1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = !{ !"an example type tree" }
27 //   !1 = !{ !"int", !0 }
28 //   !2 = !{ !"float", !0 }
29 //   !3 = !{ !"const float", !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a scalar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = !{!"Simple C/C++ TBAA"}
78 // !1 = !{!"omnipotent char", !0} // Scalar type node
79 // !2 = !{!"short", !1}           // Scalar type node
80 // !3 = !{!"A", !2, i64 0}        // Struct type node
81 // !4 = !{!"B", !2, i64 0, !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = !{!4, !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 //===----------------------------------------------------------------------===//
108 
109 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
110 #include "llvm/ADT/SetVector.h"
111 #include "llvm/Analysis/AliasAnalysis.h"
112 #include "llvm/Analysis/MemoryLocation.h"
113 #include "llvm/IR/Constants.h"
114 #include "llvm/IR/DerivedTypes.h"
115 #include "llvm/IR/Instruction.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include <cassert>
123 #include <cstdint>
124 
125 using namespace llvm;
126 
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 // more convenient.
130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
131 
132 namespace {
133 
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
136 static bool isNewFormatTypeNode(const MDNode *N) {
137   if (N->getNumOperands() < 3)
138     return false;
139   // In the old format the first operand is a string.
140   if (!isa<MDNode>(N->getOperand(0)))
141     return false;
142   return true;
143 }
144 
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
147 /// in its operands.
148 template<typename MDNodeTy>
149 class TBAANodeImpl {
150   MDNodeTy *Node = nullptr;
151 
152 public:
153   TBAANodeImpl() = default;
154   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
155 
156   /// getNode - Get the MDNode for this TBAANode.
157   MDNodeTy *getNode() const { return Node; }
158 
159   /// isNewFormat - Return true iff the wrapped type node is in the new
160   /// size-aware format.
161   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
162 
163   /// getParent - Get this TBAANode's Alias tree parent.
164   TBAANodeImpl<MDNodeTy> getParent() const {
165     if (isNewFormat())
166       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
167 
168     if (Node->getNumOperands() < 2)
169       return TBAANodeImpl<MDNodeTy>();
170     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
171     if (!P)
172       return TBAANodeImpl<MDNodeTy>();
173     // Ok, this node has a valid parent. Return it.
174     return TBAANodeImpl<MDNodeTy>(P);
175   }
176 
177   /// Test if this TBAANode represents a type for objects which are
178   /// not modified (by any means) in the context where this
179   /// AliasAnalysis is relevant.
180   bool isTypeImmutable() const {
181     if (Node->getNumOperands() < 3)
182       return false;
183     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
184     if (!CI)
185       return false;
186     return CI->getValue()[0];
187   }
188 };
189 
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
191 /// \c MDNode.
192 /// @{
193 using TBAANode = TBAANodeImpl<const MDNode>;
194 using MutableTBAANode = TBAANodeImpl<MDNode>;
195 /// @}
196 
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy>
201 class TBAAStructTagNodeImpl {
202   /// This node should be created with createTBAAAccessTag().
203   MDNodeTy *Node;
204 
205 public:
206   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
207 
208   /// Get the MDNode for this TBAAStructTagNode.
209   MDNodeTy *getNode() const { return Node; }
210 
211   /// isNewFormat - Return true iff the wrapped access tag is in the new
212   /// size-aware format.
213   bool isNewFormat() const {
214     if (Node->getNumOperands() < 4)
215       return false;
216     if (MDNodeTy *AccessType = getAccessType())
217       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
218         return false;
219     return true;
220   }
221 
222   MDNodeTy *getBaseType() const {
223     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
224   }
225 
226   MDNodeTy *getAccessType() const {
227     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
228   }
229 
230   uint64_t getOffset() const {
231     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
232   }
233 
234   uint64_t getSize() const {
235     if (!isNewFormat())
236       return UINT64_MAX;
237     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
238   }
239 
240   /// Test if this TBAAStructTagNode represents a type for objects
241   /// which are not modified (by any means) in the context where this
242   /// AliasAnalysis is relevant.
243   bool isTypeImmutable() const {
244     unsigned OpNo = isNewFormat() ? 4 : 3;
245     if (Node->getNumOperands() < OpNo + 1)
246       return false;
247     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
248     if (!CI)
249       return false;
250     return CI->getValue()[0];
251   }
252 };
253 
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
256 /// @{
257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
259 /// @}
260 
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode {
265   /// This node should be created with createTBAATypeNode().
