1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the TypeBasedAliasAnalysis pass, which implements 11 // metadata-based TBAA. 12 // 13 // In LLVM IR, memory does not have types, so LLVM's own type system is not 14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe 15 // a type system of a higher level language. This can be used to implement 16 // typical C/C++ TBAA, but it can also be used to implement custom alias 17 // analysis behavior for other languages. 18 // 19 // We now support two types of metadata format: scalar TBAA and struct-path 20 // aware TBAA. After all testing cases are upgraded to use struct-path aware 21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA 22 // can be dropped. 23 // 24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to 25 // three fields, e.g.: 26 // !0 = metadata !{ metadata !"an example type tree" } 27 // !1 = metadata !{ metadata !"int", metadata !0 } 28 // !2 = metadata !{ metadata !"float", metadata !0 } 29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } 30 // 31 // The first field is an identity field. It can be any value, usually 32 // an MDString, which uniquely identifies the type. The most important 33 // name in the tree is the name of the root node. Two trees with 34 // different root node names are entirely disjoint, even if they 35 // have leaves with common names. 36 // 37 // The second field identifies the type's parent node in the tree, or 38 // is null or omitted for a root node. A type is considered to alias 39 // all of its descendants and all of its ancestors in the tree. Also, 40 // a type is considered to alias all types in other trees, so that 41 // bitcode produced from multiple front-ends is handled conservatively. 42 // 43 // If the third field is present, it's an integer which if equal to 1 44 // indicates that the type is "constant" (meaning pointsToConstantMemory 45 // should return true; see 46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs). 47 // 48 // With struct-path aware TBAA, the MDNodes attached to an instruction using 49 // "!tbaa" are called path tag nodes. 50 // 51 // The path tag node has 4 fields with the last field being optional. 52 // 53 // The first field is the base type node, it can be a struct type node 54 // or a scalar type node. The second field is the access type node, it 55 // must be a scalar type node. The third field is the offset into the base type. 56 // The last field has the same meaning as the last field of our scalar TBAA: 57 // it's an integer which if equal to 1 indicates that the access is "constant". 58 // 59 // The struct type node has a name and a list of pairs, one pair for each member 60 // of the struct. The first element of each pair is a type node (a struct type 61 // node or a sclar type node), specifying the type of the member, the second 62 // element of each pair is the offset of the member. 63 // 64 // Given an example 65 // typedef struct { 66 // short s; 67 // } A; 68 // typedef struct { 69 // uint16_t s; 70 // A a; 71 // } B; 72 // 73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store 74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar 75 // type short) and the offset is 4. 76 // 77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"} 78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node 79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node 80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node 81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4} 82 // // Struct type node 83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node 84 // 85 // The struct type nodes and the scalar type nodes form a type DAG. 86 // Root (!0) 87 // char (!1) -- edge to Root 88 // short (!2) -- edge to char 89 // A (!3) -- edge with offset 0 to short 90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A 91 // 92 // To check if two tags (tagX and tagY) can alias, we start from the base type 93 // of tagX, follow the edge with the correct offset in the type DAG and adjust 94 // the offset until we reach the base type of tagY or until we reach the Root 95 // node. 96 // If we reach the base type of tagY, compare the adjusted offset with 97 // offset of tagY, return Alias if the offsets are the same, return NoAlias 98 // otherwise. 99 // If we reach the Root node, perform the above starting from base type of tagY 100 // to see if we reach base type of tagX. 101 // 102 // If they have different roots, they're part of different potentially 103 // unrelated type systems, so we return Alias to be conservative. 