1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || 67 V->getType()->getScalarType()->isPointerTy()) && 68 "Not integer or pointer type!"); 69 assert((!TD || 70 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 71 (!V->getType()->isIntOrIntVectorTy() || 72 V->getType()->getScalarSizeInBits() == BitWidth) && 73 KnownZero.getBitWidth() == BitWidth && 74 KnownOne.getBitWidth() == BitWidth && 75 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 76 77 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 78 // We know all of the bits for a constant! 79 KnownOne = CI->getValue() & Mask; 80 KnownZero = ~KnownOne & Mask; 81 return; 82 } 83 // Null and aggregate-zero are all-zeros. 84 if (isa<ConstantPointerNull>(V) || 85 isa<ConstantAggregateZero>(V)) { 86 KnownOne.clearAllBits(); 87 KnownZero = Mask; 88 return; 89 } 90 // Handle a constant vector by taking the intersection of the known bits of 91 // each element. There is no real need to handle ConstantVector here, because 92 // we don't handle undef in any particularly useful way. 93 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 94 // We know that CDS must be a vector of integers. Take the intersection of 95 // each element. 96 KnownZero.setAllBits(); KnownOne.setAllBits(); 97 APInt Elt(KnownZero.getBitWidth(), 0); 98 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 99 Elt = CDS->getElementAsInteger(i); 100 KnownZero &= ~Elt; 101 KnownOne &= Elt; 102 } 103 return; 104 } 105 106 // The address of an aligned GlobalValue has trailing zeros. 107 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 108 unsigned Align = GV->getAlignment(); 109 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 110 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 111 Type *ObjectType = GVar->getType()->getElementType(); 112 // If the object is defined in the current Module, we'll be giving 113 // it the preferred alignment. Otherwise, we have to assume that it 114 // may only have the minimum ABI alignment. 115 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 116 Align = TD->getPreferredAlignment(GVar); 117 else 118 Align = TD->getABITypeAlignment(ObjectType); 119 } 120 } 121 if (Align > 0) 122 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 123 CountTrailingZeros_32(Align)); 124 else 125 KnownZero.clearAllBits(); 126 KnownOne.clearAllBits(); 127 return; 128 } 129 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 130 // the bits of its aliasee. 131 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 132 if (GA->mayBeOverridden()) { 133 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 134 } else { 135 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 136 TD, Depth+1); 137 } 138 return; 139 } 140 141 if (Argument *A = dyn_cast<Argument>(V)) { 142 // Get alignment information off byval arguments if specified in the IR. 143 if (A->hasByValAttr()) 144 if (unsigned Align = A->getParamAlignment()) 145 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 146 CountTrailingZeros_32(Align)); 147 return; 148 } 149 150 // Start out not knowing anything. 151 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 152 153 if (Depth == MaxDepth || Mask == 0) 154 return; // Limit search depth. 155 156 Operator *I = dyn_cast<Operator>(V); 157 if (!I) return; 158 159 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 160 switch (I->getOpcode()) { 161 default: break; 162 case Instruction::And: { 163 // If either the LHS or the RHS are Zero, the result is zero. 164 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 165 APInt Mask2(Mask & ~KnownZero); 166 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 167 Depth+1); 168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 169 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 170 171 // Output known-1 bits are only known if set in both the LHS & RHS. 172 KnownOne &= KnownOne2; 173 // Output known-0 are known to be clear if zero in either the LHS | RHS. 174 KnownZero |= KnownZero2; 175 return; 176 } 177 case Instruction::Or: { 178 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 179 APInt Mask2(Mask & ~KnownOne); 180 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 181 Depth+1); 182 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 183 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 184 185 // Output known-0 bits are only known if clear in both the LHS & RHS. 186 KnownZero &= KnownZero2; 187 // Output known-1 are known to be set if set in either the LHS | RHS. 188 KnownOne |= KnownOne2; 189 return; 190 } 191 case Instruction::Xor: { 192 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 193 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 194 Depth+1); 195 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 196 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are known if clear or set in both the LHS & RHS. 199 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 200 // Output known-1 are known to be set if set in only one of the LHS, RHS. 201 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 202 KnownZero = KnownZeroOut; 203 return; 204 } 205 case Instruction::Mul: { 206 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 207 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 208 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 209 Depth+1); 210 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 211 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 212 213 bool isKnownNegative = false; 214 bool isKnownNonNegative = false; 215 // If the multiplication is known not to overflow, compute the sign bit. 216 if (Mask.isNegative() && 217 cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { 218 Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); 219 if (Op1 == Op2) { 220 // The product of a number with itself is non-negative. 221 isKnownNonNegative = true; 222 } else { 223 bool isKnownNonNegative1 = KnownZero.isNegative(); 224 bool isKnownNonNegative2 = KnownZero2.isNegative(); 225 bool isKnownNegative1 = KnownOne.isNegative(); 226 bool isKnownNegative2 = KnownOne2.isNegative(); 227 // The product of two numbers with the same sign is non-negative. 228 isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || 229 (isKnownNonNegative1 && isKnownNonNegative2); 230 // The product of a negative number and a non-negative number is either 231 // negative or zero. 232 if (!isKnownNonNegative) 233 isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && 234 isKnownNonZero(Op2, TD, Depth)) || 235 (isKnownNegative2 && isKnownNonNegative1 && 236 isKnownNonZero(Op1, TD, Depth)); 237 } 238 } 239 240 // If low bits are zero in either operand, output low known-0 bits. 241 // Also compute a conserative estimate for high known-0 bits. 242 // More trickiness is possible, but this is sufficient for the 243 // interesting case of alignment computation. 244 KnownOne.clearAllBits(); 245 unsigned TrailZ = KnownZero.countTrailingOnes() + 246 KnownZero2.countTrailingOnes(); 247 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 248 KnownZero2.countLeadingOnes(), 249 BitWidth) - BitWidth; 250 251 TrailZ = std::min(TrailZ, BitWidth); 252 LeadZ = std::min(LeadZ, BitWidth); 253 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 254 APInt::getHighBitsSet(BitWidth, LeadZ); 255 KnownZero &= Mask; 256 257 // Only make use of no-wrap flags if we failed to compute the sign bit 258 // directly. This matters if the multiplication always overflows, in 259 // which case we prefer to follow the result of the direct computation, 260 // though as the program is invoking undefined behaviour we can choose 261 // whatever we like here. 262 if (isKnownNonNegative && !KnownOne.isNegative()) 263 KnownZero.setBit(BitWidth - 1); 264 else if (isKnownNegative && !KnownZero.isNegative()) 265 KnownOne.setBit(BitWidth - 1); 266 267 return; 268 } 269 case Instruction::UDiv: { 270 // For the purposes of computing leading zeros we can conservatively 271 // treat a udiv as a logical right shift by the power of 2 known to 272 // be less than the denominator. 