1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the TypeBasedAliasAnalysis pass, which implements 11 // metadata-based TBAA. 12 // 13 // In LLVM IR, memory does not have types, so LLVM's own type system is not 14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe 15 // a type system of a higher level language. This can be used to implement 16 // typical C/C++ TBAA, but it can also be used to implement custom alias 17 // analysis behavior for other languages. 18 // 19 // We now support two types of metadata format: scalar TBAA and struct-path 20 // aware TBAA. After all testing cases are upgraded to use struct-path aware 21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA 22 // can be dropped. 23 // 24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to 25 // three fields, e.g.: 26 // !0 = metadata !{ metadata !"an example type tree" } 27 // !1 = metadata !{ metadata !"int", metadata !0 } 28 // !2 = metadata !{ metadata !"float", metadata !0 } 29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } 30 // 31 // The first field is an identity field. It can be any value, usually 32 // an MDString, which uniquely identifies the type. The most important 33 // name in the tree is the name of the root node. Two trees with 34 // different root node names are entirely disjoint, even if they 35 // have leaves with common names. 36 // 37 // The second field identifies the type's parent node in the tree, or 38 // is null or omitted for a root node. A type is considered to alias 39 // all of its descendants and all of its ancestors in the tree. Also, 40 // a type is considered to alias all types in other trees, so that 41 // bitcode produced from multiple front-ends is handled conservatively. 42 // 43 // If the third field is present, it's an integer which if equal to 1 44 // indicates that the type is "constant" (meaning pointsToConstantMemory 45 // should return true; see 46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs). 47 // 48 // With struct-path aware TBAA, the MDNodes attached to an instruction using 49 // "!tbaa" are called path tag nodes. 50 // 51 // The path tag node has 4 fields with the last field being optional. 52 // 53 // The first field is the base type node, it can be a struct type node 54 // or a scalar type node. The second field is the access type node, it 55 // must be a scalar type node. The third field is the offset into the base type. 56 // The last field has the same meaning as the last field of our scalar TBAA: 57 // it's an integer which if equal to 1 indicates that the access is "constant". 58 // 59 // The struct type node has a name and a list of pairs, one pair for each member 60 // of the struct. The first element of each pair is a type node (a struct type 61 // node or a sclar type node), specifying the type of the member, the second 62 // element of each pair is the offset of the member. 63 // 64 // Given an example 65 // typedef struct { 66 // short s; 67 // } A; 68 // typedef struct { 69 // uint16_t s; 70 // A a; 71 // } B; 72 // 73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store 74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar 75 // type short) and the offset is 4. 76 // 77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"} 78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node 79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node 80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node 81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4} 82 // // Struct type node 83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node 84 // 85 // The struct type nodes and the scalar type nodes form a type DAG. 86 // Root (!0) 87 // char (!1) -- edge to Root 88 // short (!2) -- edge to char 89 // A (!3) -- edge with offset 0 to short 90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A 91 // 92 // To check if two tags (tagX and tagY) can alias, we start from the base type 93 // of tagX, follow the edge with the correct offset in the type DAG and adjust 94 // the offset until we reach the base type of tagY or until we reach the Root 95 // node. 96 // If we reach the base type of tagY, compare the adjusted offset with 97 // offset of tagY, return Alias if the offsets are the same, return NoAlias 98 // otherwise. 