104 // If neither node is an ancestor of the other and they have the same root, 105 // then we say NoAlias. 106 // 107 // TODO: The current metadata format doesn't support struct 108 // fields. For example: 109 // struct X { 110 // double d; 111 // int i; 112 // }; 113 // void foo(struct X *x, struct X *y, double *p) { 114 // *x = *y; 115 // *p = 0.0; 116 // } 117 // Struct X has a double member, so the store to *x can alias the store to *p. 118 // Currently it's not possible to precisely describe all the things struct X 119 // aliases, so struct assignments must use conservative TBAA nodes. There's 120 // no scheme for attaching metadata to @llvm.memcpy yet either. 121 // 122 //===----------------------------------------------------------------------===// 123 124 #include "llvm/Analysis/Passes.h" 125 #include "llvm/Analysis/AliasAnalysis.h" 126 #include "llvm/IR/Constants.h" 127 #include "llvm/IR/LLVMContext.h" 128 #include "llvm/IR/Metadata.h" 129 #include "llvm/IR/Module.h" 130 #include "llvm/Pass.h" 131 #include "llvm/Support/CommandLine.h" 132 using namespace llvm; 133 134 // A handy option for disabling TBAA functionality. The same effect can also be 135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes 136 // more convenient. 137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true)); 138 139 namespace { 140 /// TBAANode - This is a simple wrapper around an MDNode which provides a 141 /// higher-level interface by hiding the details of how alias analysis 142 /// information is encoded in its operands. 143 class TBAANode { 144 const MDNode *Node; 145 146 public: 147 TBAANode() : Node(nullptr) {} 148 explicit TBAANode(const MDNode *N) : Node(N) {} 149 150 /// getNode - Get the MDNode for this TBAANode. 151 const MDNode *getNode() const { return Node; } 152 153 /// getParent - Get this TBAANode's Alias tree parent. 154 TBAANode getParent() const { 155 if (Node->getNumOperands() < 2) 156 return TBAANode(); 157 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 158 if (!P) 159 return TBAANode(); 160 // Ok, this node has a valid parent. Return it. 161 return TBAANode(P); 162 } 163 164 /// TypeIsImmutable - Test if this TBAANode represents a type for objects 165 /// which are not modified (by any means) in the context where this 166 /// AliasAnalysis is relevant. 167 bool TypeIsImmutable() const { 168 if (Node->getNumOperands() < 3) 169 return false; 170 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2)); 171 if (!CI) 172 return false; 173 return CI->getValue()[0]; 174 } 175 }; 176 177 /// This is a simple wrapper around an MDNode which provides a 178 /// higher-level interface by hiding the details of how alias analysis 179 /// information is encoded in its operands. 180 class TBAAStructTagNode { 181 /// This node should be created with createTBAAStructTagNode. 182 const MDNode *Node; 183 184 public: 185 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {} 186 187 /// Get the MDNode for this TBAAStructTagNode. 188 const MDNode *getNode() const { return Node; } 189 190 const MDNode *getBaseType() const { 191 return dyn_cast_or_null<MDNode>(Node->getOperand(0)); 192 } 193 const MDNode *getAccessType() const { 194 return dyn_cast_or_null<MDNode>(Node->getOperand(1)); 195 } 196 uint64_t getOffset() const { 197 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue(); 198 } 199 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for 200 /// objects which are not modified (by any means) in the context where this 201 /// AliasAnalysis is relevant. 202 bool TypeIsImmutable() const { 203 if (Node->getNumOperands() < 4) 204 return false; 205 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3)); 206 if (!CI) 207 return false; 208 return CI->getValue()[0]; 209 } 210 }; 211 212 /// This is a simple wrapper around an MDNode which provides a 213 /// higher-level interface by hiding the details of how alias analysis 214 /// information is encoded in its operands. 215 class TBAAStructTypeNode { 216 /// This node should be created with createTBAAStructTypeNode. 217 const MDNode *Node; 218 219 public: 220 TBAAStructTypeNode() : Node(nullptr) {} 221 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {} 222 223 /// Get the MDNode for this TBAAStructTypeNode. 