1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the TypeBasedAliasAnalysis pass, which implements 11 // metadata-based TBAA. 12 // 13 // In LLVM IR, memory does not have types, so LLVM's own type system is not 14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe 15 // a type system of a higher level language. This can be used to implement 16 // typical C/C++ TBAA, but it can also be used to implement custom alias 17 // analysis behavior for other languages. 18 // 19 // We now support two types of metadata format: scalar TBAA and struct-path 20 // aware TBAA. After all testing cases are upgraded to use struct-path aware 21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA 22 // can be dropped. 23 // 24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to 25 // three fields, e.g.: 26 // !0 = !{ !"an example type tree" } 27 // !1 = !{ !"int", !0 } 28 // !2 = !{ !"float", !0 } 29 // !3 = !{ !"const float", !2, i64 1 } 30 // 31 // The first field is an identity field. It can be any value, usually 32 // an MDString, which uniquely identifies the type. The most important 33 // name in the tree is the name of the root node. Two trees with 34 // different root node names are entirely disjoint, even if they 35 // have leaves with common names. 36 // 37 // The second field identifies the type's parent node in the tree, or 38 // is null or omitted for a root node. A type is considered to alias 39 // all of its descendants and all of its ancestors in the tree. Also, 40 // a type is considered to alias all types in other trees, so that 41 // bitcode produced from multiple front-ends is handled conservatively. 42 // 43 // If the third field is present, it's an integer which if equal to 1 44 // indicates that the type is "constant" (meaning pointsToConstantMemory 45 // should return true; see 46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs). 47 // 48 // With struct-path aware TBAA, the MDNodes attached to an instruction using 49 // "!tbaa" are called path tag nodes. 50 // 51 // The path tag node has 4 fields with the last field being optional. 52 // 53 // The first field is the base type node, it can be a struct type node 54 // or a scalar type node. The second field is the access type node, it 55 // must be a scalar type node. The third field is the offset into the base type. 56 // The last field has the same meaning as the last field of our scalar TBAA: 57 // it's an integer which if equal to 1 indicates that the access is "constant". 58 // 59 // The struct type node has a name and a list of pairs, one pair for each member 60 // of the struct. The first element of each pair is a type node (a struct type 61 // node or a scalar type node), specifying the type of the member, the second 62 // element of each pair is the offset of the member. 63 // 64 // Given an example 65 // typedef struct { 66 // short s; 67 // } A; 68 // typedef struct { 69 // uint16_t s; 70 // A a; 71 // } B; 72 // 73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store 74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar 75 // type short) and the offset is 4. 76 // 77 // !0 = !{!"Simple C/C++ TBAA"} 78 // !1 = !{!"omnipotent char", !0} // Scalar type node 79 // !2 = !{!"short", !1} // Scalar type node 80 // !3 = !{!"A", !2, i64 0} // Struct type node 81 // !4 = !{!"B", !2, i64 0, !3, i64 4} 82 // // Struct type node 83 // !5 = !{!4, !2, i64 4} // Path tag node 84 // 85 // The struct type nodes and the scalar type nodes form a type DAG. 86 // Root (!0) 87 // char (!1) -- edge to Root 88 // short (!2) -- edge to char 89 // A (!3) -- edge with offset 0 to short 90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A 91 // 92 // To check if two tags (tagX and tagY) can alias, we start from the base type 93 // of tagX, follow the edge with the correct offset in the type DAG and adjust 94 // the offset until we reach the base type of tagY or until we reach the Root 95 // node. 96 // If we reach the base type of tagY, compare the adjusted offset with 97 // offset of tagY, return Alias if the offsets are the same, return NoAlias 98 // otherwise. 99 // If we reach the Root node, perform the above starting from base type of tagY 100 // to see if we reach base type of tagX. 101 // 102 // If they have different roots, they're part of different potentially 103 // unrelated type systems, so we return Alias to be conservative. 