1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "tti" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/Support/CallSite.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 using namespace llvm; 21 22 // Setup the analysis group to manage the TargetTransformInfo passes. 23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 24 char TargetTransformInfo::ID = 0; 25 26 TargetTransformInfo::~TargetTransformInfo() { 27 } 28 29 void TargetTransformInfo::pushTTIStack(Pass *P) { 30 TopTTI = this; 31 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 32 33 // Walk up the chain and update the top TTI pointer. 34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 35 PTTI->TopTTI = this; 36 } 37 38 void TargetTransformInfo::popTTIStack() { 39 TopTTI = 0; 40 41 // Walk up the chain and update the top TTI pointer. 42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 43 PTTI->TopTTI = PrevTTI; 44 45 PrevTTI = 0; 46 } 47 48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequired<TargetTransformInfo>(); 50 } 51 52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 53 Type *OpTy) const { 54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 55 } 56 57 unsigned TargetTransformInfo::getGEPCost( 58 const Value *Ptr, ArrayRef<const Value *> Operands) const { 59 return PrevTTI->getGEPCost(Ptr, Operands); 60 } 61 62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 63 int NumArgs) const { 64 return PrevTTI->getCallCost(FTy, NumArgs); 65 } 66 67 unsigned TargetTransformInfo::getCallCost(const Function *F, 68 int NumArgs) const { 69 return PrevTTI->getCallCost(F, NumArgs); 70 } 71 72 unsigned TargetTransformInfo::getCallCost( 73 const Function *F, ArrayRef<const Value *> Arguments) const { 74 return PrevTTI->getCallCost(F, Arguments); 75 } 76 77 unsigned TargetTransformInfo::getIntrinsicCost( 78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 80 } 81 82 unsigned TargetTransformInfo::getIntrinsicCost( 83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 85 } 86 87 unsigned TargetTransformInfo::getUserCost(const User *U) const { 88 return PrevTTI->getUserCost(U); 89 } 90 91 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 92 return PrevTTI->isLoweredToCall(F); 93 } 94 95 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 96 return PrevTTI->isLegalAddImmediate(Imm); 97 } 98 99 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 100 return PrevTTI->isLegalICmpImmediate(Imm); 101 } 102 103 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 104 int64_t BaseOffset, 105 bool HasBaseReg, 106 int64_t Scale) const { 107 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 108 Scale); 109 } 110 111 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 112 int64_t BaseOffset, 113 bool HasBaseReg, 114 int64_t Scale) const { 115 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 116 Scale); 117 } 118 119 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 120 return PrevTTI->isTruncateFree(Ty1, Ty2); 121 } 122 123 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 124 return PrevTTI->isTypeLegal(Ty); 125 } 126 127 unsigned TargetTransformInfo::getJumpBufAlignment() const { 128 return PrevTTI->getJumpBufAlignment(); 129 } 130 131 unsigned TargetTransformInfo::getJumpBufSize() const { 132 return PrevTTI->getJumpBufSize(); 133 } 134 135 bool TargetTransformInfo::shouldBuildLookupTables() const { 136 return PrevTTI->shouldBuildLookupTables(); 137 } 138 139 TargetTransformInfo::PopcntSupportKind 140 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 141 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 142 } 143 144 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 145 return PrevTTI->getIntImmCost(Imm, Ty); 146 } 147 148 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 149 return PrevTTI->getNumberOfRegisters(Vector); 150 } 151 152 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 153 return PrevTTI->getRegisterBitWidth(Vector); 154 } 155 156 unsigned TargetTransformInfo::getMaximumUnrollFactor() const { 157 return PrevTTI->getMaximumUnrollFactor(); 158 } 159 160 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, 161 Type *Ty, 162 OperandValueKind Op1Info, 163 OperandValueKind Op2Info) const { 164 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 165 } 166 167 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 168 int Index, Type *SubTp) const { 169 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 170 } 171 172 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 173 Type *Src) const { 174 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 175 } 176 177 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 178 return PrevTTI->getCFInstrCost(Opcode); 179 } 180 181 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 182 Type *CondTy) const { 183 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 184 } 185 186 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 187 unsigned Index) const { 188 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 189 } 190 191 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 192 unsigned Alignment, 193 unsigned AddressSpace) const { 194 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 195 ; 196 } 197 198 unsigned 199 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 200 Type *RetTy, 201 ArrayRef<Type *> Tys) const { 202 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 203 } 204 205 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 206 return PrevTTI->getNumberOfParts(Tp); 207 } 208 209 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp, 210 bool IsComplex) const { 211 return PrevTTI->getAddressComputationCost(Tp, IsComplex); 212 } 213 214 namespace { 215 216 struct NoTTI : ImmutablePass, TargetTransformInfo { 217 const DataLayout *DL; 218 219 NoTTI() : ImmutablePass(ID), DL(0) { 220 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 221 } 222 223 virtual void initializePass() { 224 // Note that this subclass is special, and must *not* call initializeTTI as 225 // it does not chain. 