1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "tti" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/Support/CallSite.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 using namespace llvm; 21 22 // Setup the analysis group to manage the TargetTransformInfo passes. 23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 24 char TargetTransformInfo::ID = 0; 25 26 TargetTransformInfo::~TargetTransformInfo() { 27 } 28 29 void TargetTransformInfo::pushTTIStack(Pass *P) { 30 TopTTI = this; 31 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 32 33 // Walk up the chain and update the top TTI pointer. 34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 35 PTTI->TopTTI = this; 36 } 37 38 void TargetTransformInfo::popTTIStack() { 39 TopTTI = 0; 40 41 // Walk up the chain and update the top TTI pointer. 42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 43 PTTI->TopTTI = PrevTTI; 44 45 PrevTTI = 0; 46 } 47 48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequired<TargetTransformInfo>(); 50 } 51 52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 53 Type *OpTy) const { 54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 55 } 56 57 unsigned TargetTransformInfo::getGEPCost( 58 const Value *Ptr, ArrayRef<const Value *> Operands) const { 59 return PrevTTI->getGEPCost(Ptr, Operands); 60 } 61 62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 63 int NumArgs) const { 64 return PrevTTI->getCallCost(FTy, NumArgs); 65 } 66 67 unsigned TargetTransformInfo::getCallCost(const Function *F, 68 int NumArgs) const { 69 return PrevTTI->getCallCost(F, NumArgs); 70 } 71 72 unsigned TargetTransformInfo::getCallCost( 73 const Function *F, ArrayRef<const Value *> Arguments) const { 74 return PrevTTI->getCallCost(F, Arguments); 75 } 76 77 unsigned TargetTransformInfo::getIntrinsicCost( 78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 80 } 81 82 unsigned TargetTransformInfo::getIntrinsicCost( 83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 85 } 86 87 unsigned TargetTransformInfo::getUserCost(const User *U) const { 88 return PrevTTI->getUserCost(U); 89 } 90 91 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 92 return PrevTTI->isLoweredToCall(F); 93 } 94 95 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 96 return PrevTTI->isLegalAddImmediate(Imm); 97 } 98 99 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 100 return PrevTTI->isLegalICmpImmediate(Imm); 101 } 102 103 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 104 int64_t BaseOffset, 105 bool HasBaseReg, 106 int64_t Scale) const { 107 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 108 Scale); 109 } 110 111 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 112 int64_t BaseOffset, 113 bool HasBaseReg, 114 int64_t Scale) const { 115 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 116 Scale); 117 } 118 119 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 120 return PrevTTI->isTruncateFree(Ty1, Ty2); 121 } 122 123 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 124 return PrevTTI->isTypeLegal(Ty); 125 } 126 127 unsigned TargetTransformInfo::getJumpBufAlignment() const { 128 return PrevTTI->getJumpBufAlignment(); 129 } 130 131 unsigned TargetTransformInfo::getJumpBufSize() const { 132 return PrevTTI->getJumpBufSize(); 133 } 134 135 bool TargetTransformInfo::shouldBuildLookupTables() const { 136 return PrevTTI->shouldBuildLookupTables(); 137 } 138 139 TargetTransformInfo::PopcntSupportKind 140 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 141 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 142 } 143 144 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 145 return PrevTTI->getIntImmCost(Imm, Ty); 146 } 147 148 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 149 return PrevTTI->getNumberOfRegisters(Vector); 150 } 151 152 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 153 return PrevTTI->getRegisterBitWidth(Vector); 154 } 155 156 unsigned TargetTransformInfo::getMaximumUnrollFactor() const { 157 return PrevTTI->getMaximumUnrollFactor(); 158 } 159 160 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, 161 Type *Ty, 162 OperandValueKind Op1Info, 163 OperandValueKind Op2Info) const { 164 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 165 } 166 167 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 168 int Index, Type *SubTp) const { 169 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 170 } 171 172 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 173 Type *Src) const { 174 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 175 } 176 177 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 178 return PrevTTI->getCFInstrCost(Opcode); 179 } 180 181 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 182 Type *CondTy) const { 183 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 184 } 185 186 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 187 unsigned Index) const { 188 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 189 } 190 191 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 192 unsigned Alignment, 193 unsigned AddressSpace) const { 194 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 195 ; 196 } 197 198 unsigned 199 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 200 Type *RetTy, 201 ArrayRef<Type *> Tys) const { 202 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 203 } 204 205 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 206 return PrevTTI->getNumberOfParts(Tp); 207 } 208 209 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const { 210 return PrevTTI->getAddressComputationCost(Tp); 211 } 212 213 namespace { 214 215 struct NoTTI : ImmutablePass, TargetTransformInfo { 216 const DataLayout *DL; 217 218 NoTTI() : ImmutablePass(ID), DL(0) { 219 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 220 } 221 222 virtual void initializePass() { 223 // Note that this subclass is special, and must *not* call initializeTTI as 224 // it does not chain. 