1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = metadata !{ metadata !"an example type tree" }
27 //   !1 = metadata !{ metadata !"int", metadata !0 }
28 //   !2 = metadata !{ metadata !"float", metadata !0 }
29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 //   struct X {
110 //     double d;
111 //     int i;
112 //   };
113 //   void foo(struct X *x, struct X *y, double *p) {
114 //     *x = *y;
115 //     *p = 0.0;
116 //   }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123 
124 #include "llvm/Analysis/Passes.h"
125 #include "llvm/Analysis/AliasAnalysis.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
131 #include "llvm/Support/CommandLine.h"
132 using namespace llvm;
133 
134 // A handy option for disabling TBAA functionality. The same effect can also be
135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
136 // more convenient.
137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
138 
139 namespace {
140   /// TBAANode - This is a simple wrapper around an MDNode which provides a
141   /// higher-level interface by hiding the details of how alias analysis
142   /// information is encoded in its operands.
143   class TBAANode {
144     const MDNode *Node;
145 
146   public:
147     TBAANode() : Node(0) {}
148     explicit TBAANode(const MDNode *N) : Node(N) {}
149 
150     /// getNode - Get the MDNode for this TBAANode.
151     const MDNode *getNode() const { return Node; }
152 
153     /// getParent - Get this TBAANode's Alias tree parent.
154     TBAANode getParent() const {
155       if (Node->getNumOperands() < 2)
156         return TBAANode();
157       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
158       if (!P)
159         return TBAANode();
160       // Ok, this node has a valid parent. Return it.
161       return TBAANode(P);
162     }
163 
164     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
165     /// which are not modified (by any means) in the context where this
166     /// AliasAnalysis is relevant.
167     bool TypeIsImmutable() const {
168       if (Node->getNumOperands() < 3)
169         return false;
170       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
171       if (!CI)
172         return false;
173       return CI->getValue()[0];
174     }
175   };
176 
177   /// This is a simple wrapper around an MDNode which provides a
178   /// higher-level interface by hiding the details of how alias analysis
179   /// information is encoded in its operands.
180   class TBAAStructTagNode {
181     /// This node should be created with createTBAAStructTagNode.
182     const MDNode *Node;
183 
184   public:
185     TBAAStructTagNode() : Node(0) {}
186     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
187 
188     /// Get the MDNode for this TBAAStructTagNode.
189     const MDNode *getNode() const { return Node; }
190 
191     const MDNode *getBaseType() const {
192       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
193     }
194     const MDNode *getAccessType() const {
195       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
196     }
197     uint64_t getOffset() const {
198       return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
199     }
200     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
201     /// objects which are not modified (by any means) in the context where this
202     /// AliasAnalysis is relevant.
203     bool TypeIsImmutable() const {
204       if (Node->getNumOperands() < 4)
205         return false;
206       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
207       if (!CI)
208         return false;
209       return CI->getValue()[0];
210     }
211   };
212 
213   /// This is a simple wrapper around an MDNode which provides a
214   /// higher-level interface by hiding the details of how alias analysis
215   /// information is encoded in its operands.
216   class TBAAStructTypeNode {
217     /// This node should be created with createTBAAStructTypeNode.
218     const MDNode *Node;
219 
220   public:
221     TBAAStructTypeNode() : Node(0) {}
222     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
223 
224     /// Get the MDNode for this TBAAStructTypeNode.
225     const MDNode *getNode() const { return Node; }
226 
227     /// Get this TBAAStructTypeNode's field in the type DAG with
228     /// given offset. Update the offset to be relative to the field type.
229     TBAAStructTypeNode getParent(uint64_t &Offset) const {
230       // Parent can be omitted for the root node.
231       if (Node->getNumOperands() < 2)
232         return TBAAStructTypeNode();
233 
234       // Special handling for a scalar type node.
235       if (Node->getNumOperands() <= 3) {
236         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
237         if (!P)
238           return TBAAStructTypeNode();
239         return TBAAStructTypeNode(P);
240       }
241 
242       // Assume the offsets are in order. We return the previous field if
243       // the current offset is bigger than the given offset.
244       unsigned TheIdx = 0;
245       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
246         uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
247                          getZExtValue();
248         if (Cur > Offset) {
249           assert(Idx >= 3 &&
250                  "TBAAStructTypeNode::getParent should have an offset match!");
251           TheIdx = Idx - 2;
252           break;
253         }
254       }
255       // Move along the last field.
256       if (TheIdx == 0)
257         TheIdx = Node->getNumOperands() - 2;
258       uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
259                        getZExtValue();
260       Offset -= Cur;
261       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
262       if (!P)
263         return TBAAStructTypeNode();
264       return TBAAStructTypeNode(P);
265     }
266   };
267 }
268 
269 namespace {
270   /// TypeBasedAliasAnalysis - This is a simple alias analysis
271   /// implementation that uses TypeBased to answer queries.
