1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the TypeBasedAliasAnalysis pass, which implements 11 // metadata-based TBAA. 12 // 13 // In LLVM IR, memory does not have types, so LLVM's own type system is not 14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe 15 // a type system of a higher level language. This can be used to implement 16 // typical C/C++ TBAA, but it can also be used to implement custom alias 17 // analysis behavior for other languages. 18 // 19 // We now support two types of metadata format: scalar TBAA and struct-path 20 // aware TBAA. After all testing cases are upgraded to use struct-path aware 21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA 22 // can be dropped. 23 // 24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to 25 // three fields, e.g.: 26 // !0 = metadata !{ metadata !"an example type tree" } 27 // !1 = metadata !{ metadata !"int", metadata !0 } 28 // !2 = metadata !{ metadata !"float", metadata !0 } 29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } 30 // 31 // The first field is an identity field. It can be any value, usually 32 // an MDString, which uniquely identifies the type. The most important 33 // name in the tree is the name of the root node. Two trees with 34 // different root node names are entirely disjoint, even if they 35 // have leaves with common names. 36 // 37 // The second field identifies the type's parent node in the tree, or 38 // is null or omitted for a root node. A type is considered to alias 39 // all of its descendants and all of its ancestors in the tree. Also, 40 // a type is considered to alias all types in other trees, so that 41 // bitcode produced from multiple front-ends is handled conservatively. 42 // 43 // If the third field is present, it's an integer which if equal to 1 44 // indicates that the type is "constant" (meaning pointsToConstantMemory 45 // should return true; see 46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs). 47 // 48 // With struct-path aware TBAA, the MDNodes attached to an instruction using 49 // "!tbaa" are called path tag nodes. 50 // 51 // The path tag node has 4 fields with the last field being optional. 52 // 53 // The first field is the base type node, it can be a struct type node 54 // or a scalar type node. The second field is the access type node, it 55 // must be a scalar type node. The third field is the offset into the base type. 56 // The last field has the same meaning as the last field of our scalar TBAA: 57 // it's an integer which if equal to 1 indicates that the access is "constant". 58 // 59 // The struct type node has a name and a list of pairs, one pair for each member 60 // of the struct. The first element of each pair is a type node (a struct type 61 // node or a sclar type node), specifying the type of the member, the second 62 // element of each pair is the offset of the member. 63 // 64 // Given an example 65 // typedef struct { 66 // short s; 67 // } A; 68 // typedef struct { 69 // uint16_t s; 70 // A a; 71 // } B; 72 // 73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store 74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar 75 // type short) and the offset is 4. 76 // 77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"} 78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node 79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node 80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node 81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4} 82 // // Struct type node 83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node 84 // 85 // The struct type nodes and the scalar type nodes form a type DAG. 86 // Root (!0) 87 // char (!1) -- edge to Root 88 // short (!2) -- edge to char 89 // A (!3) -- edge with offset 0 to short 90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A 91 // 92 // To check if two tags (tagX and tagY) can alias, we start from the base type 93 // of tagX, follow the edge with the correct offset in the type DAG and adjust 94 // the offset until we reach the base type of tagY or until we reach the Root 95 // node. 96 // If we reach the base type of tagY, compare the adjusted offset with 97 // offset of tagY, return Alias if the offsets are the same, return NoAlias 98 // otherwise. 99 // If we reach the Root node, perform the above starting from base type of tagY 100 // to see if we reach base type of tagX. 101 // 102 // If they have different roots, they're part of different potentially 103 // unrelated type systems, so we return Alias to be conservative. 