1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 75 FunctionType *FTy = 76 CI.getCalledFunction()->getFunctionType(); 77 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 78 } 79 80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 81 const CallBase &CI, 82 ElementCount Factor) 83 : RetTy(CI.getType()), IID(Id), VF(Factor) { 84 85 assert(!Factor.isScalable() && "Scalable vectors are not yet supported"); 86 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 87 FMF = FPMO->getFastMathFlags(); 88 89 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 90 FunctionType *FTy = 91 CI.getCalledFunction()->getFunctionType(); 92 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 93 } 94 95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 96 const CallBase &CI, 97 ElementCount Factor, 98 unsigned ScalarCost) 99 : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 100 101 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 102 FMF = FPMO->getFastMathFlags(); 103 104 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 105 FunctionType *FTy = 106 CI.getCalledFunction()->getFunctionType(); 107 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 108 } 109 110 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 111 ArrayRef<Type *> Tys, 112 FastMathFlags Flags) : 113 RetTy(RTy), IID(Id), FMF(Flags) { 114 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 115 } 116 117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 118 ArrayRef<Type *> Tys, 119 FastMathFlags Flags, 120 unsigned ScalarCost) : 121 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 122 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 123 } 124 125 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 126 ArrayRef<Type *> Tys, 127 FastMathFlags Flags, 128 unsigned ScalarCost, 129 const IntrinsicInst *I) : 130 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 131 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 132 } 133 134 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 135 ArrayRef<Type *> Tys) : 136 RetTy(RTy), IID(Id) { 137 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 138 } 139 140 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 141 ArrayRef<const Value *> Args) 142 : RetTy(Ty), IID(Id) { 143 144 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 145 ParamTys.reserve(Arguments.size()); 146 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 147 ParamTys.push_back(Arguments[Idx]->getType()); 148 } 149 150 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 151 LoopInfo &LI, DominatorTree &DT, 152 bool ForceNestedLoop, 153 bool ForceHardwareLoopPHI) { 154 SmallVector<BasicBlock *, 4> ExitingBlocks; 155 L->getExitingBlocks(ExitingBlocks); 156 157 for (BasicBlock *BB : ExitingBlocks) { 158 // If we pass the updated counter back through a phi, we need to know 159 // which latch the updated value will be coming from. 160 if (!L->isLoopLatch(BB)) { 161 if (ForceHardwareLoopPHI || CounterInReg) 162 continue; 163 } 164 165 const SCEV *EC = SE.getExitCount(L, BB); 166 if (isa<SCEVCouldNotCompute>(EC)) 167 continue; 168 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 169 if (ConstEC->getValue()->isZero()) 170 continue; 171 } else if (!SE.isLoopInvariant(EC, L)) 172 continue; 173 174 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 175 continue; 176 177 // If this exiting block is contained in a nested loop, it is not eligible 178 // for insertion of the branch-and-decrement since the inner loop would 179 // end up messing up the value in the CTR. 180 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 181 continue; 182 183 // We now have a loop-invariant count of loop iterations (which is not the 184 // constant zero) for which we know that this loop will not exit via this 185 // existing block. 186 187 // We need to make sure that this block will run on every loop iteration. 188 // For this to be true, we must dominate all blocks with backedges. Such 189 // blocks are in-loop predecessors to the header block. 190 bool NotAlways = false; 191 for (BasicBlock *Pred : predecessors(L->getHeader())) { 192 if (!L->contains(Pred)) 193 continue; 194 195 if (!DT.dominates(BB, Pred)) { 196 NotAlways = true; 197 break; 198 } 199 } 200 201 if (NotAlways) 202 continue; 203 204 // Make sure this blocks ends with a conditional branch. 205 Instruction *TI = BB->getTerminator(); 206 if (!TI) 207 continue; 208 209 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 210 if (!BI->isConditional()) 211 continue; 212 213 ExitBranch = BI; 214 } else 215 continue; 216 217 // Note that this block may not be the loop latch block, even if the loop 218 // has a latch block. 