1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(
58     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
59     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
60       ScalarizationCost(ScalarizationCost) {
61 
62   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
63     FMF = FPMO->getFastMathFlags();
64 
65   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
66   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
67   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
68 }
69 
70 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
71                                                  ArrayRef<Type *> Tys,
72                                                  FastMathFlags Flags,
73                                                  const IntrinsicInst *I,
74                                                  InstructionCost ScalarCost)
75     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
76   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
77 }
78 
79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
80                                                  ArrayRef<const Value *> Args)
81     : RetTy(Ty), IID(Id) {
82 
83   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
84   ParamTys.reserve(Arguments.size());
85   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
86     ParamTys.push_back(Arguments[Idx]->getType());
87 }
88 
89 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
90                                                  ArrayRef<const Value *> Args,
91                                                  ArrayRef<Type *> Tys,
92                                                  FastMathFlags Flags,
93                                                  const IntrinsicInst *I,
94                                                  InstructionCost ScalarCost)
95     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
96   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
97   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
98 }
99 
100 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
101                                                LoopInfo &LI, DominatorTree &DT,
102                                                bool ForceNestedLoop,
103                                                bool ForceHardwareLoopPHI) {
104   SmallVector<BasicBlock *, 4> ExitingBlocks;
105   L->getExitingBlocks(ExitingBlocks);
106 
107   for (BasicBlock *BB : ExitingBlocks) {
108     // If we pass the updated counter back through a phi, we need to know
109     // which latch the updated value will be coming from.
110     if (!L->isLoopLatch(BB)) {
111       if (ForceHardwareLoopPHI || CounterInReg)
112         continue;
113     }
114 
115     const SCEV *EC = SE.getExitCount(L, BB);
116     if (isa<SCEVCouldNotCompute>(EC))
117       continue;
118     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
119       if (ConstEC->getValue()->isZero())
120         continue;
121     } else if (!SE.isLoopInvariant(EC, L))
122       continue;
123 
124     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
125       continue;
126 
127     // If this exiting block is contained in a nested loop, it is not eligible
128     // for insertion of the branch-and-decrement since the inner loop would
129     // end up messing up the value in the CTR.
130     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
131       continue;
132 
133     // We now have a loop-invariant count of loop iterations (which is not the
134     // constant zero) for which we know that this loop will not exit via this
135     // existing block.
136 
137     // We need to make sure that this block will run on every loop iteration.
138     // For this to be true, we must dominate all blocks with backedges. Such
139     // blocks are in-loop predecessors to the header block.
140     bool NotAlways = false;
141     for (BasicBlock *Pred : predecessors(L->getHeader())) {
142       if (!L->contains(Pred))
143         continue;
144 
145       if (!DT.dominates(BB, Pred)) {
146         NotAlways = true;
147         break;
148       }
149     }
150 
151     if (NotAlways)
152       continue;
153 
154     // Make sure this blocks ends with a conditional branch.
155     Instruction *TI = BB->getTerminator();
156     if (!TI)
157       continue;
158 
159     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
160       if (!BI->isConditional())
161         continue;
162 
163       ExitBranch = BI;
164     } else
165       continue;
166 
167     // Note that this block may not be the loop latch block, even if the loop
168     // has a latch block.