104 // If neither node is an ancestor of the other and they have the same root, 105 // then we say NoAlias. 106 // 107 // TODO: The current metadata format doesn't support struct 108 // fields. For example: 109 // struct X { 110 // double d; 111 // int i; 112 // }; 113 // void foo(struct X *x, struct X *y, double *p) { 114 // *x = *y; 115 // *p = 0.0; 116 // } 117 // Struct X has a double member, so the store to *x can alias the store to *p. 118 // Currently it's not possible to precisely describe all the things struct X 119 // aliases, so struct assignments must use conservative TBAA nodes. There's 120 // no scheme for attaching metadata to @llvm.memcpy yet either. 121 // 122 //===----------------------------------------------------------------------===// 123 124 #include "llvm/Analysis/Passes.h" 125 #include "llvm/Analysis/AliasAnalysis.h" 126 #include "llvm/IR/Constants.h" 127 #include "llvm/IR/LLVMContext.h" 128 #include "llvm/IR/Metadata.h" 129 #include "llvm/IR/Module.h" 130 #include "llvm/Pass.h" 131 #include "llvm/Support/CommandLine.h" 132 #include "llvm/ADT/SetVector.h" 133 using namespace llvm; 134 135 // A handy option for disabling TBAA functionality. The same effect can also be 136 // achieved by stripping the !tbaa tags from IR, but this option is sometimes 137 // more convenient. 138 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true)); 139 140 namespace { 141 /// TBAANode - This is a simple wrapper around an MDNode which provides a 142 /// higher-level interface by hiding the details of how alias analysis 143 /// information is encoded in its operands. 144 class TBAANode { 145 const MDNode *Node; 146 147 public: 148 TBAANode() : Node(nullptr) {} 149 explicit TBAANode(const MDNode *N) : Node(N) {} 150 151 /// getNode - Get the MDNode for this TBAANode. 152 const MDNode *getNode() const { return Node; } 153 154 /// getParent - Get this TBAANode's Alias tree parent. 155 TBAANode getParent() const { 156 if (Node->getNumOperands() < 2) 157 return TBAANode(); 158 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 159 if (!P) 160 return TBAANode(); 161 // Ok, this node has a valid parent. Return it. 162 return TBAANode(P); 163 } 164 165 /// TypeIsImmutable - Test if this TBAANode represents a type for objects 166 /// which are not modified (by any means) in the context where this 167 /// AliasAnalysis is relevant. 168 bool TypeIsImmutable() const { 169 if (Node->getNumOperands() < 3) 170 return false; 171 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2)); 172 if (!CI) 173 return false; 174 return CI->getValue()[0]; 175 } 176 }; 177 178 /// This is a simple wrapper around an MDNode which provides a 179 /// higher-level interface by hiding the details of how alias analysis 180 /// information is encoded in its operands. 181 class TBAAStructTagNode { 182 /// This node should be created with createTBAAStructTagNode. 183 const MDNode *Node; 184 185 public: 186 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {} 187 188 /// Get the MDNode for this TBAAStructTagNode. 189 const MDNode *getNode() const { return Node; } 190 191 const MDNode *getBaseType() const { 192 return dyn_cast_or_null<MDNode>(Node->getOperand(0)); 193 } 194 const MDNode *getAccessType() const { 195 return dyn_cast_or_null<MDNode>(Node->getOperand(1)); 196 } 197 uint64_t getOffset() const { 198 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue(); 199 } 200 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for 201 /// objects which are not modified (by any means) in the context where this 202 /// AliasAnalysis is relevant. 203 bool TypeIsImmutable() const { 204 if (Node->getNumOperands() < 4) 205 return false; 206 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3)); 207 if (!CI) 208 return false; 209 return CI->getValue()[0]; 210 } 211 }; 212 213 /// This is a simple wrapper around an MDNode which provides a 214 /// higher-level interface by hiding the details of how alias analysis 215 /// information is encoded in its operands. 216 class TBAAStructTypeNode { 217 /// This node should be created with createTBAAStructTypeNode. 218 const MDNode *Node; 219 220 public: 221 TBAAStructTypeNode() : Node(nullptr) {} 222 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {} 223 224 /// Get the MDNode for this TBAAStructTypeNode. 