219 ExitBlock = BB; 220 TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType())); 221 222 if (!EC->getType()->isPointerTy() && EC->getType() != CountType) 223 TripCount = SE.getZeroExtendExpr(TripCount, CountType); 224 225 break; 226 } 227 228 if (!ExitBlock) 229 return false; 230 return true; 231 } 232 233 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 234 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 235 236 TargetTransformInfo::~TargetTransformInfo() {} 237 238 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 239 : TTIImpl(std::move(Arg.TTIImpl)) {} 240 241 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 242 TTIImpl = std::move(RHS.TTIImpl); 243 return *this; 244 } 245 246 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 247 return TTIImpl->getInliningThresholdMultiplier(); 248 } 249 250 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 251 return TTIImpl->getInlinerVectorBonusPercent(); 252 } 253 254 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 255 ArrayRef<const Value *> Operands, 256 TTI::TargetCostKind CostKind) const { 257 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 258 } 259 260 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 261 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 262 BlockFrequencyInfo *BFI) const { 263 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 264 } 265 266 int TargetTransformInfo::getUserCost(const User *U, 267 ArrayRef<const Value *> Operands, 268 enum TargetCostKind CostKind) const { 269 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 270 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 271 "TTI should not produce negative costs!"); 272 return Cost; 273 } 274 275 bool TargetTransformInfo::hasBranchDivergence() const { 276 return TTIImpl->hasBranchDivergence(); 277 } 278 279 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 280 return TTIImpl->useGPUDivergenceAnalysis(); 281 } 282 283 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 284 return TTIImpl->isSourceOfDivergence(V); 285 } 286 287 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 288 return TTIImpl->isAlwaysUniform(V); 289 } 290 291 unsigned TargetTransformInfo::getFlatAddressSpace() const { 292 return TTIImpl->getFlatAddressSpace(); 293 } 294 295 bool TargetTransformInfo::collectFlatAddressOperands( 296 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 297 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 298 } 299 300 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 301 unsigned ToAS) const { 302 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 303 } 304 305 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const { 306 return TTIImpl->getAssumedAddrSpace(V); 307 } 308 309 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 310 IntrinsicInst *II, Value *OldV, Value *NewV) const { 311 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 312 } 313 314 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 315 return TTIImpl->isLoweredToCall(F); 316 } 317 318 bool TargetTransformInfo::isHardwareLoopProfitable( 319 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 320 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 321 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 322 } 323 324 bool TargetTransformInfo::preferPredicateOverEpilogue( 325 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 326 TargetLibraryInfo *TLI, DominatorTree *DT, 327 const LoopAccessInfo *LAI) const { 328 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 329 } 330 331 bool TargetTransformInfo::emitGetActiveLaneMask() const { 332 return TTIImpl->emitGetActiveLaneMask(); 333 } 334 335 Optional<Instruction *> 336 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC, 337 IntrinsicInst &II) const { 338 return TTIImpl->instCombineIntrinsic(IC, II); 339 } 340 341 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic( 342 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 343 bool &KnownBitsComputed) const { 344 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 345 KnownBitsComputed); 346 } 347 348 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic( 349 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 350 APInt &UndefElts2, APInt &UndefElts3, 351 std::function<void(Instruction *, unsigned, APInt, APInt &)> 352 SimplifyAndSetOp) const { 353 return TTIImpl->simplifyDemandedVectorEltsIntrinsic( 354 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 355 SimplifyAndSetOp); 356 } 357 358 void TargetTransformInfo::getUnrollingPreferences( 359 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 360 return TTIImpl->getUnrollingPreferences(L, SE, UP); 361 } 362 363 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 364 PeelingPreferences &PP) const { 365 return TTIImpl->getPeelingPreferences(L, SE, PP); 366 } 367 368 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 369 return TTIImpl->isLegalAddImmediate(Imm); 370 } 371 372 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 373 return TTIImpl->isLegalICmpImmediate(Imm); 374 } 375 376 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 377 int64_t BaseOffset, 378 bool HasBaseReg, int64_t Scale, 379 unsigned AddrSpace, 380 Instruction *I) const { 381 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 382 Scale, AddrSpace, I); 383 } 384 385 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 386 return TTIImpl->isLSRCostLess(C1, C2); 387 } 388 389 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const { 390 return TTIImpl->isNumRegsMajorCostOfLSR(); 391 } 392 393 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 394 return TTIImpl->isProfitableLSRChainElement(I); 395 } 396 397 bool TargetTransformInfo::canMacroFuseCmp() const { 398 return TTIImpl->canMacroFuseCmp(); 399 } 400 401 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 402 ScalarEvolution *SE, LoopInfo *LI, 403 DominatorTree *DT, AssumptionCache *AC, 404 TargetLibraryInfo *LibInfo) const { 405 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 406 } 407 408 bool TargetTransformInfo::shouldFavorPostInc() const { 409 return