169     ExitBlock = BB;
170     ExitCount = EC;
171     break;
172   }
173 
174   if (!ExitBlock)
175     return false;
176   return true;
177 }
178 
179 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
180     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
181 
182 TargetTransformInfo::~TargetTransformInfo() {}
183 
184 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
185     : TTIImpl(std::move(Arg.TTIImpl)) {}
186 
187 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
188   TTIImpl = std::move(RHS.TTIImpl);
189   return *this;
190 }
191 
192 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
193   return TTIImpl->getInliningThresholdMultiplier();
194 }
195 
196 unsigned
197 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
198   return TTIImpl->adjustInliningThreshold(CB);
199 }
200 
201 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
202   return TTIImpl->getInlinerVectorBonusPercent();
203 }
204 
205 InstructionCost
206 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
207                                 ArrayRef<const Value *> Operands,
208                                 TTI::TargetCostKind CostKind) const {
209   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
210 }
211 
212 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
213     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
214     BlockFrequencyInfo *BFI) const {
215   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
216 }
217 
218 InstructionCost
219 TargetTransformInfo::getUserCost(const User *U,
220                                  ArrayRef<const Value *> Operands,
221                                  enum TargetCostKind CostKind) const {
222   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
223   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
224          "TTI should not produce negative costs!");
225   return Cost;
226 }
227 
228 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
229   return TTIImpl->getPredictableBranchThreshold();
230 }
231 
232 bool TargetTransformInfo::hasBranchDivergence() const {
233   return TTIImpl->hasBranchDivergence();
234 }
235 
236 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
237   return TTIImpl->useGPUDivergenceAnalysis();
238 }
239 
240 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
241   return TTIImpl->isSourceOfDivergence(V);
242 }
243 
244 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
245   return TTIImpl->isAlwaysUniform(V);
246 }
247 
248 unsigned TargetTransformInfo::getFlatAddressSpace() const {
249   return TTIImpl->getFlatAddressSpace();
250 }
251 
252 bool TargetTransformInfo::collectFlatAddressOperands(
253     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
254   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
255 }
256 
257 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
258                                               unsigned ToAS) const {
259   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
260 }
261 
262 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
263   return TTIImpl->getAssumedAddrSpace(V);
264 }
265 
266 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
267     IntrinsicInst *II, Value *OldV, Value *NewV) const {
268   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
269 }
270 
271 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
272   return TTIImpl->isLoweredToCall(F);
273 }
274 
275 bool TargetTransformInfo::isHardwareLoopProfitable(
276     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
277     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
278   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
279 }
280 
281 bool TargetTransformInfo::preferPredicateOverEpilogue(
282     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
283     TargetLibraryInfo *TLI, DominatorTree *DT,
284     const LoopAccessInfo *LAI) const {
285   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
286 }
287 
288 bool TargetTransformInfo::emitGetActiveLaneMask() const {
289   return TTIImpl->emitGetActiveLaneMask();
290 }
291 
292 Optional<Instruction *>
293 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
294                                           IntrinsicInst &II) const {
295   return TTIImpl->instCombineIntrinsic(IC, II);
296 }
297 
298 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
299     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
300     bool &KnownBitsComputed) const {
301   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
302                                                    KnownBitsComputed);
303 }
304 
305 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
306     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
307     APInt &UndefElts2, APInt &UndefElts3,
308     std::function<void(Instruction *, unsigned, APInt, APInt &)>
309         SimplifyAndSetOp) const {
310   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
311       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
312       SimplifyAndSetOp);
313 }
314 
315 void TargetTransformInfo::getUnrollingPreferences(
316     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
317     OptimizationRemarkEmitter *ORE) const {
318   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
319 }
320 
321 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
322                                                 PeelingPreferences &PP) const {
323   return TTIImpl->getPeelingPreferences(L, SE, PP);
324 }
325 
326 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
327   return TTIImpl->isLegalAddImmediate(Imm);
328 }
329 
330 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
331   return TTIImpl->isLegalICmpImmediate(Imm);
332 }
333 
334 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
335                                                 int64_t BaseOffset,
336                                                 bool HasBaseReg, int64_t Scale,
337                                                 unsigned AddrSpace,
338                                                 Instruction *I) const {
339   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
340                                         Scale, AddrSpace, I);
341 }
342 