104 // If neither node is an ancestor of the other and they have the same root, 105 // then we say NoAlias. 106 // 107 // TODO: The current metadata format doesn't support struct 108 // fields. For example: 109 // struct X { 110 // double d; 111 // int i; 112 // }; 113 // void foo(struct X *x, struct X *y, double *p) { 114 // *x = *y; 115 // *p = 0.0; 116 // } 117 // Struct X has a double member, so the store to *x can alias the store to *p. 118 // Currently it's not possible to precisely describe all the things struct X 119 // aliases, so struct assignments must use conservative TBAA nodes. There's 120 // no scheme for attaching metadata to @llvm.memcpy yet either. 121 // 122 //===----------------------------------------------------------------------===// 123 124 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 125 #include "llvm/ADT/SetVector.h" 126 #include "llvm/Analysis/AliasAnalysis.h" 127 #include "llvm/Analysis/MemoryLocation.h" 128 #include "llvm/IR/Constants.h" 129 #include "llvm/IR/DerivedTypes.h" 130 #include "llvm/IR/Instruction.h" 131 #include "llvm/IR/LLVMContext.h" 132 #include "llvm/IR/Metadata.h" 133 #include "llvm/Pass.h" 134 #include "llvm/Support/Casting.h" 135 #include "llvm/Support/CommandLine.h" 136 #include "llvm/Support/ErrorHandling.h" 137 #include <cassert> 138 #include <cstdint> 139 140 using namespace llvm; 141 142 // A handy option for disabling TBAA functionality. The same effect can also be 143 // achieved by stripping the !tbaa tags from IR, but this option is sometimes 144 // more convenient. 145 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden); 146 147 namespace { 148 149 /// This is a simple wrapper around an MDNode which provides a higher-level 150 /// interface by hiding the details of how alias analysis information is encoded 151 /// in its operands. 152 template<typename MDNodeTy> 153 class TBAANodeImpl { 154 MDNodeTy *Node = nullptr; 155 156 public: 157 TBAANodeImpl() = default; 158 explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {} 159 160 /// getNode - Get the MDNode for this TBAANode. 161 MDNodeTy *getNode() const { return Node; } 162 163 /// getParent - Get this TBAANode's Alias tree parent. 164 TBAANodeImpl<MDNodeTy> getParent() const { 165 if (Node->getNumOperands() < 2) 166 return TBAANodeImpl<MDNodeTy>(); 167 MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1)); 168 if (!P) 169 return TBAANodeImpl<MDNodeTy>(); 170 // Ok, this node has a valid parent. Return it. 171 return TBAANodeImpl<MDNodeTy>(P); 172 } 173 174 /// Test if this TBAANode represents a type for objects which are 175 /// not modified (by any means) in the context where this 176 /// AliasAnalysis is relevant. 177 bool isTypeImmutable() const { 178 if (Node->getNumOperands() < 3) 179 return false; 180 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2)); 181 if (!CI) 182 return false; 183 return CI->getValue()[0]; 184 } 185 }; 186 187 /// \name Specializations of \c TBAANodeImpl for const and non const qualified 188 /// \c MDNode. 189 /// @{ 190 using TBAANode = TBAANodeImpl<const MDNode>; 191 using MutableTBAANode = TBAANodeImpl<MDNode>; 192 /// @} 193 194 /// This is a simple wrapper around an MDNode which provides a 195 /// higher-level interface by hiding the details of how alias analysis 196 /// information is encoded in its operands. 197 template<typename MDNodeTy> 198 class TBAAStructTagNodeImpl { 199 /// This node should be created with createTBAAStructTagNode. 200 MDNodeTy *Node; 201 202 public: 203 explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {} 204 205 /// Get the MDNode for this TBAAStructTagNode. 206 MDNodeTy *getNode() const { return Node; } 207 208 MDNodeTy *getBaseType() const { 209 return dyn_cast_or_null<MDNode>(Node->getOperand(0)); 210 } 211 212 MDNodeTy *getAccessType() const { 213 return dyn_cast_or_null<MDNode>(Node->getOperand(1)); 214 } 215 216 uint64_t getOffset() const { 217 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue(); 218 } 219 220 /// Test if this TBAAStructTagNode represents a type for objects 221 /// which are not modified (by any means) in the context where this 222 /// AliasAnalysis is relevant. 