteration. 3222 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3223 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3224 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3225 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3226 return true; 3227 3228 // If a new pointer is loaded in the loop, the pointer references a different 3229 // object in every iteration. E.g.: 3230 // for (i) 3231 // int *p = a[i]; 3232 // ... 3233 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3234 if (!L->isLoopInvariant(Load->getPointerOperand())) 3235 return false; 3236 return true; 3237 } 3238 3239 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3240 unsigned MaxLookup) { 3241 if (!V->getType()->isPointerTy()) 3242 return V; 3243 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3244 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3245 V = GEP->getPointerOperand(); 3246 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3247 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3248 V = cast<Operator>(V)->getOperand(0); 3249 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3250 if (GA->isInterposable()) 3251 return V; 3252 V = GA->getAliasee(); 3253 } else if (isa<AllocaInst>(V)) { 3254 // An alloca can't be further simplified. 3255 return V; 3256 } else { 3257 if (auto CS = CallSite(V)) 3258 if (Value *RV = CS.getReturnedArgOperand()) { 3259 V = RV; 3260 continue; 3261 } 3262 3263 // See if InstructionSimplify knows any relevant tricks. 3264 if (Instruction *I = dyn_cast<Instruction>(V)) 3265 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3266 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3267 V = Simplified; 3268 continue; 3269 } 3270 3271 return V; 3272 } 3273 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3274 } 3275 return V; 3276 } 3277 3278 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3279 const DataLayout &DL, LoopInfo *LI, 3280 unsigned MaxLookup) { 3281 SmallPtrSet<Value *, 4> Visited; 3282 SmallVector<Value *, 4> Worklist; 3283 Worklist.push_back(V); 3284 do { 3285 Value *P = Worklist.pop_back_val(); 3286 P = GetUnderlyingObject(P, DL, MaxLookup); 3287 3288 if (!Visited.insert(P).second) 3289 continue; 3290 3291 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3292 Worklist.push_back(SI->getTrueValue()); 3293 Worklist.push_back(SI->getFalseValue()); 3294 continue; 3295 } 3296 3297 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3298 // If this PHI changes the underlying object in every iteration of the 3299 // loop, don't look through it. Consider: 3300 // int **A; 3301 // for (i) { 3302 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3303 // Curr = A[i]; 3304 // *Prev, *Curr; 3305 // 3306 // Prev is tracking Curr one iteration behind so they refer to different 3307 // underlying objects. 3308 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3309 isSameUnderlyingObjectInLoop(PN, LI)) 3310 for (Value *IncValue : PN->incoming_values()) 3311 Worklist.push_back(IncValue); 3312 continue; 3313 } 3314 3315 Objects.push_back(P); 3316 } while (!Worklist.empty()); 3317 } 3318 3319 /// This is the function that does the work of looking through basic 3320 /// ptrtoint+arithmetic+inttoptr sequences. 3321 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3322 do { 3323 if (const Operator *U = dyn_cast<Operator>(V)) { 3324 // If we find a ptrtoint, we can transfer control back to the 3325 // regular getUnderlyingObjectFromInt. 3326 if (U->getOpcode() == Instruction::PtrToInt) 3327 return U->getOperand(0); 3328 // If we find an add of a constant, a multiplied value, or a phi, it's 3329 // likely that the other operand will lead us to the base 3330 // object. We don't have to worry about the case where the 3331 // object address is somehow being computed by the multiply, 3332 // because our callers only care when the result is an 3333 // identifiable object. 3334 if (U->getOpcode() != Instruction::Add || 3335 (!isa<ConstantInt>(U->getOperand(1)) && 3336 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3337 !isa<PHINode>(U->getOperand(1)))) 3338 return V; 3339 V = U->getOperand(0); 3340 } else { 3341 return V; 3342 } 3343 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3344 } while (true); 3345 } 3346 3347 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3348 /// ptrtoint+arithmetic+inttoptr sequences. 3349 void llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3350 SmallVectorImpl<Value *> &Objects, 3351 const DataLayout &DL) { 3352 SmallPtrSet<const Value *, 16> Visited; 3353 SmallVector<const Value *, 4> Working(1, V); 3354 do { 3355 V = Working.pop_back_val(); 3356 3357 SmallVector<Value *, 4> Objs; 3358 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3359 3360 for (Value *V : Objs) { 3361 if (!Visited.insert(V).second) 3362 continue; 3363 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3364 const Value *O = 3365 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3366 if (O->getType()->isPointerTy()) { 3367 Working.push_back(O); 3368 continue; 3369 } 3370 } 3371 // If GetUnderlyingObjects fails to find an identifiable object, 3372 // getUnderlyingObjectsForCodeGen also fails for safety. 3373 if (!isIdentifiedObject(V)) { 3374 Objects.clear(); 3375 return; 3376 } 3377 Objects.push_back(const_cast<Value *>(V)); 3378 } 3379 } while (!Working.empty()); 3380 } 3381 3382 /// Return true if the only users of this pointer are lifetime markers. 3383 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3384 for (const User *U : V->users()) { 3385 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3386 if (!II) return false; 3387 3388 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3389 II->getIntrinsicID() != Intrinsic::lifetime_end) 3390 return false; 3391 } 3392 return true; 3393 } 3394 3395 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3396 const Instruction *CtxI, 3397 const DominatorTree *DT) { 3398 const Operator *Inst = dyn_cast<Operator>(V); 3399 if (!Inst) 3400 return false; 3401 3402 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3403 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3404 if (C->canTrap()) 3405 return false; 3406 3407 switch (Inst->getOpcode()) { 3408 default: 3409 return true; 3410 case Instruction::UDiv: 3411 case Instruction::URem: { 3412 // x / y is undefined if y == 0. 