343 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
344   return TTIImpl->isLSRCostLess(C1, C2);
345 }
346 
347 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
348   return TTIImpl->isNumRegsMajorCostOfLSR();
349 }
350 
351 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
352   return TTIImpl->isProfitableLSRChainElement(I);
353 }
354 
355 bool TargetTransformInfo::canMacroFuseCmp() const {
356   return TTIImpl->canMacroFuseCmp();
357 }
358 
359 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
360                                      ScalarEvolution *SE, LoopInfo *LI,
361                                      DominatorTree *DT, AssumptionCache *AC,
362                                      TargetLibraryInfo *LibInfo) const {
363   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
364 }
365 
366 TTI::AddressingModeKind
367 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
368                                                 ScalarEvolution *SE) const {
369   return TTIImpl->getPreferredAddressingMode(L, SE);
370 }
371 
372 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
373                                              Align Alignment) const {
374   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
375 }
376 
377 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
378                                             Align Alignment) const {
379   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
380 }
381 
382 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
383                                          Align Alignment) const {
384   return TTIImpl->isLegalNTStore(DataType, Alignment);
385 }
386 
387 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
388   return TTIImpl->isLegalNTLoad(DataType, Alignment);
389 }
390 
391 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
392                                               Align Alignment) const {
393   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
394 }
395 
396 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
397                                                Align Alignment) const {
398   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
399 }
400 
401 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
402   return TTIImpl->isLegalMaskedCompressStore(DataType);
403 }
404 
405 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
406   return TTIImpl->isLegalMaskedExpandLoad(DataType);
407 }
408 
409 bool TargetTransformInfo::enableOrderedReductions() const {
410   return TTIImpl->enableOrderedReductions();
411 }
412 
413 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
414   return TTIImpl->hasDivRemOp(DataType, IsSigned);
415 }
416 
417 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
418                                              unsigned AddrSpace) const {
419   return TTIImpl->hasVolatileVariant(I, AddrSpace);
420 }
421 
422 bool TargetTransformInfo::prefersVectorizedAddressing() const {
423   return TTIImpl->prefersVectorizedAddressing();
424 }
425 
426 InstructionCost TargetTransformInfo::getScalingFactorCost(
427     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
428     int64_t Scale, unsigned AddrSpace) const {
429   InstructionCost Cost = TTIImpl->getScalingFactorCost(
430       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
431   assert(Cost >= 0 && "TTI should not produce negative costs!");
432   return Cost;
433 }
434 
435 bool TargetTransformInfo::LSRWithInstrQueries() const {
436   return TTIImpl->LSRWithInstrQueries();
437 }
438 
439 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
440   return TTIImpl->isTruncateFree(Ty1, Ty2);
441 }
442 
443 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
444   return TTIImpl->isProfitableToHoist(I);
445 }
446 
447 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
448 
449 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
450   return TTIImpl->isTypeLegal(Ty);
451 }
452 
453 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
454   return TTIImpl->getRegUsageForType(Ty);
455 }
456 
457 bool TargetTransformInfo::shouldBuildLookupTables() const {
458   return TTIImpl->shouldBuildLookupTables();
459 }
460 
461 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
462     Constant *C) const {
463   return TTIImpl->shouldBuildLookupTablesForConstant(C);
464 }
465 
466 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
467   return TTIImpl->shouldBuildRelLookupTables();
468 }
469 
470 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
471   return TTIImpl->useColdCCForColdCall(F);
472 }
473 
474 InstructionCost
475 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
476                                               const APInt &DemandedElts,
477                                               bool Insert, bool Extract) const {
478   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
479 }
480 
481 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
482     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
483   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
484 }
485 
486 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
487   return TTIImpl->supportsEfficientVectorElementLoadStore();
488 }
489 
490 bool TargetTransformInfo::enableAggressiveInterleaving(
491     bool LoopHasReductions) const {
492   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
493 }
494 
495 TargetTransformInfo::MemCmpExpansionOptions
496 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
497   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
498 }
499 
500 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
501   return TTIImpl->enableInterleavedAccessVectorization();
502 }
503 
504 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
505   return TTIImpl->enableMaskedInterleavedAccessVectorization();
506 }
507 
508 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
509   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
510 }
511 
512 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
513                                                          unsigned BitWidth,
514                                                          unsigned AddressSpace,
515                                                          Align Alignment,
