1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/CFG.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 57 LoopInfo &LI, DominatorTree &DT, 58 bool ForceNestedLoop, 59 bool ForceHardwareLoopPHI) { 60 SmallVector<BasicBlock *, 4> ExitingBlocks; 61 L->getExitingBlocks(ExitingBlocks); 62 63 for (BasicBlock *BB : ExitingBlocks) { 64 // If we pass the updated counter back through a phi, we need to know 65 // which latch the updated value will be coming from. 66 if (!L->isLoopLatch(BB)) { 67 if (ForceHardwareLoopPHI || CounterInReg) 68 continue; 69 } 70 71 const SCEV *EC = SE.getExitCount(L, BB); 72 if (isa<SCEVCouldNotCompute>(EC)) 73 continue; 74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 75 if (ConstEC->getValue()->isZero()) 76 continue; 77 } else if (!SE.isLoopInvariant(EC, L)) 78 continue; 79 80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 81 continue; 82 83 // If this exiting block is contained in a nested loop, it is not eligible 84 // for insertion of the branch-and-decrement since the inner loop would 85 // end up messing up the value in the CTR. 86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 87 continue; 88 89 // We now have a loop-invariant count of loop iterations (which is not the 90 // constant zero) for which we know that this loop will not exit via this 91 // existing block. 92 93 // We need to make sure that this block will run on every loop iteration. 94 // For this to be true, we must dominate all blocks with backedges. Such 95 // blocks are in-loop predecessors to the header block. 96 bool NotAlways = false; 97 for (BasicBlock *Pred : predecessors(L->getHeader())) { 98 if (!L->contains(Pred)) 99 continue; 100 101 if (!DT.dominates(BB, Pred)) { 102 NotAlways = true; 103 break; 104 } 105 } 106 107 if (NotAlways) 108 continue; 109 110 // Make sure this blocks ends with a conditional branch. 111 Instruction *TI = BB->getTerminator(); 112 if (!TI) 113 continue; 114 115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 116 if (!BI->isConditional()) 117 continue; 118 119 ExitBranch = BI; 120 } else 121 continue; 122 123 // Note that this block may not be the loop latch block, even if the loop 124 // has a latch block. 125 ExitBlock = BB; 126 ExitCount = EC; 127 break; 128 } 129 130 if (!ExitBlock) 131 return false; 132 return true; 133 } 134 135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 137 138 TargetTransformInfo::~TargetTransformInfo() {} 139 140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 141 : TTIImpl(std::move(Arg.TTIImpl)) {} 142 143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 144 TTIImpl = std::move(RHS.TTIImpl); 145 return *this; 146 } 147 148 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 149 Type *OpTy) const { 150 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 151 assert(Cost >= 0 && "TTI should not produce negative costs!"); 152 return Cost; 153 } 154 155 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 156 const User *U) const { 157 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 158 assert(Cost >= 0 && "TTI should not produce negative costs!"); 159 return Cost; 160 } 161 162 int TargetTransformInfo::getCallCost(const Function *F, 163 ArrayRef<const Value *> Arguments, 164 const User *U) const { 165 int Cost = TTIImpl->getCallCost(F, Arguments, U); 166 assert(Cost >= 0 && "TTI should not produce negative costs!"); 167 return Cost; 168 } 169 170 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 171 return TTIImpl->getInliningThresholdMultiplier(); 172 } 173 174 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 175 return TTIImpl->getInlinerVectorBonusPercent(); 176 } 177 178 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 179 ArrayRef<const Value *> Operands) const { 180 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 181 } 182 183 int TargetTransformInfo::getExtCost(const Instruction *I, 184 const Value *Src) const { 185 return TTIImpl->getExtCost(I, Src); 186 } 187 188 int TargetTransformInfo::getIntrinsicCost( 189 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 190 const User *U) const { 191 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 192 assert(Cost >= 0 && "TTI should not produce negative costs!"); 193 return Cost; 194 } 195 196 unsigned 197 TargetTransformInfo::getEstimatedNumberOfCaseClusters( 198 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 199 BlockFrequencyInfo *BFI) const { 200 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 201 } 202 203 int TargetTransformInfo::getUserCost(const User *U, 204 ArrayRef<const Value *> Operands) const { 205 int Cost = TTIImpl->getUserCost(U, Operands); 206 assert(Cost >= 0 && "TTI should not produce negative costs!"); 207 return Cost; 208 } 209 210 bool TargetTransformInfo::hasBranchDivergence() const { 211 return TTIImpl->hasBranchDivergence(); 212 } 213 214 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 215 return TTIImpl->isSourceOfDivergence(V); 216 } 217 218 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 219 return TTIImpl->isAlwaysUniform(V); 220 } 221 222 unsigned TargetTransformInfo::getFlatAddressSpace() const { 223 return TTIImpl->getFlatAddressSpace(); 224 } 225 226 bool TargetTransformInfo::collectFlatAddressOperands( 227 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 228 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 229 } 230 231 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 