TTIImpl->shouldFavorPostInc(); 410 } 411 412 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 413 return TTIImpl->shouldFavorBackedgeIndex(L); 414 } 415 416 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 417 Align Alignment) const { 418 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 419 } 420 421 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 422 Align Alignment) const { 423 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 424 } 425 426 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 427 Align Alignment) const { 428 return TTIImpl->isLegalNTStore(DataType, Alignment); 429 } 430 431 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 432 return TTIImpl->isLegalNTLoad(DataType, Alignment); 433 } 434 435 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 436 Align Alignment) const { 437 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 438 } 439 440 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 441 Align Alignment) const { 442 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 443 } 444 445 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 446 return TTIImpl->isLegalMaskedCompressStore(DataType); 447 } 448 449 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 450 return TTIImpl->isLegalMaskedExpandLoad(DataType); 451 } 452 453 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 454 return TTIImpl->hasDivRemOp(DataType, IsSigned); 455 } 456 457 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 458 unsigned AddrSpace) const { 459 return TTIImpl->hasVolatileVariant(I, AddrSpace); 460 } 461 462 bool TargetTransformInfo::prefersVectorizedAddressing() const { 463 return TTIImpl->prefersVectorizedAddressing(); 464 } 465 466 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 467 int64_t BaseOffset, 468 bool HasBaseReg, int64_t Scale, 469 unsigned AddrSpace) const { 470 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 471 Scale, AddrSpace); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 bool TargetTransformInfo::LSRWithInstrQueries() const { 477 return TTIImpl->LSRWithInstrQueries(); 478 } 479 480 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 481 return TTIImpl->isTruncateFree(Ty1, Ty2); 482 } 483 484 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 485 return TTIImpl->isProfitableToHoist(I); 486 } 487 488 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 489 490 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 491 return TTIImpl->isTypeLegal(Ty); 492 } 493 494 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const { 495 return TTIImpl->getRegUsageForType(Ty); 496 } 497 498 bool TargetTransformInfo::shouldBuildLookupTables() const { 499 return TTIImpl->shouldBuildLookupTables(); 500 } 501 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 502 Constant *C) const { 503 return TTIImpl->shouldBuildLookupTablesForConstant(C); 504 } 505 506 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 507 return TTIImpl->useColdCCForColdCall(F); 508 } 509 510 unsigned 511 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 512 const APInt &DemandedElts, 513 bool Insert, bool Extract) const { 514 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 515 } 516 517 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 518 ArrayRef<const Value *> Args, unsigned VF) const { 519 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 520 } 521 522 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 523 return TTIImpl->supportsEfficientVectorElementLoadStore(); 524 } 525 526 bool TargetTransformInfo::enableAggressiveInterleaving( 527 bool LoopHasReductions) const { 528 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 529 } 530 531 TargetTransformInfo::MemCmpExpansionOptions 532 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 533 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 534 } 535 536 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 537 return TTIImpl->enableInterleavedAccessVectorization(); 538 } 539 540 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 541 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 542 } 543 544 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 545 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 546 } 547 548 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 549 unsigned BitWidth, 550 unsigned AddressSpace, 551 unsigned Alignment, 552 bool *Fast) const { 553 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 554 AddressSpace, Alignment, Fast); 555 } 556 557 TargetTransformInfo::PopcntSupportKind 558 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 559 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 560 } 561 562 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 563 return TTIImpl->haveFastSqrt(Ty); 564 } 565 566 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 567 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 568 } 569 570 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 571 int Cost = TTIImpl->getFPOpCost(Ty); 572 assert(Cost >= 0 && "TTI should not produce negative costs!"); 573 return Cost; 574 } 575 576 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 577 const APInt &Imm, 578 Type *Ty) const { 579 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 580 assert(Cost >= 0 && "TTI should not produce negative costs!"); 581 return Cost; 582 } 583 584 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 