3413 const APInt *V; 3414 if (match(Inst->getOperand(1), m_APInt(V))) 3415 return *V != 0; 3416 return false; 3417 } 3418 case Instruction::SDiv: 3419 case Instruction::SRem: { 3420 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3421 const APInt *Numerator, *Denominator; 3422 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3423 return false; 3424 // We cannot hoist this division if the denominator is 0. 3425 if (*Denominator == 0) 3426 return false; 3427 // It's safe to hoist if the denominator is not 0 or -1. 3428 if (*Denominator != -1) 3429 return true; 3430 // At this point we know that the denominator is -1. It is safe to hoist as 3431 // long we know that the numerator is not INT_MIN. 3432 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3433 return !Numerator->isMinSignedValue(); 3434 // The numerator *might* be MinSignedValue. 3435 return false; 3436 } 3437 case Instruction::Load: { 3438 const LoadInst *LI = cast<LoadInst>(Inst); 3439 if (!LI->isUnordered() || 3440 // Speculative load may create a race that did not exist in the source. 3441 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3442 // Speculative load may load data from dirty regions. 3443 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3444 return false; 3445 const DataLayout &DL = LI->getModule()->getDataLayout(); 3446 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3447 LI->getAlignment(), DL, CtxI, DT); 3448 } 3449 case Instruction::Call: { 3450 auto *CI = cast<const CallInst>(Inst); 3451 const Function *Callee = CI->getCalledFunction(); 3452 3453 // The called function could have undefined behavior or side-effects, even 3454 // if marked readnone nounwind. 3455 return Callee && Callee->isSpeculatable(); 3456 } 3457 case Instruction::VAArg: 3458 case Instruction::Alloca: 3459 case Instruction::Invoke: 3460 case Instruction::PHI: 3461 case Instruction::Store: 3462 case Instruction::Ret: 3463 case Instruction::Br: 3464 case Instruction::IndirectBr: 3465 case Instruction::Switch: 3466 case Instruction::Unreachable: 3467 case Instruction::Fence: 3468 case Instruction::AtomicRMW: 3469 case Instruction::AtomicCmpXchg: 3470 case Instruction::LandingPad: 3471 case Instruction::Resume: 3472 case Instruction::CatchSwitch: 3473 case Instruction::CatchPad: 3474 case Instruction::CatchRet: 3475 case Instruction::CleanupPad: 3476 case Instruction::CleanupRet: 3477 return false; // Misc instructions which have effects 3478 } 3479 } 3480 3481 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3482 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3483 } 3484 3485 /// Return true if we know that the specified value is never null. 3486 bool llvm::isKnownNonNull(const Value *V) { 3487 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3488 3489 // Alloca never returns null, malloc might. 3490 if (isa<AllocaInst>(V)) return true; 3491 3492 // A byval, inalloca, or nonnull argument is never null. 3493 if (const Argument *A = dyn_cast<Argument>(V)) 3494 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3495 3496 // A global variable in address space 0 is non null unless extern weak 3497 // or an absolute symbol reference. Other address spaces may have null as a 3498 // valid address for a global, so we can't assume anything. 3499 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3500 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3501 GV->getType()->getAddressSpace() == 0; 3502 3503 // A Load tagged with nonnull metadata is never null. 3504 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3505 return LI->getMetadata(LLVMContext::MD_nonnull); 3506 3507 if (auto CS = ImmutableCallSite(V)) 3508 if (CS.isReturnNonNull()) 3509 return true; 3510 3511 return false; 3512 } 3513 3514 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3515 const Instruction *CtxI, 3516 const DominatorTree *DT) { 3517 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3518 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3519 assert(CtxI && "Context instruction required for analysis"); 3520 assert(DT && "Dominator tree required for analysis"); 3521 3522 unsigned NumUsesExplored = 0; 3523 for (auto *U : V->users()) { 3524 // Avoid massive lists 3525 if (NumUsesExplored >= DomConditionsMaxUses) 3526 break; 3527 NumUsesExplored++; 3528 3529 // If the value is used as an argument to a call or invoke, then argument 3530 // attributes may provide an answer about null-ness. 3531 if (auto CS = ImmutableCallSite(U)) 3532 if (auto *CalledFunc = CS.getCalledFunction()) 3533 for (const Argument &Arg : CalledFunc->args()) 3534 if (CS.getArgOperand(Arg.getArgNo()) == V && 3535 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3536 return true; 3537 3538 // Consider only compare instructions uniquely controlling a branch 3539 CmpInst::Predicate Pred; 3540 if (!match(const_cast<User *>(U), 3541 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3542 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3543 continue; 3544 3545 for (auto *CmpU : U->users()) { 3546 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3547 assert(BI->isConditional() && "uses a comparison!"); 3548 3549 BasicBlock *NonNullSuccessor = 3550 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3551 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3552 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3553 return true; 3554 } else if (Pred == ICmpInst::ICMP_NE && 3555 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3556 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3557 return true; 3558 } 3559 } 3560 } 3561 3562 return false; 3563 } 3564 3565 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3566 const DominatorTree *DT) { 3567 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3568 return false; 3569 3570 if (isKnownNonNull(V)) 3571 return true; 3572 3573 if (!CtxI || !DT) 3574 return false; 3575 3576 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3577 } 3578 3579 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3580 const Value *RHS, 3581 const DataLayout &DL, 3582 AssumptionCache *AC, 3583 const Instruction *CxtI, 3584 const DominatorTree *DT) { 3585 // Multiplying n * m significant bits yields a result of n + m significant 3586 // bits. If the total number of significant bits does not exceed the 3587 // result bit width (minus 1), there is no overflow. 3588 // This means if we have enough leading zero bits in the operands 3589 // we can guarantee that the result does not overflow. 