516                                                          bool *Fast) const {
517   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
518                                                  AddressSpace, Alignment, Fast);
519 }
520 
521 TargetTransformInfo::PopcntSupportKind
522 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
523   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
524 }
525 
526 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
527   return TTIImpl->haveFastSqrt(Ty);
528 }
529 
530 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
531   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
532 }
533 
534 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
535   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
536   assert(Cost >= 0 && "TTI should not produce negative costs!");
537   return Cost;
538 }
539 
540 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
541                                                            unsigned Idx,
542                                                            const APInt &Imm,
543                                                            Type *Ty) const {
544   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
545   assert(Cost >= 0 && "TTI should not produce negative costs!");
546   return Cost;
547 }
548 
549 InstructionCost
550 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
551                                    TTI::TargetCostKind CostKind) const {
552   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
553   assert(Cost >= 0 && "TTI should not produce negative costs!");
554   return Cost;
555 }
556 
557 InstructionCost TargetTransformInfo::getIntImmCostInst(
558     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
559     TTI::TargetCostKind CostKind, Instruction *Inst) const {
560   InstructionCost Cost =
561       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
562   assert(Cost >= 0 && "TTI should not produce negative costs!");
563   return Cost;
564 }
565 
566 InstructionCost
567 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
568                                          const APInt &Imm, Type *Ty,
569                                          TTI::TargetCostKind CostKind) const {
570   InstructionCost Cost =
571       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
572   assert(Cost >= 0 && "TTI should not produce negative costs!");
573   return Cost;
574 }
575 
576 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
577   return TTIImpl->getNumberOfRegisters(ClassID);
578 }
579 
580 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
581                                                       Type *Ty) const {
582   return TTIImpl->getRegisterClassForType(Vector, Ty);
583 }
584 
585 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
586   return TTIImpl->getRegisterClassName(ClassID);
587 }
588 
589 TypeSize TargetTransformInfo::getRegisterBitWidth(
590     TargetTransformInfo::RegisterKind K) const {
591   return TTIImpl->getRegisterBitWidth(K);
592 }
593 
594 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
595   return TTIImpl->getMinVectorRegisterBitWidth();
596 }
597 
598 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
599   return TTIImpl->getMaxVScale();
600 }
601 
602 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
603   return TTIImpl->shouldMaximizeVectorBandwidth();
604 }
605 
606 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
607                                                bool IsScalable) const {
608   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
609 }
610 
611 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
612                                            unsigned Opcode) const {
613   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
614 }
615 
616 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
617     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
618   return TTIImpl->shouldConsiderAddressTypePromotion(
619       I, AllowPromotionWithoutCommonHeader);
620 }
621 
622 unsigned TargetTransformInfo::getCacheLineSize() const {
623   return TTIImpl->getCacheLineSize();
624 }
625 
626 llvm::Optional<unsigned>
627 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
628   return TTIImpl->getCacheSize(Level);
629 }
630 
631 llvm::Optional<unsigned>
632 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
633   return TTIImpl->getCacheAssociativity(Level);
634 }
635 
636 unsigned TargetTransformInfo::getPrefetchDistance() const {
637   return TTIImpl->getPrefetchDistance();
638 }
639 
640 unsigned TargetTransformInfo::getMinPrefetchStride(
641     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
642     unsigned NumPrefetches, bool HasCall) const {
643   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
644                                        NumPrefetches, HasCall);
645 }
646 
647 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
648   return TTIImpl->getMaxPrefetchIterationsAhead();
649 }
650 
651 bool TargetTransformInfo::enableWritePrefetching() const {
652   return TTIImpl->enableWritePrefetching();
653 }
654 
655 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
656   return TTIImpl->getMaxInterleaveFactor(VF);
657 }
658 
659 TargetTransformInfo::OperandValueKind
660 TargetTransformInfo::getOperandInfo(const Value *V,
661                                     OperandValueProperties &OpProps) {
662   OperandValueKind OpInfo = OK_AnyValue;
663   OpProps = OP_None;
664 
665   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
666     if (CI->getValue().isPowerOf2())
667       OpProps = OP_PowerOf2;
668     return OK_UniformConstantValue;
669   }
670 
671   // A broadcast shuffle creates a uniform value.
672   // TODO: Add support for non-zero index broadcasts.
673   // TODO: Add support for different source vector width.
674   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
675     if (ShuffleInst->isZeroEltSplat())
676       OpInfo = OK_UniformValue;
677 
678   const Value *Splat = getSplatValue(V);
679 
680   // Check for a splat of a constant or for a non uniform vector of constants
681   // and check if the constant(s) are all powers of two.