224 const MDNode *getNode() const { return Node; } 225 226 /// Get this TBAAStructTypeNode's field in the type DAG with 227 /// given offset. Update the offset to be relative to the field type. 228 TBAAStructTypeNode getParent(uint64_t &Offset) const { 229 // Parent can be omitted for the root node. 230 if (Node->getNumOperands() < 2) 231 return TBAAStructTypeNode(); 232 233 // Fast path for a scalar type node and a struct type node with a single 234 // field. 235 if (Node->getNumOperands() <= 3) { 236 uint64_t Cur = Node->getNumOperands() == 2 237 ? 0 238 : mdconst::extract<ConstantInt>(Node->getOperand(2)) 239 ->getZExtValue(); 240 Offset -= Cur; 241 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 242 if (!P) 243 return TBAAStructTypeNode(); 244 return TBAAStructTypeNode(P); 245 } 246 247 // Assume the offsets are in order. We return the previous field if 248 // the current offset is bigger than the given offset. 249 unsigned TheIdx = 0; 250 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) { 251 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1)) 252 ->getZExtValue(); 253 if (Cur > Offset) { 254 assert(Idx >= 3 && 255 "TBAAStructTypeNode::getParent should have an offset match!"); 256 TheIdx = Idx - 2; 257 break; 258 } 259 } 260 // Move along the last field. 261 if (TheIdx == 0) 262 TheIdx = Node->getNumOperands() - 2; 263 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1)) 264 ->getZExtValue(); 265 Offset -= Cur; 266 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx)); 267 if (!P) 268 return TBAAStructTypeNode(); 269 return TBAAStructTypeNode(P); 270 } 271 }; 272 } 273 274 namespace { 275 /// TypeBasedAliasAnalysis - This is a simple alias analysis 276 /// implementation that uses TypeBased to answer queries. 277 class TypeBasedAliasAnalysis : public ImmutablePass, 278 public AliasAnalysis { 279 public: 280 static char ID; // Class identification, replacement for typeinfo 281 TypeBasedAliasAnalysis() : ImmutablePass(ID) { 282 initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry()); 283 } 284 285 bool doInitialization(Module &M) override; 286 287 /// getAdjustedAnalysisPointer - This method is used when a pass implements 288 /// an analysis interface through multiple inheritance. If needed, it 289 /// should override this to adjust the this pointer as needed for the 290 /// specified pass info. 291 void *getAdjustedAnalysisPointer(const void *PI) override { 292 if (PI == &AliasAnalysis::ID) 293 return (AliasAnalysis*)this; 294 return this; 295 } 296 297 bool Aliases(const MDNode *A, const MDNode *B) const; 298 bool PathAliases(const MDNode *A, const MDNode *B) const; 299 300 private: 301 void getAnalysisUsage(AnalysisUsage &AU) const override; 302 AliasResult alias(const Location &LocA, const Location &LocB) override; 303 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 304 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 305 ModRefBehavior getModRefBehavior(const Function *F) override; 306 ModRefResult getModRefInfo(ImmutableCallSite CS, 307 const Location &Loc) override; 308 ModRefResult getModRefInfo(ImmutableCallSite CS1, 309 ImmutableCallSite CS2) override; 310 }; 311 } // End of anonymous namespace 312 313 // Register this pass... 314 char TypeBasedAliasAnalysis::ID = 0; 315 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa", 316 "Type-Based Alias Analysis", false, true, false) 317 318 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() { 319 return new TypeBasedAliasAnalysis(); 320 } 321 322 bool TypeBasedAliasAnalysis::doInitialization(Module &M) { 323 InitializeAliasAnalysis(this, &M.getDataLayout()); 324 return true; 325 } 326 327 void 328 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 329 AU.setPreservesAll(); 330 AliasAnalysis::getAnalysisUsage(AU); 331 } 332 333 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat 334 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA 335 /// format. 336 static bool isStructPathTBAA(const MDNode *MD) { 337 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as 338 // a TBAA tag. 339 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 340 } 341 342 /// Aliases - Test whether the type represented by A may alias the 343 /// type represented by B. 344 bool 345 TypeBasedAliasAnalysis::Aliases(const MDNode *A, 346 const MDNode *B) const { 347 // Make sure that both MDNodes are struct-path aware. 