3590 // Ref: "Hacker's Delight" by Henry Warren 3591 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3592 KnownBits LHSKnown(BitWidth); 3593 KnownBits RHSKnown(BitWidth); 3594 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3595 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3596 // Note that underestimating the number of zero bits gives a more 3597 // conservative answer. 3598 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3599 RHSKnown.countMinLeadingZeros(); 3600 // First handle the easy case: if we have enough zero bits there's 3601 // definitely no overflow. 3602 if (ZeroBits >= BitWidth) 3603 return OverflowResult::NeverOverflows; 3604 3605 // Get the largest possible values for each operand. 3606 APInt LHSMax = ~LHSKnown.Zero; 3607 APInt RHSMax = ~RHSKnown.Zero; 3608 3609 // We know the multiply operation doesn't overflow if the maximum values for 3610 // each operand will not overflow after we multiply them together. 3611 bool MaxOverflow; 3612 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3613 if (!MaxOverflow) 3614 return OverflowResult::NeverOverflows; 3615 3616 // We know it always overflows if multiplying the smallest possible values for 3617 // the operands also results in overflow. 3618 bool MinOverflow; 3619 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3620 if (MinOverflow) 3621 return OverflowResult::AlwaysOverflows; 3622 3623 return OverflowResult::MayOverflow; 3624 } 3625 3626 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3627 const Value *RHS, 3628 const DataLayout &DL, 3629 AssumptionCache *AC, 3630 const Instruction *CxtI, 3631 const DominatorTree *DT) { 3632 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3633 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3634 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3635 3636 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3637 // The sign bit is set in both cases: this MUST overflow. 3638 // Create a simple add instruction, and insert it into the struct. 3639 return OverflowResult::AlwaysOverflows; 3640 } 3641 3642 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3643 // The sign bit is clear in both cases: this CANNOT overflow. 3644 // Create a simple add instruction, and insert it into the struct. 3645 return OverflowResult::NeverOverflows; 3646 } 3647 } 3648 3649 return OverflowResult::MayOverflow; 3650 } 3651 3652 /// \brief Return true if we can prove that adding the two values of the 3653 /// knownbits will not overflow. 3654 /// Otherwise return false. 3655 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3656 const KnownBits &RHSKnown) { 3657 // Addition of two 2's complement numbers having opposite signs will never 3658 // overflow. 3659 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3660 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3661 return true; 3662 3663 // If either of the values is known to be non-negative, adding them can only 3664 // overflow if the second is also non-negative, so we can assume that. 3665 // Two non-negative numbers will only overflow if there is a carry to the 3666 // sign bit, so we can check if even when the values are as big as possible 3667 // there is no overflow to the sign bit. 3668 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3669 APInt MaxLHS = ~LHSKnown.Zero; 3670 MaxLHS.clearSignBit(); 3671 APInt MaxRHS = ~RHSKnown.Zero; 3672 MaxRHS.clearSignBit(); 3673 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3674 return Result.isSignBitClear(); 3675 } 3676 3677 // If either of the values is known to be negative, adding them can only 3678 // overflow if the second is also negative, so we can assume that. 3679 // Two negative number will only overflow if there is no carry to the sign 3680 // bit, so we can check if even when the values are as small as possible 3681 // there is overflow to the sign bit. 3682 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3683 APInt MinLHS = LHSKnown.One; 3684 MinLHS.clearSignBit(); 3685 APInt MinRHS = RHSKnown.One; 3686 MinRHS.clearSignBit(); 3687 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3688 return Result.isSignBitSet(); 3689 } 3690 3691 // If we reached here it means that we know nothing about the sign bits. 3692 // In this case we can't know if there will be an overflow, since by 3693 // changing the sign bits any two values can be made to overflow. 3694 return false; 3695 } 3696 3697 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3698 const Value *RHS, 3699 const AddOperator *Add, 3700 const DataLayout &DL, 3701 AssumptionCache *AC, 3702 const Instruction *CxtI, 3703 const DominatorTree *DT) { 3704 if (Add && Add->hasNoSignedWrap()) { 3705 return OverflowResult::NeverOverflows; 3706 } 3707 3708 // If LHS and RHS each have at least two sign bits, the addition will look 3709 // like 3710 // 3711 // XX..... + 3712 // YY..... 3713 // 3714 // If the carry into the most significant position is 0, X and Y can't both 3715 // be 1 and therefore the carry out of the addition is also 0. 3716 // 3717 // If the carry into the most significant position is 1, X and Y can't both 3718 // be 0 and therefore the carry out of the addition is also 1. 3719 // 3720 // Since the carry into the most significant position is always equal to 3721 // the carry out of the addition, there is no signed overflow. 3722 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3723 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3724 return OverflowResult::NeverOverflows; 3725 3726 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3727 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3728 3729 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3730 return OverflowResult::NeverOverflows; 3731 3732 // The remaining code needs Add to be available. Early returns if not so. 3733 if (!Add) 3734 return OverflowResult::MayOverflow; 3735 3736 // If the sign of Add is the same as at least one of the operands, this add 3737 // CANNOT overflow. This is particularly useful when the sum is 3738 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3739 // operands. 