273 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 274 ComputeMaskedBits(I->getOperand(0), 275 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 276 unsigned LeadZ = KnownZero2.countLeadingOnes(); 277 278 KnownOne2.clearAllBits(); 279 KnownZero2.clearAllBits(); 280 ComputeMaskedBits(I->getOperand(1), 281 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 282 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 283 if (RHSUnknownLeadingOnes != BitWidth) 284 LeadZ = std::min(BitWidth, 285 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 286 287 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 288 return; 289 } 290 case Instruction::Select: 291 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 292 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 293 Depth+1); 294 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 295 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 296 297 // Only known if known in both the LHS and RHS. 298 KnownOne &= KnownOne2; 299 KnownZero &= KnownZero2; 300 return; 301 case Instruction::FPTrunc: 302 case Instruction::FPExt: 303 case Instruction::FPToUI: 304 case Instruction::FPToSI: 305 case Instruction::SIToFP: 306 case Instruction::UIToFP: 307 return; // Can't work with floating point. 308 case Instruction::PtrToInt: 309 case Instruction::IntToPtr: 310 // We can't handle these if we don't know the pointer size. 311 if (!TD) return; 312 // FALL THROUGH and handle them the same as zext/trunc. 313 case Instruction::ZExt: 314 case Instruction::Trunc: { 315 Type *SrcTy = I->getOperand(0)->getType(); 316 317 unsigned SrcBitWidth; 318 // Note that we handle pointer operands here because of inttoptr/ptrtoint 319 // which fall through here. 320 if (SrcTy->isPointerTy()) 321 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 322 else 323 SrcBitWidth = SrcTy->getScalarSizeInBits(); 324 325 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 326 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 327 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 328 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 329 Depth+1); 330 KnownZero = KnownZero.zextOrTrunc(BitWidth); 331 KnownOne = KnownOne.zextOrTrunc(BitWidth); 332 // Any top bits are known to be zero. 333 if (BitWidth > SrcBitWidth) 334 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 335 return; 336 } 337 case Instruction::BitCast: { 338 Type *SrcTy = I->getOperand(0)->getType(); 339 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 340 // TODO: For now, not handling conversions like: 341 // (bitcast i64 %x to <2 x i32>) 342 !I->getType()->isVectorTy()) { 343 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 344 Depth+1); 345 return; 346 } 347 break; 348 } 349 case Instruction::SExt: { 350 // Compute the bits in the result that are not present in the input. 351 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 352 353 APInt MaskIn = Mask.trunc(SrcBitWidth); 354 KnownZero = KnownZero.trunc(SrcBitWidth); 355 KnownOne = KnownOne.trunc(SrcBitWidth); 356 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 357 Depth+1); 358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 359 KnownZero = KnownZero.zext(BitWidth); 360 KnownOne = KnownOne.zext(BitWidth); 361 362 // If the sign bit of the input is known set or clear, then we know the 363 // top bits of the result. 364 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 365 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 366 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 367 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 368 return; 369 } 370 case Instruction::Shl: 371 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 372 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 373 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 374 APInt Mask2(Mask.lshr(ShiftAmt)); 375 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 376 Depth+1); 377 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 378 KnownZero <<= ShiftAmt; 379 KnownOne <<= ShiftAmt; 380 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 381 return; 382 } 383 break; 384 case Instruction::LShr: 385 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 386 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 387 // Compute the new bits that are at the top now. 388 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 389 390 // Unsigned shift right. 391 APInt Mask2(Mask.shl(ShiftAmt)); 392 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 393 Depth+1); 394 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 395 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 396 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 397 // high bits known zero. 398 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 399 return; 400 } 401 break; 402 case Instruction::AShr: 403 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 404 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 405 // Compute the new bits that are at the top now. 406 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 407 408 // Signed shift right. 409 APInt Mask2(Mask.shl(ShiftAmt)); 410 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 411 Depth+1); 412 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 413 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 414 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 415 416 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 417 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 418 KnownZero |= HighBits; 419 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 420 KnownOne |= HighBits; 421 return; 422 } 423 break; 424 case Instruction::Sub: { 425 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 426 // We know that the top bits of C-X are clear if X contains less bits 427 // than C (i.e. no wrap-around can happen). For example, 20-X is 428 // positive if we can prove that X is >= 0 and < 16. 429 if (!CLHS->getValue().isNegative()) { 430 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 431 // NLZ can't be BitWidth with no sign bit 432 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 433 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 434 TD, Depth+1); 435 436 // If all of the MaskV bits are known to be zero, then we know the 437 // output top bits are zero, because we now know that the output is 438 // from [0-C]. 439 if ((KnownZero2 & MaskV) == MaskV) { 440 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 441 // Top bits known zero. 442 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 443 } 444 } 445 } 446 } 447 // fall through 448 case Instruction::Add: { 449 // If one of the operands has trailing zeros, then the bits that the 450 // other operand has in those bit positions will be preserved in the 451 // result. For an add, this works with either operand. For a subtract, 452 // this only works if the known zeros are in the right operand. 453 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 454 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 455 BitWidth - Mask.countLeadingZeros()); 456 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 457 Depth+1); 458 assert((LHSKnownZero & LHSKnownOne) == 0 && 459 "Bits known to be one AND zero?"); 460 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 461 462 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 463 Depth+1); 464 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 465 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 466 467 // Determine which operand has more trailing zeros, and use that 468 // many bits from the other operand. 469 if (LHSKnownZeroOut > RHSKnownZeroOut) { 470 if (I->getOpcode() == Instruction::Add) { 471 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 472 KnownZero |= KnownZero2 & Mask; 473 KnownOne |= KnownOne2 & Mask; 474 } else { 475 // If the known zeros are in the left operand for a subtract, 476 // fall back to the minimum known zeros in both operands. 477 KnownZero |= APInt::getLowBitsSet(BitWidth, 478 std::min(LHSKnownZeroOut, 479 RHSKnownZeroOut)); 480 } 481 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 482 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 483 KnownZero |= LHSKnownZero & Mask; 484 KnownOne |= LHSKnownOne & Mask; 485 } 486 487 // Are we still trying to solve for the sign bit? 488 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ 489 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); 490 if (OBO->hasNoSignedWrap()) { 491 if (I->getOpcode() == Instruction::Add) { 492 // Adding two positive numbers can't wrap into negative 493 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 494 KnownZero |= APInt::getSignBit(BitWidth); 495 // and adding two negative numbers can't wrap into positive. 