272   class TypeBasedAliasAnalysis : public ImmutablePass,
273                                  public AliasAnalysis {
274   public:
275     static char ID; // Class identification, replacement for typeinfo
276     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
277       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
278     }
279 
280     virtual void initializePass() {
281       InitializeAliasAnalysis(this);
282     }
283 
284     /// getAdjustedAnalysisPointer - This method is used when a pass implements
285     /// an analysis interface through multiple inheritance.  If needed, it
286     /// should override this to adjust the this pointer as needed for the
287     /// specified pass info.
288     virtual void *getAdjustedAnalysisPointer(const void *PI) {
289       if (PI == &AliasAnalysis::ID)
290         return (AliasAnalysis*)this;
291       return this;
292     }
293 
294     bool Aliases(const MDNode *A, const MDNode *B) const;
295     bool PathAliases(const MDNode *A, const MDNode *B) const;
296 
297   private:
298     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
299     virtual AliasResult alias(const Location &LocA, const Location &LocB);
300     virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
301     virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
302     virtual ModRefBehavior getModRefBehavior(const Function *F);
303     virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
304                                        const Location &Loc);
305     virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
306                                        ImmutableCallSite CS2);
307   };
308 }  // End of anonymous namespace
309 
310 // Register this pass...
311 char TypeBasedAliasAnalysis::ID = 0;
312 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
313                    "Type-Based Alias Analysis", false, true, false)
314 
315 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
316   return new TypeBasedAliasAnalysis();
317 }
318 
319 void
320 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
321   AU.setPreservesAll();
322   AliasAnalysis::getAnalysisUsage(AU);
323 }
324 
325 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
326 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
327 /// format.
328 static bool isStructPathTBAA(const MDNode *MD) {
329   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
330   // a TBAA tag.
331   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
332 }
333 
334 /// Aliases - Test whether the type represented by A may alias the
335 /// type represented by B.
336 bool
337 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
338                                 const MDNode *B) const {
339   if (isStructPathTBAA(A))
340     return PathAliases(A, B);
341 
342   // Keep track of the root node for A and B.
343   TBAANode RootA, RootB;
344 
345   // Climb the tree from A to see if we reach B.
346   for (TBAANode T(A); ; ) {
347     if (T.getNode() == B)
348       // B is an ancestor of A.
349       return true;
350 
351     RootA = T;
352     T = T.getParent();
353     if (!T.getNode())
354       break;
355   }
356 
357   // Climb the tree from B to see if we reach A.
358   for (TBAANode T(B); ; ) {
359     if (T.getNode() == A)
360       // A is an ancestor of B.
361       return true;
362 
363     RootB = T;
364     T = T.getParent();
365     if (!T.getNode())
366       break;
367   }
368 
369   // Neither node is an ancestor of the other.
370 
371   // If they have different roots, they're part of different potentially
372   // unrelated type systems, so we must be conservative.
373   if (RootA.getNode() != RootB.getNode())
374     return true;
375 
376   // If they have the same root, then we've proved there's no alias.
377   return false;
378 }
379 
380 /// Test whether the struct-path tag represented by A may alias the
381 /// struct-path tag represented by B.
382 bool
383 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
384                                     const MDNode *B) const {
385   // Keep track of the root node for A and B.
386   TBAAStructTypeNode RootA, RootB;
387   TBAAStructTagNode TagA(A), TagB(B);
388 
389   // TODO: We need to check if AccessType of TagA encloses AccessType of
390   // TagB to support aggregate AccessType. If yes, return true.
391 
392   // Start from the base type of A, follow the edge with the correct offset in
393   // the type DAG and adjust the offset until we reach the base type of B or
394   // until we reach the Root node.
395   // Compare the adjusted offset once we have the same base.
396 
397   // Climb the type DAG from base type of A to see if we reach base type of B.
398   const MDNode *BaseA = TagA.getBaseType();
399   const MDNode *BaseB = TagB.getBaseType();
400   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
401   for (TBAAStructTypeNode T(BaseA); ; ) {
402     if (T.getNode() == BaseB)
403       // Base type of A encloses base type of B, check if the offsets match.
404       return OffsetA == OffsetB;
405 
406     RootA = T;
407     // Follow the edge with the correct offset, OffsetA will be adjusted to
408     // be relative to the field type.
409     T = T.getParent(OffsetA);
410     if (!T.getNode())
411       break;
412   }
413 
414   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
415   // base type of A.
416   OffsetA = TagA.getOffset();
417   for (TBAAStructTypeNode T(BaseB); ; ) {
418     if (T.getNode() == BaseA)
419       // Base type of B encloses base type of A, check if the offsets match.
420       return OffsetA == OffsetB;
421 
422     RootB = T;
423     // Follow the edge with the correct offset, OffsetB will be adjusted to
424     // be relative to the field type.
425     T = T.getParent(OffsetB);
426     if (!T.getNode())
427       break;
428   }
429 
430   // Neither node is an ancestor of the other.