225 const MDNode *getNode() const { return Node; } 226 227 /// Get this TBAAStructTypeNode's field in the type DAG with 228 /// given offset. Update the offset to be relative to the field type. 229 TBAAStructTypeNode getParent(uint64_t &Offset) const { 230 // Parent can be omitted for the root node. 231 if (Node->getNumOperands() < 2) 232 return TBAAStructTypeNode(); 233 234 // Fast path for a scalar type node and a struct type node with a single 235 // field. 236 if (Node->getNumOperands() <= 3) { 237 uint64_t Cur = Node->getNumOperands() == 2 238 ? 0 239 : mdconst::extract<ConstantInt>(Node->getOperand(2)) 240 ->getZExtValue(); 241 Offset -= Cur; 242 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1)); 243 if (!P) 244 return TBAAStructTypeNode(); 245 return TBAAStructTypeNode(P); 246 } 247 248 // Assume the offsets are in order. We return the previous field if 249 // the current offset is bigger than the given offset. 250 unsigned TheIdx = 0; 251 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) { 252 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1)) 253 ->getZExtValue(); 254 if (Cur > Offset) { 255 assert(Idx >= 3 && 256 "TBAAStructTypeNode::getParent should have an offset match!"); 257 TheIdx = Idx - 2; 258 break; 259 } 260 } 261 // Move along the last field. 262 if (TheIdx == 0) 263 TheIdx = Node->getNumOperands() - 2; 264 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1)) 265 ->getZExtValue(); 266 Offset -= Cur; 267 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx)); 268 if (!P) 269 return TBAAStructTypeNode(); 270 return TBAAStructTypeNode(P); 271 } 272 }; 273 } 274 275 namespace { 276 /// TypeBasedAliasAnalysis - This is a simple alias analysis 277 /// implementation that uses TypeBased to answer queries. 278 class TypeBasedAliasAnalysis : public ImmutablePass, 279 public AliasAnalysis { 280 public: 281 static char ID; // Class identification, replacement for typeinfo 282 TypeBasedAliasAnalysis() : ImmutablePass(ID) { 283 initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry()); 284 } 285 286 bool doInitialization(Module &M) override; 287 288 /// getAdjustedAnalysisPointer - This method is used when a pass implements 289 /// an analysis interface through multiple inheritance. If needed, it 290 /// should override this to adjust the this pointer as needed for the 291 /// specified pass info. 292 void *getAdjustedAnalysisPointer(const void *PI) override { 293 if (PI == &AliasAnalysis::ID) 294 return (AliasAnalysis*)this; 295 return this; 296 } 297 298 bool Aliases(const MDNode *A, const MDNode *B) const; 299 bool PathAliases(const MDNode *A, const MDNode *B) const; 300 301 private: 302 void getAnalysisUsage(AnalysisUsage &AU) const override; 303 AliasResult alias(const MemoryLocation &LocA, 304 const MemoryLocation &LocB) override; 305 bool pointsToConstantMemory(const MemoryLocation &Loc, 306 bool OrLocal) override; 307 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 308 ModRefBehavior getModRefBehavior(const Function *F) override; 309 ModRefResult getModRefInfo(ImmutableCallSite CS, 310 const MemoryLocation &Loc) override; 311 ModRefResult getModRefInfo(ImmutableCallSite CS1, 312 ImmutableCallSite CS2) override; 313 }; 314 } // End of anonymous namespace 315 316 // Register this pass... 317 char TypeBasedAliasAnalysis::ID = 0; 318 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa", 319 "Type-Based Alias Analysis", false, true, false) 320 321 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() { 322 return new TypeBasedAliasAnalysis(); 323 } 324 325 bool TypeBasedAliasAnalysis::doInitialization(Module &M) { 326 InitializeAliasAnalysis(this, &M.getDataLayout()); 327 return true; 328 } 329 330 void 331 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 332 AU.setPreservesAll(); 333 AliasAnalysis::getAnalysisUsage(AU); 334 } 335 336 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat 337 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA 338 /// format. 339 static bool isStructPathTBAA(const MDNode *MD) { 340 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as 341 // a TBAA tag. 342 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 343 } 344 345 /// Aliases - Test whether the type represented by A may alias the 346 /// type represented by B. 347 bool 348 TypeBasedAliasAnalysis::Aliases(const MDNode *A, 349 const MDNode *B) const { 350 // Make sure that both MDNodes are struct-path aware. 