496 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 497 KnownOne |= APInt::getSignBit(BitWidth); 498 } else { 499 // Subtracting a negative number from a positive one can't wrap 500 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 501 KnownZero |= APInt::getSignBit(BitWidth); 502 // neither can subtracting a positive number from a negative one. 503 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 504 KnownOne |= APInt::getSignBit(BitWidth); 505 } 506 } 507 } 508 509 return; 510 } 511 case Instruction::SRem: 512 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 513 APInt RA = Rem->getValue().abs(); 514 if (RA.isPowerOf2()) { 515 APInt LowBits = RA - 1; 516 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 517 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 518 Depth+1); 519 520 // The low bits of the first operand are unchanged by the srem. 521 KnownZero = KnownZero2 & LowBits; 522 KnownOne = KnownOne2 & LowBits; 523 524 // If the first operand is non-negative or has all low bits zero, then 525 // the upper bits are all zero. 526 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 527 KnownZero |= ~LowBits; 528 529 // If the first operand is negative and not all low bits are zero, then 530 // the upper bits are all one. 531 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 532 KnownOne |= ~LowBits; 533 534 KnownZero &= Mask; 535 KnownOne &= Mask; 536 537 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 538 } 539 } 540 541 // The sign bit is the LHS's sign bit, except when the result of the 542 // remainder is zero. 543 if (Mask.isNegative() && KnownZero.isNonNegative()) { 544 APInt Mask2 = APInt::getSignBit(BitWidth); 545 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 546 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 547 Depth+1); 548 // If it's known zero, our sign bit is also zero. 549 if (LHSKnownZero.isNegative()) 550 KnownZero |= LHSKnownZero; 551 } 552 553 break; 554 case Instruction::URem: { 555 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 556 APInt RA = Rem->getValue(); 557 if (RA.isPowerOf2()) { 558 APInt LowBits = (RA - 1); 559 APInt Mask2 = LowBits & Mask; 560 KnownZero |= ~LowBits & Mask; 561 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 562 Depth+1); 563 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 564 break; 565 } 566 } 567 568 // Since the result is less than or equal to either operand, any leading 569 // zero bits in either operand must also exist in the result. 570 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 571 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 572 TD, Depth+1); 573 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 574 TD, Depth+1); 575 576 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 577 KnownZero2.countLeadingOnes()); 578 KnownOne.clearAllBits(); 579 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 580 break; 581 } 582 583 case Instruction::Alloca: { 584 AllocaInst *AI = cast<AllocaInst>(V); 585 unsigned Align = AI->getAlignment(); 586 if (Align == 0 && TD) 587 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 588 589 if (Align > 0) 590 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 591 CountTrailingZeros_32(Align)); 592 break; 593 } 594 case Instruction::GetElementPtr: { 595 // Analyze all of the subscripts of this getelementptr instruction 596 // to determine if we can prove known low zero bits. 597 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 598 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 599 ComputeMaskedBits(I->getOperand(0), LocalMask, 600 LocalKnownZero, LocalKnownOne, TD, Depth+1); 601 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 602 603 gep_type_iterator GTI = gep_type_begin(I); 604 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 605 Value *Index = I->getOperand(i); 606 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 607 // Handle struct member offset arithmetic. 608 if (!TD) return; 609 const StructLayout *SL = TD->getStructLayout(STy); 610 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 611 uint64_t Offset = SL->getElementOffset(Idx); 612 TrailZ = std::min(TrailZ, 613 CountTrailingZeros_64(Offset)); 614 } else { 615 // Handle array index arithmetic. 616 Type *IndexedTy = GTI.getIndexedType(); 617 if (!IndexedTy->isSized()) return; 618 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 619 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 620 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 621 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 622 ComputeMaskedBits(Index, LocalMask, 623 LocalKnownZero, LocalKnownOne, TD, Depth+1); 624 TrailZ = std::min(TrailZ, 625 unsigned(CountTrailingZeros_64(TypeSize) + 626 LocalKnownZero.countTrailingOnes())); 627 } 628 } 629 630 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 631 break; 632 } 633 case Instruction::PHI: { 634 PHINode *P = cast<PHINode>(I); 635 // Handle the case of a simple two-predecessor recurrence PHI. 636 // There's a lot more that could theoretically be done here, but 637 // this is sufficient to catch some interesting cases. 638 if (P->getNumIncomingValues() == 2) { 639 for (unsigned i = 0; i != 2; ++i) { 640 Value *L = P->getIncomingValue(i); 641 Value *R = P->getIncomingValue(!i); 642 Operator *LU = dyn_cast<Operator>(L); 643 if (!LU) 644 continue; 645 unsigned Opcode = LU->getOpcode(); 646 // Check for operations that have the property that if 647 // both their operands have low zero bits, the result 648 // will have low zero bits. 649 if (Opcode == Instruction::Add || 650 Opcode == Instruction::Sub || 651 Opcode == Instruction::And || 652 Opcode == Instruction::Or || 653 Opcode == Instruction::Mul) { 654 Value *LL = LU->getOperand(0); 655 Value *LR = LU->getOperand(1); 656 // Find a recurrence. 657 if (LL == I) 658 L = LR; 659 else if (LR == I) 660 L = LL; 661 else 662 break; 663 // Ok, we have a PHI of the form L op= R. Check for low 664 // zero bits. 665 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 666 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 667 Mask2 = APInt::getLowBitsSet(BitWidth, 668 KnownZero2.countTrailingOnes()); 669 670 // We need to take the minimum number of known bits 671 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 672 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 673 674 KnownZero = Mask & 675 APInt::getLowBitsSet(BitWidth, 676 std::min(KnownZero2.countTrailingOnes(), 677 KnownZero3.countTrailingOnes())); 678 break; 679 } 680 } 681 } 682 683 // Unreachable blocks may have zero-operand PHI nodes. 684 if (P->getNumIncomingValues() == 0) 685 return; 686 687 // Otherwise take the unions of the known bit sets of the operands, 688 // taking conservative care to avoid excessive recursion. 689 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 690 // Skip if every incoming value references to ourself. 691 if (P->hasConstantValue() == P) 692 break; 693 694 KnownZero = APInt::getAllOnesValue(BitWidth); 695 KnownOne = APInt::getAllOnesValue(BitWidth); 696 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 697 // Skip direct self references. 698 if (P->getIncomingValue(i) == P) continue; 699 700 KnownZero2 = APInt(BitWidth, 0); 701 KnownOne2 = APInt(BitWidth, 0); 702 // Recurse, but cap the recursion to one level, because we don't 703 // want to waste time spinning around in loops. 704 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 705 KnownZero2, KnownOne2, TD, MaxDepth-1); 706 KnownZero &= KnownZero2; 707 KnownOne &= KnownOne2; 708 // If all bits have been ruled out, there's no need to check 709 // more operands. 710 if (!KnownZero && !KnownOne) 711 break; 712 } 713 } 714 break; 715 } 716 case Instruction::Call: 717 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 718 switch (II->getIntrinsicID()) { 719 default: break; 720 case Intrinsic::ctlz: 721 case Intrinsic::cttz: { 722 unsigned LowBits = Log2_32(BitWidth)+1; 723 // If this call is undefined for 0, the result will be less than 2^n. 724 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 725 LowBits -= 1; 726 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 727 break; 728 } 729 case Intrinsic::ctpop: { 730 unsigned LowBits = Log2_32(BitWidth)+1; 731 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 732 break; 733 } 734 case Intrinsic::x86_sse42_crc32_64_8: 735 case Intrinsic::x86_sse42_crc32_64_64: 736 KnownZero = APInt::getHighBitsSet(64, 32); 737 break; 738 } 739 } 740 break; 741 } 742 } 743 744 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 745 /// one. Convenience wrapper around ComputeMaskedBits. 