223 bool isTypeImmutable() const { 224 if (Node->getNumOperands() < 4) 225 return false; 226 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3)); 227 if (!CI) 228 return false; 229 return CI->getValue()[0]; 230 } 231 }; 232 233 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const 234 /// qualified \c MDNods. 235 /// @{ 236 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>; 237 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>; 238 /// @} 239 240 /// This is a simple wrapper around an MDNode which provides a 241 /// higher-level interface by hiding the details of how alias analysis 242 /// information is encoded in its operands. 243 class TBAAStructTypeNode { 244 /// This node should be created with createTBAAStructTypeNode. 245 const MDNode *Node = nullptr; 246 247 public: 248 TBAAStructTypeNode() = default; 249 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {} 250 251 /// Get the MDNode for this TBAAStructTypeNode. 252 const MDNode *getNode() const { return Node; } 253 254 /// Get this TBAAStructTypeNode's field in the type DAG with 255 /// given offset. Update the offset to be relative to the field type. 256 TBAAStructTypeNode getParent(uint64_t &Offset) const { 257 // Parent can be omitted for the root node. 258 if (Node->getNumOperands() < 2) 259 return TBAAStructTypeNode(); 260 261 // Fast path for a scalar type node and a struct type node with a single 262 // field. 263 if (Node->getNumOperands() <= 3) { 264 uint64_t Cur = Node->getNumOperands() == 2 265 ? 0 266 : mdconst::extract<ConstantInt>(Node->getOperand(2)) 267 ->getZExtValue(); 268 Offset -= Cur; 269 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 270 if (!P) 271 return TBAAStructTypeNode(); 272 return TBAAStructTypeNode(P); 273 } 274 275 // Assume the offsets are in order. We return the previous field if 276 // the current offset is bigger than the given offset. 277 unsigned TheIdx = 0; 278 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) { 279 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1)) 280 ->getZExtValue(); 281 if (Cur > Offset) { 282 assert(Idx >= 3 && 283 "TBAAStructTypeNode::getParent should have an offset match!"); 284 TheIdx = Idx - 2; 285 break; 286 } 287 } 288 // Move along the last field. 289 if (TheIdx == 0) 290 TheIdx = Node->getNumOperands() - 2; 291 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1)) 292 ->getZExtValue(); 293 Offset -= Cur; 294 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx)); 295 if (!P) 296 return TBAAStructTypeNode(); 297 return TBAAStructTypeNode(P); 298 } 299 }; 300 301 } // end anonymous namespace 302 303 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat 304 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA 305 /// format. 306 static bool isStructPathTBAA(const MDNode *MD) { 307 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as 308 // a TBAA tag. 309 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 310 } 311 312 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA, 313 const MemoryLocation &LocB) { 314 if (!EnableTBAA) 315 return AAResultBase::alias(LocA, LocB); 316 317 // If accesses may alias, chain to the next AliasAnalysis. 318 if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA)) 319 return AAResultBase::alias(LocA, LocB); 320 321 // Otherwise return a definitive result. 322 return NoAlias; 323 } 324 325 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 326 bool OrLocal) { 327 if (!EnableTBAA) 328 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 329 330 const MDNode *M = Loc.AATags.TBAA; 331 if (!M) 332 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 333 334 // If this is an "immutable" type, we can assume the pointer is pointing 335 // to constant memory. 336 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) || 337 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable())) 338 return true; 339 340 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 341 } 342 343 FunctionModRefBehavior 344 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) { 345 if (!EnableTBAA) 346 return AAResultBase::getModRefBehavior(CS); 347 348 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 349 350 // If this is an "immutable" type, we can assume the call doesn't write 351 // to memory. 