99 // If we reach the Root node, perform the above starting from base type of tagY 100 // to see if we reach base type of tagX. 101 // 102 // If they have different roots, they're part of different potentially 103 // unrelated type systems, so we return Alias to be conservative. 104 // If neither node is an ancestor of the other and they have the same root, 105 // then we say NoAlias. 106 // 107 // TODO: The current metadata format doesn't support struct 108 // fields. For example: 109 // struct X { 110 // double d; 111 // int i; 112 // }; 113 // void foo(struct X *x, struct X *y, double *p) { 114 // *x = *y; 115 // *p = 0.0; 116 // } 117 // Struct X has a double member, so the store to *x can alias the store to *p. 118 // Currently it's not possible to precisely describe all the things struct X 119 // aliases, so struct assignments must use conservative TBAA nodes. There's 120 // no scheme for attaching metadata to @llvm.memcpy yet either. 121 // 122 //===----------------------------------------------------------------------===// 123 124 #include "llvm/Analysis/Passes.h" 125 #include "llvm/Analysis/AliasAnalysis.h" 126 #include "llvm/IR/Constants.h" 127 #include "llvm/IR/LLVMContext.h" 128 #include "llvm/IR/Metadata.h" 129 #include "llvm/IR/Module.h" 130 #include "llvm/Pass.h" 131 #include "llvm/Support/CommandLine.h" 132 using namespace llvm; 133 134 // A handy option for disabling TBAA functionality. The same effect can also be 135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes 136 // more convenient. 137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true)); 138 139 namespace { 140 /// TBAANode - This is a simple wrapper around an MDNode which provides a 141 /// higher-level interface by hiding the details of how alias analysis 142 /// information is encoded in its operands. 143 class TBAANode { 144 const MDNode *Node; 145 146 public: 147 TBAANode() : Node(nullptr) {} 148 explicit TBAANode(const MDNode *N) : Node(N) {} 149 150 /// getNode - Get the MDNode for this TBAANode. 151 const MDNode *getNode() const { return Node; } 152 153 /// getParent - Get this TBAANode's Alias tree parent. 154 TBAANode getParent() const { 155 if (Node->getNumOperands() < 2) 156 return TBAANode(); 157 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 158 if (!P) 159 return TBAANode(); 160 // Ok, this node has a valid parent. Return it. 161 return TBAANode(P); 162 } 163 164 /// TypeIsImmutable - Test if this TBAANode represents a type for objects 165 /// which are not modified (by any means) in the context where this 166 /// AliasAnalysis is relevant. 167 bool TypeIsImmutable() const { 168 if (Node->getNumOperands() < 3) 169 return false; 170 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2)); 171 if (!CI) 172 return false; 173 return CI->getValue()[0]; 174 } 175 }; 176 177 /// This is a simple wrapper around an MDNode which provides a 178 /// higher-level interface by hiding the details of how alias analysis 179 /// information is encoded in its operands. 180 class TBAAStructTagNode { 181 /// This node should be created with createTBAAStructTagNode. 182 const MDNode *Node; 183 184 public: 185 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {} 186 187 /// Get the MDNode for this TBAAStructTagNode. 188 const MDNode *getNode() const { return Node; } 189 190 const MDNode *getBaseType() const { 191 return dyn_cast_or_null<MDNode>(Node->getOperand(0)); 192 } 193 const MDNode *getAccessType() const { 194 return dyn_cast_or_null<MDNode>(Node->getOperand(1)); 195 } 196 uint64_t getOffset() const { 197 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue(); 198 } 199 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for 200 /// objects which are not modified (by any means) in the context where this 201 /// AliasAnalysis is relevant. 202 bool TypeIsImmutable() const { 203 if (Node->getNumOperands() < 4) 204 return false; 205 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3)); 206 if (!CI) 207 return false; 208 return CI->getValue()[0]; 209 } 210 }; 211 212 /// This is a simple wrapper around an MDNode which provides a 213 /// higher-level interface by hiding the details of how alias analysis 214 /// information is encoded in its operands. 215 class TBAAStructTypeNode { 216 /// This node should be created with createTBAAStructTypeNode. 217 const MDNode *Node; 218 219 public: 220 TBAAStructTypeNode() : Node(nullptr) {} 221 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {} 222 223 /// Get the MDNode for this TBAAStructTypeNode. 