746 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 747 const TargetData *TD, unsigned Depth) { 748 unsigned BitWidth = getBitWidth(V->getType(), TD); 749 if (!BitWidth) { 750 KnownZero = false; 751 KnownOne = false; 752 return; 753 } 754 APInt ZeroBits(BitWidth, 0); 755 APInt OneBits(BitWidth, 0); 756 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 757 Depth); 758 KnownOne = OneBits[BitWidth - 1]; 759 KnownZero = ZeroBits[BitWidth - 1]; 760 } 761 762 /// isPowerOfTwo - Return true if the given value is known to have exactly one 763 /// bit set when defined. For vectors return true if every element is known to 764 /// be a power of two when defined. Supports values with integer or pointer 765 /// types and vectors of integers. 766 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 767 unsigned Depth) { 768 if (Constant *C = dyn_cast<Constant>(V)) { 769 if (C->isNullValue()) 770 return OrZero; 771 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 772 return CI->getValue().isPowerOf2(); 773 // TODO: Handle vector constants. 774 } 775 776 // 1 << X is clearly a power of two if the one is not shifted off the end. If 777 // it is shifted off the end then the result is undefined. 778 if (match(V, m_Shl(m_One(), m_Value()))) 779 return true; 780 781 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 782 // bottom. If it is shifted off the bottom then the result is undefined. 783 if (match(V, m_LShr(m_SignBit(), m_Value()))) 784 return true; 785 786 // The remaining tests are all recursive, so bail out if we hit the limit. 787 if (Depth++ == MaxDepth) 788 return false; 789 790 Value *X = 0, *Y = 0; 791 // A shift of a power of two is a power of two or zero. 792 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 793 match(V, m_Shr(m_Value(X), m_Value())))) 794 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 795 796 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 797 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 798 799 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 800 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 801 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 802 803 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 804 // A power of two and'd with anything is a power of two or zero. 805 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 806 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 807 return true; 808 // X & (-X) is always a power of two or zero. 809 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 810 return true; 811 return false; 812 } 813 814 // An exact divide or right shift can only shift off zero bits, so the result 815 // is a power of two only if the first operand is a power of two and not 816 // copying a sign bit (sdiv int_min, 2). 817 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 818 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 819 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 820 } 821 822 return false; 823 } 824 825 /// isKnownNonZero - Return true if the given value is known to be non-zero 826 /// when defined. For vectors return true if every element is known to be 827 /// non-zero when defined. Supports values with integer or pointer type and 828 /// vectors of integers. 829 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 830 if (Constant *C = dyn_cast<Constant>(V)) { 831 if (C->isNullValue()) 832 return false; 833 if (isa<ConstantInt>(C)) 834 // Must be non-zero due to null test above. 835 return true; 836 // TODO: Handle vectors 837 return false; 838 } 839 840 // The remaining tests are all recursive, so bail out if we hit the limit. 841 if (Depth++ >= MaxDepth) 842 return false; 843 844 unsigned BitWidth = getBitWidth(V->getType(), TD); 845 846 // X | Y != 0 if X != 0 or Y != 0. 847 Value *X = 0, *Y = 0; 848 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 849 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 850 851 // ext X != 0 if X != 0. 852 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 853 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 854 855 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 856 // if the lowest bit is shifted off the end. 857 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 858 // shl nuw can't remove any non-zero bits. 859 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 860 if (BO->hasNoUnsignedWrap()) 861 return isKnownNonZero(X, TD, Depth); 862 863 APInt KnownZero(BitWidth, 0); 864 APInt KnownOne(BitWidth, 0); 865 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 866 if (KnownOne[0]) 867 return true; 868 } 869 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 870 // defined if the sign bit is shifted off the end. 871 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 872 // shr exact can only shift out zero bits. 873 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 874 if (BO->isExact()) 875 return isKnownNonZero(X, TD, Depth); 876 877 bool XKnownNonNegative, XKnownNegative; 878 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 879 if (XKnownNegative) 880 return true; 881 } 882 // div exact can only produce a zero if the dividend is zero. 883 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 884 return isKnownNonZero(X, TD, Depth); 885 } 886 // X + Y. 887 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 888 bool XKnownNonNegative, XKnownNegative; 889 bool YKnownNonNegative, YKnownNegative; 890 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 891 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 892 893 // If X and Y are both non-negative (as signed values) then their sum is not 894 // zero unless both X and Y are zero. 895 if (XKnownNonNegative && YKnownNonNegative) 896 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 897 return true; 898 899 // If X and Y are both negative (as signed values) then their sum is not 900 // zero unless both X and Y equal INT_MIN. 901 if (BitWidth && XKnownNegative && YKnownNegative) { 902 APInt KnownZero(BitWidth, 0); 903 APInt KnownOne(BitWidth, 0); 904 APInt Mask = APInt::getSignedMaxValue(BitWidth); 905 // The sign bit of X is set. If some other bit is set then X is not equal 906 // to INT_MIN. 907 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 908 if ((KnownOne & Mask) != 0) 909 return true; 910 // The sign bit of Y is set. If some other bit is set then Y is not equal 911 // to INT_MIN. 912 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 913 if ((KnownOne & Mask) != 0) 914 return true; 915 } 916 917 // The sum of a non-negative number and a power of two is not zero. 918 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 919 return true; 920 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 921 return true; 922 } 923 // X * Y. 924 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 925 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 926 // If X and Y are non-zero then so is X * Y as long as the multiplication 927 // does not overflow. 928 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 929 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 930 return true; 931 } 932 // (C ? X : Y) != 0 if X != 0 and Y != 0. 933 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 934 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 935 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 936 return true; 937 } 938 939 if (!BitWidth) return false; 940 APInt KnownZero(BitWidth, 0); 941 APInt KnownOne(BitWidth, 0); 942 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 943 TD, Depth); 944 return KnownOne != 0; 945 } 946 947 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 948 /// this predicate to simplify operations downstream. Mask is known to be zero 949 /// for bits that V cannot have. 950 /// 951 /// This function is defined on values with integer type, values with pointer 952 /// type (but only if TD is non-null), and vectors of integers. In the case 953 /// where V is a vector, the mask, known zero, and known one values are the 954 /// same width as the vector element, and the bit is set only if it is true 955 /// for all of the elements in the vector. 