1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
11 //
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
17 //
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
22 //
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 //   !0 = !{ !"an example type tree" }
26 //   !1 = !{ !"int", !0 }
27 //   !2 = !{ !"float", !0 }
28 //   !3 = !{ !"const float", !2, i64 1 }
29 //
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
35 //
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
41 //
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
46 //
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
49 //
50 // The path tag node has 4 fields with the last field being optional.
51 //
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
57 //
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
62 //
63 // Given an example
64 // typedef struct {
65 //   short s;
66 // } A;
67 // typedef struct {
68 //   uint16_t s;
69 //   A a;
70 // } B;
71 //
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
75 //
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1}           // Scalar type node
79 // !3 = !{!"A", !2, i64 0}        // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 //                                                           // Struct type node
82 // !5 = !{!4, !2, i64 4}          // Path tag node
83 //
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 //         Root (!0)
86 //         char (!1)  -- edge to Root
87 //         short (!2) -- edge to char
88 //         A (!3) -- edge with offset 0 to short
89 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
90 //
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
100 //
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
105 //
106 //===----------------------------------------------------------------------===//
107 
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/Instruction.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/CommandLine.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include <cassert>
122 #include <cstdint>
123 
124 using namespace llvm;
125 
126 // A handy option for disabling TBAA functionality. The same effect can also be
127 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
128 // more convenient.
129 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
130 
131 namespace {
132 
133 /// isNewFormatTypeNode - Return true iff the given type node is in the new
134 /// size-aware format.
135 static bool isNewFormatTypeNode(const MDNode *N) {
136   if (N->getNumOperands() < 3)
137     return false;
138   // In the old format the first operand is a string.
139   if (!isa<MDNode>(N->getOperand(0)))
140     return false;
141   return true;
142 }
143 
144 /// This is a simple wrapper around an MDNode which provides a higher-level
145 /// interface by hiding the details of how alias analysis information is encoded
146 /// in its operands.
147 template<typename MDNodeTy>
148 class TBAANodeImpl {
149   MDNodeTy *Node = nullptr;
150 
151 public:
152   TBAANodeImpl() = default;
153   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
154 
155   /// getNode - Get the MDNode for this TBAANode.
156   MDNodeTy *getNode() const { return Node; }
157 
158   /// isNewFormat - Return true iff the wrapped type node is in the new
159   /// size-aware format.
160   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
161 
162   /// getParent - Get this TBAANode's Alias tree parent.
163   TBAANodeImpl<MDNodeTy> getParent() const {
164     if (isNewFormat())
165       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
166 
167     if (Node->getNumOperands() < 2)
168       return TBAANodeImpl<MDNodeTy>();
169     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
170     if (!P)
171       return TBAANodeImpl<MDNodeTy>();
172     // Ok, this node has a valid parent. Return it.
173     return TBAANodeImpl<MDNodeTy>(P);
174   }
175 
176   /// Test if this TBAANode represents a type for objects which are
177   /// not modified (by any means) in the context where this
178   /// AliasAnalysis is relevant.
179   bool isTypeImmutable() const {
180     if (Node->getNumOperands() < 3)
181       return false;
182     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
183     if (!CI)
184       return false;
185     return CI->getValue()[0];
186   }
187 };
188 
189 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
190 /// \c MDNode.
191 /// @{
192 using TBAANode = TBAANodeImpl<const MDNode>;
193 using MutableTBAANode = TBAANodeImpl<MDNode>;
194 /// @}
195 
196 /// This is a simple wrapper around an MDNode which provides a
197 /// higher-level interface by hiding the details of how alias analysis
198 /// information is encoded in its operands.
199 template<typename MDNodeTy>
200 class TBAAStructTagNodeImpl {
201   /// This node should be created with createTBAAAccessTag().
202   MDNodeTy *Node;
203 
204 public:
205   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
206 
207   /// Get the MDNode for this TBAAStructTagNode.
208   MDNodeTy *getNode() const { return Node; }
209 
210   /// isNewFormat - Return true iff the wrapped access tag is in the new
211   /// size-aware format.
212   bool isNewFormat() const {
213     if (Node->getNumOperands() < 4)
214       return false;
215     if (MDNodeTy *AccessType = getAccessType())
216       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
217         return false;
218     return true;
219   }
220 
221   MDNodeTy *getBaseType() const {
222     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
223   }
224 
225   MDNodeTy *getAccessType() const {
226     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
227   }
228 
229   uint64_t getOffset() const {
230     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
231   }
232 
233   uint64_t getSize() const {
234     if (!isNewFormat())
235       return UINT64_MAX;
236     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
237   }
238 
239   /// Test if this TBAAStructTagNode represents a type for objects
240   /// which are not modified (by any means) in the context where this
241   /// AliasAnalysis is relevant.