266   const MDNode *Node = nullptr;
267 
268 public:
269   TBAAStructTypeNode() = default;
270   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
271 
272   /// Get the MDNode for this TBAAStructTypeNode.
273   const MDNode *getNode() const { return Node; }
274 
275   /// isNewFormat - Return true iff the wrapped type node is in the new
276   /// size-aware format.
277   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
278 
279   bool operator==(const TBAAStructTypeNode &Other) const {
280     return getNode() == Other.getNode();
281   }
282 
283   /// getId - Return type identifier.
284   Metadata *getId() const {
285     return Node->getOperand(isNewFormat() ? 2 : 0);
286   }
287 
288   unsigned getNumFields() const {
289     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
290     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
291     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
292   }
293 
294   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
295     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
296     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
297     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
298     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
299     return TBAAStructTypeNode(TypeNode);
300   }
301 
302   /// Get this TBAAStructTypeNode's field in the type DAG with
303   /// given offset. Update the offset to be relative to the field type.
304   TBAAStructTypeNode getField(uint64_t &Offset) const {
305     bool NewFormat = isNewFormat();
306     if (NewFormat) {
307       // New-format root and scalar type nodes have no fields.
308       if (Node->getNumOperands() < 6)
309         return TBAAStructTypeNode();
310     } else {
311       // Parent can be omitted for the root node.
312       if (Node->getNumOperands() < 2)
313         return TBAAStructTypeNode();
314 
315       // Fast path for a scalar type node and a struct type node with a single
316       // field.
317       if (Node->getNumOperands() <= 3) {
318         uint64_t Cur = Node->getNumOperands() == 2
319                            ? 0
320                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
321                                  ->getZExtValue();
322         Offset -= Cur;
323         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
324         if (!P)
325           return TBAAStructTypeNode();
326         return TBAAStructTypeNode(P);
327       }
328     }
329 
330     // Assume the offsets are in order. We return the previous field if
331     // the current offset is bigger than the given offset.
332     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
333     unsigned NumOpsPerField = NewFormat ? 3 : 2;
334     unsigned TheIdx = 0;
335     for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
336          Idx += NumOpsPerField) {
337       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
338                          ->getZExtValue();
339       if (Cur > Offset) {
340         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
341                "TBAAStructTypeNode::getField should have an offset match!");
342         TheIdx = Idx - NumOpsPerField;
343         break;
344       }
345     }
346     // Move along the last field.
347     if (TheIdx == 0)
348       TheIdx = Node->getNumOperands() - NumOpsPerField;
349     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
350                        ->getZExtValue();
351     Offset -= Cur;
352     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
353     if (!P)
354       return TBAAStructTypeNode();
355     return TBAAStructTypeNode(P);
356   }
357 };
358 
359 } // end anonymous namespace
360 
361 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
362 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
363 /// format.
364 static bool isStructPathTBAA(const MDNode *MD) {
365   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
366   // a TBAA tag.
367   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
368 }
369 
370 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
371                                      const MemoryLocation &LocB) {
372   if (!EnableTBAA)
373     return AAResultBase::alias(LocA, LocB);
374 
375   // If accesses may alias, chain to the next AliasAnalysis.
376   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
377     return AAResultBase::alias(LocA, LocB);
378 
379   // Otherwise return a definitive result.
380   return NoAlias;
381 }
382 
383 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
384                                                bool OrLocal) {
385   if (!EnableTBAA)
386     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
387 
388   const MDNode *M = Loc.AATags.TBAA;
389   if (!M)
390     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
391 
392   // If this is an "immutable" type, we can assume the pointer is pointing
393   // to constant memory.
394   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
395       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
396     return true;
397 
398   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
399 }
400 
401 FunctionModRefBehavior
402 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
403   if (!EnableTBAA)
404     return AAResultBase::getModRefBehavior(CS);
405 
406   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
407 
408   // If this is an "immutable" type, we can assume the call doesn't write
409   // to memory.
410   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
411     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
412         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
413       Min = FMRB_OnlyReadsMemory;
414 
415   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
416 }
417 
418 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
419   // Functions don't have metadata. Just chain to the next implementation.