224 const MDNode *getNode() const { return Node; } 225 226 /// Get this TBAAStructTypeNode's field in the type DAG with 227 /// given offset. Update the offset to be relative to the field type. 228 TBAAStructTypeNode getParent(uint64_t &Offset) const { 229 // Parent can be omitted for the root node. 230 if (Node->getNumOperands() < 2) 231 return TBAAStructTypeNode(); 232 233 // Fast path for a scalar type node and a struct type node with a single 234 // field. 235 if (Node->getNumOperands() <= 3) { 236 uint64_t Cur = Node->getNumOperands() == 2 237 ? 0 238 : mdconst::extract<ConstantInt>(Node->getOperand(2)) 239 ->getZExtValue(); 240 Offset -= Cur; 241 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 242 if (!P) 243 return TBAAStructTypeNode(); 244 return TBAAStructTypeNode(P); 245 } 246 247 // Assume the offsets are in order. We return the previous field if 248 // the current offset is bigger than the given offset. 249 unsigned TheIdx = 0; 250 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) { 251 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1)) 252 ->getZExtValue(); 253 if (Cur > Offset) { 254 assert(Idx >= 3 && 255 "TBAAStructTypeNode::getParent should have an offset match!"); 256 TheIdx = Idx - 2; 257 break; 258 } 259 } 260 // Move along the last field. 261 if (TheIdx == 0) 262 TheIdx = Node->getNumOperands() - 2; 263 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1)) 264 ->getZExtValue(); 265 Offset -= Cur; 266 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx)); 267 if (!P) 268 return TBAAStructTypeNode(); 269 return TBAAStructTypeNode(P); 270 } 271 }; 272 } 273 274 namespace { 275 /// TypeBasedAliasAnalysis - This is a simple alias analysis 276 /// implementation that uses TypeBased to answer queries. 277 class TypeBasedAliasAnalysis : public ImmutablePass, 278 public AliasAnalysis { 279 public: 280 static char ID; // Class identification, replacement for typeinfo 281 TypeBasedAliasAnalysis() : ImmutablePass(ID) { 282 initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry()); 283 } 284 285 void initializePass() override { 286 InitializeAliasAnalysis(this); 287 } 288 289 /// getAdjustedAnalysisPointer - This method is used when a pass implements 290 /// an analysis interface through multiple inheritance. If needed, it 291 /// should override this to adjust the this pointer as needed for the 292 /// specified pass info. 293 void *getAdjustedAnalysisPointer(const void *PI) override { 294 if (PI == &AliasAnalysis::ID) 295 return (AliasAnalysis*)this; 296 return this; 297 } 298 299 bool Aliases(const MDNode *A, const MDNode *B) const; 300 bool PathAliases(const MDNode *A, const MDNode *B) const; 301 302 private: 303 void getAnalysisUsage(AnalysisUsage &AU) const override; 304 AliasResult alias(const Location &LocA, const Location &LocB) override; 305 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 306 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 307 ModRefBehavior getModRefBehavior(const Function *F) override; 308 ModRefResult getModRefInfo(ImmutableCallSite CS, 309 const Location &Loc) override; 310 ModRefResult getModRefInfo(ImmutableCallSite CS1, 311 ImmutableCallSite CS2) override; 312 }; 313 } // End of anonymous namespace 314 315 // Register this pass... 316 char TypeBasedAliasAnalysis::ID = 0; 317 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa", 318 "Type-Based Alias Analysis", false, true, false) 319 320 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() { 321 return new TypeBasedAliasAnalysis(); 322 } 323 324 void 325 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 326 AU.setPreservesAll(); 327 AliasAnalysis::getAnalysisUsage(AU); 328 } 329 330 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat 331 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA 332 /// format. 333 static bool isStructPathTBAA(const MDNode *MD) { 334 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as 335 // a TBAA tag. 336 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 337 } 338 339 /// Aliases - Test whether the type represented by A may alias the 340 /// type represented by B. 341 bool 342 TypeBasedAliasAnalysis::Aliases(const MDNode *A, 343 const MDNode *B) const { 344 // Make sure that both MDNodes are struct-path aware. 