1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/Operator.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } // namespace 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 57 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 58 59 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 60 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 61 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 62 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 63 FMF = FPMO->getFastMathFlags(); 64 } 65 66 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 67 const CallBase &CI) : 68 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 69 70 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 71 FMF = FPMO->getFastMathFlags(); 72 73 FunctionType *FTy = 74 CI.getCalledFunction()->getFunctionType(); 75 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 76 } 77 78 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 79 const CallBase &CI, 80 unsigned Factor) : 81 RetTy(CI.getType()), IID(Id), VF(Factor) { 82 83 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 84 FMF = FPMO->getFastMathFlags(); 85 86 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 87 FunctionType *FTy = 88 CI.getCalledFunction()->getFunctionType(); 89 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 90 } 91 92 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 93 const CallBase &CI, 94 unsigned Factor, 95 unsigned ScalarCost) : 96 RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 97 98 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 99 FMF = FPMO->getFastMathFlags(); 100 101 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 102 FunctionType *FTy = 103 CI.getCalledFunction()->getFunctionType(); 104 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 105 } 106 107 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 108 ArrayRef<Type *> Tys, 109 FastMathFlags Flags) : 110 RetTy(RTy), IID(Id), FMF(Flags) { 111 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 112 } 113 114 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 115 ArrayRef<Type *> Tys, 116 FastMathFlags Flags, 117 unsigned ScalarCost) : 118 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 119 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 120 } 121 122 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 123 ArrayRef<Type *> Tys, 124 FastMathFlags Flags, 125 unsigned ScalarCost, 126 const IntrinsicInst *I) : 127 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 128 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 129 } 130 131 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 132 ArrayRef<Type *> Tys) : 133 RetTy(RTy), IID(Id) { 134 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 135 } 136 137 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 138 ArrayRef<Value *> Args) : 139 RetTy(Ty), IID(Id) { 140 141 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 142 ParamTys.reserve(Arguments.size()); 143 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 144 ParamTys.push_back(Arguments[Idx]->getType()); 145 } 146 147 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 148 LoopInfo &LI, DominatorTree &DT, 149 bool ForceNestedLoop, 150 bool ForceHardwareLoopPHI) { 151 SmallVector<BasicBlock *, 4> ExitingBlocks; 152 L->getExitingBlocks(ExitingBlocks); 153 154 for (BasicBlock *BB : ExitingBlocks) { 155 // If we pass the updated counter back through a phi, we need to know 156 // which latch the updated value will be coming from. 157 if (!L->isLoopLatch(BB)) { 158 if (ForceHardwareLoopPHI || CounterInReg) 159 continue; 160 } 161 162 const SCEV *EC = SE.getExitCount(L, BB); 163 if (isa<SCEVCouldNotCompute>(EC)) 164 continue; 165 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 166 if (ConstEC->getValue()->isZero()) 167 continue; 168 } else if (!SE.isLoopInvariant(EC, L)) 169 continue; 170 171 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 172 continue; 173 174 // If this exiting block is contained in a nested loop, it is not eligible 175 // for insertion of the branch-and-decrement since the inner loop would 176 // end up messing up the value in the CTR. 177 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 178 continue; 179 180 // We now have a loop-invariant count of loop iterations (which is not the 181 // constant zero) for which we know that this loop will not exit via this 182 // existing block. 183 184 // We need to make sure that this block will run on every loop iteration. 185 // For this to be true, we must dominate all blocks with backedges. Such 186 // blocks are in-loop predecessors to the header block. 187 bool NotAlways = false; 188 for (BasicBlock *Pred : predecessors(L->getHeader())) { 189 if (!L->contains(Pred)) 190 continue; 191 192 if (!DT.dominates(BB, Pred)) { 193 NotAlways = true; 194 break; 195 } 196 } 197 198 if (NotAlways) 199 continue; 200 201 // Make sure this blocks ends with a conditional branch. 202 Instruction *TI = BB->getTerminator(); 203 if (!TI) 204 continue; 205 206 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 207 if (!BI->isConditional()) 208 continue; 209 210 ExitBranch = BI; 211 } else 212 continue; 213 214 // Note that this block may not be the loop latch block, even if the loop 215 // has a latch block. 