420   return AAResultBase::getModRefBehavior(F);
421 }
422 
423 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
424                                             const MemoryLocation &Loc) {
425   if (!EnableTBAA)
426     return AAResultBase::getModRefInfo(CS, Loc);
427 
428   if (const MDNode *L = Loc.AATags.TBAA)
429     if (const MDNode *M =
430             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
431       if (!Aliases(L, M))
432         return ModRefInfo::NoModRef;
433 
434   return AAResultBase::getModRefInfo(CS, Loc);
435 }
436 
437 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
438                                             ImmutableCallSite CS2) {
439   if (!EnableTBAA)
440     return AAResultBase::getModRefInfo(CS1, CS2);
441 
442   if (const MDNode *M1 =
443           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
444     if (const MDNode *M2 =
445             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
446       if (!Aliases(M1, M2))
447         return ModRefInfo::NoModRef;
448 
449   return AAResultBase::getModRefInfo(CS1, CS2);
450 }
451 
452 bool MDNode::isTBAAVtableAccess() const {
453   if (!isStructPathTBAA(this)) {
454     if (getNumOperands() < 1)
455       return false;
456     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
457       if (Tag1->getString() == "vtable pointer")
458         return true;
459     }
460     return false;
461   }
462 
463   // For struct-path aware TBAA, we use the access type of the tag.
464   TBAAStructTagNode Tag(this);
465   TBAAStructTypeNode AccessType(Tag.getAccessType());
466   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
467     if (Id->getString() == "vtable pointer")
468       return true;
469   return false;
470 }
471 
472 static bool matchAccessTags(const MDNode *A, const MDNode *B,
473                             const MDNode **GenericTag = nullptr);
474 
475 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
476   const MDNode *GenericTag;
477   matchAccessTags(A, B, &GenericTag);
478   return const_cast<MDNode*>(GenericTag);
479 }
480 
481 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
482   if (!A || !B)
483     return nullptr;
484 
485   if (A == B)
486     return A;
487 
488   SmallSetVector<const MDNode *, 4> PathA;
489   TBAANode TA(A);
490   while (TA.getNode()) {
491     if (PathA.count(TA.getNode()))
492       report_fatal_error("Cycle found in TBAA metadata.");
493     PathA.insert(TA.getNode());
494     TA = TA.getParent();
495   }
496 
497   SmallSetVector<const MDNode *, 4> PathB;
498   TBAANode TB(B);
499   while (TB.getNode()) {
500     if (PathB.count(TB.getNode()))
501       report_fatal_error("Cycle found in TBAA metadata.");
502     PathB.insert(TB.getNode());
503     TB = TB.getParent();
504   }
505 
506   int IA = PathA.size() - 1;
507   int IB = PathB.size() - 1;
508 
509   const MDNode *Ret = nullptr;
510   while (IA >= 0 && IB >= 0) {
511     if (PathA[IA] == PathB[IB])
512       Ret = PathA[IA];
513     else
514       break;
515     --IA;
516     --IB;
517   }
518 
519   return Ret;
520 }
521 
522 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
523   if (Merge)
524     N.TBAA =
525         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
526   else
527     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
528 
529   if (Merge)
530     N.Scope = MDNode::getMostGenericAliasScope(
531         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
532   else
533     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
534 
535   if (Merge)
536     N.NoAlias =
537         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
538   else
539     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
540 }
541 
542 static const MDNode *createAccessTag(const MDNode *AccessType) {
543   // If there is no access type or the access type is the root node, then
544   // we don't have any useful access tag to return.
545   if (!AccessType || AccessType->getNumOperands() < 2)
546     return nullptr;
547 
548   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
549   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
550 
551   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
552     // TODO: Take access ranges into account when matching access tags and
553     // fix this code to generate actual access sizes for generic tags.
554     uint64_t AccessSize = UINT64_MAX;
555     auto *SizeNode =
556         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
557     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
558                        const_cast<MDNode*>(AccessType),
559                        OffsetNode, SizeNode};
560     return MDNode::get(AccessType->getContext(), Ops);
561   }
562 
563   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
564                      const_cast<MDNode*>(AccessType),
565                      OffsetNode};
566   return MDNode::get(AccessType->getContext(), Ops);
567 }
568 
569 static bool hasField(TBAAStructTypeNode BaseType,
570                      TBAAStructTypeNode FieldType) {
571   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
572     TBAAStructTypeNode T = BaseType.getFieldType(I);
573     if (T == FieldType || hasField(T, FieldType))
574       return true;
575   }
576   return false;
577 }
578 
579 /// Return true if for two given accesses, one of the accessed objects may be a
580 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
581 /// describe the accesses to the base object and the subobject respectively.