225 TopTTI = this; 226 PrevTTI = 0; 227 DL = getAnalysisIfAvailable<DataLayout>(); 228 } 229 230 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 231 // Note that this subclass is special, and must *not* call 232 // TTI::getAnalysisUsage as it breaks the recursion. 233 } 234 235 /// Pass identification. 236 static char ID; 237 238 /// Provide necessary pointer adjustments for the two base classes. 239 virtual void *getAdjustedAnalysisPointer(const void *ID) { 240 if (ID == &TargetTransformInfo::ID) 241 return (TargetTransformInfo*)this; 242 return this; 243 } 244 245 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const { 246 switch (Opcode) { 247 default: 248 // By default, just classify everything as 'basic'. 249 return TCC_Basic; 250 251 case Instruction::GetElementPtr: 252 llvm_unreachable("Use getGEPCost for GEP operations!"); 253 254 case Instruction::BitCast: 255 assert(OpTy && "Cast instructions must provide the operand type"); 256 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 257 // Identity and pointer-to-pointer casts are free. 258 return TCC_Free; 259 260 // Otherwise, the default basic cost is used. 261 return TCC_Basic; 262 263 case Instruction::IntToPtr: 264 // An inttoptr cast is free so long as the input is a legal integer type 265 // which doesn't contain values outside the range of a pointer. 266 if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) && 267 OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits()) 268 return TCC_Free; 269 270 // Otherwise it's not a no-op. 271 return TCC_Basic; 272 273 case Instruction::PtrToInt: 274 // A ptrtoint cast is free so long as the result is large enough to store 275 // the pointer, and a legal integer type. 276 if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) && 277 Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits()) 278 return TCC_Free; 279 280 // Otherwise it's not a no-op. 281 return TCC_Basic; 282 283 case Instruction::Trunc: 284 // trunc to a native type is free (assuming the target has compare and 285 // shift-right of the same width). 286 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 287 return TCC_Free; 288 289 return TCC_Basic; 290 } 291 } 292 293 unsigned getGEPCost(const Value *Ptr, 294 ArrayRef<const Value *> Operands) const { 295 // In the basic model, we just assume that all-constant GEPs will be folded 296 // into their uses via addressing modes. 297 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 298 if (!isa<Constant>(Operands[Idx])) 299 return TCC_Basic; 300 301 return TCC_Free; 302 } 303 304 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const { 305 assert(FTy && "FunctionType must be provided to this routine."); 306 307 // The target-independent implementation just measures the size of the 308 // function by approximating that each argument will take on average one 309 // instruction to prepare. 310 311 if (NumArgs < 0) 312 // Set the argument number to the number of explicit arguments in the 313 // function. 314 NumArgs = FTy->getNumParams(); 315 316 return TCC_Basic * (NumArgs + 1); 317 } 318 319 unsigned getCallCost(const Function *F, int NumArgs = -1) const { 320 assert(F && "A concrete function must be provided to this routine."); 321 322 if (NumArgs < 0) 323 // Set the argument number to the number of explicit arguments in the 324 // function. 325 NumArgs = F->arg_size(); 326 327 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 328 FunctionType *FTy = F->getFunctionType(); 329 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 330 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 331 } 332 333 if (!TopTTI->isLoweredToCall(F)) 334 return TCC_Basic; // Give a basic cost if it will be lowered directly. 335 336 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 337 } 338 339 unsigned getCallCost(const Function *F, 340 ArrayRef<const Value *> Arguments) const { 341 // Simply delegate to generic handling of the call. 342 // FIXME: We should use instsimplify or something else to catch calls which 343 // will constant fold with these arguments. 344 return TopTTI->getCallCost(F, Arguments.size()); 345 } 346 347 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 348 ArrayRef<Type *> ParamTys) const { 349 switch (IID) { 350 default: 351 // Intrinsics rarely (if ever) have normal argument setup constraints. 352 // Model them as having a basic instruction cost. 353 // FIXME: This is wrong for libc intrinsics. 354 return TCC_Basic; 355 356 case Intrinsic::dbg_declare: 357 case Intrinsic::dbg_value: 358 case Intrinsic::invariant_start: 359 case Intrinsic::invariant_end: 360 case Intrinsic::lifetime_start: 361 case Intrinsic::lifetime_end: 362 case Intrinsic::objectsize: 363 case Intrinsic::ptr_annotation: 364 case Intrinsic::var_annotation: 365 // These intrinsics don't actually represent code after lowering. 366 return TCC_Free; 367 } 368 } 369 370 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 371 ArrayRef<const Value *> Arguments) const { 372 // Delegate to the generic intrinsic handling code. This mostly provides an 373 // opportunity for targets to (for example) special case the cost of 374 // certain intrinsics based on constants used as arguments. 