232 IntrinsicInst *II, Value *OldV, Value *NewV) const { 233 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 234 } 235 236 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 237 return TTIImpl->isLoweredToCall(F); 238 } 239 240 bool TargetTransformInfo::isHardwareLoopProfitable( 241 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 242 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 243 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 244 } 245 246 void TargetTransformInfo::getUnrollingPreferences( 247 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 248 return TTIImpl->getUnrollingPreferences(L, SE, UP); 249 } 250 251 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 252 return TTIImpl->isLegalAddImmediate(Imm); 253 } 254 255 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 256 return TTIImpl->isLegalICmpImmediate(Imm); 257 } 258 259 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 260 int64_t BaseOffset, 261 bool HasBaseReg, 262 int64_t Scale, 263 unsigned AddrSpace, 264 Instruction *I) const { 265 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 266 Scale, AddrSpace, I); 267 } 268 269 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 270 return TTIImpl->isLSRCostLess(C1, C2); 271 } 272 273 bool TargetTransformInfo::canMacroFuseCmp() const { 274 return TTIImpl->canMacroFuseCmp(); 275 } 276 277 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 278 ScalarEvolution *SE, LoopInfo *LI, 279 DominatorTree *DT, AssumptionCache *AC, 280 TargetLibraryInfo *LibInfo) const { 281 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 282 } 283 284 bool TargetTransformInfo::shouldFavorPostInc() const { 285 return TTIImpl->shouldFavorPostInc(); 286 } 287 288 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 289 return TTIImpl->shouldFavorBackedgeIndex(L); 290 } 291 292 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 293 MaybeAlign Alignment) const { 294 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 295 } 296 297 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 298 MaybeAlign Alignment) const { 299 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 300 } 301 302 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 303 Align Alignment) const { 304 return TTIImpl->isLegalNTStore(DataType, Alignment); 305 } 306 307 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 308 return TTIImpl->isLegalNTLoad(DataType, Alignment); 309 } 310 311 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 312 return TTIImpl->isLegalMaskedGather(DataType); 313 } 314 315 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 316 return TTIImpl->isLegalMaskedScatter(DataType); 317 } 318 319 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 320 return TTIImpl->isLegalMaskedCompressStore(DataType); 321 } 322 323 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 324 return TTIImpl->isLegalMaskedExpandLoad(DataType); 325 } 326 327 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 328 return TTIImpl->hasDivRemOp(DataType, IsSigned); 329 } 330 331 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 332 unsigned AddrSpace) const { 333 return TTIImpl->hasVolatileVariant(I, AddrSpace); 334 } 335 336 bool TargetTransformInfo::prefersVectorizedAddressing() const { 337 return TTIImpl->prefersVectorizedAddressing(); 338 } 339 340 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 341 int64_t BaseOffset, 342 bool HasBaseReg, 343 int64_t Scale, 344 unsigned AddrSpace) const { 345 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 346 Scale, AddrSpace); 347 assert(Cost >= 0 && "TTI should not produce negative costs!"); 348 return Cost; 349 } 350 351 bool TargetTransformInfo::LSRWithInstrQueries() const { 352 return TTIImpl->LSRWithInstrQueries(); 353 } 354 355 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 356 return TTIImpl->isTruncateFree(Ty1, Ty2); 357 } 358 359 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 360 return TTIImpl->isProfitableToHoist(I); 361 } 362 363 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 364 365 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 366 return TTIImpl->isTypeLegal(Ty); 367 } 368 369 bool TargetTransformInfo::shouldBuildLookupTables() const { 370 return TTIImpl->shouldBuildLookupTables(); 371 } 372 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 373 return TTIImpl->shouldBuildLookupTablesForConstant(C); 374 } 375 376 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 377 return TTIImpl->useColdCCForColdCall(F); 378 } 379 380 unsigned TargetTransformInfo:: 381 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 382 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 383 } 384 385 unsigned TargetTransformInfo:: 386 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 387 unsigned VF) const { 388 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 389 } 390 391 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 392 return TTIImpl->supportsEfficientVectorElementLoadStore(); 393 } 394 395 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 396 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 397 } 398 399 TargetTransformInfo::MemCmpExpansionOptions 400 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 401 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 402 } 403 404 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 405 return TTIImpl->enableInterleavedAccessVectorization(); 406 } 407 