242   bool isTypeImmutable() const {
243     unsigned OpNo = isNewFormat() ? 4 : 3;
244     if (Node->getNumOperands() < OpNo + 1)
245       return false;
246     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
247     if (!CI)
248       return false;
249     return CI->getValue()[0];
250   }
251 };
252 
253 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
254 /// qualified \c MDNods.
255 /// @{
256 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
257 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
258 /// @}
259 
260 /// This is a simple wrapper around an MDNode which provides a
261 /// higher-level interface by hiding the details of how alias analysis
262 /// information is encoded in its operands.
263 class TBAAStructTypeNode {
264   /// This node should be created with createTBAATypeNode().
265   const MDNode *Node = nullptr;
266 
267 public:
268   TBAAStructTypeNode() = default;
269   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
270 
271   /// Get the MDNode for this TBAAStructTypeNode.
272   const MDNode *getNode() const { return Node; }
273 
274   /// isNewFormat - Return true iff the wrapped type node is in the new
275   /// size-aware format.
276   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
277 
278   bool operator==(const TBAAStructTypeNode &Other) const {
279     return getNode() == Other.getNode();
280   }
281 
282   /// getId - Return type identifier.
283   Metadata *getId() const {
284     return Node->getOperand(isNewFormat() ? 2 : 0);
285   }
286 
287   unsigned getNumFields() const {
288     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
289     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
290     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
291   }
292 
293   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
294     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
295     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
296     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
297     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
298     return TBAAStructTypeNode(TypeNode);
299   }
300 
301   /// Get this TBAAStructTypeNode's field in the type DAG with
302   /// given offset. Update the offset to be relative to the field type.
303   TBAAStructTypeNode getField(uint64_t &Offset) const {
304     bool NewFormat = isNewFormat();
305     if (NewFormat) {
306       // New-format root and scalar type nodes have no fields.
307       if (Node->getNumOperands() < 6)
308         return TBAAStructTypeNode();
309     } else {
310       // Parent can be omitted for the root node.
311       if (Node->getNumOperands() < 2)
312         return TBAAStructTypeNode();
313 
314       // Fast path for a scalar type node and a struct type node with a single
315       // field.
316       if (Node->getNumOperands() <= 3) {
317         uint64_t Cur = Node->getNumOperands() == 2
318                            ? 0
319                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
320                                  ->getZExtValue();
321         Offset -= Cur;
322         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
323         if (!P)
324           return TBAAStructTypeNode();
325         return TBAAStructTypeNode(P);
326       }
327     }
328 
329     // Assume the offsets are in order. We return the previous field if
330     // the current offset is bigger than the given offset.
331     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
332     unsigned NumOpsPerField = NewFormat ? 3 : 2;
333     unsigned TheIdx = 0;
334     for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
335          Idx += NumOpsPerField) {
336       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
337                          ->getZExtValue();
338       if (Cur > Offset) {
339         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
340                "TBAAStructTypeNode::getField should have an offset match!");
341         TheIdx = Idx - NumOpsPerField;
342         break;
343       }
344     }
345     // Move along the last field.
346     if (TheIdx == 0)
347       TheIdx = Node->getNumOperands() - NumOpsPerField;
348     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
349                        ->getZExtValue();
350     Offset -= Cur;
351     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
352     if (!P)
353       return TBAAStructTypeNode();
354     return TBAAStructTypeNode(P);
355   }
356 };
357 
358 } // end anonymous namespace
359 
360 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
361 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
362 /// format.
363 static bool isStructPathTBAA(const MDNode *MD) {
364   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
365   // a TBAA tag.
366   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
367 }
368 
369 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
370                                      const MemoryLocation &LocB) {
371   if (!EnableTBAA)
372     return AAResultBase::alias(LocA, LocB);
373 
374   // If accesses may alias, chain to the next AliasAnalysis.
375   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
376     return AAResultBase::alias(LocA, LocB);
377 
378   // Otherwise return a definitive result.
379   return NoAlias;
380 }
381 
382 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
383                                                bool OrLocal) {
384   if (!EnableTBAA)
385     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
386 
387   const MDNode *M = Loc.AATags.TBAA;
388   if (!M)
389     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
390 
391   // If this is an "immutable" type, we can assume the pointer is pointing
392   // to constant memory.
393   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
394       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
395     return true;
396 
397   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
398 }
399 
400 FunctionModRefBehavior
401 TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
402   if (!EnableTBAA)
403     return AAResultBase::getModRefBehavior(Call);
404 
405   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
406 
407   // If this is an "immutable" type, we can assume the call doesn't write
408   // to memory.