682   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
683     OpInfo = OK_NonUniformConstantValue;
684     if (Splat) {
685       OpInfo = OK_UniformConstantValue;
686       if (auto *CI = dyn_cast<ConstantInt>(Splat))
687         if (CI->getValue().isPowerOf2())
688           OpProps = OP_PowerOf2;
689     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
690       OpProps = OP_PowerOf2;
691       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
692         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
693           if (CI->getValue().isPowerOf2())
694             continue;
695         OpProps = OP_None;
696         break;
697       }
698     }
699   }
700 
701   // Check for a splat of a uniform value. This is not loop aware, so return
702   // true only for the obviously uniform cases (argument, globalvalue)
703   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
704     OpInfo = OK_UniformValue;
705 
706   return OpInfo;
707 }
708 
709 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
710     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
711     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
712     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
713     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
714   InstructionCost Cost =
715       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
716                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
717   assert(Cost >= 0 && "TTI should not produce negative costs!");
718   return Cost;
719 }
720 
721 InstructionCost TargetTransformInfo::getShuffleCost(ShuffleKind Kind,
722                                                     VectorType *Ty,
723                                                     ArrayRef<int> Mask,
724                                                     int Index,
725                                                     VectorType *SubTp) const {
726   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
727   assert(Cost >= 0 && "TTI should not produce negative costs!");
728   return Cost;
729 }
730 
731 TTI::CastContextHint
732 TargetTransformInfo::getCastContextHint(const Instruction *I) {
733   if (!I)
734     return CastContextHint::None;
735 
736   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
737                              unsigned GatScatOp) {
738     const Instruction *I = dyn_cast<Instruction>(V);
739     if (!I)
740       return CastContextHint::None;
741 
742     if (I->getOpcode() == LdStOp)
743       return CastContextHint::Normal;
744 
745     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
746       if (II->getIntrinsicID() == MaskedOp)
747         return TTI::CastContextHint::Masked;
748       if (II->getIntrinsicID() == GatScatOp)
749         return TTI::CastContextHint::GatherScatter;
750     }
751 
752     return TTI::CastContextHint::None;
753   };
754 
755   switch (I->getOpcode()) {
756   case Instruction::ZExt:
757   case Instruction::SExt:
758   case Instruction::FPExt:
759     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
760                             Intrinsic::masked_load, Intrinsic::masked_gather);
761   case Instruction::Trunc:
762   case Instruction::FPTrunc:
763     if (I->hasOneUse())
764       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
765                               Intrinsic::masked_store,
766                               Intrinsic::masked_scatter);
767     break;
768   default:
769     return CastContextHint::None;
770   }
771 
772   return TTI::CastContextHint::None;
773 }
774 
775 InstructionCost TargetTransformInfo::getCastInstrCost(
776     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
777     TTI::TargetCostKind CostKind, const Instruction *I) const {
778   assert((I == nullptr || I->getOpcode() == Opcode) &&
779          "Opcode should reflect passed instruction.");
780   InstructionCost Cost =
781       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
782   assert(Cost >= 0 && "TTI should not produce negative costs!");
783   return Cost;
784 }
785 
786 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
787     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
788   InstructionCost Cost =
789       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
790   assert(Cost >= 0 && "TTI should not produce negative costs!");
791   return Cost;
792 }
793 
794 InstructionCost TargetTransformInfo::getCFInstrCost(
795     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
796   assert((I == nullptr || I->getOpcode() == Opcode) &&
797          "Opcode should reflect passed instruction.");
798   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
799   assert(Cost >= 0 && "TTI should not produce negative costs!");
800   return Cost;
801 }
802 
803 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
804     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
805     TTI::TargetCostKind CostKind, const Instruction *I) const {
806   assert((I == nullptr || I->getOpcode() == Opcode) &&
807          "Opcode should reflect passed instruction.");
808   InstructionCost Cost =
809       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
810   assert(Cost >= 0 && "TTI should not produce negative costs!");
811   return Cost;
812 }
813 
814 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
815                                                         Type *Val,
816                                                         unsigned Index) const {
817   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
818   assert(Cost >= 0 && "TTI should not produce negative costs!");
819   return Cost;
820 }
821 
822 InstructionCost TargetTransformInfo::getMemoryOpCost(
823     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
824     TTI::TargetCostKind CostKind, const Instruction *I) const {
825   assert((I == nullptr || I->getOpcode() == Opcode) &&
826          "Opcode should reflect passed instruction.");
827   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
828                                                   AddressSpace, CostKind, I);
829   assert(Cost >= 0 && "TTI should not produce negative costs!");
830   return Cost;
831 }
832 
833 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
834     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