408 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 409 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 410 } 411 412 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 413 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 414 } 415 416 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 417 unsigned BitWidth, 418 unsigned AddressSpace, 419 unsigned Alignment, 420 bool *Fast) const { 421 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 422 Alignment, Fast); 423 } 424 425 TargetTransformInfo::PopcntSupportKind 426 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 427 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 428 } 429 430 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 431 return TTIImpl->haveFastSqrt(Ty); 432 } 433 434 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 435 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 436 } 437 438 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 439 int Cost = TTIImpl->getFPOpCost(Ty); 440 assert(Cost >= 0 && "TTI should not produce negative costs!"); 441 return Cost; 442 } 443 444 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 445 const APInt &Imm, 446 Type *Ty) const { 447 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 448 assert(Cost >= 0 && "TTI should not produce negative costs!"); 449 return Cost; 450 } 451 452 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 453 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 454 assert(Cost >= 0 && "TTI should not produce negative costs!"); 455 return Cost; 456 } 457 458 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 459 const APInt &Imm, Type *Ty) const { 460 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 461 assert(Cost >= 0 && "TTI should not produce negative costs!"); 462 return Cost; 463 } 464 465 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 466 const APInt &Imm, Type *Ty) const { 467 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 468 assert(Cost >= 0 && "TTI should not produce negative costs!"); 469 return Cost; 470 } 471 472 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 473 return TTIImpl->getNumberOfRegisters(ClassID); 474 } 475 476 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const { 477 return TTIImpl->getRegisterClassForType(Vector, Ty); 478 } 479 480 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 481 return TTIImpl->getRegisterClassName(ClassID); 482 } 483 484 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 485 return TTIImpl->getRegisterBitWidth(Vector); 486 } 487 488 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 489 return TTIImpl->getMinVectorRegisterBitWidth(); 490 } 491 492 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 493 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 494 } 495 496 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 497 return TTIImpl->getMinimumVF(ElemWidth); 498 } 499 500 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 501 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 502 return TTIImpl->shouldConsiderAddressTypePromotion( 503 I, AllowPromotionWithoutCommonHeader); 504 } 505 506 unsigned TargetTransformInfo::getCacheLineSize() const { 507 return TTIImpl->getCacheLineSize(); 508 } 509 510 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 511 const { 512 return TTIImpl->getCacheSize(Level); 513 } 514 515 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 516 CacheLevel Level) const { 517 return TTIImpl->getCacheAssociativity(Level); 518 } 519 520 unsigned TargetTransformInfo::getPrefetchDistance() const { 521 return TTIImpl->getPrefetchDistance(); 522 } 523 524 unsigned TargetTransformInfo::getMinPrefetchStride() const { 525 return TTIImpl->getMinPrefetchStride(); 526 } 527 528 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 529 return TTIImpl->getMaxPrefetchIterationsAhead(); 530 } 531 532 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 533 return TTIImpl->getMaxInterleaveFactor(VF); 534 } 535 536 TargetTransformInfo::OperandValueKind 537 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 538 OperandValueKind OpInfo = OK_AnyValue; 539 OpProps = OP_None; 540 541 if (auto *CI = dyn_cast<ConstantInt>(V)) { 542 if (CI->getValue().isPowerOf2()) 543 OpProps = OP_PowerOf2; 544 return OK_UniformConstantValue; 545 } 546 547 // A broadcast shuffle creates a uniform value. 548 // TODO: Add support for non-zero index broadcasts. 549 // TODO: Add support for different source vector width. 550 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 551 if (ShuffleInst->isZeroEltSplat()) 552 OpInfo = OK_UniformValue; 553 554 const Value *Splat = getSplatValue(V); 555 556 // Check for a splat of a constant or for a non uniform vector of constants 557 // and check if the constant(s) are all powers of two. 558 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 559 OpInfo = OK_NonUniformConstantValue; 560 if (Splat) { 561 OpInfo = OK_UniformConstantValue; 562 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 563 if (CI->getValue().isPowerOf2()) 564 OpProps = OP_PowerOf2; 565 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 566 OpProps = OP_PowerOf2; 567 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 568 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 569 if (CI->getValue().isPowerOf2()) 570 continue; 571 OpProps = OP_None; 572 break; 573 } 574 } 575 } 576 577 // Check for a splat of a uniform value. This is not