216 ExitBlock = BB; 217 ExitCount = EC; 218 break; 219 } 220 221 if (!ExitBlock) 222 return false; 223 return true; 224 } 225 226 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 227 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 228 229 TargetTransformInfo::~TargetTransformInfo() {} 230 231 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 232 : TTIImpl(std::move(Arg.TTIImpl)) {} 233 234 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 235 TTIImpl = std::move(RHS.TTIImpl); 236 return *this; 237 } 238 239 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 240 return TTIImpl->getInliningThresholdMultiplier(); 241 } 242 243 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 244 return TTIImpl->getInlinerVectorBonusPercent(); 245 } 246 247 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 248 ArrayRef<const Value *> Operands, 249 TTI::TargetCostKind CostKind) const { 250 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 251 } 252 253 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 254 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 255 BlockFrequencyInfo *BFI) const { 256 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 257 } 258 259 int TargetTransformInfo::getUserCost(const User *U, 260 ArrayRef<const Value *> Operands, 261 enum TargetCostKind CostKind) const { 262 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 263 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 264 "TTI should not produce negative costs!"); 265 return Cost; 266 } 267 268 bool TargetTransformInfo::hasBranchDivergence() const { 269 return TTIImpl->hasBranchDivergence(); 270 } 271 272 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 273 return TTIImpl->useGPUDivergenceAnalysis(); 274 } 275 276 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 277 return TTIImpl->isSourceOfDivergence(V); 278 } 279 280 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 281 return TTIImpl->isAlwaysUniform(V); 282 } 283 284 unsigned TargetTransformInfo::getFlatAddressSpace() const { 285 return TTIImpl->getFlatAddressSpace(); 286 } 287 288 bool TargetTransformInfo::collectFlatAddressOperands( 289 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 290 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 291 } 292 293 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 294 Value *OldV, 295 Value *NewV) const { 296 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 297 } 298 299 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 300 return TTIImpl->isLoweredToCall(F); 301 } 302 303 bool TargetTransformInfo::isHardwareLoopProfitable( 304 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 305 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 306 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 307 } 308 309 bool TargetTransformInfo::preferPredicateOverEpilogue( 310 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 311 TargetLibraryInfo *TLI, DominatorTree *DT, 312 const LoopAccessInfo *LAI) const { 313 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 314 } 315 316 void TargetTransformInfo::getUnrollingPreferences( 317 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 318 return TTIImpl->getUnrollingPreferences(L, SE, UP); 319 } 320 321 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 322 return TTIImpl->isLegalAddImmediate(Imm); 323 } 324 325 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 326 return TTIImpl->isLegalICmpImmediate(Imm); 327 } 328 329 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 330 int64_t BaseOffset, 331 bool HasBaseReg, int64_t Scale, 332 unsigned AddrSpace, 333 Instruction *I) const { 334 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 335 Scale, AddrSpace, I); 336 } 337 338 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 339 return TTIImpl->isLSRCostLess(C1, C2); 340 } 341 342 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 343 return TTIImpl->isProfitableLSRChainElement(I); 344 } 345 346 bool TargetTransformInfo::canMacroFuseCmp() const { 347 return TTIImpl->canMacroFuseCmp(); 348 } 349 350 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 351 ScalarEvolution *SE, LoopInfo *LI, 352 DominatorTree *DT, AssumptionCache *AC, 353 TargetLibraryInfo *LibInfo) const { 354 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 355 } 356 357 bool TargetTransformInfo::shouldFavorPostInc() const { 358 return TTIImpl->shouldFavorPostInc(); 359 } 360 361 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 362 return TTIImpl->shouldFavorBackedgeIndex(L); 363 } 364 365 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 366 Align Alignment) const { 367 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 368 } 369 370 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 371 Align Alignment) const { 372 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 373 } 374 375 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 376 Align Alignment) const { 377 return TTIImpl->isLegalNTStore(DataType, Alignment); 378 } 379 380 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 381 return TTIImpl->isLegalNTLoad(DataType, Alignment); 382 } 383 384 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 385 Align Alignment) const { 386 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 387 } 388 389 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 390 Align Alignment) const { 391 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 392 } 393 394 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 395 return TTIImpl->isLegalMaskedCompressStore(DataType); 396 } 397 398 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 399 return TTIImpl->isLegalMaskedExpandLoad(DataType); 400 } 401 402 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 403 return TTIImpl->hasDivRemOp(DataType, IsSigned); 404 } 405 406 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 407 unsigned AddrSpace) const { 408 return TTIImpl->hasVolatileVariant(I, AddrSpace); 409 } 410 411 bool TargetTransformInfo::prefersVectorizedAddressing() const { 412 return TTIImpl->prefersVectorizedAddressing(); 413 } 414 415 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 416 int64_t BaseOffset, 417 bool HasBaseReg, int64_t Scale, 418 unsigned AddrSpace) const { 419 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 420 Scale, AddrSpace); 421 assert(Cost >= 0 && "TTI should not produce negative costs!"); 422 return Cost; 423 } 424 425 bool TargetTransformInfo::LSRWithInstrQueries() const { 426 return TTIImpl->LSRWithInstrQueries(); 427 } 428 429 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 430 return TTIImpl->isTruncateFree(Ty1, Ty2); 431 } 432 433 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 434 return TTIImpl->isProfitableToHoist(I); 435 } 436 437 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 438 439 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 440 return TTIImpl->isTypeLegal(Ty); 441 } 442 443 bool TargetTransformInfo::shouldBuildLookupTables() const { 444 return TTIImpl->shouldBuildLookupTables(); 445 } 446 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 447 Constant *C) const { 448 return TTIImpl->shouldBuildLookupTablesForConstant(C); 449 } 450 451 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 452 return TTIImpl->useColdCCForColdCall(F); 453 } 454 455 unsigned 456 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 457 const APInt &DemandedElts, 458 bool Insert, bool Extract) const { 459 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 460 } 461 462 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 463 ArrayRef<const Value *> Args, unsigned VF) const { 464 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 465 } 466 467 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 468 return TTIImpl->supportsEfficientVectorElementLoadStore(); 469 } 470 471 bool TargetTransformInfo::enableAggressiveInterleaving( 472 bool LoopHasReductions) const { 473 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 474 } 475 476 TargetTransformInfo::MemCmpExpansionOptions 477 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 478 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 479 } 480 481 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 482 return TTIImpl->enableInterleavedAccessVectorization(); 483 } 484 485 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 486 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 487 } 488 489 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 490 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 491 } 492 493 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 494 unsigned BitWidth, 495 unsigned AddressSpace, 496 unsigned Alignment, 497 bool *Fast) const { 498 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 499 AddressSpace, Alignment, Fast); 500 } 501 502 TargetTransformInfo::PopcntSupportKind 503 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 504 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 505 } 506 507 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 508 return TTIImpl->haveFastSqrt(Ty); 509 } 510 511 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 512 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 513 } 514 515 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 516 int Cost = TTIImpl->getFPOpCost(Ty); 517 assert(Cost >= 0 && "TTI should not produce negative costs!"); 518 return Cost; 519 } 520 521 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 522 const APInt &Imm, 523 Type *Ty) const { 524 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 525 assert(Cost >= 0 && "TTI should not produce negative costs!"); 526 return Cost; 527 } 528 529 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 530 TTI::TargetCostKind CostKind) const { 531 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 532 assert(Cost >= 0 && "TTI should not produce negative costs!"); 533 return Cost; 534 } 535 536 int 537 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 538 const APInt &Imm, Type *Ty, 539 TTI::TargetCostKind CostKind) const { 540 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 541 assert(Cost >= 0 && "TTI should not produce negative costs!"); 542 return Cost; 543 } 544 545 int 546 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 547 const APInt &Imm, Type *Ty, 548 TTI::TargetCostKind CostKind) const { 549 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 550 assert(Cost >= 0 && "TTI should not produce negative costs!"); 551 return Cost; 552 } 553 554 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 555 return TTIImpl->getNumberOfRegisters(ClassID); 556 } 557 558 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 559 Type *Ty) const { 560 return TTIImpl->getRegisterClassForType(Vector, Ty); 561 } 562 563 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 564 return TTIImpl->getRegisterClassName(ClassID); 565 } 566 567 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 568 return TTIImpl->getRegisterBitWidth(Vector); 569 } 570 571 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 572 return TTIImpl->getMinVectorRegisterBitWidth(); 573 } 574 575 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 576 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 577 } 578 579 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 580 return TTIImpl->getMinimumVF(ElemWidth); 581 } 582 583 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 584 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 585 return TTIImpl->shouldConsiderAddressTypePromotion( 586 I, AllowPromotionWithoutCommonHeader); 587 } 588 589 unsigned TargetTransformInfo::getCacheLineSize() const { 590 return TTIImpl->getCacheLineSize(); 591 } 592 593 llvm::Optional<unsigned> 594 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 595 return TTIImpl->getCacheSize(Level); 596 } 597 598 llvm::Optional<unsigned> 599 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 600 return TTIImpl->getCacheAssociativity(Level); 601 } 602 603 unsigned TargetTransformInfo::getPrefetchDistance() const { 604 return TTIImpl->getPrefetchDistance(); 605 } 606 607 unsigned TargetTransformInfo::getMinPrefetchStride( 608 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 609 unsigned NumPrefetches, bool HasCall) const { 610 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 611 NumPrefetches, HasCall); 612 } 613 614 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 615 return TTIImpl->getMaxPrefetchIterationsAhead(); 616 } 617 618 bool TargetTransformInfo::enableWritePrefetching() const { 619 return TTIImpl->enableWritePrefetching(); 620 } 621 622 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 623 return TTIImpl->getMaxInterleaveFactor(VF); 624 } 625 626 TargetTransformInfo::OperandValueKind 627 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 628 OperandValueKind OpInfo = OK_AnyValue; 629 OpProps = OP_None; 630 631 if (auto *CI = dyn_cast<ConstantInt>(V)) { 632 if (CI->getValue().isPowerOf2()) 633 OpProps = OP_PowerOf2; 634 return OK_UniformConstantValue; 635 } 636 637 // A broadcast shuffle creates a uniform value. 