835     TTI::TargetCostKind CostKind) const {
836   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
837                                                         AddressSpace, CostKind);
838   assert(Cost >= 0 && "TTI should not produce negative costs!");
839   return Cost;
840 }
841 
842 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
843     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
844     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
845   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
846       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
847   assert(Cost >= 0 && "TTI should not produce negative costs!");
848   return Cost;
849 }
850 
851 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
852     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
853     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
854     bool UseMaskForCond, bool UseMaskForGaps) const {
855   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
856       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
857       UseMaskForCond, UseMaskForGaps);
858   assert(Cost >= 0 && "TTI should not produce negative costs!");
859   return Cost;
860 }
861 
862 InstructionCost
863 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
864                                            TTI::TargetCostKind CostKind) const {
865   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
866   assert(Cost >= 0 && "TTI should not produce negative costs!");
867   return Cost;
868 }
869 
870 InstructionCost
871 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
872                                       ArrayRef<Type *> Tys,
873                                       TTI::TargetCostKind CostKind) const {
874   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
875   assert(Cost >= 0 && "TTI should not produce negative costs!");
876   return Cost;
877 }
878 
879 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
880   return TTIImpl->getNumberOfParts(Tp);
881 }
882 
883 InstructionCost
884 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
885                                                const SCEV *Ptr) const {
886   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
887   assert(Cost >= 0 && "TTI should not produce negative costs!");
888   return Cost;
889 }
890 
891 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
892   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
893   assert(Cost >= 0 && "TTI should not produce negative costs!");
894   return Cost;
895 }
896 
897 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
898     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
899     TTI::TargetCostKind CostKind) const {
900   InstructionCost Cost =
901       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
902   assert(Cost >= 0 && "TTI should not produce negative costs!");
903   return Cost;
904 }
905 
906 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
907     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
908     TTI::TargetCostKind CostKind) const {
909   InstructionCost Cost =
910       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
911   assert(Cost >= 0 && "TTI should not produce negative costs!");
912   return Cost;
913 }
914 
915 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
916     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
917     TTI::TargetCostKind CostKind) const {
918   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
919                                               CostKind);
920 }
921 
922 InstructionCost
923 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
924   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
925 }
926 
927 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
928                                              MemIntrinsicInfo &Info) const {
929   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
930 }
931 
932 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
933   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
934 }
935 
936 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
937     IntrinsicInst *Inst, Type *ExpectedType) const {
938   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
939 }
940 
941 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
942     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
943     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
944   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
945                                             DestAddrSpace, SrcAlign, DestAlign);
946 }
947 
948 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
949     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
950     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
951     unsigned SrcAlign, unsigned DestAlign) const {
952   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
953                                              SrcAddrSpace, DestAddrSpace,
954                                              SrcAlign, DestAlign);
955 }
956 
957 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
958                                               const Function *Callee) const {
959   return TTIImpl->areInlineCompatible(Caller, Callee);
960 }
961 
962 bool TargetTransformInfo::areFunctionArgsABICompatible(
963     const Function *Caller, const Function *Callee,
964     SmallPtrSetImpl<Argument *> &Args) const {
965   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
966 }
967 
968 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
969                                              Type *Ty) const {
970   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
971 }
972 
973 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
974                                               Type *Ty) const {
975   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
976 }
977 
978 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
979   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
980 }
981 
982 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
983   return TTIImpl->isLegalToVectorizeLoad(LI);
984 }
985 
986 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
987   return TTIImpl->isLegalToVectorizeStore(SI);
988 }
989 
990 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