585 TTI::TargetCostKind CostKind) const { 586 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 587 assert(Cost >= 0 && "TTI should not produce negative costs!"); 588 return Cost; 589 } 590 591 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 592 const APInt &Imm, Type *Ty, 593 TTI::TargetCostKind CostKind, 594 Instruction *Inst) const { 595 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 596 assert(Cost >= 0 && "TTI should not produce negative costs!"); 597 return Cost; 598 } 599 600 int 601 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 602 const APInt &Imm, Type *Ty, 603 TTI::TargetCostKind CostKind) const { 604 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 605 assert(Cost >= 0 && "TTI should not produce negative costs!"); 606 return Cost; 607 } 608 609 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 610 return TTIImpl->getNumberOfRegisters(ClassID); 611 } 612 613 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 614 Type *Ty) const { 615 return TTIImpl->getRegisterClassForType(Vector, Ty); 616 } 617 618 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 619 return TTIImpl->getRegisterClassName(ClassID); 620 } 621 622 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 623 return TTIImpl->getRegisterBitWidth(Vector); 624 } 625 626 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 627 return TTIImpl->getMinVectorRegisterBitWidth(); 628 } 629 630 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 631 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 632 } 633 634 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 635 return TTIImpl->getMinimumVF(ElemWidth); 636 } 637 638 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 639 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 640 return TTIImpl->shouldConsiderAddressTypePromotion( 641 I, AllowPromotionWithoutCommonHeader); 642 } 643 644 unsigned TargetTransformInfo::getCacheLineSize() const { 645 return TTIImpl->getCacheLineSize(); 646 } 647 648 llvm::Optional<unsigned> 649 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 650 return TTIImpl->getCacheSize(Level); 651 } 652 653 llvm::Optional<unsigned> 654 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 655 return TTIImpl->getCacheAssociativity(Level); 656 } 657 658 unsigned TargetTransformInfo::getPrefetchDistance() const { 659 return TTIImpl->getPrefetchDistance(); 660 } 661 662 unsigned TargetTransformInfo::getMinPrefetchStride( 663 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 664 unsigned NumPrefetches, bool HasCall) const { 665 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 666 NumPrefetches, HasCall); 667 } 668 669 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 670 return TTIImpl->getMaxPrefetchIterationsAhead(); 671 } 672 673 bool TargetTransformInfo::enableWritePrefetching() const { 674 return TTIImpl->enableWritePrefetching(); 675 } 676 677 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 678 return TTIImpl->getMaxInterleaveFactor(VF); 679 } 680 681 TargetTransformInfo::OperandValueKind 682 TargetTransformInfo::getOperandInfo(const Value *V, 683 OperandValueProperties &OpProps) { 684 OperandValueKind OpInfo = OK_AnyValue; 685 OpProps = OP_None; 686 687 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 688 if (CI->getValue().isPowerOf2()) 689 OpProps = OP_PowerOf2; 690 return OK_UniformConstantValue; 691 } 692 693 // A broadcast shuffle creates a uniform value. 694 // TODO: Add support for non-zero index broadcasts. 695 // TODO: Add support for different source vector width. 696 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 697 if (ShuffleInst->isZeroEltSplat()) 698 OpInfo = OK_UniformValue; 699 700 const Value *Splat = getSplatValue(V); 701 702 // Check for a splat of a constant or for a non uniform vector of constants 703 // and check if the constant(s) are all powers of two. 704 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 705 OpInfo = OK_NonUniformConstantValue; 706 if (Splat) { 707 OpInfo = OK_UniformConstantValue; 708 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 709 if (CI->getValue().isPowerOf2()) 710 OpProps = OP_PowerOf2; 711 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 712 OpProps = OP_PowerOf2; 713 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 714 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 715 if (CI->getValue().isPowerOf2()) 716 continue; 717 OpProps = OP_None; 718 break; 719 } 720 } 721 } 722 723 // Check for a splat of a uniform value. This is not loop aware, so return 724 // true only for the obviously uniform cases (argument, globalvalue) 725 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 726 OpInfo = OK_UniformValue; 727 728 return OpInfo; 729 } 730 731 int TargetTransformInfo::getArithmeticInstrCost( 732 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 733 OperandValueKind Opd1Info, 734 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 735 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 736 const Instruction *CxtI) const { 737 int Cost = TTIImpl->getArithmeticInstrCost( 738 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 739 Args, CxtI); 740 assert(Cost >= 0 && "TTI should not produce negative costs!"); 741 return Cost; 742 } 743 744 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 745 int Index, VectorType *SubTp) const { 746 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 