3740 bool LHSOrRHSKnownNonNegative = 3741 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3742 bool LHSOrRHSKnownNegative = 3743 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3744 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3745 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3746 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3747 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3748 return OverflowResult::NeverOverflows; 3749 } 3750 } 3751 3752 return OverflowResult::MayOverflow; 3753 } 3754 3755 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3756 const DominatorTree &DT) { 3757 #ifndef NDEBUG 3758 auto IID = II->getIntrinsicID(); 3759 assert((IID == Intrinsic::sadd_with_overflow || 3760 IID == Intrinsic::uadd_with_overflow || 3761 IID == Intrinsic::ssub_with_overflow || 3762 IID == Intrinsic::usub_with_overflow || 3763 IID == Intrinsic::smul_with_overflow || 3764 IID == Intrinsic::umul_with_overflow) && 3765 "Not an overflow intrinsic!"); 3766 #endif 3767 3768 SmallVector<const BranchInst *, 2> GuardingBranches; 3769 SmallVector<const ExtractValueInst *, 2> Results; 3770 3771 for (const User *U : II->users()) { 3772 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3773 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3774 3775 if (EVI->getIndices()[0] == 0) 3776 Results.push_back(EVI); 3777 else { 3778 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3779 3780 for (const auto *U : EVI->users()) 3781 if (const auto *B = dyn_cast<BranchInst>(U)) { 3782 assert(B->isConditional() && "How else is it using an i1?"); 3783 GuardingBranches.push_back(B); 3784 } 3785 } 3786 } else { 3787 // We are using the aggregate directly in a way we don't want to analyze 3788 // here (storing it to a global, say). 3789 return false; 3790 } 3791 } 3792 3793 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3794 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3795 if (!NoWrapEdge.isSingleEdge()) 3796 return false; 3797 3798 // Check if all users of the add are provably no-wrap. 3799 for (const auto *Result : Results) { 3800 // If the extractvalue itself is not executed on overflow, the we don't 3801 // need to check each use separately, since domination is transitive. 3802 if (DT.dominates(NoWrapEdge, Result->getParent())) 3803 continue; 3804 3805 for (auto &RU : Result->uses()) 3806 if (!DT.dominates(NoWrapEdge, RU)) 3807 return false; 3808 } 3809 3810 return true; 3811 }; 3812 3813 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 3814 } 3815 3816 3817 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3818 const DataLayout &DL, 3819 AssumptionCache *AC, 3820 const Instruction *CxtI, 3821 const DominatorTree *DT) { 3822 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3823 Add, DL, AC, CxtI, DT); 3824 } 3825 3826 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3827 const Value *RHS, 3828 const DataLayout &DL, 3829 AssumptionCache *AC, 3830 const Instruction *CxtI, 3831 const DominatorTree *DT) { 3832 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3833 } 3834 3835 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3836 // A memory operation returns normally if it isn't volatile. A volatile 3837 // operation is allowed to trap. 3838 // 3839 // An atomic operation isn't guaranteed to return in a reasonable amount of 3840 // time because it's possible for another thread to interfere with it for an 3841 // arbitrary length of time, but programs aren't allowed to rely on that. 3842 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3843 return !LI->isVolatile(); 3844 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3845 return !SI->isVolatile(); 3846 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3847 return !CXI->isVolatile(); 3848 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3849 return !RMWI->isVolatile(); 3850 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3851 return !MII->isVolatile(); 3852 3853 // If there is no successor, then execution can't transfer to it. 3854 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3855 return !CRI->unwindsToCaller(); 3856 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3857 return !CatchSwitch->unwindsToCaller(); 3858 if (isa<ResumeInst>(I)) 3859 return false; 3860 if (isa<ReturnInst>(I)) 3861 return false; 3862 if (isa<UnreachableInst>(I)) 3863 return false; 3864 3865 // Calls can throw, or contain an infinite loop, or kill the process. 3866 if (auto CS = ImmutableCallSite(I)) { 3867 // Call sites that throw have implicit non-local control flow. 3868 if (!CS.doesNotThrow()) 3869 return false; 3870 3871 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3872 // etc. and thus not return. However, LLVM already assumes that 3873 // 3874 // - Thread exiting actions are modeled as writes to memory invisible to 3875 // the program. 3876 // 3877 // - Loops that don't have side effects (side effects are volatile/atomic 3878 // stores and IO) always terminate (see http://llvm.org/PR965). 3879 // Furthermore IO itself is also modeled as writes to memory invisible to 3880 // the program. 3881 // 3882 // We rely on those assumptions here, and use the memory effects of the call 3883 // target as a proxy for checking that it always returns. 3884 3885 // FIXME: This isn't aggressive enough; a call which only writes to a global 3886 // is guaranteed to return. 3887 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3888 match(I, m_Intrinsic<Intrinsic::assume>()); 3889 } 3890 3891 // Other instructions return normally. 3892 return true; 3893 } 3894 3895 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3896 const Loop *L) { 3897 // The loop header is guaranteed to be executed for every iteration. 3898 // 3899 // FIXME: Relax this constraint to cover all basic blocks that are 3900 // guaranteed to be executed at every iteration. 3901 if (I->getParent() != L->getHeader()) return false; 3902 3903 for (const Instruction &LI : *L->getHeader()) { 3904 if (&LI == I) return true; 3905 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3906 } 3907 llvm_unreachable("Instruction not contained in its own parent basic block."); 3908 } 3909 3910 bool llvm::propagatesFullPoison(const Instruction *I) { 3911 switch (I->getOpcode()) { 3912 case Instruction::Add: 3913 case Instruction::Sub: 3914 case Instruction::Xor: 3915 case Instruction::Trunc: 3916 case Instruction::BitCast: 3917 case Instruction::AddrSpaceCast: 3918 case Instruction::Mul: 3919 case Instruction::Shl: 3920 case Instruction::GetElementPtr: 3921 // These operations all propagate poison unconditionally. Note that poison 3922 // is not any particular value, so xor or subtraction of poison with 3923 // itself still yields poison, not zero. 3924 return true; 3925 3926 case Instruction::AShr: 3927 case Instruction::SExt: 3928 // For these operations, one bit of the input is replicated across 3929 // multiple output bits. A replicated poison bit is still poison. 