638 // TODO: Add support for non-zero index broadcasts. 639 // TODO: Add support for different source vector width. 640 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 641 if (ShuffleInst->isZeroEltSplat()) 642 OpInfo = OK_UniformValue; 643 644 const Value *Splat = getSplatValue(V); 645 646 // Check for a splat of a constant or for a non uniform vector of constants 647 // and check if the constant(s) are all powers of two. 648 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 649 OpInfo = OK_NonUniformConstantValue; 650 if (Splat) { 651 OpInfo = OK_UniformConstantValue; 652 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 653 if (CI->getValue().isPowerOf2()) 654 OpProps = OP_PowerOf2; 655 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 656 OpProps = OP_PowerOf2; 657 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 658 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 659 if (CI->getValue().isPowerOf2()) 660 continue; 661 OpProps = OP_None; 662 break; 663 } 664 } 665 } 666 667 // Check for a splat of a uniform value. This is not loop aware, so return 668 // true only for the obviously uniform cases (argument, globalvalue) 669 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 670 OpInfo = OK_UniformValue; 671 672 return OpInfo; 673 } 674 675 int TargetTransformInfo::getArithmeticInstrCost( 676 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 677 OperandValueKind Opd1Info, 678 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 679 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 680 const Instruction *CxtI) const { 681 int Cost = TTIImpl->getArithmeticInstrCost( 682 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 683 Args, CxtI); 684 assert(Cost >= 0 && "TTI should not produce negative costs!"); 685 return Cost; 686 } 687 688 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 689 int Index, VectorType *SubTp) const { 690 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 691 assert(Cost >= 0 && "TTI should not produce negative costs!"); 692 return Cost; 693 } 694 695 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 696 TTI::TargetCostKind CostKind, 697 const Instruction *I) const { 698 assert((I == nullptr || I->getOpcode() == Opcode) && 699 "Opcode should reflect passed instruction."); 700 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 701 assert(Cost >= 0 && "TTI should not produce negative costs!"); 702 return Cost; 703 } 704 705 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 706 VectorType *VecTy, 707 unsigned Index) const { 708 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 709 assert(Cost >= 0 && "TTI should not produce negative costs!"); 710 return Cost; 711 } 712 713 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 714 TTI::TargetCostKind CostKind) const { 715 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 716 assert(Cost >= 0 && "TTI should not produce negative costs!"); 717 return Cost; 718 } 719 720 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 721 Type *CondTy, 722 TTI::TargetCostKind CostKind, 723 const Instruction *I) const { 724 assert((I == nullptr || I->getOpcode() == Opcode) && 725 "Opcode should reflect passed instruction."); 726 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 727 assert(Cost >= 0 && "TTI should not produce negative costs!"); 728 return Cost; 729 } 730 731 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 732 unsigned Index) const { 733 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 734 assert(Cost >= 0 && "TTI should not produce negative costs!"); 735 return Cost; 736 } 737 738 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 739 Align Alignment, unsigned AddressSpace, 740 TTI::TargetCostKind CostKind, 741 const Instruction *I) const { 742 assert((I == nullptr || I->getOpcode() == Opcode) && 743 "Opcode should reflect passed instruction."); 744 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 745 CostKind, I); 746 assert(Cost >= 0 && "TTI should not produce negative costs!"); 747 return Cost; 748 } 749 750 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 751 unsigned Alignment, 752 unsigned AddressSpace, 753 TTI::TargetCostKind CostKind) const { 754 int Cost = 755 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 756 CostKind); 757 assert(Cost >= 0 && "TTI should not produce negative costs!"); 758 return Cost; 759 } 760 761 int TargetTransformInfo::getGatherScatterOpCost( 762 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 763 unsigned Alignment, TTI::TargetCostKind CostKind, 764 const Instruction *I) const { 765 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 766 Alignment, CostKind, I); 767 assert(Cost >= 0 && "TTI should not produce negative costs!"); 768 return Cost; 769 } 770 771 int TargetTransformInfo::getInterleavedMemoryOpCost( 772 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 773 unsigned Alignment, unsigned AddressSpace, 774 TTI::TargetCostKind CostKind, 775 bool UseMaskForCond, bool UseMaskForGaps) const { 776 int Cost = TTIImpl->getInterleavedMemoryOpCost( 777 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 778 UseMaskForCond, UseMaskForGaps); 