375 SmallVector<Type *, 8> ParamTys; 376 ParamTys.reserve(Arguments.size()); 377 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 378 ParamTys.push_back(Arguments[Idx]->getType()); 379 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 380 } 381 382 unsigned getUserCost(const User *U) const { 383 if (isa<PHINode>(U)) 384 return TCC_Free; // Model all PHI nodes as free. 385 386 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) 387 // In the basic model we just assume that all-constant GEPs will be 388 // folded into their uses via addressing modes. 389 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic; 390 391 if (ImmutableCallSite CS = U) { 392 const Function *F = CS.getCalledFunction(); 393 if (!F) { 394 // Just use the called value type. 395 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 396 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 397 } 398 399 SmallVector<const Value *, 8> Arguments; 400 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), 401 AE = CS.arg_end(); 402 AI != AE; ++AI) 403 Arguments.push_back(*AI); 404 405 return TopTTI->getCallCost(F, Arguments); 406 } 407 408 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 409 // Result of a cmp instruction is often extended (to be used by other 410 // cmp instructions, logical or return instructions). These are usually 411 // nop on most sane targets. 412 if (isa<CmpInst>(CI->getOperand(0))) 413 return TCC_Free; 414 } 415 416 // Otherwise delegate to the fully generic implementations. 417 return getOperationCost(Operator::getOpcode(U), U->getType(), 418 U->getNumOperands() == 1 ? 419 U->getOperand(0)->getType() : 0); 420 } 421 422 bool isLoweredToCall(const Function *F) const { 423 // FIXME: These should almost certainly not be handled here, and instead 424 // handled with the help of TLI or the target itself. This was largely 425 // ported from existing analysis heuristics here so that such refactorings 426 // can take place in the future. 427 428 if (F->isIntrinsic()) 429 return false; 430 431 if (F->hasLocalLinkage() || !F->hasName()) 432 return true; 433 434 StringRef Name = F->getName(); 435 436 // These will all likely lower to a single selection DAG node. 437 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 438 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 439 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 440 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 441 return false; 442 443 // These are all likely to be optimized into something smaller. 444 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 445 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 446 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 447 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 448 return false; 449 450 return true; 451 } 452 453 bool isLegalAddImmediate(int64_t Imm) const { 454 return false; 455 } 456 457 bool isLegalICmpImmediate(int64_t Imm) const { 458 return false; 459 } 460 461 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 462 bool HasBaseReg, int64_t Scale) const { 463 // Guess that reg+reg addressing is allowed. This heuristic is taken from 464 // the implementation of LSR. 465 return !BaseGV && BaseOffset == 0 && Scale <= 1; 466 } 467 468 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 469 bool HasBaseReg, int64_t Scale) const { 470 // Guess that all legal addressing mode are free. 471 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 472 return 0; 473 return -1; 474 } 475 476 477 bool isTruncateFree(Type *Ty1, Type *Ty2) const { 478 return false; 479 } 480 481 bool isTypeLegal(Type *Ty) const { 482 return false; 483 } 484 485 unsigned getJumpBufAlignment() const { 486 return 0; 487 } 488 489 unsigned getJumpBufSize() const { 490 return 0; 491 } 492 493 bool shouldBuildLookupTables() const { 494 return true; 495 } 496 497 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const { 498 return PSK_Software; 499 } 500 501 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const { 502 return 1; 503 } 504 505 unsigned getNumberOfRegisters(bool Vector) const { 506 return 8; 507 } 508 509 unsigned getRegisterBitWidth(bool Vector) const { 510 return 32; 511 } 512 513 unsigned getMaximumUnrollFactor() const { 514 return 1; 515 } 516 517 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 518 OperandValueKind) const { 519 return 1; 520 } 521 522 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 523 int Index = 0, Type *SubTp = 0) const { 524 return 1; 525 } 526 527 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 528 Type *Src) const { 529 return 1; 530 } 531 532 unsigned getCFInstrCost(unsigned Opcode) const { 533 return 1; 534 } 535 536 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 537 Type *CondTy = 0) const { 538 return 1; 539 } 540 541 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 542 unsigned Index = -1) const { 543 return 1; 544 } 545 546 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 547 unsigned Alignment, 548 unsigned AddressSpace) const { 549 return 1; 550 } 551 552 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, 553 Type *RetTy, 554 ArrayRef<Type*> Tys) const { 555 return 1; 556 } 557 558 unsigned getNumberOfParts(Type *Tp) const { 559 return 0; 560 } 561 562 unsigned getAddressComputationCost(Type *Tp) const { 563 return 0; 564 } 565 }; 566 567 } // end anonymous namespace 568 569 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 570 "No target information", true, true, true) 571 char NoTTI::ID = 0; 572 573 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 574 return new NoTTI(); 575 } 576