loop aware, so return 578 // true only for the obviously uniform cases (argument, globalvalue) 579 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 580 OpInfo = OK_UniformValue; 581 582 return OpInfo; 583 } 584 585 int TargetTransformInfo::getArithmeticInstrCost( 586 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 587 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 588 OperandValueProperties Opd2PropInfo, 589 ArrayRef<const Value *> Args) const { 590 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 591 Opd1PropInfo, Opd2PropInfo, Args); 592 assert(Cost >= 0 && "TTI should not produce negative costs!"); 593 return Cost; 594 } 595 596 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 597 Type *SubTp) const { 598 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 599 assert(Cost >= 0 && "TTI should not produce negative costs!"); 600 return Cost; 601 } 602 603 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 604 Type *Src, const Instruction *I) const { 605 assert ((I == nullptr || I->getOpcode() == Opcode) && 606 "Opcode should reflect passed instruction."); 607 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 608 assert(Cost >= 0 && "TTI should not produce negative costs!"); 609 return Cost; 610 } 611 612 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 613 VectorType *VecTy, 614 unsigned Index) const { 615 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 616 assert(Cost >= 0 && "TTI should not produce negative costs!"); 617 return Cost; 618 } 619 620 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 621 int Cost = TTIImpl->getCFInstrCost(Opcode); 622 assert(Cost >= 0 && "TTI should not produce negative costs!"); 623 return Cost; 624 } 625 626 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 627 Type *CondTy, const Instruction *I) const { 628 assert ((I == nullptr || I->getOpcode() == Opcode) && 629 "Opcode should reflect passed instruction."); 630 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 636 unsigned Index) const { 637 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 638 assert(Cost >= 0 && "TTI should not produce negative costs!"); 639 return Cost; 640 } 641 642 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 643 MaybeAlign Alignment, 644 unsigned AddressSpace, 645 const Instruction *I) const { 646 assert ((I == nullptr || I->getOpcode() == Opcode) && 647 "Opcode should reflect passed instruction."); 648 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 649 assert(Cost >= 0 && "TTI should not produce negative costs!"); 650 return Cost; 651 } 652 653 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 654 unsigned Alignment, 655 unsigned AddressSpace) const { 656 int Cost = 657 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 658 assert(Cost >= 0 && "TTI should not produce negative costs!"); 659 return Cost; 660 } 661 662 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 663 Value *Ptr, bool VariableMask, 664 unsigned Alignment) const { 665 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 666 Alignment); 667 assert(Cost >= 0 && "TTI should not produce negative costs!"); 668 return Cost; 669 } 670 671 int TargetTransformInfo::getInterleavedMemoryOpCost( 672 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 673 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 674 bool UseMaskForGaps) const { 675 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 676 Alignment, AddressSpace, 677 UseMaskForCond, 678 UseMaskForGaps); 679 assert(Cost >= 0 && "TTI should not produce negative costs!"); 680 return Cost; 681 } 682 683 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 684 ArrayRef<Type *> Tys, FastMathFlags FMF, 685 unsigned ScalarizationCostPassed) const { 686 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 687 ScalarizationCostPassed); 688 assert(Cost >= 0 && "TTI should not produce negative costs!"); 689 return Cost; 690 } 691 692 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 693 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 694 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 695 assert(Cost >= 0 && "TTI should not produce negative costs!"); 696 return Cost; 697 } 698 699 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 700 ArrayRef<Type *> Tys) const { 701 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 702 assert(Cost >= 0 && "TTI should not produce negative costs!"); 703 return Cost; 704 } 705 706 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 707 return TTIImpl->getNumberOfParts(Tp); 708 } 709 710 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 711 ScalarEvolution *SE, 712 const SCEV *Ptr) const { 713 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 714 assert(Cost >= 0 && "TTI should not produce negative costs!"); 715 return Cost; 716 } 717 718 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 719 int Cost = TTIImpl->getMemcpyCost(I); 720 assert(Cost >= 0 && "TTI should not produce negative costs!"); 721 return Cost; 722 } 723 724 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 725 bool IsPairwiseForm) const { 726 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 727 assert(Cost >= 0 && "TTI should not produce negative costs!"); 728 return Cost; 729 } 730 731 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 732 bool IsPairwiseForm, 733 bool IsUnsigned) const { 734 int Cost = 735 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 736 