3930 return true; 3931 3932 case Instruction::ICmp: 3933 // Comparing poison with any value yields poison. This is why, for 3934 // instance, x s< (x +nsw 1) can be folded to true. 3935 return true; 3936 3937 default: 3938 return false; 3939 } 3940 } 3941 3942 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3943 switch (I->getOpcode()) { 3944 case Instruction::Store: 3945 return cast<StoreInst>(I)->getPointerOperand(); 3946 3947 case Instruction::Load: 3948 return cast<LoadInst>(I)->getPointerOperand(); 3949 3950 case Instruction::AtomicCmpXchg: 3951 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3952 3953 case Instruction::AtomicRMW: 3954 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3955 3956 case Instruction::UDiv: 3957 case Instruction::SDiv: 3958 case Instruction::URem: 3959 case Instruction::SRem: 3960 return I->getOperand(1); 3961 3962 default: 3963 return nullptr; 3964 } 3965 } 3966 3967 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3968 // We currently only look for uses of poison values within the same basic 3969 // block, as that makes it easier to guarantee that the uses will be 3970 // executed given that PoisonI is executed. 3971 // 3972 // FIXME: Expand this to consider uses beyond the same basic block. To do 3973 // this, look out for the distinction between post-dominance and strong 3974 // post-dominance. 3975 const BasicBlock *BB = PoisonI->getParent(); 3976 3977 // Set of instructions that we have proved will yield poison if PoisonI 3978 // does. 3979 SmallSet<const Value *, 16> YieldsPoison; 3980 SmallSet<const BasicBlock *, 4> Visited; 3981 YieldsPoison.insert(PoisonI); 3982 Visited.insert(PoisonI->getParent()); 3983 3984 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3985 3986 unsigned Iter = 0; 3987 while (Iter++ < MaxDepth) { 3988 for (auto &I : make_range(Begin, End)) { 3989 if (&I != PoisonI) { 3990 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3991 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3992 return true; 3993 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3994 return false; 3995 } 3996 3997 // Mark poison that propagates from I through uses of I. 3998 if (YieldsPoison.count(&I)) { 3999 for (const User *User : I.users()) { 4000 const Instruction *UserI = cast<Instruction>(User); 4001 if (propagatesFullPoison(UserI)) 4002 YieldsPoison.insert(User); 4003 } 4004 } 4005 } 4006 4007 if (auto *NextBB = BB->getSingleSuccessor()) { 4008 if (Visited.insert(NextBB).second) { 4009 BB = NextBB; 4010 Begin = BB->getFirstNonPHI()->getIterator(); 4011 End = BB->end(); 4012 continue; 4013 } 4014 } 4015 4016 break; 4017 } 4018 return false; 4019 } 4020 4021 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4022 if (FMF.noNaNs()) 4023 return true; 4024 4025 if (auto *C = dyn_cast<ConstantFP>(V)) 4026 return !C->isNaN(); 4027 return false; 4028 } 4029 4030 static bool isKnownNonZero(const Value *V) { 4031 if (auto *C = dyn_cast<ConstantFP>(V)) 4032 return !C->isZero(); 4033 return false; 4034 } 4035 4036 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4037 /// Given non-min/max outer cmp/select from the clamp pattern this 4038 /// function recognizes if it can be substitued by a "canonical" min/max 4039 /// pattern. 4040 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4041 Value *CmpLHS, Value *CmpRHS, 4042 Value *TrueVal, Value *FalseVal, 4043 Value *&LHS, Value *&RHS) { 4044 // Try to match 4045 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4046 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4047 // and return description of the outer Max/Min. 4048 4049 // First, check if select has inverse order: 4050 if (CmpRHS == FalseVal) { 4051 std::swap(TrueVal, FalseVal); 4052 Pred = CmpInst::getInversePredicate(Pred); 4053 } 4054 4055 // Assume success now. If there's no match, callers should not use these anyway. 4056 LHS = TrueVal; 4057 RHS = FalseVal; 4058 4059 const APFloat *FC1; 4060 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4061 return {SPF_UNKNOWN, SPNB_NA, false}; 4062 4063 const APFloat *FC2; 4064 switch (Pred) { 4065 case CmpInst::FCMP_OLT: 4066 case CmpInst::FCMP_OLE: 4067 case CmpInst::FCMP_ULT: 4068 case CmpInst::FCMP_ULE: 4069 if (match(FalseVal, 4070 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4071 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4072 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4073 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4074 break; 4075 case CmpInst::FCMP_OGT: 4076 case CmpInst::FCMP_OGE: 4077 case CmpInst::FCMP_UGT: 4078 case CmpInst::FCMP_UGE: 4079 if (match(FalseVal, 4080 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4081 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4082 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4083 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4084 break; 4085 default: 4086 break; 4087 } 4088 4089 return {SPF_UNKNOWN, SPNB_NA, false}; 4090 } 4091 4092 /// Match non-obvious integer minimum and maximum sequences. 4093 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4094 Value *CmpLHS, Value *CmpRHS, 4095 Value *TrueVal, Value *FalseVal, 4096 Value *&LHS, Value *&RHS) { 4097 // Assume success. If there's no match, callers should not use these anyway. 4098 LHS = TrueVal; 4099 RHS = FalseVal; 4100 4101 // Recognize variations of: 4102 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4103 const APInt *C1; 4104 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4105 const APInt *C2; 4106 4107 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4108 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4109 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4110 return {SPF_SMAX, SPNB_NA, false}; 4111 4112 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4113 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4114 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4115 return {SPF_SMIN, SPNB_NA, false}; 4116 4117 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4118 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4119 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4120 return {SPF_UMAX, SPNB_NA, false}; 4121 4122 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4123 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4124 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4125 return {SPF_UMIN, SPNB_NA, false}; 4126 } 4127 4128 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4129 return {SPF_UNKNOWN, SPNB_NA, false}; 4130 4131 // Z = X -nsw Y 4132 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4133 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4134 if (match(TrueVal, m_Zero()) && 4135 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4136 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4137 4138 // Z = X -nsw Y 4139 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4140 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4141 if (match(FalseVal, m_Zero()) && 4142 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4143 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4144 4145 if (!match(CmpRHS, m_APInt(C1))) 4146 return {SPF_UNKNOWN, SPNB_NA, false}; 4147 4148 // An unsigned min/max can be written with a signed compare. 