747 assert(Cost >= 0 && "TTI should not produce negative costs!"); 748 return Cost; 749 } 750 751 TTI::CastContextHint 752 TargetTransformInfo::getCastContextHint(const Instruction *I) { 753 if (!I) 754 return CastContextHint::None; 755 756 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp, 757 unsigned GatScatOp) { 758 const Instruction *I = dyn_cast<Instruction>(V); 759 if (!I) 760 return CastContextHint::None; 761 762 if (I->getOpcode() == LdStOp) 763 return CastContextHint::Normal; 764 765 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 766 if (II->getIntrinsicID() == MaskedOp) 767 return TTI::CastContextHint::Masked; 768 if (II->getIntrinsicID() == GatScatOp) 769 return TTI::CastContextHint::GatherScatter; 770 } 771 772 return TTI::CastContextHint::None; 773 }; 774 775 switch (I->getOpcode()) { 776 case Instruction::ZExt: 777 case Instruction::SExt: 778 case Instruction::FPExt: 779 return getLoadStoreKind(I->getOperand(0), Instruction::Load, 780 Intrinsic::masked_load, Intrinsic::masked_gather); 781 case Instruction::Trunc: 782 case Instruction::FPTrunc: 783 if (I->hasOneUse()) 784 return getLoadStoreKind(*I->user_begin(), Instruction::Store, 785 Intrinsic::masked_store, 786 Intrinsic::masked_scatter); 787 break; 788 default: 789 return CastContextHint::None; 790 } 791 792 return TTI::CastContextHint::None; 793 } 794 795 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 796 CastContextHint CCH, 797 TTI::TargetCostKind CostKind, 798 const Instruction *I) const { 799 assert((I == nullptr || I->getOpcode() == Opcode) && 800 "Opcode should reflect passed instruction."); 801 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 802 assert(Cost >= 0 && "TTI should not produce negative costs!"); 803 return Cost; 804 } 805 806 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 807 VectorType *VecTy, 808 unsigned Index) const { 809 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 810 assert(Cost >= 0 && "TTI should not produce negative costs!"); 811 return Cost; 812 } 813 814 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 815 TTI::TargetCostKind CostKind) const { 816 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 817 assert(Cost >= 0 && "TTI should not produce negative costs!"); 818 return Cost; 819 } 820 821 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 822 Type *CondTy, 823 CmpInst::Predicate VecPred, 824 TTI::TargetCostKind CostKind, 825 const Instruction *I) const { 826 assert((I == nullptr || I->getOpcode() == Opcode) && 827 "Opcode should reflect passed instruction."); 828 int Cost = 829 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 830 assert(Cost >= 0 && "TTI should not produce negative costs!"); 831 return Cost; 832 } 833 834 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 835 unsigned Index) const { 836 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 837 assert(Cost >= 0 && "TTI should not produce negative costs!"); 838 return Cost; 839 } 840 841 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 842 Align Alignment, unsigned AddressSpace, 843 TTI::TargetCostKind CostKind, 844 const Instruction *I) const { 845 assert((I == nullptr || I->getOpcode() == Opcode) && 846 "Opcode should reflect passed instruction."); 847 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 848 CostKind, I); 849 assert(Cost >= 0 && "TTI should not produce negative costs!"); 850 return Cost; 851 } 852 853 int TargetTransformInfo::getMaskedMemoryOpCost( 854 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 855 TTI::TargetCostKind CostKind) const { 856 int Cost = 857 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 858 CostKind); 859 assert(Cost >= 0 && "TTI should not produce negative costs!"); 860 return Cost; 861 } 862 863 int TargetTransformInfo::getGatherScatterOpCost( 864 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 865 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 866 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 867 Alignment, CostKind, I); 868 assert(Cost >= 0 && "TTI should not produce negative costs!"); 869 return Cost; 870 } 871 872 int TargetTransformInfo::getInterleavedMemoryOpCost( 873 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 874 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 875 bool UseMaskForCond, bool UseMaskForGaps) const { 876 int Cost = TTIImpl->getInterleavedMemoryOpCost( 877 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 878 UseMaskForCond, UseMaskForGaps); 879 assert(Cost >= 0 && "TTI should not produce negative costs!"); 880 return Cost; 881 } 882 883 int 884 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 885 TTI::TargetCostKind CostKind) const { 886 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 887 assert(Cost >= 0 && "TTI should not produce negative costs!"); 888 return Cost; 889 } 890 891 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 892 ArrayRef<Type *> Tys, 893 TTI::TargetCostKind CostKind) const { 894 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 895 assert(Cost >= 0 && "TTI should not produce negative costs!"); 896 return Cost; 897 } 898 899 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 900 return TTIImpl->getNumberOfParts(Tp); 901 } 902 903 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 904 ScalarEvolution *SE, 905 const SCEV *Ptr) const { 906 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 