assert(Cost >= 0 && "TTI should not produce negative costs!"); 737 return Cost; 738 } 739 740 unsigned 741 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 742 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 743 } 744 745 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 746 MemIntrinsicInfo &Info) const { 747 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 748 } 749 750 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 751 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 752 } 753 754 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 755 IntrinsicInst *Inst, Type *ExpectedType) const { 756 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 757 } 758 759 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 760 Value *Length, 761 unsigned SrcAlign, 762 unsigned DestAlign) const { 763 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 764 DestAlign); 765 } 766 767 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 768 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 769 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 770 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 771 SrcAlign, DestAlign); 772 } 773 774 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 775 const Function *Callee) const { 776 return TTIImpl->areInlineCompatible(Caller, Callee); 777 } 778 779 bool TargetTransformInfo::areFunctionArgsABICompatible( 780 const Function *Caller, const Function *Callee, 781 SmallPtrSetImpl<Argument *> &Args) const { 782 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 783 } 784 785 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 786 Type *Ty) const { 787 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 788 } 789 790 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 791 Type *Ty) const { 792 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 793 } 794 795 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 796 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 797 } 798 799 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 800 return TTIImpl->isLegalToVectorizeLoad(LI); 801 } 802 803 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 804 return TTIImpl->isLegalToVectorizeStore(SI); 805 } 806 807 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 808 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 809 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 810 AddrSpace); 811 } 812 813 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 814 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 815 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 816 AddrSpace); 817 } 818 819 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 820 unsigned LoadSize, 821 unsigned ChainSizeInBytes, 822 VectorType *VecTy) const { 823 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 824 } 825 826 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 827 unsigned StoreSize, 828 unsigned ChainSizeInBytes, 829 VectorType *VecTy) const { 830 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 831 } 832 833 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 834 Type *Ty, ReductionFlags Flags) const { 835 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 836 } 837 838 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 839 return TTIImpl->shouldExpandReduction(II); 840 } 841 842 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 843 return TTIImpl->getGISelRematGlobalCost(); 844 } 845 846 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 847 return TTIImpl->getInstructionLatency(I); 848 } 849 850 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 851 unsigned Level) { 852 // We don't need a shuffle if we just want to have element 0 in position 0 of 853 // the vector. 854 if (!SI && Level == 0 && IsLeft) 855 return true; 856 else if (!SI) 857 return false; 858 859 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 860 861 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 862 // we look at the left or right side. 863 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 864 Mask[i] = val; 865 866 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 867 return Mask == ActualMask; 868 } 869 870 namespace { 871 /// Kind of the reduction data. 872 enum ReductionKind { 873 RK_None, /// Not a reduction. 874 RK_Arithmetic, /// Binary reduction data. 875 RK_MinMax, /// Min/max reduction data. 876 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 877 }; 878 /// Contains opcode + LHS/RHS parts of the reduction operations. 879 struct ReductionData { 880 ReductionData() = delete; 881 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 882 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 883 assert(Kind != RK_None && "expected binary or min/max reduction only."); 884 } 885 unsigned Opcode = 0; 886 Value *LHS = nullptr; 887 Value *RHS = nullptr; 888 ReductionKind Kind = RK_None; 889 bool hasSameData(ReductionData &RD) const { 890 return Kind == RD.Kind && Opcode == RD.Opcode; 891 } 892 }; 893 } // namespace 894 895 static Optional<ReductionData> getReductionData(Instruction *I) { 896 Value *L, *R; 897 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 898 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 899 if (auto *SI = dyn_cast<SelectInst>(I)) { 900 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 901 m_SMax(m_Value(L), m_Value(R)).match(SI) || 902 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 903 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 904 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 905 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 906 auto *CI = cast<CmpInst>(SI->getCondition()); 907 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 908 } 909 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 910 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 911 auto *CI = cast<CmpInst>(SI->getCondition()); 912 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 913 } 914 } 915 return llvm::None; 916 } 917 918 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 919 unsigned Level, 920 unsigned NumLevels) { 921 // Match one level of pairwise operations. 