409   if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
410     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
411         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
412       Min = FMRB_OnlyReadsMemory;
413 
414   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
415 }
416 
417 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
418   // Functions don't have metadata. Just chain to the next implementation.
419   return AAResultBase::getModRefBehavior(F);
420 }
421 
422 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
423                                             const MemoryLocation &Loc) {
424   if (!EnableTBAA)
425     return AAResultBase::getModRefInfo(Call, Loc);
426 
427   if (const MDNode *L = Loc.AATags.TBAA)
428     if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
429       if (!Aliases(L, M))
430         return ModRefInfo::NoModRef;
431 
432   return AAResultBase::getModRefInfo(Call, Loc);
433 }
434 
435 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
436                                             const CallBase *Call2) {
437   if (!EnableTBAA)
438     return AAResultBase::getModRefInfo(Call1, Call2);
439 
440   if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
441     if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
442       if (!Aliases(M1, M2))
443         return ModRefInfo::NoModRef;
444 
445   return AAResultBase::getModRefInfo(Call1, Call2);
446 }
447 
448 bool MDNode::isTBAAVtableAccess() const {
449   if (!isStructPathTBAA(this)) {
450     if (getNumOperands() < 1)
451       return false;
452     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
453       if (Tag1->getString() == "vtable pointer")
454         return true;
455     }
456     return false;
457   }
458 
459   // For struct-path aware TBAA, we use the access type of the tag.
460   TBAAStructTagNode Tag(this);
461   TBAAStructTypeNode AccessType(Tag.getAccessType());
462   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
463     if (Id->getString() == "vtable pointer")
464       return true;
465   return false;
466 }
467 
468 static bool matchAccessTags(const MDNode *A, const MDNode *B,
469                             const MDNode **GenericTag = nullptr);
470 
471 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
472   const MDNode *GenericTag;
473   matchAccessTags(A, B, &GenericTag);
474   return const_cast<MDNode*>(GenericTag);
475 }
476 
477 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
478   if (!A || !B)
479     return nullptr;
480 
481   if (A == B)
482     return A;
483 
484   SmallSetVector<const MDNode *, 4> PathA;
485   TBAANode TA(A);
486   while (TA.getNode()) {
487     if (PathA.count(TA.getNode()))
488       report_fatal_error("Cycle found in TBAA metadata.");
489     PathA.insert(TA.getNode());
490     TA = TA.getParent();
491   }
492 
493   SmallSetVector<const MDNode *, 4> PathB;
494   TBAANode TB(B);
495   while (TB.getNode()) {
496     if (PathB.count(TB.getNode()))
497       report_fatal_error("Cycle found in TBAA metadata.");
498     PathB.insert(TB.getNode());
499     TB = TB.getParent();
500   }
501 
502   int IA = PathA.size() - 1;
503   int IB = PathB.size() - 1;
504 
505   const MDNode *Ret = nullptr;
506   while (IA >= 0 && IB >= 0) {
507     if (PathA[IA] == PathB[IB])
508       Ret = PathA[IA];
509     else
510       break;
511     --IA;
512     --IB;
513   }
514 
515   return Ret;
516 }
517 
518 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
519   if (Merge)
520     N.TBAA =
521         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
522   else
523     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
524 
525   if (Merge)
526     N.Scope = MDNode::getMostGenericAliasScope(
527         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
528   else
529     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
530 
531   if (Merge)
532     N.NoAlias =
533         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
534   else
535     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
536 }
537 
538 static const MDNode *createAccessTag(const MDNode *AccessType) {
539   // If there is no access type or the access type is the root node, then
540   // we don't have any useful access tag to return.
541   if (!AccessType || AccessType->getNumOperands() < 2)
542     return nullptr;
543 
544   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
545   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
546 
547   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
548     // TODO: Take access ranges into account when matching access tags and
549     // fix this code to generate actual access sizes for generic tags.
550     uint64_t AccessSize = UINT64_MAX;
551     auto *SizeNode =
552         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
553     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
554                        const_cast<MDNode*>(AccessType),
555                        OffsetNode, SizeNode};
556     return MDNode::get(AccessType->getContext(), Ops);
557   }
558 
559   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
560                      const_cast<MDNode*>(AccessType),
561                      OffsetNode};
562   return MDNode::get(AccessType->getContext(), Ops);
563 }
564 
565 static bool hasField(TBAAStructTypeNode BaseType,
566                      TBAAStructTypeNode FieldType) {
567   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
568     TBAAStructTypeNode T = BaseType.getFieldType(I);
569     if (T == FieldType || hasField(T, FieldType))
570       return true;
571   }
572   return false;
573 }
574 
575 /// Return true if for two given accesses, one of the accessed objects may be a
576 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
577 /// describe the accesses to the base object and the subobject respectively.