907 assert(Cost >= 0 && "TTI should not produce negative costs!"); 908 return Cost; 909 } 910 911 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 912 int Cost = TTIImpl->getMemcpyCost(I); 913 assert(Cost >= 0 && "TTI should not produce negative costs!"); 914 return Cost; 915 } 916 917 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 918 VectorType *Ty, 919 bool IsPairwiseForm, 920 TTI::TargetCostKind CostKind) const { 921 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 922 CostKind); 923 assert(Cost >= 0 && "TTI should not produce negative costs!"); 924 return Cost; 925 } 926 927 int TargetTransformInfo::getMinMaxReductionCost( 928 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 929 TTI::TargetCostKind CostKind) const { 930 int Cost = 931 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 932 CostKind); 933 assert(Cost >= 0 && "TTI should not produce negative costs!"); 934 return Cost; 935 } 936 937 unsigned 938 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 939 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 940 } 941 942 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 943 MemIntrinsicInfo &Info) const { 944 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 945 } 946 947 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 948 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 949 } 950 951 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 952 IntrinsicInst *Inst, Type *ExpectedType) const { 953 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 954 } 955 956 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 957 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 958 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 959 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 960 DestAddrSpace, SrcAlign, DestAlign); 961 } 962 963 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 964 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 965 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 966 unsigned SrcAlign, unsigned DestAlign) const { 967 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 968 SrcAddrSpace, DestAddrSpace, 969 SrcAlign, DestAlign); 970 } 971 972 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 973 const Function *Callee) const { 974 return TTIImpl->areInlineCompatible(Caller, Callee); 975 } 976 977 bool TargetTransformInfo::areFunctionArgsABICompatible( 978 const Function *Caller, const Function *Callee, 979 SmallPtrSetImpl<Argument *> &Args) const { 980 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 981 } 982 983 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 984 Type *Ty) const { 985 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 986 } 987 988 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 989 Type *Ty) const { 990 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 991 } 992 993 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 994 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 995 } 996 997 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 998 return TTIImpl->isLegalToVectorizeLoad(LI); 999 } 1000 1001 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 1002 return TTIImpl->isLegalToVectorizeStore(SI); 1003 } 1004 1005 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 1006 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1007 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 1008 AddrSpace); 1009 } 1010 1011 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 1012 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1013 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 1014 AddrSpace); 1015 } 1016 1017 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 1018 unsigned LoadSize, 1019 unsigned ChainSizeInBytes, 1020 VectorType *VecTy) const { 1021 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 1022 } 1023 1024 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 1025 unsigned StoreSize, 1026 unsigned ChainSizeInBytes, 1027 VectorType *VecTy) const { 1028 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 1029 } 1030 1031 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1032 ReductionFlags Flags) const { 1033 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 1034 } 1035 1036 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty, 1037 ReductionFlags Flags) const { 1038 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags); 1039 } 1040 1041 bool TargetTransformInfo::preferPredicatedReductionSelect( 1042 unsigned Opcode, Type *Ty, ReductionFlags Flags) const { 1043 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags); 1044 } 1045 1046 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 1047 return TTIImpl->shouldExpandReduction(II); 1048 } 1049 1050 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 1051 return TTIImpl->getGISelRematGlobalCost(); 1052 } 1053 1054 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 1055 return TTIImpl->getInstructionLatency(I); 1056 } 1057 1058 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 1059 unsigned Level) { 1060 // We don't need a shuffle if we just want to have element 0 in position 0 of 1061 // the vector. 