922 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 923 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 924 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 925 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 926 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 927 if (!I) 928 return RK_None; 929 930 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 931 932 Optional<ReductionData> RD = getReductionData(I); 933 if (!RD) 934 return RK_None; 935 936 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 937 if (!LS && Level) 938 return RK_None; 939 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 940 if (!RS && Level) 941 return RK_None; 942 943 // On level 0 we can omit one shufflevector instruction. 944 if (!Level && !RS && !LS) 945 return RK_None; 946 947 // Shuffle inputs must match. 948 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 949 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 950 Value *NextLevelOp = nullptr; 951 if (NextLevelOpR && NextLevelOpL) { 952 // If we have two shuffles their operands must match. 953 if (NextLevelOpL != NextLevelOpR) 954 return RK_None; 955 956 NextLevelOp = NextLevelOpL; 957 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 958 // On the first level we can omit the shufflevector <0, undef,...>. So the 959 // input to the other shufflevector <1, undef> must match with one of the 960 // inputs to the current binary operation. 961 // Example: 962 // %NextLevelOpL = shufflevector %R, <1, undef ...> 963 // %BinOp = fadd %NextLevelOpL, %R 964 if (NextLevelOpL && NextLevelOpL != RD->RHS) 965 return RK_None; 966 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 967 return RK_None; 968 969 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 970 } else 971 return RK_None; 972 973 // Check that the next levels binary operation exists and matches with the 974 // current one. 975 if (Level + 1 != NumLevels) { 976 Optional<ReductionData> NextLevelRD = 977 getReductionData(cast<Instruction>(NextLevelOp)); 978 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 979 return RK_None; 980 } 981 982 // Shuffle mask for pairwise operation must match. 983 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 984 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 985 return RK_None; 986 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 987 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 988 return RK_None; 989 } else { 990 return RK_None; 991 } 992 993 if (++Level == NumLevels) 994 return RD->Kind; 995 996 // Match next level. 997 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 998 NumLevels); 999 } 1000 1001 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1002 unsigned &Opcode, Type *&Ty) { 1003 if (!EnableReduxCost) 1004 return RK_None; 1005 1006 // Need to extract the first element. 1007 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1008 unsigned Idx = ~0u; 1009 if (CI) 1010 Idx = CI->getZExtValue(); 1011 if (Idx != 0) 1012 return RK_None; 1013 1014 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1015 if (!RdxStart) 1016 return RK_None; 1017 Optional<ReductionData> RD = getReductionData(RdxStart); 1018 if (!RD) 1019 return RK_None; 1020 1021 Type *VecTy = RdxStart->getType(); 1022 unsigned NumVecElems = VecTy->getVectorNumElements(); 1023 if (!isPowerOf2_32(NumVecElems)) 1024 return RK_None; 1025 1026 // We look for a sequence of shuffle,shuffle,add triples like the following 1027 // that builds a pairwise reduction tree. 1028 // 1029 // (X0, X1, X2, X3) 1030 // (X0 + X1, X2 + X3, undef, undef) 1031 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1032 // 1033 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1034 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1035 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1036 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1037 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1038 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1039 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1040 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1041 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1042 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1043 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1044 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1045 RK_None) 1046 return RK_None; 1047 1048 Opcode = RD->Opcode; 1049 Ty = VecTy; 1050 1051 return RD->Kind; 1052 } 1053 1054 static std::pair<Value *, ShuffleVectorInst *> 1055 getShuffleAndOtherOprd(Value *L, Value *R) { 1056 ShuffleVectorInst *S = nullptr; 1057 1058 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1059 return std::make_pair(R, S); 1060 1061 S = dyn_cast<ShuffleVectorInst>(R); 1062 return std::make_pair(L, S); 1063 } 1064 1065 static ReductionKind 1066 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1067 unsigned &Opcode, Type *&Ty) { 1068 if (!EnableReduxCost) 1069 return RK_None; 1070 1071 // Need to extract the first element. 