4149 const APInt *C2; 4150 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4151 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4152 // Is the sign bit set? 4153 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4154 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4155 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4156 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4157 4158 // Is the sign bit clear? 4159 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4160 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4161 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4162 C2->isMinSignedValue()) 4163 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4164 } 4165 4166 // Look through 'not' ops to find disguised signed min/max. 4167 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4168 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4169 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4170 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4171 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4172 4173 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4174 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4175 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4176 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4177 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4178 4179 return {SPF_UNKNOWN, SPNB_NA, false}; 4180 } 4181 4182 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4183 FastMathFlags FMF, 4184 Value *CmpLHS, Value *CmpRHS, 4185 Value *TrueVal, Value *FalseVal, 4186 Value *&LHS, Value *&RHS) { 4187 LHS = CmpLHS; 4188 RHS = CmpRHS; 4189 4190 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4191 // return inconsistent results between implementations. 4192 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4193 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4194 // Therefore we behave conservatively and only proceed if at least one of the 4195 // operands is known to not be zero, or if we don't care about signed zeroes. 4196 switch (Pred) { 4197 default: break; 4198 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4199 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4200 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4201 !isKnownNonZero(CmpRHS)) 4202 return {SPF_UNKNOWN, SPNB_NA, false}; 4203 } 4204 4205 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4206 bool Ordered = false; 4207 4208 // When given one NaN and one non-NaN input: 4209 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4210 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4211 // ordered comparison fails), which could be NaN or non-NaN. 4212 // so here we discover exactly what NaN behavior is required/accepted. 4213 if (CmpInst::isFPPredicate(Pred)) { 4214 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4215 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4216 4217 if (LHSSafe && RHSSafe) { 4218 // Both operands are known non-NaN. 4219 NaNBehavior = SPNB_RETURNS_ANY; 4220 } else if (CmpInst::isOrdered(Pred)) { 4221 // An ordered comparison will return false when given a NaN, so it 4222 // returns the RHS. 4223 Ordered = true; 4224 if (LHSSafe) 4225 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4226 NaNBehavior = SPNB_RETURNS_NAN; 4227 else if (RHSSafe) 4228 NaNBehavior = SPNB_RETURNS_OTHER; 4229 else 4230 // Completely unsafe. 4231 return {SPF_UNKNOWN, SPNB_NA, false}; 4232 } else { 4233 Ordered = false; 4234 // An unordered comparison will return true when given a NaN, so it 4235 // returns the LHS. 4236 if (LHSSafe) 4237 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4238 NaNBehavior = SPNB_RETURNS_OTHER; 4239 else if (RHSSafe) 4240 NaNBehavior = SPNB_RETURNS_NAN; 4241 else 4242 // Completely unsafe. 4243 return {SPF_UNKNOWN, SPNB_NA, false}; 4244 } 4245 } 4246 4247 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4248 std::swap(CmpLHS, CmpRHS); 4249 Pred = CmpInst::getSwappedPredicate(Pred); 4250 if (NaNBehavior == SPNB_RETURNS_NAN) 4251 NaNBehavior = SPNB_RETURNS_OTHER; 4252 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4253 NaNBehavior = SPNB_RETURNS_NAN; 4254 Ordered = !Ordered; 4255 } 4256 4257 // ([if]cmp X, Y) ? X : Y 4258 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4259 switch (Pred) { 4260 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4261 case ICmpInst::ICMP_UGT: 4262 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4263 case ICmpInst::ICMP_SGT: 4264 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4265 case ICmpInst::ICMP_ULT: 4266 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4267 case ICmpInst::ICMP_SLT: 4268 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4269 case FCmpInst::FCMP_UGT: 4270 case FCmpInst::FCMP_UGE: 4271 case FCmpInst::FCMP_OGT: 4272 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4273 case FCmpInst::FCMP_ULT: 4274 case FCmpInst::FCMP_ULE: 4275 case FCmpInst::FCMP_OLT: 4276 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4277 } 4278 } 4279 4280 const APInt *C1; 4281 if (match(CmpRHS, m_APInt(C1))) { 4282 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4283 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4284 4285 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4286 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4287 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4288 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4289 } 4290 4291 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4292 