779 assert(Cost >= 0 && "TTI should not produce negative costs!"); 780 return Cost; 781 } 782 783 int 784 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 785 TTI::TargetCostKind CostKind) const { 786 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 787 assert(Cost >= 0 && "TTI should not produce negative costs!"); 788 return Cost; 789 } 790 791 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 792 ArrayRef<Type *> Tys, 793 TTI::TargetCostKind CostKind) const { 794 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 795 assert(Cost >= 0 && "TTI should not produce negative costs!"); 796 return Cost; 797 } 798 799 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 800 return TTIImpl->getNumberOfParts(Tp); 801 } 802 803 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 804 ScalarEvolution *SE, 805 const SCEV *Ptr) const { 806 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 807 assert(Cost >= 0 && "TTI should not produce negative costs!"); 808 return Cost; 809 } 810 811 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 812 int Cost = TTIImpl->getMemcpyCost(I); 813 assert(Cost >= 0 && "TTI should not produce negative costs!"); 814 return Cost; 815 } 816 817 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 818 VectorType *Ty, 819 bool IsPairwiseForm, 820 TTI::TargetCostKind CostKind) const { 821 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 822 CostKind); 823 assert(Cost >= 0 && "TTI should not produce negative costs!"); 824 return Cost; 825 } 826 827 int TargetTransformInfo::getMinMaxReductionCost( 828 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 829 TTI::TargetCostKind CostKind) const { 830 int Cost = 831 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 832 CostKind); 833 assert(Cost >= 0 && "TTI should not produce negative costs!"); 834 return Cost; 835 } 836 837 unsigned 838 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 839 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 840 } 841 842 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 843 MemIntrinsicInfo &Info) const { 844 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 845 } 846 847 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 848 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 849 } 850 851 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 852 IntrinsicInst *Inst, Type *ExpectedType) const { 853 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 854 } 855 856 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 857 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 858 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 859 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 860 DestAddrSpace, SrcAlign, DestAlign); 861 } 862 863 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 864 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 865 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 866 unsigned SrcAlign, unsigned DestAlign) const { 867 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 868 SrcAddrSpace, DestAddrSpace, 869 SrcAlign, DestAlign); 870 } 871 872 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 873 const Function *Callee) const { 874 return TTIImpl->areInlineCompatible(Caller, Callee); 875 } 876 877 bool TargetTransformInfo::areFunctionArgsABICompatible( 878 const Function *Caller, const Function *Callee, 879 SmallPtrSetImpl<Argument *> &Args) const { 880 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 881 } 882 883 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 884 Type *Ty) const { 885 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 886 } 887 888 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 889 Type *Ty) const { 890 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 891 } 892 893 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 894 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 895 } 896 897 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 898 return TTIImpl->isLegalToVectorizeLoad(LI); 899 } 900 901 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 902 return TTIImpl->isLegalToVectorizeStore(SI); 903 } 904 905 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 906 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 907 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 908 AddrSpace); 909 } 910 911 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 912 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 913 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 914 AddrSpace); 915 } 916 917 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 918 unsigned LoadSize, 919 unsigned ChainSizeInBytes, 920 VectorType *VecTy) const { 921 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 922 } 923 924 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 925 unsigned StoreSize, 926 unsigned ChainSizeInBytes, 927 VectorType *VecTy) const { 928 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 929 } 930 931 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 932 ReductionFlags Flags) const { 933 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 934 } 935 936 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 937 return TTIImpl->shouldExpandReduction(II); 938 } 939 940 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 941 return TTIImpl->getGISelRematGlobalCost(); 942 } 943 944 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 945 return TTIImpl->getInstructionLatency(I); 946 } 947 948 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 949 unsigned Level) { 950 // We don't need a shuffle if we just want to have element 0 in position 0 of 951 // the vector. 