1072 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1073 unsigned Idx = ~0u; 1074 if (CI) 1075 Idx = CI->getZExtValue(); 1076 if (Idx != 0) 1077 return RK_None; 1078 1079 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1080 if (!RdxStart) 1081 return RK_None; 1082 Optional<ReductionData> RD = getReductionData(RdxStart); 1083 if (!RD) 1084 return RK_None; 1085 1086 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 1087 unsigned NumVecElems = VecTy->getVectorNumElements(); 1088 if (!isPowerOf2_32(NumVecElems)) 1089 return RK_None; 1090 1091 // We look for a sequence of shuffles and adds like the following matching one 1092 // fadd, shuffle vector pair at a time. 1093 // 1094 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1095 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1096 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1097 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1098 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1099 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1100 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1101 1102 unsigned MaskStart = 1; 1103 Instruction *RdxOp = RdxStart; 1104 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1105 unsigned NumVecElemsRemain = NumVecElems; 1106 while (NumVecElemsRemain - 1) { 1107 // Check for the right reduction operation. 1108 if (!RdxOp) 1109 return RK_None; 1110 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1111 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1112 return RK_None; 1113 1114 Value *NextRdxOp; 1115 ShuffleVectorInst *Shuffle; 1116 std::tie(NextRdxOp, Shuffle) = 1117 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1118 1119 // Check the current reduction operation and the shuffle use the same value. 1120 if (Shuffle == nullptr) 1121 return RK_None; 1122 if (Shuffle->getOperand(0) != NextRdxOp) 1123 return RK_None; 1124 1125 // Check that shuffle masks matches. 1126 for (unsigned j = 0; j != MaskStart; ++j) 1127 ShuffleMask[j] = MaskStart + j; 1128 // Fill the rest of the mask with -1 for undef. 1129 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1130 1131 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1132 if (ShuffleMask != Mask) 1133 return RK_None; 1134 1135 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1136 NumVecElemsRemain /= 2; 1137 MaskStart *= 2; 1138 } 1139 1140 Opcode = RD->Opcode; 1141 Ty = VecTy; 1142 return RD->Kind; 1143 } 1144 1145 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1146 switch (I->getOpcode()) { 1147 case Instruction::GetElementPtr: 1148 return getUserCost(I); 1149 1150 case Instruction::Ret: 1151 case Instruction::PHI: 1152 case Instruction::Br: { 1153 return getCFInstrCost(I->getOpcode()); 1154 } 1155 case Instruction::Add: 1156 case Instruction::FAdd: 1157 case Instruction::Sub: 1158 case Instruction::FSub: 1159 case Instruction::Mul: 1160 case Instruction::FMul: 1161 case Instruction::UDiv: 1162 case Instruction::SDiv: 1163 case Instruction::FDiv: 1164 case Instruction::URem: 1165 case Instruction::SRem: 1166 case Instruction::FRem: 1167 case Instruction::Shl: 1168 case Instruction::LShr: 1169 case Instruction::AShr: 1170 case Instruction::And: 1171 case Instruction::Or: 1172 case Instruction::Xor: { 1173 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1174 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1175 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1176 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1177 SmallVector<const Value *, 2> Operands(I->operand_values()); 1178 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1179 Op1VP, Op2VP, Operands); 1180 } 1181 case Instruction::FNeg: { 1182 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1183 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1184 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1185 Op2VK = OK_AnyValue; 1186 Op2VP = OP_None; 1187 SmallVector<const Value *, 2> Operands(I->operand_values()); 1188 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1189 Op1VP, Op2VP, Operands); 1190 } 1191 case Instruction::Select: { 1192 const SelectInst *SI = cast<SelectInst>(I); 1193 Type *CondTy = SI->getCondition()->getType(); 1194 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1195 } 1196 case Instruction::ICmp: 1197 case Instruction::FCmp: { 1198 Type *ValTy = I->getOperand(0)->getType(); 1199 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1200 } 1201 case Instruction::Store: { 1202 const StoreInst *SI = cast<StoreInst>(I); 1203 Type *ValTy = SI->getValueOperand()->getType(); 1204 return getMemoryOpCost(I->getOpcode(), ValTy, 1205 MaybeAlign(SI->getAlignment()), 1206 SI->getPointerAddressSpace(), I); 1207 } 1208 case Instruction::Load: { 1209 const LoadInst *LI = cast<LoadInst>(I); 1210 return getMemoryOpCost(I->getOpcode(), I->getType(), 1211 MaybeAlign(LI->getAlignment()), 1212 LI->getPointerAddressSpace(), I); 1213 } 1214 case Instruction::ZExt: 1215 case Instruction::SExt: 1216 case Instruction::FPToUI: 1217 case Instruction::FPToSI: 1218 case Instruction::FPExt: 1219 case Instruction::PtrToInt: 1220 case Instruction::IntToPtr: 1221 case Instruction::SIToFP: 1222 case Instruction::UIToFP: 1223 case Instruction::Trunc: 1224 case Instruction::FPTrunc: 1225 case Instruction::BitCast: 1226 case Instruction::AddrSpaceCast: { 1227 Type *SrcTy = I->getOperand(0)->getType(); 1228 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1229 } 1230 case Instruction::ExtractElement: { 1231 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1232 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1233 unsigned Idx = -1; 1234 if (CI) 1235 Idx = CI->getZExtValue(); 1236 1237 // Try to match a reduction sequence (series of shufflevector and vector 1238 // adds followed by a extractelement). 