226 TopTTI = this; 227 PrevTTI = 0; 228 DL = getAnalysisIfAvailable<DataLayout>(); 229 } 230 231 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 232 // Note that this subclass is special, and must *not* call 233 // TTI::getAnalysisUsage as it breaks the recursion. 234 } 235 236 /// Pass identification. 237 static char ID; 238 239 /// Provide necessary pointer adjustments for the two base classes. 240 virtual void *getAdjustedAnalysisPointer(const void *ID) { 241 if (ID == &TargetTransformInfo::ID) 242 return (TargetTransformInfo*)this; 243 return this; 244 } 245 246 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const { 247 switch (Opcode) { 248 default: 249 // By default, just classify everything as 'basic'. 250 return TCC_Basic; 251 252 case Instruction::GetElementPtr: 253 llvm_unreachable("Use getGEPCost for GEP operations!"); 254 255 case Instruction::BitCast: 256 assert(OpTy && "Cast instructions must provide the operand type"); 257 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 258 // Identity and pointer-to-pointer casts are free. 259 return TCC_Free; 260 261 // Otherwise, the default basic cost is used. 262 return TCC_Basic; 263 264 case Instruction::IntToPtr: 265 // An inttoptr cast is free so long as the input is a legal integer type 266 // which doesn't contain values outside the range of a pointer. 267 if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) && 268 OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits()) 269 return TCC_Free; 270 271 // Otherwise it's not a no-op. 272 return TCC_Basic; 273 274 case Instruction::PtrToInt: 275 // A ptrtoint cast is free so long as the result is large enough to store 276 // the pointer, and a legal integer type. 277 if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) && 278 Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits()) 279 return TCC_Free; 280 281 // Otherwise it's not a no-op. 282 return TCC_Basic; 283 284 case Instruction::Trunc: 285 // trunc to a native type is free (assuming the target has compare and 286 // shift-right of the same width). 287 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 288 return TCC_Free; 289 290 return TCC_Basic; 291 } 292 } 293 294 unsigned getGEPCost(const Value *Ptr, 295 ArrayRef<const Value *> Operands) const { 296 // In the basic model, we just assume that all-constant GEPs will be folded 297 // into their uses via addressing modes. 298 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 299 if (!isa<Constant>(Operands[Idx])) 300 return TCC_Basic; 301 302 return TCC_Free; 303 } 304 305 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const { 306 assert(FTy && "FunctionType must be provided to this routine."); 307 308 // The target-independent implementation just measures the size of the 309 // function by approximating that each argument will take on average one 310 // instruction to prepare. 311 312 if (NumArgs < 0) 313 // Set the argument number to the number of explicit arguments in the 314 // function. 315 NumArgs = FTy->getNumParams(); 316 317 return TCC_Basic * (NumArgs + 1); 318 } 319 320 unsigned getCallCost(const Function *F, int NumArgs = -1) const { 321 assert(F && "A concrete function must be provided to this routine."); 322 323 if (NumArgs < 0) 324 // Set the argument number to the number of explicit arguments in the 325 // function. 326 NumArgs = F->arg_size(); 327 328 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 329 FunctionType *FTy = F->getFunctionType(); 330 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 331 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 332 } 333 334 if (!TopTTI->isLoweredToCall(F)) 335 return TCC_Basic; // Give a basic cost if it will be lowered directly. 336 337 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 338 } 339 340 unsigned getCallCost(const Function *F, 341 ArrayRef<const Value *> Arguments) const { 342 // Simply delegate to generic handling of the call. 343 // FIXME: We should use instsimplify or something else to catch calls which 344 // will constant fold with these arguments. 345 return TopTTI->getCallCost(F, Arguments.size()); 346 } 347 348 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 349 ArrayRef<Type *> ParamTys) const { 350 switch (IID) { 351 default: 352 // Intrinsics rarely (if ever) have normal argument setup constraints. 353 // Model them as having a basic instruction cost. 354 // FIXME: This is wrong for libc intrinsics. 355 return TCC_Basic; 356 357 case Intrinsic::dbg_declare: 358 case Intrinsic::dbg_value: 359 case Intrinsic::invariant_start: 360 case Intrinsic::invariant_end: 361 case Intrinsic::lifetime_start: 362 case Intrinsic::lifetime_end: 363 case Intrinsic::objectsize: 364 case Intrinsic::ptr_annotation: 365 case Intrinsic::var_annotation: 366 // These intrinsics don't actually represent code after lowering. 367 return TCC_Free; 368 } 369 } 370 371 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 372 ArrayRef<const Value *> Arguments) const { 373 // Delegate to the generic intrinsic handling code. This mostly provides an 374 // opportunity for targets to (for example) special case the cost of 375 // certain intrinsics based on constants used as arguments. 