956 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 957 const TargetData *TD, unsigned Depth) { 958 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 959 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 960 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 961 return (KnownZero & Mask) == Mask; 962 } 963 964 965 966 /// ComputeNumSignBits - Return the number of times the sign bit of the 967 /// register is replicated into the other bits. We know that at least 1 bit 968 /// is always equal to the sign bit (itself), but other cases can give us 969 /// information. For example, immediately after an "ashr X, 2", we know that 970 /// the top 3 bits are all equal to each other, so we return 3. 971 /// 972 /// 'Op' must have a scalar integer type. 973 /// 974 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 975 unsigned Depth) { 976 assert((TD || V->getType()->isIntOrIntVectorTy()) && 977 "ComputeNumSignBits requires a TargetData object to operate " 978 "on non-integer values!"); 979 Type *Ty = V->getType(); 980 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 981 Ty->getScalarSizeInBits(); 982 unsigned Tmp, Tmp2; 983 unsigned FirstAnswer = 1; 984 985 // Note that ConstantInt is handled by the general ComputeMaskedBits case 986 // below. 987 988 if (Depth == 6) 989 return 1; // Limit search depth. 990 991 Operator *U = dyn_cast<Operator>(V); 992 switch (Operator::getOpcode(V)) { 993 default: break; 994 case Instruction::SExt: 995 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 996 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 997 998 case Instruction::AShr: { 999 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1000 // ashr X, C -> adds C sign bits. Vectors too. 1001 const APInt *ShAmt; 1002 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1003 Tmp += ShAmt->getZExtValue(); 1004 if (Tmp > TyBits) Tmp = TyBits; 1005 } 1006 return Tmp; 1007 } 1008 case Instruction::Shl: { 1009 const APInt *ShAmt; 1010 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1011 // shl destroys sign bits. 1012 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1013 Tmp2 = ShAmt->getZExtValue(); 1014 if (Tmp2 >= TyBits || // Bad shift. 1015 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1016 return Tmp - Tmp2; 1017 } 1018 break; 1019 } 1020 case Instruction::And: 1021 case Instruction::Or: 1022 case Instruction::Xor: // NOT is handled here. 1023 // Logical binary ops preserve the number of sign bits at the worst. 1024 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1025 if (Tmp != 1) { 1026 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1027 FirstAnswer = std::min(Tmp, Tmp2); 1028 // We computed what we know about the sign bits as our first 1029 // answer. Now proceed to the generic code that uses 1030 // ComputeMaskedBits, and pick whichever answer is better. 1031 } 1032 break; 1033 1034 case Instruction::Select: 1035 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1036 if (Tmp == 1) return 1; // Early out. 1037 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1038 return std::min(Tmp, Tmp2); 1039 1040 case Instruction::Add: 1041 // Add can have at most one carry bit. Thus we know that the output 1042 // is, at worst, one more bit than the inputs. 1043 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1044 if (Tmp == 1) return 1; // Early out. 1045 1046 // Special case decrementing a value (ADD X, -1): 1047 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1048 if (CRHS->isAllOnesValue()) { 1049 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1050 APInt Mask = APInt::getAllOnesValue(TyBits); 1051 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1052 Depth+1); 1053 1054 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1055 // sign bits set. 1056 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1057 return TyBits; 1058 1059 // If we are subtracting one from a positive number, there is no carry 1060 // out of the result. 1061 if (KnownZero.isNegative()) 1062 return Tmp; 1063 } 1064 1065 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1066 if (Tmp2 == 1) return 1; 1067 return std::min(Tmp, Tmp2)-1; 1068 1069 case Instruction::Sub: 1070 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1071 if (Tmp2 == 1) return 1; 1072 1073 // Handle NEG. 1074 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1075 if (CLHS->isNullValue()) { 1076 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1077 APInt Mask = APInt::getAllOnesValue(TyBits); 1078 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1079 TD, Depth+1); 1080 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1081 // sign bits set. 1082 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1083 return TyBits; 1084 1085 // If the input is known to be positive (the sign bit is known clear), 1086 // the output of the NEG has the same number of sign bits as the input. 1087 if (KnownZero.isNegative()) 1088 return Tmp2; 1089 1090 // Otherwise, we treat this like a SUB. 1091 } 1092 1093 // Sub can have at most one carry bit. Thus we know that the output 1094 // is, at worst, one more bit than the inputs. 1095 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1096 if (Tmp == 1) return 1; // Early out. 1097 return std::min(Tmp, Tmp2)-1; 1098 1099 case Instruction::PHI: { 1100 PHINode *PN = cast<PHINode>(U); 1101 // Don't analyze large in-degree PHIs. 1102 if (PN->getNumIncomingValues() > 4) break; 1103 1104 // Take the minimum of all incoming values. This can't infinitely loop 1105 // because of our depth threshold. 1106 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1107 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1108 if (Tmp == 1) return Tmp; 1109 Tmp = std::min(Tmp, 1110 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1111 } 1112 return Tmp; 1113 } 1114 1115 case Instruction::Trunc: 1116 // FIXME: it's tricky to do anything useful for this, but it is an important 1117 // case for targets like X86. 1118 break; 1119 } 1120 1121 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1122 // use this information. 1123 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1124 APInt Mask = APInt::getAllOnesValue(TyBits); 1125 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1126 1127 if (KnownZero.isNegative()) { // sign bit is 0 1128 Mask = KnownZero; 1129 } else if (KnownOne.isNegative()) { // sign bit is 1; 1130 Mask = KnownOne; 1131 } else { 1132 // Nothing known. 1133 return FirstAnswer; 1134 } 1135 1136 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1137 // the number of identical bits in the top of the input value. 1138 Mask = ~Mask; 1139 Mask <<= Mask.getBitWidth()-TyBits; 1140 // Return # leading zeros. We use 'min' here in case Val was zero before 1141 // shifting. We don't want to return '64' as for an i32 "0". 1142 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1143 } 1144 1145 /// ComputeMultiple - This function computes the integer multiple of Base that 1146 /// equals V. If successful, it returns true and returns the multiple in 1147 /// Multiple. If unsuccessful, it returns false. It looks 1148 /// through SExt instructions only if LookThroughSExt is true. 1149 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1150 bool LookThroughSExt, unsigned Depth) { 1151 const unsigned MaxDepth = 6; 1152 1153 assert(V && "No Value?"); 1154 assert(Depth <= MaxDepth && "Limit Search Depth"); 1155 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1156 1157 Type *T = V->getType(); 1158 1159 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1160 1161 if (Base == 0) 1162 return false; 1163 1164 if (Base == 1) { 1165 Multiple = V; 1166 return true; 1167 } 1168 1169 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1170 Constant *BaseVal = ConstantInt::get(T, Base); 1171 if (CO && CO == BaseVal) { 1172 // Multiple is 1. 1173 Multiple = ConstantInt::get(T, 1); 1174 return true; 1175 } 1176 1177 if (CI && CI->getZExtValue() % Base == 0) { 1178 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1179 return true; 1180 } 1181 1182 if (Depth == MaxDepth) return false; // Limit search depth. 