352 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 353 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) || 354 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable())) 355 Min = FMRB_OnlyReadsMemory; 356 357 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 358 } 359 360 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) { 361 // Functions don't have metadata. Just chain to the next implementation. 362 return AAResultBase::getModRefBehavior(F); 363 } 364 365 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS, 366 const MemoryLocation &Loc) { 367 if (!EnableTBAA) 368 return AAResultBase::getModRefInfo(CS, Loc); 369 370 if (const MDNode *L = Loc.AATags.TBAA) 371 if (const MDNode *M = 372 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 373 if (!Aliases(L, M)) 374 return ModRefInfo::NoModRef; 375 376 return AAResultBase::getModRefInfo(CS, Loc); 377 } 378 379 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1, 380 ImmutableCallSite CS2) { 381 if (!EnableTBAA) 382 return AAResultBase::getModRefInfo(CS1, CS2); 383 384 if (const MDNode *M1 = 385 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 386 if (const MDNode *M2 = 387 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 388 if (!Aliases(M1, M2)) 389 return ModRefInfo::NoModRef; 390 391 return AAResultBase::getModRefInfo(CS1, CS2); 392 } 393 394 bool MDNode::isTBAAVtableAccess() const { 395 if (!isStructPathTBAA(this)) { 396 if (getNumOperands() < 1) 397 return false; 398 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) { 399 if (Tag1->getString() == "vtable pointer") 400 return true; 401 } 402 return false; 403 } 404 405 // For struct-path aware TBAA, we use the access type of the tag. 406 if (getNumOperands() < 2) 407 return false; 408 MDNode *Tag = cast_or_null<MDNode>(getOperand(1)); 409 if (!Tag) 410 return false; 411 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) { 412 if (Tag1->getString() == "vtable pointer") 413 return true; 414 } 415 return false; 416 } 417 418 static bool matchAccessTags(const MDNode *A, const MDNode *B, 419 const MDNode **GenericTag = nullptr); 420 421 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) { 422 const MDNode *GenericTag; 423 matchAccessTags(A, B, &GenericTag); 424 return const_cast<MDNode*>(GenericTag); 425 } 426 427 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) { 428 if (!A || !B) 429 return nullptr; 430 431 if (A == B) 432 return A; 433 434 SmallSetVector<const MDNode *, 4> PathA; 435 TBAANode TA(A); 436 while (TA.getNode()) { 437 if (PathA.count(TA.getNode())) 438 report_fatal_error("Cycle found in TBAA metadata."); 439 PathA.insert(TA.getNode()); 440 TA = TA.getParent(); 441 } 442 443 SmallSetVector<const MDNode *, 4> PathB; 444 TBAANode TB(B); 445 while (TB.getNode()) { 446 if (PathB.count(TB.getNode())) 447 report_fatal_error("Cycle found in TBAA metadata."); 448 PathB.insert(TB.getNode()); 449 TB = TB.getParent(); 450 } 451 452 int IA = PathA.size() - 1; 453 int IB = PathB.size() - 1; 454 455 const MDNode *Ret = nullptr; 456 while (IA >= 0 && IB >= 0) { 457 if (PathA[IA] == PathB[IB]) 458 Ret = PathA[IA]; 459 else 460 break; 461 --IA; 462 --IB; 463 } 464 465 return Ret; 466 } 467 468 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const { 469 if (Merge) 470 N.TBAA = 471 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa)); 472 else 473 N.TBAA = getMetadata(LLVMContext::MD_tbaa); 474 475 if (Merge) 476 N.Scope = MDNode::getMostGenericAliasScope( 477 N.Scope, getMetadata(LLVMContext::MD_alias_scope)); 478 else 479 N.Scope = getMetadata(LLVMContext::MD_alias_scope); 480 481 if (Merge) 482 N.NoAlias = 483 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias)); 484 else 485 N.NoAlias = getMetadata(LLVMContext::MD_noalias); 486 } 487 488 static bool findAccessType(TBAAStructTagNode BaseTag, 489 const MDNode *AccessTypeNode, 490 uint64_t &OffsetInBase) { 491 // Start from the base type, follow the edge with the correct offset in 492 // the type DAG and adjust the offset until we reach the access type or 493 // until we reach a root node. 494 TBAAStructTypeNode BaseType(BaseTag.getBaseType()); 495 OffsetInBase = BaseTag.getOffset(); 496 497 while (const MDNode *BaseTypeNode = BaseType.getNode()) { 498 if (BaseTypeNode == AccessTypeNode) 499 return true; 500 501 // Follow the edge with the correct offset, Offset will be adjusted to 502 // be relative to the field type. 503 BaseType = BaseType.getParent(OffsetInBase); 504 } 505 return false; 506 } 507 508 static const MDNode *createAccessTag(const MDNode *AccessType) { 509 // If there is no access type or the access type is the root node, then 510 // we don't have any useful access tag to return. 