1062 if (!SI && Level == 0 && IsLeft) 1063 return true; 1064 else if (!SI) 1065 return false; 1066 1067 SmallVector<int, 32> Mask( 1068 cast<FixedVectorType>(SI->getType())->getNumElements(), -1); 1069 1070 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 1071 // we look at the left or right side. 1072 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 1073 Mask[i] = val; 1074 1075 ArrayRef<int> ActualMask = SI->getShuffleMask(); 1076 return Mask == ActualMask; 1077 } 1078 1079 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 1080 Value *L, *R; 1081 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 1082 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 1083 if (auto *SI = dyn_cast<SelectInst>(I)) { 1084 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 1085 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1086 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1087 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1088 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1089 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1090 auto *CI = cast<CmpInst>(SI->getCondition()); 1091 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 1092 } 1093 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1094 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1095 auto *CI = cast<CmpInst>(SI->getCondition()); 1096 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 1097 } 1098 } 1099 return llvm::None; 1100 } 1101 1102 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1103 unsigned Level, 1104 unsigned NumLevels) { 1105 // Match one level of pairwise operations. 1106 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1107 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1108 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1109 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1110 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1111 if (!I) 1112 return TTI::RK_None; 1113 1114 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1115 1116 Optional<TTI::ReductionData> RD = getReductionData(I); 1117 if (!RD) 1118 return TTI::RK_None; 1119 1120 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1121 if (!LS && Level) 1122 return TTI::RK_None; 1123 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1124 if (!RS && Level) 1125 return TTI::RK_None; 1126 1127 // On level 0 we can omit one shufflevector instruction. 1128 if (!Level && !RS && !LS) 1129 return TTI::RK_None; 1130 1131 // Shuffle inputs must match. 1132 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1133 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1134 Value *NextLevelOp = nullptr; 1135 if (NextLevelOpR && NextLevelOpL) { 1136 // If we have two shuffles their operands must match. 1137 if (NextLevelOpL != NextLevelOpR) 1138 return TTI::RK_None; 1139 1140 NextLevelOp = NextLevelOpL; 1141 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1142 // On the first level we can omit the shufflevector <0, undef,...>. So the 1143 // input to the other shufflevector <1, undef> must match with one of the 1144 // inputs to the current binary operation. 1145 // Example: 1146 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1147 // %BinOp = fadd %NextLevelOpL, %R 1148 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1149 return TTI::RK_None; 1150 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1151 return TTI::RK_None; 1152 1153 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1154 } else 1155 return TTI::RK_None; 1156 1157 // Check that the next levels binary operation exists and matches with the 1158 // current one. 1159 if (Level + 1 != NumLevels) { 1160 if (!isa<Instruction>(NextLevelOp)) 1161 return TTI::RK_None; 1162 Optional<TTI::ReductionData> NextLevelRD = 1163 getReductionData(cast<Instruction>(NextLevelOp)); 1164 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1165 return TTI::RK_None; 1166 } 1167 1168 // Shuffle mask for pairwise operation must match. 1169 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1170 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1171 return TTI::RK_None; 1172 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1173 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1174 return TTI::RK_None; 1175 } else { 1176 return TTI::RK_None; 1177 } 1178 1179 if (++Level == NumLevels) 1180 return RD->Kind; 1181 1182 // Match next level. 1183 return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level, 1184 NumLevels); 1185 } 1186 1187 TTI::ReductionKind TTI::matchPairwiseReduction( 1188 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1189 if (!EnableReduxCost) 1190 return TTI::RK_None; 1191 1192 // Need to extract the first element. 1193 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1194 unsigned Idx = ~0u; 1195 if (CI) 1196 Idx = CI->getZExtValue(); 1197 if (Idx != 0) 1198 return TTI::RK_None; 1199 1200 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1201 if (!RdxStart) 1202 return TTI::RK_None; 1203 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1204 if (!RD) 1205 return TTI::RK_None; 1206 1207 auto *VecTy = cast<FixedVectorType>(RdxStart->getType()); 1208 unsigned NumVecElems = VecTy->getNumElements(); 1209 if (!isPowerOf2_32(NumVecElems)) 1210 return TTI::RK_None; 1211 1212 // We look for a sequence of shuffle,shuffle,add triples like the following 1213 // that builds a pairwise reduction tree. 1214 // 1215 // (X0, X1, X2, X3) 1216 // (X0 + X1, X2 + X3, undef, undef) 1217 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1218 // 1219 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1220 