1183 1184 Operator *I = dyn_cast<Operator>(V); 1185 if (!I) return false; 1186 1187 switch (I->getOpcode()) { 1188 default: break; 1189 case Instruction::SExt: 1190 if (!LookThroughSExt) return false; 1191 // otherwise fall through to ZExt 1192 case Instruction::ZExt: 1193 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1194 LookThroughSExt, Depth+1); 1195 case Instruction::Shl: 1196 case Instruction::Mul: { 1197 Value *Op0 = I->getOperand(0); 1198 Value *Op1 = I->getOperand(1); 1199 1200 if (I->getOpcode() == Instruction::Shl) { 1201 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1202 if (!Op1CI) return false; 1203 // Turn Op0 << Op1 into Op0 * 2^Op1 1204 APInt Op1Int = Op1CI->getValue(); 1205 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1206 APInt API(Op1Int.getBitWidth(), 0); 1207 API.setBit(BitToSet); 1208 Op1 = ConstantInt::get(V->getContext(), API); 1209 } 1210 1211 Value *Mul0 = NULL; 1212 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1213 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1214 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1215 if (Op1C->getType()->getPrimitiveSizeInBits() < 1216 MulC->getType()->getPrimitiveSizeInBits()) 1217 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1218 if (Op1C->getType()->getPrimitiveSizeInBits() > 1219 MulC->getType()->getPrimitiveSizeInBits()) 1220 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1221 1222 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1223 Multiple = ConstantExpr::getMul(MulC, Op1C); 1224 return true; 1225 } 1226 1227 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1228 if (Mul0CI->getValue() == 1) { 1229 // V == Base * Op1, so return Op1 1230 Multiple = Op1; 1231 return true; 1232 } 1233 } 1234 1235 Value *Mul1 = NULL; 1236 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1237 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1238 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1239 if (Op0C->getType()->getPrimitiveSizeInBits() < 1240 MulC->getType()->getPrimitiveSizeInBits()) 1241 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1242 if (Op0C->getType()->getPrimitiveSizeInBits() > 1243 MulC->getType()->getPrimitiveSizeInBits()) 1244 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1245 1246 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1247 Multiple = ConstantExpr::getMul(MulC, Op0C); 1248 return true; 1249 } 1250 1251 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1252 if (Mul1CI->getValue() == 1) { 1253 // V == Base * Op0, so return Op0 1254 Multiple = Op0; 1255 return true; 1256 } 1257 } 1258 } 1259 } 1260 1261 // We could not determine if V is a multiple of Base. 1262 return false; 1263 } 1264 1265 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1266 /// value is never equal to -0.0. 1267 /// 1268 /// NOTE: this function will need to be revisited when we support non-default 1269 /// rounding modes! 1270 /// 1271 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1273 return !CFP->getValueAPF().isNegZero(); 1274 1275 if (Depth == 6) 1276 return 1; // Limit search depth. 1277 1278 const Operator *I = dyn_cast<Operator>(V); 1279 if (I == 0) return false; 1280 1281 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1282 if (I->getOpcode() == Instruction::FAdd && 1283 isa<ConstantFP>(I->getOperand(1)) && 1284 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1285 return true; 1286 1287 // sitofp and uitofp turn into +0.0 for zero. 1288 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1289 return true; 1290 1291 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1292 // sqrt(-0.0) = -0.0, no other negative results are possible. 1293 if (II->getIntrinsicID() == Intrinsic::sqrt) 1294 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1295 1296 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1297 if (const Function *F = CI->getCalledFunction()) { 1298 if (F->isDeclaration()) { 1299 // abs(x) != -0.0 1300 if (F->getName() == "abs") return true; 1301 // fabs[lf](x) != -0.0 1302 if (F->getName() == "fabs") return true; 1303 if (F->getName() == "fabsf") return true; 1304 if (F->getName() == "fabsl") return true; 1305 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1306 F->getName() == "sqrtl") 1307 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1308 } 1309 } 1310 1311 return false; 1312 } 1313 1314 /// isBytewiseValue - If the specified value can be set by repeating the same 1315 /// byte in memory, return the i8 value that it is represented with. This is 1316 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1317 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1318 /// byte store (e.g. i16 0x1234), return null. 1319 Value *llvm::isBytewiseValue(Value *V) { 1320 // All byte-wide stores are splatable, even of arbitrary variables. 1321 if (V->getType()->isIntegerTy(8)) return V; 1322 1323 // Handle 'null' ConstantArrayZero etc. 1324 if (Constant *C = dyn_cast<Constant>(V)) 1325 if (C->isNullValue()) 1326 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1327 1328 // Constant float and double values can be handled as integer values if the 1329 // corresponding integer value is "byteable". An important case is 0.0. 1330 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1331 if (CFP->getType()->isFloatTy()) 1332 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1333 if (CFP->getType()->isDoubleTy()) 1334 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1335 // Don't handle long double formats, which have strange constraints. 1336 } 1337 1338 // We can handle constant integers that are power of two in size and a 1339 // multiple of 8 bits. 1340 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1341 unsigned Width = CI->getBitWidth(); 1342 if (isPowerOf2_32(Width) && Width > 8) { 1343 // We can handle this value if the recursive binary decomposition is the 1344 // same at all levels. 1345 APInt Val = CI->getValue(); 1346 APInt Val2; 1347 while (Val.getBitWidth() != 8) { 1348 unsigned NextWidth = Val.getBitWidth()/2; 1349 Val2 = Val.lshr(NextWidth); 1350 Val2 = Val2.trunc(Val.getBitWidth()/2); 1351 Val = Val.trunc(Val.getBitWidth()/2); 1352 1353 // If the top/bottom halves aren't the same, reject it. 1354 if (Val != Val2) 1355 return 0; 1356 } 1357 return ConstantInt::get(V->getContext(), Val); 1358 } 1359 } 1360 1361 // A ConstantDataArray/Vector is splatable if all its members are equal and 1362 // also splatable. 1363 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1364 Value *Elt = CA->getElementAsConstant(0); 1365 Value *Val = isBytewiseValue(Elt); 1366 if (!Val) 1367 return 0; 1368 1369 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1370 if (CA->getElementAsConstant(I) != Elt) 1371 return 0; 1372 1373 return Val; 1374 } 1375 1376 // Conceptually, we could handle things like: 1377 // %a = zext i8 %X to i16 1378 // %b = shl i16 %a, 8 1379 // %c = or i16 %a, %b 1380 // but until there is an example that actually needs this, it doesn't seem 1381 // worth worrying about. 1382 return 0; 1383 } 1384 1385 1386 // This is the recursive version of BuildSubAggregate. It takes a few different 1387 // arguments. Idxs is the index within the nested struct From that we are 1388 // looking at now (which is of type IndexedType). IdxSkip is the number of 1389 // indices from Idxs that should be left out when inserting into the resulting 1390 // struct. To is the result struct built so far, new insertvalue instructions 1391 // build on that. 1392 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1393 SmallVector<unsigned, 10> &Idxs, 1394 unsigned IdxSkip, 1395 Instruction *InsertBefore) { 1396 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1397 if (STy) { 1398 // Save the original To argument so we can modify it 1399 Value *OrigTo = To; 1400 // General case, the type indexed by Idxs is a struct 1401 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1402 // Process each struct element recursively 1403 Idxs.push_back(i); 1404 Value *PrevTo = To; 1405 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1406 InsertBefore); 1407 Idxs.pop_back(); 1408 if (!To) { 1409 // Couldn't find any inserted value for this index? Cleanup 1410 while (PrevTo != OrigTo) { 1411 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1412 PrevTo = Del->getAggregateOperand(); 1413 Del->eraseFromParent(); 1414 } 1415 // Stop processing elements 1416 break; 1417 } 1418 } 1419 // If we successfully found a value for each of our subaggregates 1420 if (To) 1421 return To; 1422 } 1423 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1424 // the struct's elements had a value that was inserted directly. In the latter 1425 // case, perhaps we can't determine each of the subelements individually, but 1426 // we might be able to find the complete struct somewhere. 