991     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
992   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
993                                               AddrSpace);
994 }
995 
996 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
997     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
998   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
999                                                AddrSpace);
1000 }
1001 
1002 bool TargetTransformInfo::isLegalToVectorizeReduction(
1003     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1004   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1005 }
1006 
1007 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1008   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1009 }
1010 
1011 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1012                                                   unsigned LoadSize,
1013                                                   unsigned ChainSizeInBytes,
1014                                                   VectorType *VecTy) const {
1015   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1016 }
1017 
1018 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1019                                                    unsigned StoreSize,
1020                                                    unsigned ChainSizeInBytes,
1021                                                    VectorType *VecTy) const {
1022   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1023 }
1024 
1025 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1026                                                 ReductionFlags Flags) const {
1027   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1028 }
1029 
1030 bool TargetTransformInfo::preferPredicatedReductionSelect(
1031     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1032   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1033 }
1034 
1035 TargetTransformInfo::VPLegalization
1036 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1037   return TTIImpl->getVPLegalizationStrategy(VPI);
1038 }
1039 
1040 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1041   return TTIImpl->shouldExpandReduction(II);
1042 }
1043 
1044 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1045   return TTIImpl->getGISelRematGlobalCost();
1046 }
1047 
1048 bool TargetTransformInfo::supportsScalableVectors() const {
1049   return TTIImpl->supportsScalableVectors();
1050 }
1051 
1052 bool TargetTransformInfo::hasActiveVectorLength() const {
1053   return TTIImpl->hasActiveVectorLength();
1054 }
1055 
1056 InstructionCost
1057 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1058   return TTIImpl->getInstructionLatency(I);
1059 }
1060 
1061 InstructionCost
1062 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1063   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1064 
1065   switch (I->getOpcode()) {
1066   case Instruction::GetElementPtr:
1067   case Instruction::Ret:
1068   case Instruction::PHI:
1069   case Instruction::Br:
1070   case Instruction::Add:
1071   case Instruction::FAdd:
1072   case Instruction::Sub:
1073   case Instruction::FSub:
1074   case Instruction::Mul:
1075   case Instruction::FMul:
1076   case Instruction::UDiv:
1077   case Instruction::SDiv:
1078   case Instruction::FDiv:
1079   case Instruction::URem:
1080   case Instruction::SRem:
1081   case Instruction::FRem:
1082   case Instruction::Shl:
1083   case Instruction::LShr:
1084   case Instruction::AShr:
1085   case Instruction::And:
1086   case Instruction::Or:
1087   case Instruction::Xor:
1088   case Instruction::FNeg:
1089   case Instruction::Select:
1090   case Instruction::ICmp:
1091   case Instruction::FCmp:
1092   case Instruction::Store:
1093   case Instruction::Load:
1094   case Instruction::ZExt:
1095   case Instruction::SExt:
1096   case Instruction::FPToUI:
1097   case Instruction::FPToSI:
1098   case Instruction::FPExt:
1099   case Instruction::PtrToInt:
1100   case Instruction::IntToPtr:
1101   case Instruction::SIToFP:
1102   case Instruction::UIToFP:
1103   case Instruction::Trunc:
1104   case Instruction::FPTrunc:
1105   case Instruction::BitCast:
1106   case Instruction::AddrSpaceCast:
1107   case Instruction::ExtractElement:
1108   case Instruction::InsertElement:
1109   case Instruction::ExtractValue:
1110   case Instruction::ShuffleVector:
1111   case Instruction::Call:
1112   case Instruction::Switch:
1113     return getUserCost(I, CostKind);
1114   default:
1115     // We don't have any information on this instruction.
1116     return -1;
1117   }
1118 }
1119 
1120 TargetTransformInfo::Concept::~Concept() {}
1121 
1122 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1123 
1124 TargetIRAnalysis::TargetIRAnalysis(
1125     std::function<Result(const Function &)> TTICallback)
1126     : TTICallback(std::move(TTICallback)) {}
1127 
1128 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1129                                                FunctionAnalysisManager &) {
1130   return TTICallback(F);
1131 }
1132 
1133 AnalysisKey TargetIRAnalysis::Key;
1134 
1135 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1136   return Result(F.getParent()->getDataLayout());
1137 }
1138 
1139 // Register the basic pass.
1140 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1141                 "Target Transform Information", false, true)
1142 char TargetTransformInfoWrapperPass::ID = 0;
1143 
1144 void TargetTransformInfoWrapperPass::anchor() {}
1145 
1146 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1147     : ImmutablePass(ID) {
1148   initializeTargetTransformInfoWrapperPassPass(
1149       *PassRegistry::getPassRegistry());
1150 }
1151 
1152 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1153     TargetIRAnalysis TIRA)
1154     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1155   initializeTargetTransformInfoWrapperPassPass(
1156       *PassRegistry::getPassRegistry());
1157 }
1158 
1159 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1160   FunctionAnalysisManager DummyFAM;
1161   TTI = TIRA.run(F, DummyFAM);
1162   return *TTI;
1163 }
1164 
1165 ImmutablePass *
1166 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1167   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1168 }
1169