431 
432   // If they have different roots, they're part of different potentially
433   // unrelated type systems, so we must be conservative.
434   if (RootA.getNode() != RootB.getNode())
435     return true;
436 
437   // If they have the same root, then we've proved there's no alias.
438   return false;
439 }
440 
441 AliasAnalysis::AliasResult
442 TypeBasedAliasAnalysis::alias(const Location &LocA,
443                               const Location &LocB) {
444   if (!EnableTBAA)
445     return AliasAnalysis::alias(LocA, LocB);
446 
447   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
448   // be conservative.
449   const MDNode *AM = LocA.TBAATag;
450   if (!AM) return AliasAnalysis::alias(LocA, LocB);
451   const MDNode *BM = LocB.TBAATag;
452   if (!BM) return AliasAnalysis::alias(LocA, LocB);
453 
454   // If they may alias, chain to the next AliasAnalysis.
455   if (Aliases(AM, BM))
456     return AliasAnalysis::alias(LocA, LocB);
457 
458   // Otherwise return a definitive result.
459   return NoAlias;
460 }
461 
462 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
463                                                     bool OrLocal) {
464   if (!EnableTBAA)
465     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
466 
467   const MDNode *M = Loc.TBAATag;
468   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
469 
470   // If this is an "immutable" type, we can assume the pointer is pointing
471   // to constant memory.
472   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
473       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
474     return true;
475 
476   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
477 }
478 
479 AliasAnalysis::ModRefBehavior
480 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
481   if (!EnableTBAA)
482     return AliasAnalysis::getModRefBehavior(CS);
483 
484   ModRefBehavior Min = UnknownModRefBehavior;
485 
486   // If this is an "immutable" type, we can assume the call doesn't write
487   // to memory.
488   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
489     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
490         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
491       Min = OnlyReadsMemory;
492 
493   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
494 }
495 
496 AliasAnalysis::ModRefBehavior
497 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
498   // Functions don't have metadata. Just chain to the next implementation.
499   return AliasAnalysis::getModRefBehavior(F);
500 }
501 
502 AliasAnalysis::ModRefResult
503 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
504                                       const Location &Loc) {
505   if (!EnableTBAA)
506     return AliasAnalysis::getModRefInfo(CS, Loc);
507 
508   if (const MDNode *L = Loc.TBAATag)
509     if (const MDNode *M =
510           CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
511       if (!Aliases(L, M))
512         return NoModRef;
513 
514   return AliasAnalysis::getModRefInfo(CS, Loc);
515 }
516 
517 AliasAnalysis::ModRefResult
518 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
519                                       ImmutableCallSite CS2) {
520   if (!EnableTBAA)
521     return AliasAnalysis::getModRefInfo(CS1, CS2);
522 
523   if (const MDNode *M1 =
524         CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
525     if (const MDNode *M2 =
526           CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
527       if (!Aliases(M1, M2))
528         return NoModRef;
529 
530   return AliasAnalysis::getModRefInfo(CS1, CS2);
531 }
532 
533 bool MDNode::isTBAAVtableAccess() const {
534   if (!isStructPathTBAA(this)) {
535     if (getNumOperands() < 1) return false;
536     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
537       if (Tag1->getString() == "vtable pointer") return true;
538     }
539     return false;
540   }
541 
542   // For struct-path aware TBAA, we use the access type of the tag.
543   if (getNumOperands() < 2) return false;
544   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
545   if (!Tag) return false;
546   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
547     if (Tag1->getString() == "vtable pointer") return true;
548   }
549   return false;
550 }
551 
552 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
553   if (!A || !B)
554     return NULL;
555 
556   if (A == B)
557     return A;
558 
559   // For struct-path aware TBAA, we use the access type of the tag.
560   bool StructPath = isStructPathTBAA(A);
561   if (StructPath) {
562     A = cast_or_null<MDNode>(A->getOperand(1));
563     if (!A) return 0;
564     B = cast_or_null<MDNode>(B->getOperand(1));
565     if (!B) return 0;
566   }
567 
568   SmallVector<MDNode *, 4> PathA;
569   MDNode *T = A;
570   while (T) {
571     PathA.push_back(T);
572     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
573   }
574 
575   SmallVector<MDNode *, 4> PathB;
576   T = B;
577   while (T) {
578     PathB.push_back(T);
579     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
580   }
581 
582   int IA = PathA.size() - 1;
583   int IB = PathB.size() - 1;
584 
585   MDNode *Ret = 0;
586   while (IA >= 0 && IB >=0) {
587     if (PathA[IA] == PathB[IB])
588       Ret = PathA[IA];
589     else
590       break;
591     --IA;
592     --IB;
593   }
594   if (!StructPath)
595     return Ret;
596 
597   if (!Ret)
598     return 0;
599   // We need to convert from a type node to a tag node.
600   Type *Int64 = IntegerType::get(A->getContext(), 64);
601   Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
602   return MDNode::get(A->getContext(), Ops);
603 }
604