351 if (isStructPathTBAA(A) && isStructPathTBAA(B)) 352 return PathAliases(A, B); 353 354 // Keep track of the root node for A and B. 355 TBAANode RootA, RootB; 356 357 // Climb the tree from A to see if we reach B. 358 for (TBAANode T(A); ; ) { 359 if (T.getNode() == B) 360 // B is an ancestor of A. 361 return true; 362 363 RootA = T; 364 T = T.getParent(); 365 if (!T.getNode()) 366 break; 367 } 368 369 // Climb the tree from B to see if we reach A. 370 for (TBAANode T(B); ; ) { 371 if (T.getNode() == A) 372 // A is an ancestor of B. 373 return true; 374 375 RootB = T; 376 T = T.getParent(); 377 if (!T.getNode()) 378 break; 379 } 380 381 // Neither node is an ancestor of the other. 382 383 // If they have different roots, they're part of different potentially 384 // unrelated type systems, so we must be conservative. 385 if (RootA.getNode() != RootB.getNode()) 386 return true; 387 388 // If they have the same root, then we've proved there's no alias. 389 return false; 390 } 391 392 /// Test whether the struct-path tag represented by A may alias the 393 /// struct-path tag represented by B. 394 bool 395 TypeBasedAliasAnalysis::PathAliases(const MDNode *A, 396 const MDNode *B) const { 397 // Verify that both input nodes are struct-path aware. 398 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware."); 399 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware."); 400 401 // Keep track of the root node for A and B. 402 TBAAStructTypeNode RootA, RootB; 403 TBAAStructTagNode TagA(A), TagB(B); 404 405 // TODO: We need to check if AccessType of TagA encloses AccessType of 406 // TagB to support aggregate AccessType. If yes, return true. 407 408 // Start from the base type of A, follow the edge with the correct offset in 409 // the type DAG and adjust the offset until we reach the base type of B or 410 // until we reach the Root node. 411 // Compare the adjusted offset once we have the same base. 412 413 // Climb the type DAG from base type of A to see if we reach base type of B. 414 const MDNode *BaseA = TagA.getBaseType(); 415 const MDNode *BaseB = TagB.getBaseType(); 416 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset(); 417 for (TBAAStructTypeNode T(BaseA); ; ) { 418 if (T.getNode() == BaseB) 419 // Base type of A encloses base type of B, check if the offsets match. 420 return OffsetA == OffsetB; 421 422 RootA = T; 423 // Follow the edge with the correct offset, OffsetA will be adjusted to 424 // be relative to the field type. 425 T = T.getParent(OffsetA); 426 if (!T.getNode()) 427 break; 428 } 429 430 // Reset OffsetA and climb the type DAG from base type of B to see if we reach 431 // base type of A. 432 OffsetA = TagA.getOffset(); 433 for (TBAAStructTypeNode T(BaseB); ; ) { 434 if (T.getNode() == BaseA) 435 // Base type of B encloses base type of A, check if the offsets match. 436 return OffsetA == OffsetB; 437 438 RootB = T; 439 // Follow the edge with the correct offset, OffsetB will be adjusted to 440 // be relative to the field type. 441 T = T.getParent(OffsetB); 442 if (!T.getNode()) 443 break; 444 } 445 446 // Neither node is an ancestor of the other. 447 448 // If they have different roots, they're part of different potentially 449 // unrelated type systems, so we must be conservative. 450 if (RootA.getNode() != RootB.getNode()) 451 return true; 452 453 // If they have the same root, then we've proved there's no alias. 454 return false; 455 } 456 457 AliasResult TypeBasedAliasAnalysis::alias(const MemoryLocation &LocA, 458 const MemoryLocation &LocB) { 459 if (!EnableTBAA) 460 return AliasAnalysis::alias(LocA, LocB); 461 462 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must 463 // be conservative. 464 const MDNode *AM = LocA.AATags.TBAA; 465 if (!AM) return AliasAnalysis::alias(LocA, LocB); 466 const MDNode *BM = LocB.AATags.TBAA; 467 if (!BM) return AliasAnalysis::alias(LocA, LocB); 468 469 // If they may alias, chain to the next AliasAnalysis. 470 if (Aliases(AM, BM)) 471 return AliasAnalysis::alias(LocA, LocB); 472 473 // Otherwise return a definitive result. 474 return NoAlias; 475 } 476 477 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, 478 bool OrLocal) { 479 if (!EnableTBAA) 480 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 481 482 const MDNode *M = Loc.AATags.TBAA; 483 if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 484 485 // If this is an "immutable" type, we can assume the pointer is pointing 486 // to constant memory. 