1427 1428 // Find the value that is at that particular spot 1429 Value *V = FindInsertedValue(From, Idxs); 1430 1431 if (!V) 1432 return NULL; 1433 1434 // Insert the value in the new (sub) aggregrate 1435 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1436 "tmp", InsertBefore); 1437 } 1438 1439 // This helper takes a nested struct and extracts a part of it (which is again a 1440 // struct) into a new value. For example, given the struct: 1441 // { a, { b, { c, d }, e } } 1442 // and the indices "1, 1" this returns 1443 // { c, d }. 1444 // 1445 // It does this by inserting an insertvalue for each element in the resulting 1446 // struct, as opposed to just inserting a single struct. This will only work if 1447 // each of the elements of the substruct are known (ie, inserted into From by an 1448 // insertvalue instruction somewhere). 1449 // 1450 // All inserted insertvalue instructions are inserted before InsertBefore 1451 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1452 Instruction *InsertBefore) { 1453 assert(InsertBefore && "Must have someplace to insert!"); 1454 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1455 idx_range); 1456 Value *To = UndefValue::get(IndexedType); 1457 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1458 unsigned IdxSkip = Idxs.size(); 1459 1460 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1461 } 1462 1463 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1464 /// the scalar value indexed is already around as a register, for example if it 1465 /// were inserted directly into the aggregrate. 1466 /// 1467 /// If InsertBefore is not null, this function will duplicate (modified) 1468 /// insertvalues when a part of a nested struct is extracted. 1469 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1470 Instruction *InsertBefore) { 1471 // Nothing to index? Just return V then (this is useful at the end of our 1472 // recursion). 1473 if (idx_range.empty()) 1474 return V; 1475 // We have indices, so V should have an indexable type. 1476 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1477 "Not looking at a struct or array?"); 1478 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1479 "Invalid indices for type?"); 1480 1481 if (Constant *C = dyn_cast<Constant>(V)) { 1482 C = C->getAggregateElement(idx_range[0]); 1483 if (C == 0) return 0; 1484 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1485 } 1486 1487 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1488 // Loop the indices for the insertvalue instruction in parallel with the 1489 // requested indices 1490 const unsigned *req_idx = idx_range.begin(); 1491 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1492 i != e; ++i, ++req_idx) { 1493 if (req_idx == idx_range.end()) { 1494 // We can't handle this without inserting insertvalues 1495 if (!InsertBefore) 1496 return 0; 1497 1498 // The requested index identifies a part of a nested aggregate. Handle 1499 // this specially. For example, 1500 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1501 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1502 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1503 // This can be changed into 1504 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1505 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1506 // which allows the unused 0,0 element from the nested struct to be 1507 // removed. 1508 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1509 InsertBefore); 1510 } 1511 1512 // This insert value inserts something else than what we are looking for. 1513 // See if the (aggregrate) value inserted into has the value we are 1514 // looking for, then. 1515 if (*req_idx != *i) 1516 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1517 InsertBefore); 1518 } 1519 // If we end up here, the indices of the insertvalue match with those 1520 // requested (though possibly only partially). Now we recursively look at 1521 // the inserted value, passing any remaining indices. 1522 return FindInsertedValue(I->getInsertedValueOperand(), 1523 makeArrayRef(req_idx, idx_range.end()), 1524 InsertBefore); 1525 } 1526 1527 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1528 // If we're extracting a value from an aggregrate that was extracted from 1529 // something else, we can extract from that something else directly instead. 1530 // However, we will need to chain I's indices with the requested indices. 1531 1532 // Calculate the number of indices required 1533 unsigned size = I->getNumIndices() + idx_range.size(); 1534 // Allocate some space to put the new indices in 1535 SmallVector<unsigned, 5> Idxs; 1536 Idxs.reserve(size); 1537 // Add indices from the extract value instruction 1538 Idxs.append(I->idx_begin(), I->idx_end()); 1539 1540 // Add requested indices 1541 Idxs.append(idx_range.begin(), idx_range.end()); 1542 1543 assert(Idxs.size() == size 1544 && "Number of indices added not correct?"); 1545 1546 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1547 } 1548 // Otherwise, we don't know (such as, extracting from a function return value 1549 // or load instruction) 1550 return 0; 1551 } 1552 1553 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1554 /// it can be expressed as a base pointer plus a constant offset. Return the 1555 /// base and offset to the caller. 1556 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1557 const TargetData &TD) { 1558 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1559 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1560 return Ptr; 1561 1562 // Just look through bitcasts. 1563 if (PtrOp->getOpcode() == Instruction::BitCast) 1564 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1565 1566 // If this is a GEP with constant indices, we can look through it. 1567 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1568 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1569 1570 gep_type_iterator GTI = gep_type_begin(GEP); 1571 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1572 ++I, ++GTI) { 1573 ConstantInt *OpC = cast<ConstantInt>(*I); 1574 if (OpC->isZero()) continue; 1575 1576 // Handle a struct and array indices which add their offset to the pointer. 1577 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1578 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1579 } else { 1580 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1581 Offset += OpC->getSExtValue()*Size; 1582 } 1583 } 1584 1585 // Re-sign extend from the pointer size if needed to get overflow edge cases 1586 // right. 1587 unsigned PtrSize = TD.getPointerSizeInBits(); 1588 if (PtrSize < 64) 1589 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1590 1591 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1592 } 1593 1594 1595 /// getConstantStringInfo - This function computes the length of a 1596 /// null-terminated C string pointed to by V. If successful, it returns true 1597 /// and returns the string in Str. If unsuccessful, it returns false. 1598 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1599 uint64_t Offset, bool TrimAtNul) { 1600 assert(V); 1601 1602 // Look through bitcast instructions and geps. 1603 V = V->stripPointerCasts(); 1604 1605 // If the value is a GEP instructionor constant expression, treat it as an 1606 // offset. 1607 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1608 // Make sure the GEP has exactly three arguments. 1609 if (GEP->getNumOperands() != 3) 1610 return false; 1611 1612 // Make sure the index-ee is a pointer to array of i8. 1613 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1614 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1615 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1616 return false; 1617 1618 // Check to make sure that the first operand of the GEP is an integer and 1619 // has value 0 so that we are sure we're indexing into the initializer. 