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4293 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4294 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4295 } 4296 } 4297 } 4298 4299 if (CmpInst::isIntPredicate(Pred)) 4300 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4301 4302 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4303 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4304 // semantics than minNum. Be conservative in such case. 4305 if (NaNBehavior != SPNB_RETURNS_ANY || 4306 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4307 !isKnownNonZero(CmpRHS))) 4308 return {SPF_UNKNOWN, SPNB_NA, false}; 4309 4310 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4311 } 4312 4313 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4314 Instruction::CastOps *CastOp) { 4315 auto *Cast1 = dyn_cast<CastInst>(V1); 4316 if (!Cast1) 4317 return nullptr; 4318 4319 *CastOp = Cast1->getOpcode(); 4320 Type *SrcTy = Cast1->getSrcTy(); 4321 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4322 // If V1 and V2 are both the same cast from the same type, look through V1. 4323 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4324 return Cast2->getOperand(0); 4325 return nullptr; 4326 } 4327 4328 auto *C = dyn_cast<Constant>(V2); 4329 if (!C) 4330 return nullptr; 4331 4332 Constant *CastedTo = nullptr; 4333 switch (*CastOp) { 4334 case Instruction::ZExt: 4335 if (CmpI->isUnsigned()) 4336 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4337 break; 4338 case Instruction::SExt: 4339 if (CmpI->isSigned()) 4340 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4341 break; 4342 case Instruction::Trunc: 4343 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4344 break; 4345 case Instruction::FPTrunc: 4346 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4347 break; 4348 case Instruction::FPExt: 4349 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4350 break; 4351 case Instruction::FPToUI: 4352 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4353 break; 4354 case Instruction::FPToSI: 4355 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4356 break; 4357 case Instruction::UIToFP: 4358 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4359 break; 4360 case Instruction::SIToFP: 4361 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4362 break; 4363 default: 4364 break; 4365 } 4366 4367 if (!CastedTo) 4368 return nullptr; 4369 4370 // Make sure the cast doesn't lose any information. 4371 Constant *CastedBack = 4372 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4373 if (CastedBack != C) 4374 return nullptr; 4375 4376 return CastedTo; 4377 } 4378 4379 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4380 Instruction::CastOps *CastOp) { 4381 SelectInst *SI = dyn_cast<SelectInst>(V); 4382 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4383 4384 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4385 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4386 4387 CmpInst::Predicate Pred = CmpI->getPredicate(); 4388 Value *CmpLHS = CmpI->getOperand(0); 4389 Value *CmpRHS = CmpI->getOperand(1); 4390 Value *TrueVal = SI->getTrueValue(); 4391 Value *FalseVal = SI->getFalseValue(); 4392 FastMathFlags FMF; 4393 if (isa<FPMathOperator>(CmpI)) 4394 FMF = CmpI->getFastMathFlags(); 4395 4396 // Bail out early. 4397 if (CmpI->isEquality()) 4398 return {SPF_UNKNOWN, SPNB_NA, false}; 4399 4400 // Deal with type mismatches. 4401 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4402 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4403 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4404 cast<CastInst>(TrueVal)->getOperand(0), C, 4405 LHS, RHS); 4406 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4407 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4408 C, cast<CastInst>(FalseVal)->getOperand(0), 4409 LHS, RHS); 4410 } 4411 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4412 LHS, RHS); 4413 } 4414 4415 /// Return true if "icmp Pred LHS RHS" is always true. 4416 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4417 const Value *RHS, const DataLayout &DL, 4418 unsigned Depth) { 4419 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4420 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4421 return true; 4422 4423 switch (Pred) { 4424 default: 4425 return false; 4426 4427 case CmpInst::ICMP_SLE: { 4428 const APInt *C; 4429 4430 // LHS s<= LHS +_{nsw} C if C >= 0 4431 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4432 return !C->isNegative(); 4433 return false; 4434 } 4435 4436 case CmpInst::ICMP_ULE: { 4437 const APInt *C; 4438 4439 // LHS u<= LHS +_{nuw} C for any C 4440 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4441 return true; 4442 4443 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4444 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4445 const Value *&X, 4446 const APInt *&CA, const APInt *&CB) { 4447 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4448 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4449 return true; 4450 4451 // If X & C == 0 then (X | C) == X +_{nuw} C 4452 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4453 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4454 KnownBits Known(CA->getBitWidth()); 4455 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4456 /*CxtI*/ nullptr, /*DT*/ nullptr); 4457 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4458 return true; 4459 } 4460 4461 return false; 4462 }; 4463 4464 const Value *X; 4465 const APInt *CLHS, *CRHS; 4466 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4467 return CLHS->ule(*CRHS); 4468 4469 return false; 4470 } 4471 } 4472 } 4473 4474 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4475 /// ALHS ARHS" is true. Otherwise, return None. 4476 static Optional<bool> 4477 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4478 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4479 const DataLayout &DL, unsigned Depth) { 4480 switch (Pred) { 4481 default: 4482 return None; 4483 4484 case CmpInst::ICMP_SLT: 4485 case CmpInst::ICMP_SLE: 4486 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4487 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4488 return true; 4489 return None; 4490 4491 case CmpInst::ICMP_ULT: 4492 case CmpInst::ICMP_ULE: 4493 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4494 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4495 return true; 4496 return None; 4497 } 4498 } 4499 4500 /// Return true if the operands of the two compares match. IsSwappedOps is true 4501 /// when the operands match, but are swapped. 