348 if (isStructPathTBAA(A) && isStructPathTBAA(B)) 349 return PathAliases(A, B); 350 351 // Keep track of the root node for A and B. 352 TBAANode RootA, RootB; 353 354 // Climb the tree from A to see if we reach B. 355 for (TBAANode T(A); ; ) { 356 if (T.getNode() == B) 357 // B is an ancestor of A. 358 return true; 359 360 RootA = T; 361 T = T.getParent(); 362 if (!T.getNode()) 363 break; 364 } 365 366 // Climb the tree from B to see if we reach A. 367 for (TBAANode T(B); ; ) { 368 if (T.getNode() == A) 369 // A is an ancestor of B. 370 return true; 371 372 RootB = T; 373 T = T.getParent(); 374 if (!T.getNode()) 375 break; 376 } 377 378 // Neither node is an ancestor of the other. 379 380 // If they have different roots, they're part of different potentially 381 // unrelated type systems, so we must be conservative. 382 if (RootA.getNode() != RootB.getNode()) 383 return true; 384 385 // If they have the same root, then we've proved there's no alias. 386 return false; 387 } 388 389 /// Test whether the struct-path tag represented by A may alias the 390 /// struct-path tag represented by B. 391 bool 392 TypeBasedAliasAnalysis::PathAliases(const MDNode *A, 393 const MDNode *B) const { 394 // Verify that both input nodes are struct-path aware. 395 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware."); 396 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware."); 397 398 // Keep track of the root node for A and B. 399 TBAAStructTypeNode RootA, RootB; 400 TBAAStructTagNode TagA(A), TagB(B); 401 402 // TODO: We need to check if AccessType of TagA encloses AccessType of 403 // TagB to support aggregate AccessType. If yes, return true. 404 405 // Start from the base type of A, follow the edge with the correct offset in 406 // the type DAG and adjust the offset until we reach the base type of B or 407 // until we reach the Root node. 408 // Compare the adjusted offset once we have the same base. 409 410 // Climb the type DAG from base type of A to see if we reach base type of B. 411 const MDNode *BaseA = TagA.getBaseType(); 412 const MDNode *BaseB = TagB.getBaseType(); 413 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset(); 414 for (TBAAStructTypeNode T(BaseA); ; ) { 415 if (T.getNode() == BaseB) 416 // Base type of A encloses base type of B, check if the offsets match. 417 return OffsetA == OffsetB; 418 419 RootA = T; 420 // Follow the edge with the correct offset, OffsetA will be adjusted to 421 // be relative to the field type. 422 T = T.getParent(OffsetA); 423 if (!T.getNode()) 424 break; 425 } 426 427 // Reset OffsetA and climb the type DAG from base type of B to see if we reach 428 // base type of A. 429 OffsetA = TagA.getOffset(); 430 for (TBAAStructTypeNode T(BaseB); ; ) { 431 if (T.getNode() == BaseA) 432 // Base type of B encloses base type of A, check if the offsets match. 433 return OffsetA == OffsetB; 434 435 RootB = T; 436 // Follow the edge with the correct offset, OffsetB will be adjusted to 437 // be relative to the field type. 438 T = T.getParent(OffsetB); 439 if (!T.getNode()) 440 break; 441 } 442 443 // Neither node is an ancestor of the other. 444 445 // If they have different roots, they're part of different potentially 446 // unrelated type systems, so we must be conservative. 447 if (RootA.getNode() != RootB.getNode()) 448 return true; 449 450 // If they have the same root, then we've proved there's no alias. 451 return false; 452 } 453 454 AliasAnalysis::AliasResult 455 TypeBasedAliasAnalysis::alias(const Location &LocA, 456 const Location &LocB) { 457 if (!EnableTBAA) 458 return AliasAnalysis::alias(LocA, LocB); 459 460 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must 461 // be conservative. 462 const MDNode *AM = LocA.AATags.TBAA; 463 if (!AM) return AliasAnalysis::alias(LocA, LocB); 464 const MDNode *BM = LocB.AATags.TBAA; 465 if (!BM) return AliasAnalysis::alias(LocA, LocB); 466 467 // If they may alias, chain to the next AliasAnalysis. 468 if (Aliases(AM, BM)) 469 return AliasAnalysis::alias(LocA, LocB); 470 471 // Otherwise return a definitive result. 472 return NoAlias; 473 } 474 475 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc, 476 bool OrLocal) { 477 if (!EnableTBAA) 478 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 479 480 const MDNode *M = Loc.AATags.TBAA; 481 if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 482 483 // If this is an "immutable" type, we can assume the pointer is pointing 484 // to constant memory. 