345 if (isStructPathTBAA(A) && isStructPathTBAA(B)) 346 return PathAliases(A, B); 347 348 // Keep track of the root node for A and B. 349 TBAANode RootA, RootB; 350 351 // Climb the tree from A to see if we reach B. 352 for (TBAANode T(A); ; ) { 353 if (T.getNode() == B) 354 // B is an ancestor of A. 355 return true; 356 357 RootA = T; 358 T = T.getParent(); 359 if (!T.getNode()) 360 break; 361 } 362 363 // Climb the tree from B to see if we reach A. 364 for (TBAANode T(B); ; ) { 365 if (T.getNode() == A) 366 // A is an ancestor of B. 367 return true; 368 369 RootB = T; 370 T = T.getParent(); 371 if (!T.getNode()) 372 break; 373 } 374 375 // Neither node is an ancestor of the other. 376 377 // If they have different roots, they're part of different potentially 378 // unrelated type systems, so we must be conservative. 379 if (RootA.getNode() != RootB.getNode()) 380 return true; 381 382 // If they have the same root, then we've proved there's no alias. 383 return false; 384 } 385 386 /// Test whether the struct-path tag represented by A may alias the 387 /// struct-path tag represented by B. 388 bool 389 TypeBasedAliasAnalysis::PathAliases(const MDNode *A, 390 const MDNode *B) const { 391 // Verify that both input nodes are struct-path aware. 392 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware."); 393 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware."); 394 395 // Keep track of the root node for A and B. 396 TBAAStructTypeNode RootA, RootB; 397 TBAAStructTagNode TagA(A), TagB(B); 398 399 // TODO: We need to check if AccessType of TagA encloses AccessType of 400 // TagB to support aggregate AccessType. If yes, return true. 401 402 // Start from the base type of A, follow the edge with the correct offset in 403 // the type DAG and adjust the offset until we reach the base type of B or 404 // until we reach the Root node. 405 // Compare the adjusted offset once we have the same base. 406 407 // Climb the type DAG from base type of A to see if we reach base type of B. 408 const MDNode *BaseA = TagA.getBaseType(); 409 const MDNode *BaseB = TagB.getBaseType(); 410 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset(); 411 for (TBAAStructTypeNode T(BaseA); ; ) { 412 if (T.getNode() == BaseB) 413 // Base type of A encloses base type of B, check if the offsets match. 414 return OffsetA == OffsetB; 415 416 RootA = T; 417 // Follow the edge with the correct offset, OffsetA will be adjusted to 418 // be relative to the field type. 419 T = T.getParent(OffsetA); 420 if (!T.getNode()) 421 break; 422 } 423 424 // Reset OffsetA and climb the type DAG from base type of B to see if we reach 425 // base type of A. 426 OffsetA = TagA.getOffset(); 427 for (TBAAStructTypeNode T(BaseB); ; ) { 428 if (T.getNode() == BaseA) 429 // Base type of B encloses base type of A, check if the offsets match. 430 return OffsetA == OffsetB; 431 432 RootB = T; 433 // Follow the edge with the correct offset, OffsetB will be adjusted to 434 // be relative to the field type. 435 T = T.getParent(OffsetB); 436 if (!T.getNode()) 437 break; 438 } 439 440 // Neither node is an ancestor of the other. 441 442 // If they have different roots, they're part of different potentially 443 // unrelated type systems, so we must be conservative. 444 if (RootA.getNode() != RootB.getNode()) 445 return true; 446 447 // If they have the same root, then we've proved there's no alias. 448 return false; 449 } 450 451 AliasAnalysis::AliasResult 452 TypeBasedAliasAnalysis::alias(const Location &LocA, 453 const Location &LocB) { 454 if (!EnableTBAA) 455 return AliasAnalysis::alias(LocA, LocB); 456 457 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must 458 // be conservative. 459 const MDNode *AM = LocA.AATags.TBAA; 460 if (!AM) return AliasAnalysis::alias(LocA, LocB); 461 const MDNode *BM = LocB.AATags.TBAA; 462 if (!BM) return AliasAnalysis::alias(LocA, LocB); 463 464 // If they may alias, chain to the next AliasAnalysis. 465 if (Aliases(AM, BM)) 466 return AliasAnalysis::alias(LocA, LocB); 467 468 // Otherwise return a definitive result. 469 return NoAlias; 470 } 471 472 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc, 473 bool OrLocal) { 474 if (!EnableTBAA) 475 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 476 477 const MDNode *M = Loc.AATags.TBAA; 478 if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 479 480 // If this is an "immutable" type, we can assume the pointer is pointing 481 // to constant memory. 