952 if (!SI && Level == 0 && IsLeft) 953 return true; 954 else if (!SI) 955 return false; 956 957 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 958 959 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 960 // we look at the left or right side. 961 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 962 Mask[i] = val; 963 964 ArrayRef<int> ActualMask = SI->getShuffleMask(); 965 return Mask == ActualMask; 966 } 967 968 namespace { 969 /// Kind of the reduction data. 970 enum ReductionKind { 971 RK_None, /// Not a reduction. 972 RK_Arithmetic, /// Binary reduction data. 973 RK_MinMax, /// Min/max reduction data. 974 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 975 }; 976 /// Contains opcode + LHS/RHS parts of the reduction operations. 977 struct ReductionData { 978 ReductionData() = delete; 979 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 980 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 981 assert(Kind != RK_None && "expected binary or min/max reduction only."); 982 } 983 unsigned Opcode = 0; 984 Value *LHS = nullptr; 985 Value *RHS = nullptr; 986 ReductionKind Kind = RK_None; 987 bool hasSameData(ReductionData &RD) const { 988 return Kind == RD.Kind && Opcode == RD.Opcode; 989 } 990 }; 991 } // namespace 992 993 static Optional<ReductionData> getReductionData(Instruction *I) { 994 Value *L, *R; 995 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 996 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 997 if (auto *SI = dyn_cast<SelectInst>(I)) { 998 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 999 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1000 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1001 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1002 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1003 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1004 auto *CI = cast<CmpInst>(SI->getCondition()); 1005 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 1006 } 1007 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1008 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1009 auto *CI = cast<CmpInst>(SI->getCondition()); 1010 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 1011 } 1012 } 1013 return llvm::None; 1014 } 1015 1016 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1017 unsigned Level, 1018 unsigned NumLevels) { 1019 // Match one level of pairwise operations. 1020 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1021 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1022 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1023 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1024 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1025 if (!I) 1026 return RK_None; 1027 1028 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1029 1030 Optional<ReductionData> RD = getReductionData(I); 1031 if (!RD) 1032 return RK_None; 1033 1034 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1035 if (!LS && Level) 1036 return RK_None; 1037 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1038 if (!RS && Level) 1039 return RK_None; 1040 1041 // On level 0 we can omit one shufflevector instruction. 1042 if (!Level && !RS && !LS) 1043 return RK_None; 1044 1045 // Shuffle inputs must match. 1046 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1047 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1048 Value *NextLevelOp = nullptr; 1049 if (NextLevelOpR && NextLevelOpL) { 1050 // If we have two shuffles their operands must match. 1051 if (NextLevelOpL != NextLevelOpR) 1052 return RK_None; 1053 1054 NextLevelOp = NextLevelOpL; 1055 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1056 // On the first level we can omit the shufflevector <0, undef,...>. So the 1057 // input to the other shufflevector <1, undef> must match with one of the 1058 // inputs to the current binary operation. 1059 // Example: 1060 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1061 // %BinOp = fadd %NextLevelOpL, %R 1062 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1063 return RK_None; 1064 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1065 return RK_None; 1066 1067 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1068 } else 1069 return RK_None; 1070 1071 // Check that the next levels binary operation exists and matches with the 1072 // current one. 1073 if (Level + 1 != NumLevels) { 1074 Optional<ReductionData> NextLevelRD = 1075 getReductionData(cast<Instruction>(NextLevelOp)); 1076 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1077 return RK_None; 1078 } 1079 1080 // Shuffle mask for pairwise operation must match. 1081 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1082 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1083 return RK_None; 1084 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1085 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1086 return RK_None; 1087 } else { 1088 return RK_None; 1089 } 1090 1091 if (++Level == NumLevels) 1092 return RD->Kind; 1093 1094 // Match next level. 1095 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1096 NumLevels); 1097 } 1098 1099 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1100 unsigned &Opcode, 1101 VectorType *&Ty) { 1102 if (!EnableReduxCost) 1103 return RK_None; 1104 1105 // Need to extract the first element. 