376 SmallVector<Type *, 8> ParamTys; 377 ParamTys.reserve(Arguments.size()); 378 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 379 ParamTys.push_back(Arguments[Idx]->getType()); 380 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 381 } 382 383 unsigned getUserCost(const User *U) const { 384 if (isa<PHINode>(U)) 385 return TCC_Free; // Model all PHI nodes as free. 386 387 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) 388 // In the basic model we just assume that all-constant GEPs will be 389 // folded into their uses via addressing modes. 390 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic; 391 392 if (ImmutableCallSite CS = U) { 393 const Function *F = CS.getCalledFunction(); 394 if (!F) { 395 // Just use the called value type. 396 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 397 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 398 } 399 400 SmallVector<const Value *, 8> Arguments; 401 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), 402 AE = CS.arg_end(); 403 AI != AE; ++AI) 404 Arguments.push_back(*AI); 405 406 return TopTTI->getCallCost(F, Arguments); 407 } 408 409 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 410 // Result of a cmp instruction is often extended (to be used by other 411 // cmp instructions, logical or return instructions). These are usually 412 // nop on most sane targets. 413 if (isa<CmpInst>(CI->getOperand(0))) 414 return TCC_Free; 415 } 416 417 // Otherwise delegate to the fully generic implementations. 418 return getOperationCost(Operator::getOpcode(U), U->getType(), 419 U->getNumOperands() == 1 ? 420 U->getOperand(0)->getType() : 0); 421 } 422 423 bool isLoweredToCall(const Function *F) const { 424 // FIXME: These should almost certainly not be handled here, and instead 425 // handled with the help of TLI or the target itself. This was largely 426 // ported from existing analysis heuristics here so that such refactorings 427 // can take place in the future. 428 429 if (F->isIntrinsic()) 430 return false; 431 432 if (F->hasLocalLinkage() || !F->hasName()) 433 return true; 434 435 StringRef Name = F->getName(); 436 437 // These will all likely lower to a single selection DAG node. 438 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 439 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 440 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 441 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 442 return false; 443 444 // These are all likely to be optimized into something smaller. 445 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 446 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 447 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 448 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 449 return false; 450 451 return true; 452 } 453 454 bool isLegalAddImmediate(int64_t Imm) const { 455 return false; 456 } 457 458 bool isLegalICmpImmediate(int64_t Imm) const { 459 return false; 460 } 461 462 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 463 bool HasBaseReg, int64_t Scale) const { 464 // Guess that reg+reg addressing is allowed. This heuristic is taken from 465 // the implementation of LSR. 466 return !BaseGV && BaseOffset == 0 && Scale <= 1; 467 } 468 469 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 470 bool HasBaseReg, int64_t Scale) const { 471 // Guess that all legal addressing mode are free. 472 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 473 return 0; 474 return -1; 475 } 476 477 478 bool isTruncateFree(Type *Ty1, Type *Ty2) const { 479 return false; 480 } 481 482 bool isTypeLegal(Type *Ty) const { 483 return false; 484 } 485 486 unsigned getJumpBufAlignment() const { 487 return 0; 488 } 489 490 unsigned getJumpBufSize() const { 491 return 0; 492 } 493 494 bool shouldBuildLookupTables() const { 495 return true; 496 } 497 498 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const { 499 return PSK_Software; 500 } 501 502 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const { 503 return 1; 504 } 505 506 unsigned getNumberOfRegisters(bool Vector) const { 507 return 8; 508 } 509 510 unsigned getRegisterBitWidth(bool Vector) const { 511 return 32; 512 } 513 514 unsigned getMaximumUnrollFactor() const { 515 return 1; 516 } 517 518 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 519 OperandValueKind) const { 520 return 1; 521 } 522 523 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 524 int Index = 0, Type *SubTp = 0) const { 525 return 1; 526 } 527 528 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 529 Type *Src) const { 530 return 1; 531 } 532 533 unsigned getCFInstrCost(unsigned Opcode) const { 534 return 1; 535 } 536 537 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 538 Type *CondTy = 0) const { 539 return 1; 540 } 541 542 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 543 unsigned Index = -1) const { 544 return 1; 545 } 546 547 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 548 unsigned Alignment, 549 unsigned AddressSpace) const { 550 return 1; 551 } 552 553 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, 554 Type *RetTy, 555 ArrayRef<Type*> Tys) const { 556 return 1; 557 } 558 559 unsigned getNumberOfParts(Type *Tp) const { 560 return 0; 561 } 562 563 unsigned getAddressComputationCost(Type *Tp, bool) const { 564 return 0; 565 } 566 }; 567 568 } // end anonymous namespace 569 570 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 571 "No target information", true, true, true) 572 char NoTTI::ID = 0; 573 574 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 575 return new NoTTI(); 576 } 577