485 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 486 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 487 return true; 488 489 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 490 } 491 492 AliasAnalysis::ModRefBehavior 493 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 494 if (!EnableTBAA) 495 return AliasAnalysis::getModRefBehavior(CS); 496 497 ModRefBehavior Min = UnknownModRefBehavior; 498 499 // If this is an "immutable" type, we can assume the call doesn't write 500 // to memory. 501 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 502 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 503 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 504 Min = OnlyReadsMemory; 505 506 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 507 } 508 509 AliasAnalysis::ModRefBehavior 510 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) { 511 // Functions don't have metadata. Just chain to the next implementation. 512 return AliasAnalysis::getModRefBehavior(F); 513 } 514 515 AliasAnalysis::ModRefResult 516 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 517 const Location &Loc) { 518 if (!EnableTBAA) 519 return AliasAnalysis::getModRefInfo(CS, Loc); 520 521 if (const MDNode *L = Loc.AATags.TBAA) 522 if (const MDNode *M = 523 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 524 if (!Aliases(L, M)) 525 return NoModRef; 526 527 return AliasAnalysis::getModRefInfo(CS, Loc); 528 } 529 530 AliasAnalysis::ModRefResult 531 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 532 ImmutableCallSite CS2) { 533 if (!EnableTBAA) 534 return AliasAnalysis::getModRefInfo(CS1, CS2); 535 536 if (const MDNode *M1 = 537 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 538 if (const MDNode *M2 = 539 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 540 if (!Aliases(M1, M2)) 541 return NoModRef; 542 543 return AliasAnalysis::getModRefInfo(CS1, CS2); 544 } 545 546 bool MDNode::isTBAAVtableAccess() const { 547 if (!isStructPathTBAA(this)) { 548 if (getNumOperands() < 1) return false; 549 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) { 550 if (Tag1->getString() == "vtable pointer") return true; 551 } 552 return false; 553 } 554 555 // For struct-path aware TBAA, we use the access type of the tag. 556 if (getNumOperands() < 2) return false; 557 MDNode *Tag = cast_or_null<MDNode>(getOperand(1)); 558 if (!Tag) return false; 559 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) { 560 if (Tag1->getString() == "vtable pointer") return true; 561 } 562 return false; 563 } 564 565 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) { 566 if (!A || !B) 567 return nullptr; 568 569 if (A == B) 570 return A; 571 572 // For struct-path aware TBAA, we use the access type of the tag. 573 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B); 574 if (StructPath) { 575 A = cast_or_null<MDNode>(A->getOperand(1)); 576 if (!A) return nullptr; 577 B = cast_or_null<MDNode>(B->getOperand(1)); 578 if (!B) return nullptr; 579 } 580 581 SmallVector<MDNode *, 4> PathA; 582 MDNode *T = A; 583 while (T) { 584 PathA.push_back(T); 585 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 586 : nullptr; 587 } 588 589 SmallVector<MDNode *, 4> PathB; 590 T = B; 591 while (T) { 592 PathB.push_back(T); 593 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 594 : nullptr; 595 } 596 597 int IA = PathA.size() - 1; 598 int IB = PathB.size() - 1; 599 600 MDNode *Ret = nullptr; 601 while (IA >= 0 && IB >=0) { 602 if (PathA[IA] == PathB[IB]) 603 Ret = PathA[IA]; 604 else 605 break; 606 --IA; 607 --IB; 608 } 609 if (!StructPath) 610 return Ret; 611 612 if (!Ret) 613 return nullptr; 614 // We need to convert from a type node to a tag node. 615 Type *Int64 = IntegerType::get(A->getContext(), 64); 616 Metadata *Ops[3] = {Ret, Ret, 617 ConstantAsMetadata::get(ConstantInt::get(Int64, 0))}; 618 return MDNode::get(A->getContext(), Ops); 619 } 620 621 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const { 622 if (Merge) 623 N.TBAA = 624 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa)); 625 else 626 N.TBAA = getMetadata(LLVMContext::MD_tbaa); 627 628 if (Merge) 629 N.Scope = MDNode::getMostGenericAliasScope( 630 N.Scope, getMetadata(LLVMContext::MD_alias_scope)); 631 else 632 N.Scope = getMetadata(LLVMContext::MD_alias_scope); 633 634 if (Merge) 635 N.NoAlias = 636 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias)); 637 else 638 N.NoAlias = getMetadata(LLVMContext::MD_noalias); 639 } 640 641