487 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 488 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 489 return true; 490 491 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 492 } 493 494 AliasAnalysis::ModRefBehavior 495 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 496 if (!EnableTBAA) 497 return AliasAnalysis::getModRefBehavior(CS); 498 499 ModRefBehavior Min = UnknownModRefBehavior; 500 501 // If this is an "immutable" type, we can assume the call doesn't write 502 // to memory. 503 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 504 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) || 505 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable())) 506 Min = OnlyReadsMemory; 507 508 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 509 } 510 511 AliasAnalysis::ModRefBehavior 512 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) { 513 // Functions don't have metadata. Just chain to the next implementation. 514 return AliasAnalysis::getModRefBehavior(F); 515 } 516 517 AliasAnalysis::ModRefResult 518 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 519 const MemoryLocation &Loc) { 520 if (!EnableTBAA) 521 return AliasAnalysis::getModRefInfo(CS, Loc); 522 523 if (const MDNode *L = Loc.AATags.TBAA) 524 if (const MDNode *M = 525 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 526 if (!Aliases(L, M)) 527 return NoModRef; 528 529 return AliasAnalysis::getModRefInfo(CS, Loc); 530 } 531 532 AliasAnalysis::ModRefResult 533 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 534 ImmutableCallSite CS2) { 535 if (!EnableTBAA) 536 return AliasAnalysis::getModRefInfo(CS1, CS2); 537 538 if (const MDNode *M1 = 539 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 540 if (const MDNode *M2 = 541 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa)) 542 if (!Aliases(M1, M2)) 543 return NoModRef; 544 545 return AliasAnalysis::getModRefInfo(CS1, CS2); 546 } 547 548 bool MDNode::isTBAAVtableAccess() const { 549 if (!isStructPathTBAA(this)) { 550 if (getNumOperands() < 1) return false; 551 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) { 552 if (Tag1->getString() == "vtable pointer") return true; 553 } 554 return false; 555 } 556 557 // For struct-path aware TBAA, we use the access type of the tag. 558 if (getNumOperands() < 2) return false; 559 MDNode *Tag = cast_or_null<MDNode>(getOperand(1)); 560 if (!Tag) return false; 561 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) { 562 if (Tag1->getString() == "vtable pointer") return true; 563 } 564 return false; 565 } 566 567 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) { 568 if (!A || !B) 569 return nullptr; 570 571 if (A == B) 572 return A; 573 574 // For struct-path aware TBAA, we use the access type of the tag. 575 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B); 576 if (StructPath) { 577 A = cast_or_null<MDNode>(A->getOperand(1)); 578 if (!A) return nullptr; 579 B = cast_or_null<MDNode>(B->getOperand(1)); 580 if (!B) return nullptr; 581 } 582 583 SmallSetVector<MDNode *, 4> PathA; 584 MDNode *T = A; 585 while (T) { 586 if (PathA.count(T)) 587 report_fatal_error("Cycle found in TBAA metadata."); 588 PathA.insert(T); 589 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 590 : nullptr; 591 } 592 593 SmallSetVector<MDNode *, 4> PathB; 594 T = B; 595 while (T) { 596 if (PathB.count(T)) 597 report_fatal_error("Cycle found in TBAA metadata."); 598 PathB.insert(T); 599 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) 600 : nullptr; 601 } 602 603 int IA = PathA.size() - 1; 604 int IB = PathB.size() - 1; 605 606 MDNode *Ret = nullptr; 607 while (IA >= 0 && IB >=0) { 608 if (PathA[IA] == PathB[IB]) 609 Ret = PathA[IA]; 610 else 611 break; 612 --IA; 613 --IB; 614 } 615 if (!StructPath) 616 return Ret; 617 618 if (!Ret) 619 return nullptr; 620 // We need to convert from a type node to a tag node. 621 Type *Int64 = IntegerType::get(A->getContext(), 64); 622 Metadata *Ops[3] = {Ret, Ret, 623 ConstantAsMetadata::get(ConstantInt::get(Int64, 0))}; 624 return MDNode::get(A->getContext(), Ops); 625 } 626 627 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const { 628 if (Merge) 629 N.TBAA = 630 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa)); 631 else 632 N.TBAA = getMetadata(LLVMContext::MD_tbaa); 633 634 if (Merge) 635 N.Scope = MDNode::getMostGenericAliasScope( 636 N.Scope, getMetadata(LLVMContext::MD_alias_scope)); 637 else 638 N.Scope = getMetadata(LLVMContext::MD_alias_scope); 639 640 if (Merge) 641 N.NoAlias = 642 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias)); 643 else 644 N.NoAlias = getMetadata(LLVMContext::MD_noalias); 645 } 646 647