1239 unsigned ReduxOpCode; 1240 Type *ReduxType; 1241 1242 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1243 case RK_Arithmetic: 1244 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1245 /*IsPairwiseForm=*/false); 1246 case RK_MinMax: 1247 return getMinMaxReductionCost( 1248 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1249 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1250 case RK_UnsignedMinMax: 1251 return getMinMaxReductionCost( 1252 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1253 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1254 case RK_None: 1255 break; 1256 } 1257 1258 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1259 case RK_Arithmetic: 1260 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1261 /*IsPairwiseForm=*/true); 1262 case RK_MinMax: 1263 return getMinMaxReductionCost( 1264 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1265 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1266 case RK_UnsignedMinMax: 1267 return getMinMaxReductionCost( 1268 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1269 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1270 case RK_None: 1271 break; 1272 } 1273 1274 return getVectorInstrCost(I->getOpcode(), 1275 EEI->getOperand(0)->getType(), Idx); 1276 } 1277 case Instruction::InsertElement: { 1278 const InsertElementInst * IE = cast<InsertElementInst>(I); 1279 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1280 unsigned Idx = -1; 1281 if (CI) 1282 Idx = CI->getZExtValue(); 1283 return getVectorInstrCost(I->getOpcode(), 1284 IE->getType(), Idx); 1285 } 1286 case Instruction::ExtractValue: 1287 return 0; // Model all ExtractValue nodes as free. 1288 case Instruction::ShuffleVector: { 1289 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1290 Type *Ty = Shuffle->getType(); 1291 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1292 1293 // TODO: Identify and add costs for insert subvector, etc. 1294 int SubIndex; 1295 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1296 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1297 1298 if (Shuffle->changesLength()) 1299 return -1; 1300 1301 if (Shuffle->isIdentity()) 1302 return 0; 1303 1304 if (Shuffle->isReverse()) 1305 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1306 1307 if (Shuffle->isSelect()) 1308 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1309 1310 if (Shuffle->isTranspose()) 1311 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1312 1313 if (Shuffle->isZeroEltSplat()) 1314 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1315 1316 if (Shuffle->isSingleSource()) 1317 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1318 1319 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1320 } 1321 case Instruction::Call: 1322 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1323 SmallVector<Value *, 4> Args(II->arg_operands()); 1324 1325 FastMathFlags FMF; 1326 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1327 FMF = FPMO->getFastMathFlags(); 1328 1329 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1330 Args, FMF); 1331 } 1332 return -1; 1333 default: 1334 // We don't have any information on this instruction. 1335 return -1; 1336 } 1337 } 1338 1339 TargetTransformInfo::Concept::~Concept() {} 1340 1341 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1342 1343 TargetIRAnalysis::TargetIRAnalysis( 1344 std::function<Result(const Function &)> TTICallback) 1345 : TTICallback(std::move(TTICallback)) {} 1346 1347 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1348 FunctionAnalysisManager &) { 1349 return TTICallback(F); 1350 } 1351 1352 AnalysisKey TargetIRAnalysis::Key; 1353 1354 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1355 return Result(F.getParent()->getDataLayout()); 1356 } 1357 1358 // Register the basic pass. 1359 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1360 "Target Transform Information", false, true) 1361 char TargetTransformInfoWrapperPass::ID = 0; 1362 1363 void TargetTransformInfoWrapperPass::anchor() {} 1364 1365 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1366 : ImmutablePass(ID) { 1367 initializeTargetTransformInfoWrapperPassPass( 1368 *PassRegistry::getPassRegistry()); 1369 } 1370 1371 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1372 TargetIRAnalysis TIRA) 1373 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1374 initializeTargetTransformInfoWrapperPassPass( 1375 *PassRegistry::getPassRegistry()); 1376 } 1377 1378 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1379 FunctionAnalysisManager DummyFAM; 1380 TTI = TIRA.run(F, DummyFAM); 1381 return *TTI; 1382 } 1383 1384 ImmutablePass * 1385 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1386 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1387 } 1388