482 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 483 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 484 return true; 485 486 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 487 } 488 489 AliasAnalysis::ModRefBehavior 490 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 491 if (!EnableTBAA) 492 return AliasAnalysis::getModRefBehavior(CS); 493 494 ModRefBehavior Min = UnknownModRefBehavior; 495 496 // If this is an "immutable" type, we can assume the call doesn't write 497 // to memory. 498 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 499 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 500 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 501 Min = OnlyReadsMemory; 502 503 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 504 } 505 506 AliasAnalysis::ModRefBehavior 507 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) { 508 // Functions don't have metadata. Just chain to the next implementation. 509 return AliasAnalysis::getModRefBehavior(F); 510 } 511 512 AliasAnalysis::ModRefResult 513 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 514 const Location &Loc) { 515 if (!EnableTBAA) 516 return AliasAnalysis::getModRefInfo(CS, Loc); 517 518 if (const MDNode *L = Loc.AATags.TBAA) 519 if (const MDNode *M = 520 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 521 if (!Aliases(L, M)) 522 return NoModRef; 523 524 return AliasAnalysis::getModRefInfo(CS, Loc); 525 } 526 527 AliasAnalysis::ModRefResult 528 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 529 ImmutableCallSite CS2) { 530 if (!EnableTBAA) 531 return AliasAnalysis::getModRefInfo(CS1, CS2); 532 533 if (const MDNode *M1 = 534 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 535 if (const MDNode *M2 = 536 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 537 if (!Aliases(M1, M2)) 538 return NoModRef; 539 540 return AliasAnalysis::getModRefInfo(CS1, CS2); 541 } 542 543 bool MDNode::isTBAAVtableAccess() const { 544 if (!isStructPathTBAA(this)) { 545 if (getNumOperands() < 1) return false; 546 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) { 547 if (Tag1->getString() == "vtable pointer") return true; 548 } 549 return false; 550 } 551 552 // For struct-path aware TBAA, we use the access type of the tag. 553 if (getNumOperands() < 2) return false; 554 MDNode *Tag = cast_or_null<MDNode>(getOperand(1)); 555 if (!Tag) return false; 556 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) { 557 if (Tag1->getString() == "vtable pointer") return true; 558 } 559 return false; 560 } 561 562 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) { 563 if (!A || !B) 564 return nullptr; 565 566 if (A == B) 567 return A; 568 569 // For struct-path aware TBAA, we use the access type of the tag. 570 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B); 571 if (StructPath) { 572 A = cast_or_null<MDNode>(A->getOperand(1)); 573 if (!A) return nullptr; 574 B = cast_or_null<MDNode>(B->getOperand(1)); 575 if (!B) return nullptr; 576 } 577 578 SmallVector<MDNode *, 4> PathA; 579 MDNode *T = A; 580 while (T) { 581 PathA.push_back(T); 582 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 583 : nullptr; 584 } 585 586 SmallVector<MDNode *, 4> PathB; 587 T = B; 588 while (T) { 589 PathB.push_back(T); 590 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 591 : nullptr; 592 } 593 594 int IA = PathA.size() - 1; 595 int IB = PathB.size() - 1; 596 597 MDNode *Ret = nullptr; 598 while (IA >= 0 && IB >=0) { 599 if (PathA[IA] == PathB[IB]) 600 Ret = PathA[IA]; 601 else 602 break; 603 --IA; 604 --IB; 605 } 606 if (!StructPath) 607 return Ret; 608 609 if (!Ret) 610 return nullptr; 611 // We need to convert from a type node to a tag node. 612 Type *Int64 = IntegerType::get(A->getContext(), 64); 613 Metadata *Ops[3] = {Ret, Ret, 614 ConstantAsMetadata::get(ConstantInt::get(Int64, 0))}; 615 return MDNode::get(A->getContext(), Ops); 616 } 617 618 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const { 619 if (Merge) 620 N.TBAA = 621 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa)); 622 else 623 N.TBAA = getMetadata(LLVMContext::MD_tbaa); 624 625 if (Merge) 626 N.Scope = MDNode::getMostGenericAliasScope( 627 N.Scope, getMetadata(LLVMContext::MD_alias_scope)); 628 else 629 N.Scope = getMetadata(LLVMContext::MD_alias_scope); 630 631 if (Merge) 632 N.NoAlias = 633 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias)); 634 else 635 N.NoAlias = getMetadata(LLVMContext::MD_noalias); 636 } 637 638