511 if (!AccessType || AccessType->getNumOperands() < 2) 512 return nullptr; 513 514 Type *Int64 = IntegerType::get(AccessType->getContext(), 64); 515 auto *ImmutabilityFlag = ConstantAsMetadata::get(ConstantInt::get(Int64, 0)); 516 Metadata *Ops[] = {const_cast<MDNode*>(AccessType), 517 const_cast<MDNode*>(AccessType), ImmutabilityFlag}; 518 return MDNode::get(AccessType->getContext(), Ops); 519 } 520 521 /// matchTags - Return true if the given couple of accesses are allowed to 522 /// overlap. If \arg GenericTag is not null, then on return it points to the 523 /// most generic access descriptor for the given two. 524 static bool matchAccessTags(const MDNode *A, const MDNode *B, 525 const MDNode **GenericTag) { 526 if (A == B) { 527 if (GenericTag) 528 *GenericTag = A; 529 return true; 530 } 531 532 // Accesses with no TBAA information may alias with any other accesses. 533 if (!A || !B) { 534 if (GenericTag) 535 *GenericTag = nullptr; 536 return true; 537 } 538 539 // Verify that both input nodes are struct-path aware. Auto-upgrade should 540 // have taken care of this. 541 assert(isStructPathTBAA(A) && "Access A is not struct-path aware!"); 542 assert(isStructPathTBAA(B) && "Access B is not struct-path aware!"); 543 544 TBAAStructTagNode TagA(A), TagB(B); 545 const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(), 546 TagB.getAccessType()); 547 548 // TODO: We need to check if AccessType of TagA encloses AccessType of 549 // TagB to support aggregate AccessType. If yes, return true. 550 551 // Climb the type DAG from base type of A to see if we reach base type of B. 552 uint64_t OffsetA; 553 if (findAccessType(TagA, TagB.getBaseType(), OffsetA)) { 554 bool SameMemberAccess = OffsetA == TagB.getOffset(); 555 if (GenericTag) 556 *GenericTag = SameMemberAccess ? TagB.getNode() : 557 createAccessTag(CommonType); 558 return SameMemberAccess; 559 } 560 561 // Climb the type DAG from base type of B to see if we reach base type of A. 562 uint64_t OffsetB; 563 if (findAccessType(TagB, TagA.getBaseType(), OffsetB)) { 564 bool SameMemberAccess = OffsetB == TagA.getOffset(); 565 if (GenericTag) 566 *GenericTag = SameMemberAccess ? TagA.getNode() : 567 createAccessTag(CommonType); 568 return SameMemberAccess; 569 } 570 571 if (GenericTag) 572 *GenericTag = createAccessTag(CommonType); 573 574 // If the final access types have different roots, they're part of different 575 // potentially unrelated type systems, so we must be conservative. 576 if (!CommonType) 577 return true; 578 579 // If they have the same root, then we've proved there's no alias. 580 return false; 581 } 582 583 /// Aliases - Test whether the access represented by tag A may alias the 584 /// access represented by tag B. 585 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const { 586 return matchAccessTags(A, B); 587 } 588 589 AnalysisKey TypeBasedAA::Key; 590 591 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) { 592 return TypeBasedAAResult(); 593 } 594 595 char TypeBasedAAWrapperPass::ID = 0; 596 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis", 597 false, true) 598 599 ImmutablePass *llvm::createTypeBasedAAWrapperPass() { 600 return new TypeBasedAAWrapperPass(); 601 } 602 603 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) { 604 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry()); 605 } 606 607 bool TypeBasedAAWrapperPass::doInitialization(Module &M) { 608 Result.reset(new TypeBasedAAResult()); 609 return false; 610 } 611 612 bool TypeBasedAAWrapperPass::doFinalization(Module &M) { 613 Result.reset(); 614 return false; 615 } 616 617 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 618 AU.setPreservesAll(); 619 } 620