1106 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1107 unsigned Idx = ~0u; 1108 if (CI) 1109 Idx = CI->getZExtValue(); 1110 if (Idx != 0) 1111 return RK_None; 1112 1113 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1114 if (!RdxStart) 1115 return RK_None; 1116 Optional<ReductionData> RD = getReductionData(RdxStart); 1117 if (!RD) 1118 return RK_None; 1119 1120 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1121 unsigned NumVecElems = VecTy->getNumElements(); 1122 if (!isPowerOf2_32(NumVecElems)) 1123 return RK_None; 1124 1125 // We look for a sequence of shuffle,shuffle,add triples like the following 1126 // that builds a pairwise reduction tree. 1127 // 1128 // (X0, X1, X2, X3) 1129 // (X0 + X1, X2 + X3, undef, undef) 1130 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1131 // 1132 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1133 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1134 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1135 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1136 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1137 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1138 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1139 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1140 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1141 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1142 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1143 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1144 RK_None) 1145 return RK_None; 1146 1147 Opcode = RD->Opcode; 1148 Ty = VecTy; 1149 1150 return RD->Kind; 1151 } 1152 1153 static std::pair<Value *, ShuffleVectorInst *> 1154 getShuffleAndOtherOprd(Value *L, Value *R) { 1155 ShuffleVectorInst *S = nullptr; 1156 1157 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1158 return std::make_pair(R, S); 1159 1160 S = dyn_cast<ShuffleVectorInst>(R); 1161 return std::make_pair(L, S); 1162 } 1163 1164 static ReductionKind 1165 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1166 unsigned &Opcode, VectorType *&Ty) { 1167 if (!EnableReduxCost) 1168 return RK_None; 1169 1170 // Need to extract the first element. 1171 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1172 unsigned Idx = ~0u; 1173 if (CI) 1174 Idx = CI->getZExtValue(); 1175 if (Idx != 0) 1176 return RK_None; 1177 1178 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1179 if (!RdxStart) 1180 return RK_None; 1181 Optional<ReductionData> RD = getReductionData(RdxStart); 1182 if (!RD) 1183 return RK_None; 1184 1185 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1186 unsigned NumVecElems = VecTy->getNumElements(); 1187 if (!isPowerOf2_32(NumVecElems)) 1188 return RK_None; 1189 1190 // We look for a sequence of shuffles and adds like the following matching one 1191 // fadd, shuffle vector pair at a time. 1192 // 1193 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1194 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1195 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1196 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1197 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1198 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1199 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1200 1201 unsigned MaskStart = 1; 1202 Instruction *RdxOp = RdxStart; 1203 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1204 unsigned NumVecElemsRemain = NumVecElems; 1205 while (NumVecElemsRemain - 1) { 1206 // Check for the right reduction operation. 1207 if (!RdxOp) 1208 return RK_None; 1209 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1210 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1211 return RK_None; 1212 1213 Value *NextRdxOp; 1214 ShuffleVectorInst *Shuffle; 1215 std::tie(NextRdxOp, Shuffle) = 1216 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1217 1218 // Check the current reduction operation and the shuffle use the same value. 1219 if (Shuffle == nullptr) 1220 return RK_None; 1221 if (Shuffle->getOperand(0) != NextRdxOp) 1222 return RK_None; 1223 1224 // Check that shuffle masks matches. 1225 for (unsigned j = 0; j != MaskStart; ++j) 1226 ShuffleMask[j] = MaskStart + j; 1227 // Fill the rest of the mask with -1 for undef. 1228 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1229 1230 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1231 if (ShuffleMask != Mask) 1232 return RK_None; 1233 1234 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1235 NumVecElemsRemain /= 2; 1236 MaskStart *= 2; 1237 } 1238 1239 Opcode = RD->Opcode; 1240 Ty = VecTy; 1241 return RD->Kind; 1242 } 1243 1244 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1245 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1246 1247 switch (I->getOpcode()) { 1248 case Instruction::GetElementPtr: 1249 return getUserCost(I, CostKind); 1250 1251 case Instruction::Ret: 1252 case Instruction::PHI: 1253 case Instruction::Br: { 1254 return getCFInstrCost(I->getOpcode(), CostKind); 1255 } 1256 case Instruction::Add: 1257 case Instruction::FAdd: 1258 case Instruction::Sub: 1259 case Instruction::FSub: 1260 case Instruction::Mul: 1261 case Instruction::FMul: 1262 case Instruction::UDiv: 1263 case Instruction::SDiv: 1264 case Instruction::FDiv: 1265 case Instruction::URem: 1266 case Instruction::SRem: 1267 case Instruction::FRem: 1268 case Instruction::Shl: 1269 case Instruction::LShr: 1270 case Instruction::AShr: 1271 case Instruction::And: 1272 case Instruction::Or: 1273 case Instruction::Xor: { 1274 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1275 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1276 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1277 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1278 SmallVector<const Value *, 2> Operands(I->operand_values()); 1279 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1280 Op1VK, Op2VK, 1281 Op1VP, Op2VP, Operands, I); 1282 } 1283 case Instruction::FNeg: { 1284 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1285 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1286 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1287 Op2VK = OK_AnyValue; 1288 Op2VP = OP_None; 1289 SmallVector<const Value *, 2> Operands(I->operand_values()); 1290 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1291 Op1VK, Op2VK, 1292 Op1VP, Op2VP, Operands, I); 1293 } 1294 case Instruction::Select: { 1295 const SelectInst *SI = cast<SelectInst>(I); 1296 Type *CondTy = SI->getCondition()->getType(); 1297 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, 1298 CostKind, I); 1299 } 1300 case Instruction::ICmp: 1301 case Instruction::FCmp: { 1302 Type *ValTy = I->getOperand(0)->getType(); 1303 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), 1304 CostKind, I); 1305 } 1306 case Instruction::Store: { 1307 const StoreInst *SI = cast<StoreInst>(I); 1308 Type *ValTy = SI->getValueOperand()->getType(); 1309 return getMemoryOpCost(I->getOpcode(), ValTy, SI->getAlign(), 1310 SI->getPointerAddressSpace(), CostKind, I); 1311 } 1312 case Instruction::Load: { 1313 const LoadInst *LI = cast<LoadInst>(I); 1314 return getMemoryOpCost(I->getOpcode(), I->getType(), LI->getAlign(), 1315 LI->getPointerAddressSpace(), CostKind, I); 1316 } 1317 case Instruction::ZExt: 1318 case Instruction::SExt: 1319 case Instruction::FPToUI: 1320 case Instruction::FPToSI: 1321 case Instruction::FPExt: 1322 case Instruction::PtrToInt: 1323 case Instruction::IntToPtr: 1324 case Instruction::SIToFP: 1325 case Instruction::UIToFP: 1326 case Instruction::Trunc: 1327 case Instruction::FPTrunc: 1328 case Instruction::BitCast: 1329 case Instruction::AddrSpaceCast: 1330 return getUserCost(I, CostKind); 1331 case Instruction::ExtractElement: { 1332 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1333 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1334 unsigned Idx = -1; 1335 if (CI) 1336 Idx = CI->getZExtValue(); 1337 1338 // Try to match a reduction sequence (series of shufflevector and vector 1339 // adds followed by a extractelement). 1340 unsigned ReduxOpCode; 1341 VectorType *ReduxType; 1342 1343 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1344 case RK_Arithmetic: 1345 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1346 /*IsPairwiseForm=*/false, 1347 CostKind); 1348 case RK_MinMax: 1349 return getMinMaxReductionCost( 1350 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1351 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1352 case RK_UnsignedMinMax: 1353 return getMinMaxReductionCost( 1354 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1355 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1356 case RK_None: 1357 break; 1358 } 1359 1360 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1361 case RK_Arithmetic: 1362 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1363 /*IsPairwiseForm=*/true, CostKind); 1364 case RK_MinMax: 1365 return getMinMaxReductionCost( 1366 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1367 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1368 case RK_UnsignedMinMax: 1369 return getMinMaxReductionCost( 1370 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1371 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1372 case RK_None: 1373 break; 1374 } 1375 1376 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1377 Idx); 1378 } 1379 case Instruction::InsertElement: { 1380 const InsertElementInst *IE = cast<InsertElementInst>(I); 1381 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1382 unsigned Idx = -1; 1383 if (CI) 1384 Idx = CI->getZExtValue(); 1385 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1386 } 1387 case Instruction::ExtractValue: 1388 return 0; // Model all ExtractValue nodes as free. 1389 case Instruction::ShuffleVector: { 1390 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1391 auto *Ty = cast<VectorType>(Shuffle->getType()); 1392 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1393 1394 // TODO: Identify and add costs for insert subvector, etc. 1395 int SubIndex; 1396 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1397 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1398 1399 if (Shuffle->changesLength()) 1400 return -1; 1401 1402 if (Shuffle->isIdentity()) 1403 return 0; 1404 1405 if (Shuffle->isReverse()) 1406 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1407 1408 if (Shuffle->isSelect()) 1409 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1410 1411 if (Shuffle->isTranspose()) 1412 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1413 1414 if (Shuffle->isZeroEltSplat()) 1415 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1416 1417 if (Shuffle->isSingleSource()) 1418 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1419 1420 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1421 } 1422 case Instruction::Call: 1423 return getUserCost(I, CostKind); 1424 default: 1425 // We don't have any information on this instruction. 1426 return -1; 1427 } 1428 } 1429 1430 TargetTransformInfo::Concept::~Concept() {} 1431 1432 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1433 1434 TargetIRAnalysis::TargetIRAnalysis( 1435 std::function<Result(const Function &)> TTICallback) 1436 : TTICallback(std::move(TTICallback)) {} 1437 1438 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1439 FunctionAnalysisManager &) { 1440 return TTICallback(F); 1441 } 1442 1443 AnalysisKey TargetIRAnalysis::Key; 1444 1445 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1446 return Result(F.getParent()->getDataLayout()); 1447 } 1448 1449 // Register the basic pass. 1450 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1451 "Target Transform Information", false, true) 1452 char TargetTransformInfoWrapperPass::ID = 0; 1453 1454 void TargetTransformInfoWrapperPass::anchor() {} 1455 1456 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1457 : ImmutablePass(ID) { 1458 initializeTargetTransformInfoWrapperPassPass( 1459 *PassRegistry::getPassRegistry()); 1460 } 1461 1462 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1463 TargetIRAnalysis TIRA) 1464 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1465 initializeTargetTransformInfoWrapperPassPass( 1466 *PassRegistry::getPassRegistry()); 1467 } 1468 1469 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1470 FunctionAnalysisManager DummyFAM; 1471 TTI = TIRA.run(F, DummyFAM); 1472 return *TTI; 1473 } 1474 1475 ImmutablePass * 1476 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1477 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1478 } 1479