4502 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4503 const Value *BLHS, const Value *BRHS, 4504 bool &IsSwappedOps) { 4505 4506 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4507 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4508 return IsMatchingOps || IsSwappedOps; 4509 } 4510 4511 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4512 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4513 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4514 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4515 const Value *ALHS, 4516 const Value *ARHS, 4517 CmpInst::Predicate BPred, 4518 const Value *BLHS, 4519 const Value *BRHS, 4520 bool IsSwappedOps) { 4521 // Canonicalize the operands so they're matching. 4522 if (IsSwappedOps) { 4523 std::swap(BLHS, BRHS); 4524 BPred = ICmpInst::getSwappedPredicate(BPred); 4525 } 4526 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4527 return true; 4528 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4529 return false; 4530 4531 return None; 4532 } 4533 4534 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4535 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4536 /// C2" is false. Otherwise, return None if we can't infer anything. 4537 static Optional<bool> 4538 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4539 const ConstantInt *C1, 4540 CmpInst::Predicate BPred, 4541 const Value *BLHS, const ConstantInt *C2) { 4542 assert(ALHS == BLHS && "LHS operands must match."); 4543 ConstantRange DomCR = 4544 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4545 ConstantRange CR = 4546 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4547 ConstantRange Intersection = DomCR.intersectWith(CR); 4548 ConstantRange Difference = DomCR.difference(CR); 4549 if (Intersection.isEmptySet()) 4550 return false; 4551 if (Difference.isEmptySet()) 4552 return true; 4553 return None; 4554 } 4555 4556 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4557 /// false. Otherwise, return None if we can't infer anything. 4558 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4559 const ICmpInst *RHS, 4560 const DataLayout &DL, bool LHSIsTrue, 4561 unsigned Depth) { 4562 Value *ALHS = LHS->getOperand(0); 4563 Value *ARHS = LHS->getOperand(1); 4564 // The rest of the logic assumes the LHS condition is true. If that's not the 4565 // case, invert the predicate to make it so. 4566 ICmpInst::Predicate APred = 4567 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4568 4569 Value *BLHS = RHS->getOperand(0); 4570 Value *BRHS = RHS->getOperand(1); 4571 ICmpInst::Predicate BPred = RHS->getPredicate(); 4572 4573 // Can we infer anything when the two compares have matching operands? 4574 bool IsSwappedOps; 4575 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4576 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4577 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4578 return Implication; 4579 // No amount of additional analysis will infer the second condition, so 4580 // early exit. 4581 return None; 4582 } 4583 4584 // Can we infer anything when the LHS operands match and the RHS operands are 4585 // constants (not necessarily matching)? 4586 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4587 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4588 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4589 cast<ConstantInt>(BRHS))) 4590 return Implication; 4591 // No amount of additional analysis will infer the second condition, so 4592 // early exit. 4593 return None; 4594 } 4595 4596 if (APred == BPred) 4597 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4598 return None; 4599 } 4600 4601 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4602 /// false. Otherwise, return None if we can't infer anything. We expect the 4603 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4604 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4605 const ICmpInst *RHS, 4606 const DataLayout &DL, bool LHSIsTrue, 4607 unsigned Depth) { 4608 // The LHS must be an 'or' or an 'and' instruction. 4609 assert((LHS->getOpcode() == Instruction::And || 4610 LHS->getOpcode() == Instruction::Or) && 4611 "Expected LHS to be 'and' or 'or'."); 4612 4613 assert(Depth <= MaxDepth && "Hit recursion limit"); 4614 4615 // If the result of an 'or' is false, then we know both legs of the 'or' are 4616 // false. Similarly, if the result of an 'and' is true, then we know both 4617 // legs of the 'and' are true. 4618 Value *ALHS, *ARHS; 4619 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4620 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4621 // FIXME: Make this non-recursion. 4622 if (Optional<bool> Implication = 4623 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4624 return Implication; 4625 if (Optional<bool> Implication = 4626 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4627 return Implication; 4628 return None; 4629 } 4630 return None; 4631 } 4632 4633 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4634 const DataLayout &DL, bool LHSIsTrue, 4635 unsigned Depth) { 4636 // Bail out when we hit the limit. 4637 if (Depth == MaxDepth) 4638 return None; 4639 4640 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4641 // example. 4642 if (LHS->getType() != RHS->getType()) 4643 return None; 4644 4645 Type *OpTy = LHS->getType(); 4646 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4647 4648 // LHS ==> RHS by definition 4649 if (LHS == RHS) 4650 return LHSIsTrue; 4651 4652 // FIXME: Extending the code below to handle vectors. 4653 if (OpTy->isVectorTy()) 4654 return None; 4655 4656 assert(OpTy->isIntegerTy(1) && "implied by above"); 4657 4658 // Both LHS and RHS are icmps. 4659 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4660 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4661 if (LHSCmp && RHSCmp) 4662 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4663 4664 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4665 // an icmp. FIXME: Add support for and/or on the RHS. 4666 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4667 if (LHSBO && RHSCmp) { 4668 if ((LHSBO->getOpcode() == Instruction::And || 4669 LHSBO->getOpcode() == Instruction::Or)) 4670 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4671 } 4672 return None; 4673 } 4674