578 /// \p CommonType must be the metadata node describing the common type of the
579 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
580 /// may alias and \p Generic, if not null, points to the most generic access
581 /// tag for the given two.
582 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
583                                      TBAAStructTagNode SubobjectTag,
584                                      const MDNode *CommonType,
585                                      const MDNode **GenericTag,
586                                      bool &MayAlias) {
587   // If the base object is of the least common type, then this may be an access
588   // to its subobject.
589   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
590       BaseTag.getAccessType() == CommonType) {
591     if (GenericTag)
592       *GenericTag = createAccessTag(CommonType);
593     MayAlias = true;
594     return true;
595   }
596 
597   // If the access to the base object is through a field of the subobject's
598   // type, then this may be an access to that field. To check for that we start
599   // from the base type, follow the edge with the correct offset in the type DAG
600   // and adjust the offset until we reach the field type or until we reach the
601   // access type.
602   bool NewFormat = BaseTag.isNewFormat();
603   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
604   uint64_t OffsetInBase = BaseTag.getOffset();
605 
606   for (;;) {
607     // In the old format there is no distinction between fields and parent
608     // types, so in this case we consider all nodes up to the root.
609     if (!BaseType.getNode()) {
610       assert(!NewFormat && "Did not see access type in access path!");
611       break;
612     }
613 
614     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
615       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
616       if (GenericTag) {
617         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
618                                          createAccessTag(CommonType);
619       }
620       MayAlias = SameMemberAccess;
621       return true;
622     }
623 
624     // With new-format nodes we stop at the access type.
625     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
626       break;
627 
628     // Follow the edge with the correct offset. Offset will be adjusted to
629     // be relative to the field type.
630     BaseType = BaseType.getField(OffsetInBase);
631   }
632 
633   // If the base object has a direct or indirect field of the subobject's type,
634   // then this may be an access to that field. We need this to check now that
635   // we support aggregates as access types.
636   if (NewFormat) {
637     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
638     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
639     if (hasField(BaseType, FieldType)) {
640       if (GenericTag)
641         *GenericTag = createAccessTag(CommonType);
642       MayAlias = true;
643       return true;
644     }
645   }
646 
647   return false;
648 }
649 
650 /// matchTags - Return true if the given couple of accesses are allowed to
651 /// overlap. If \arg GenericTag is not null, then on return it points to the
652 /// most generic access descriptor for the given two.
653 static bool matchAccessTags(const MDNode *A, const MDNode *B,
654                             const MDNode **GenericTag) {
655   if (A == B) {
656     if (GenericTag)
657       *GenericTag = A;
658     return true;
659   }
660 
661   // Accesses with no TBAA information may alias with any other accesses.
662   if (!A || !B) {
663     if (GenericTag)
664       *GenericTag = nullptr;
665     return true;
666   }
667 
668   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
669   // have taken care of this.
670   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
671   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
672 
673   TBAAStructTagNode TagA(A), TagB(B);
674   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
675                                                 TagB.getAccessType());
676 
677   // If the final access types have different roots, they're part of different
678   // potentially unrelated type systems, so we must be conservative.
679   if (!CommonType) {
680     if (GenericTag)
681       *GenericTag = nullptr;
682     return true;
683   }
684 
685   // If one of the accessed objects may be a subobject of the other, then such
686   // accesses may alias.
687   bool MayAlias;
688   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
689                                CommonType, GenericTag, MayAlias) ||
690       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
691                                CommonType, GenericTag, MayAlias))
692     return MayAlias;
693 
694   // Otherwise, we've proved there's no alias.
695   if (GenericTag)
696     *GenericTag = createAccessTag(CommonType);
697   return false;
698 }
699 
700 /// Aliases - Test whether the access represented by tag A may alias the
701 /// access represented by tag B.
702 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
703   return matchAccessTags(A, B);
704 }
705 
706 AnalysisKey TypeBasedAA::Key;
707 
708 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
709   return TypeBasedAAResult();
710 }
711 
712 char TypeBasedAAWrapperPass::ID = 0;
713 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
714                 false, true)
715 
716 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
717   return new TypeBasedAAWrapperPass();
718 }
719 
720 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
721   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
722 }
723 
724 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
725   Result.reset(new TypeBasedAAResult());
726   return false;
727 }
728 
729 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
730   Result.reset();
731   return false;
732 }
733 
734 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
735   AU.setPreservesAll();
736 }
737