1620 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1621 if (FirstIdx == 0 || !FirstIdx->isZero()) 1622 return false; 1623 1624 // If the second index isn't a ConstantInt, then this is a variable index 1625 // into the array. If this occurs, we can't say anything meaningful about 1626 // the string. 1627 uint64_t StartIdx = 0; 1628 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1629 StartIdx = CI->getZExtValue(); 1630 else 1631 return false; 1632 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1633 } 1634 1635 // The GEP instruction, constant or instruction, must reference a global 1636 // variable that is a constant and is initialized. The referenced constant 1637 // initializer is the array that we'll use for optimization. 1638 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1639 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1640 return false; 1641 1642 // Handle the all-zeros case 1643 if (GV->getInitializer()->isNullValue()) { 1644 // This is a degenerate case. The initializer is constant zero so the 1645 // length of the string must be zero. 1646 Str = ""; 1647 return true; 1648 } 1649 1650 // Must be a Constant Array 1651 const ConstantDataArray *Array = 1652 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1653 if (Array == 0 || !Array->isString()) 1654 return false; 1655 1656 // Get the number of elements in the array 1657 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1658 1659 // Start out with the entire array in the StringRef. 1660 Str = Array->getAsString(); 1661 1662 if (Offset > NumElts) 1663 return false; 1664 1665 // Skip over 'offset' bytes. 1666 Str = Str.substr(Offset); 1667 1668 if (TrimAtNul) { 1669 // Trim off the \0 and anything after it. If the array is not nul 1670 // terminated, we just return the whole end of string. The client may know 1671 // some other way that the string is length-bound. 1672 Str = Str.substr(0, Str.find('\0')); 1673 } 1674 return true; 1675 } 1676 1677 // These next two are very similar to the above, but also look through PHI 1678 // nodes. 1679 // TODO: See if we can integrate these two together. 1680 1681 /// GetStringLengthH - If we can compute the length of the string pointed to by 1682 /// the specified pointer, return 'len+1'. If we can't, return 0. 1683 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1684 // Look through noop bitcast instructions. 1685 V = V->stripPointerCasts(); 1686 1687 // If this is a PHI node, there are two cases: either we have already seen it 1688 // or we haven't. 1689 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1690 if (!PHIs.insert(PN)) 1691 return ~0ULL; // already in the set. 1692 1693 // If it was new, see if all the input strings are the same length. 1694 uint64_t LenSoFar = ~0ULL; 1695 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1696 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1697 if (Len == 0) return 0; // Unknown length -> unknown. 1698 1699 if (Len == ~0ULL) continue; 1700 1701 if (Len != LenSoFar && LenSoFar != ~0ULL) 1702 return 0; // Disagree -> unknown. 1703 LenSoFar = Len; 1704 } 1705 1706 // Success, all agree. 1707 return LenSoFar; 1708 } 1709 1710 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1711 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1712 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1713 if (Len1 == 0) return 0; 1714 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1715 if (Len2 == 0) return 0; 1716 if (Len1 == ~0ULL) return Len2; 1717 if (Len2 == ~0ULL) return Len1; 1718 if (Len1 != Len2) return 0; 1719 return Len1; 1720 } 1721 1722 // Otherwise, see if we can read the string. 1723 StringRef StrData; 1724 if (!getConstantStringInfo(V, StrData)) 1725 return 0; 1726 1727 return StrData.size()+1; 1728 } 1729 1730 /// GetStringLength - If we can compute the length of the string pointed to by 1731 /// the specified pointer, return 'len+1'. If we can't, return 0. 1732 uint64_t llvm::GetStringLength(Value *V) { 1733 if (!V->getType()->isPointerTy()) return 0; 1734 1735 SmallPtrSet<PHINode*, 32> PHIs; 1736 uint64_t Len = GetStringLengthH(V, PHIs); 1737 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1738 // an empty string as a length. 1739 return Len == ~0ULL ? 1 : Len; 1740 } 1741 1742 Value * 1743 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1744 if (!V->getType()->isPointerTy()) 1745 return V; 1746 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1747 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1748 V = GEP->getPointerOperand(); 1749 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1750 V = cast<Operator>(V)->getOperand(0); 1751 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1752 if (GA->mayBeOverridden()) 1753 return V; 1754 V = GA->getAliasee(); 1755 } else { 1756 // See if InstructionSimplify knows any relevant tricks. 1757 if (Instruction *I = dyn_cast<Instruction>(V)) 1758 // TODO: Acquire a DominatorTree and use it. 1759 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1760 V = Simplified; 1761 continue; 1762 } 1763 1764 return V; 1765 } 1766 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1767 } 1768 return V; 1769 } 1770 1771 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1772 /// are lifetime markers. 1773 /// 1774 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1775 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1776 UI != UE; ++UI) { 1777 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1778 if (!II) return false; 1779 1780 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1781 II->getIntrinsicID() != Intrinsic::lifetime_end) 1782 return false; 1783 } 1784 return true; 1785 } 1786 1787 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1788 const TargetData *TD) { 1789 const Operator *Inst = dyn_cast<Operator>(V); 1790 if (!Inst) 1791 return false; 1792 1793 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1794 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1795 if (C->canTrap()) 1796 return false; 1797 1798 switch (Inst->getOpcode()) { 1799 default: 1800 return true; 1801 case Instruction::UDiv: 1802 case Instruction::URem: 1803 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1804 return isKnownNonZero(Inst->getOperand(1), TD); 1805 case Instruction::SDiv: 1806 case Instruction::SRem: { 1807 Value *Op = Inst->getOperand(1); 1808 // x / y is undefined if y == 0 1809 if (!isKnownNonZero(Op, TD)) 1810 return false; 1811 // x / y might be undefined if y == -1 1812 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1813 if (BitWidth == 0) 1814 return false; 1815 APInt KnownZero(BitWidth, 0); 1816 APInt KnownOne(BitWidth, 0); 1817 ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth), 1818 KnownZero, KnownOne, TD); 1819 return !!KnownZero; 1820 } 1821 case Instruction::Load: { 1822 const LoadInst *LI = cast<LoadInst>(Inst); 1823 if (!LI->isUnordered()) 1824 return false; 1825 return LI->getPointerOperand()->isDereferenceablePointer(); 1826 } 1827 case Instruction::Call: { 1828 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1829 switch (II->getIntrinsicID()) { 1830 case Intrinsic::bswap: 1831 case Intrinsic::ctlz: 1832 case Intrinsic::ctpop: 1833 case Intrinsic::cttz: 1834 case Intrinsic::objectsize: 1835 case Intrinsic::sadd_with_overflow: 1836 case Intrinsic::smul_with_overflow: 1837 case Intrinsic::ssub_with_overflow: 1838 case Intrinsic::uadd_with_overflow: 1839 case Intrinsic::umul_with_overflow: 1840 case Intrinsic::usub_with_overflow: 1841 return true; 1842 // TODO: some fp intrinsics are marked as having the same error handling 1843 // as libm. They're safe to speculate when they won't error. 1844 // TODO: are convert_{from,to}_fp16 safe? 1845 // TODO: can we list target-specific intrinsics here? 1846 default: break; 1847 } 1848 } 1849 return false; // The called function could have undefined behavior or 1850 // side-effects, even if marked readnone nounwind. 1851 } 1852 case Instruction::VAArg: 1853 case Instruction::Alloca: 1854 case Instruction::Invoke: 1855 case Instruction::PHI: 1856 case Instruction::Store: 1857 case Instruction::Ret: 1858 case Instruction::Br: 1859 case Instruction::IndirectBr: 1860 case Instruction::Switch: 1861 case Instruction::Unreachable: 1862 case Instruction::Fence: 1863 case Instruction::LandingPad: 1864 case Instruction::AtomicRMW: 1865 case Instruction::AtomicCmpXchg: 1866 case Instruction::Resume: 1867 return false; // Misc instructions which have effects 1868 } 1869 } 1870