582 /// \p CommonType must be the metadata node describing the common type of the
583 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
584 /// may alias and \p Generic, if not null, points to the most generic access
585 /// tag for the given two.
586 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
587                                      TBAAStructTagNode SubobjectTag,
588                                      const MDNode *CommonType,
589                                      const MDNode **GenericTag,
590                                      bool &MayAlias) {
591   // If the base object is of the least common type, then this may be an access
592   // to its subobject.
593   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
594       BaseTag.getAccessType() == CommonType) {
595     if (GenericTag)
596       *GenericTag = createAccessTag(CommonType);
597     MayAlias = true;
598     return true;
599   }
600 
601   // If the access to the base object is through a field of the subobject's
602   // type, then this may be an access to that field. To check for that we start
603   // from the base type, follow the edge with the correct offset in the type DAG
604   // and adjust the offset until we reach the field type or until we reach the
605   // access type.
606   bool NewFormat = BaseTag.isNewFormat();
607   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
608   uint64_t OffsetInBase = BaseTag.getOffset();
609 
610   for (;;) {
611     // In the old format there is no distinction between fields and parent
612     // types, so in this case we consider all nodes up to the root.
613     if (!BaseType.getNode()) {
614       assert(!NewFormat && "Did not see access type in access path!");
615       break;
616     }
617 
618     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
619       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
620       if (GenericTag) {
621         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
622                                          createAccessTag(CommonType);
623       }
624       MayAlias = SameMemberAccess;
625       return true;
626     }
627 
628     // With new-format nodes we stop at the access type.
629     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
630       break;
631 
632     // Follow the edge with the correct offset. Offset will be adjusted to
633     // be relative to the field type.
634     BaseType = BaseType.getField(OffsetInBase);
635   }
636 
637   // If the base object has a direct or indirect field of the subobject's type,
638   // then this may be an access to that field. We need this to check now that
639   // we support aggregates as access types.
640   if (NewFormat) {
641     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
642     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
643     if (hasField(BaseType, FieldType)) {
644       if (GenericTag)
645         *GenericTag = createAccessTag(CommonType);
646       MayAlias = true;
647       return true;
648     }
649   }
650 
651   return false;
652 }
653 
654 /// matchTags - Return true if the given couple of accesses are allowed to
655 /// overlap. If \arg GenericTag is not null, then on return it points to the
656 /// most generic access descriptor for the given two.
657 static bool matchAccessTags(const MDNode *A, const MDNode *B,
658                             const MDNode **GenericTag) {
659   if (A == B) {
660     if (GenericTag)
661       *GenericTag = A;
662     return true;
663   }
664 
665   // Accesses with no TBAA information may alias with any other accesses.
666   if (!A || !B) {
667     if (GenericTag)
668       *GenericTag = nullptr;
669     return true;
670   }
671 
672   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
673   // have taken care of this.
674   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
675   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
676 
677   TBAAStructTagNode TagA(A), TagB(B);
678   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
679                                                 TagB.getAccessType());
680 
681   // If the final access types have different roots, they're part of different
682   // potentially unrelated type systems, so we must be conservative.
683   if (!CommonType) {
684     if (GenericTag)
685       *GenericTag = nullptr;
686     return true;
687   }
688 
689   // If one of the accessed objects may be a subobject of the other, then such
690   // accesses may alias.
691   bool MayAlias;
692   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
693                                CommonType, GenericTag, MayAlias) ||
694       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
695                                CommonType, GenericTag, MayAlias))
696     return MayAlias;
697 
698   // Otherwise, we've proved there's no alias.
699   if (GenericTag)
700     *GenericTag = createAccessTag(CommonType);
701   return false;
702 }
703 
704 /// Aliases - Test whether the access represented by tag A may alias the
705 /// access represented by tag B.
706 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
707   return matchAccessTags(A, B);
708 }
709 
710 AnalysisKey TypeBasedAA::Key;
711 
712 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
713   return TypeBasedAAResult();
714 }
715 
716 char TypeBasedAAWrapperPass::ID = 0;
717 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
718                 false, true)
719 
720 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
721   return new TypeBasedAAWrapperPass();
722 }
723 
724 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
725   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
726 }
727 
728 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
729   Result.reset(new TypeBasedAAResult());
730   return false;
731 }
732 
733 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
734   Result.reset();
735   return false;
736 }
737 
738 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
739   AU.setPreservesAll();
740 }
741