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1221 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1222 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1223 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1224 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1225 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1226 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1227 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1228 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1229 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1230 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1231 TTI::RK_None) 1232 return TTI::RK_None; 1233 1234 Opcode = RD->Opcode; 1235 Ty = VecTy; 1236 1237 return RD->Kind; 1238 } 1239 1240 static std::pair<Value *, ShuffleVectorInst *> 1241 getShuffleAndOtherOprd(Value *L, Value *R) { 1242 ShuffleVectorInst *S = nullptr; 1243 1244 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1245 return std::make_pair(R, S); 1246 1247 S = dyn_cast<ShuffleVectorInst>(R); 1248 return std::make_pair(L, S); 1249 } 1250 1251 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1252 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1253 1254 if (!EnableReduxCost) 1255 return TTI::RK_None; 1256 1257 // Need to extract the first element. 1258 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1259 unsigned Idx = ~0u; 1260 if (CI) 1261 Idx = CI->getZExtValue(); 1262 if (Idx != 0) 1263 return TTI::RK_None; 1264 1265 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1266 if (!RdxStart) 1267 return TTI::RK_None; 1268 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1269 if (!RD) 1270 return TTI::RK_None; 1271 1272 auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType()); 1273 unsigned NumVecElems = VecTy->getNumElements(); 1274 if (!isPowerOf2_32(NumVecElems)) 1275 return TTI::RK_None; 1276 1277 // We look for a sequence of shuffles and adds like the following matching one 1278 // fadd, shuffle vector pair at a time. 1279 // 1280 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1281 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1282 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1283 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1284 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1285 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1286 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1287 1288 unsigned MaskStart = 1; 1289 Instruction *RdxOp = RdxStart; 1290 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1291 unsigned NumVecElemsRemain = NumVecElems; 1292 while (NumVecElemsRemain - 1) { 1293 // Check for the right reduction operation. 1294 if (!RdxOp) 1295 return TTI::RK_None; 1296 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1297 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1298 return TTI::RK_None; 1299 1300 Value *NextRdxOp; 1301 ShuffleVectorInst *Shuffle; 1302 std::tie(NextRdxOp, Shuffle) = 1303 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1304 1305 // Check the current reduction operation and the shuffle use the same value. 1306 if (Shuffle == nullptr) 1307 return TTI::RK_None; 1308 if (Shuffle->getOperand(0) != NextRdxOp) 1309 return TTI::RK_None; 1310 1311 // Check that shuffle masks matches. 1312 for (unsigned j = 0; j != MaskStart; ++j) 1313 ShuffleMask[j] = MaskStart + j; 1314 // Fill the rest of the mask with -1 for undef. 1315 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1316 1317 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1318 if (ShuffleMask != Mask) 1319 return TTI::RK_None; 1320 1321 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1322 NumVecElemsRemain /= 2; 1323 MaskStart *= 2; 1324 } 1325 1326 Opcode = RD->Opcode; 1327 Ty = VecTy; 1328 return RD->Kind; 1329 } 1330 1331 TTI::ReductionKind 1332 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode, 1333 VectorType *&Ty, bool &IsPairwise) { 1334 TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty); 1335 if (RdxKind != TTI::ReductionKind::RK_None) { 1336 IsPairwise = false; 1337 return RdxKind; 1338 } 1339 IsPairwise = true; 1340 return matchPairwiseReduction(Root, Opcode, Ty); 1341 } 1342 1343 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1344 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1345 1346 switch (I->getOpcode()) { 1347 case Instruction::GetElementPtr: 1348 case Instruction::Ret: 1349 case Instruction::PHI: 1350 case Instruction::Br: 1351 case Instruction::Add: 1352 case Instruction::FAdd: 1353 case Instruction::Sub: 1354 case Instruction::FSub: 1355 case Instruction::Mul: 1356 case Instruction::FMul: 1357 case Instruction::UDiv: 1358 case Instruction::SDiv: 1359 case Instruction::FDiv: 1360 case Instruction::URem: 1361 case Instruction::SRem: 1362 case Instruction::FRem: 1363 case Instruction::Shl: 1364 case Instruction::LShr: 1365 case Instruction::AShr: 1366 case Instruction::And: 1367 case Instruction::Or: 1368 case Instruction::Xor: 1369 case Instruction::FNeg: 1370 case Instruction::Select: 1371 case Instruction::ICmp: 1372 case Instruction::FCmp: 1373 case Instruction::Store: 1374 case Instruction::Load: 1375 case Instruction::ZExt: 1376 case Instruction::SExt: 1377 case Instruction::FPToUI: 1378 case Instruction::FPToSI: 1379 case Instruction::FPExt: 1380 case Instruction::PtrToInt: 1381 case Instruction::IntToPtr: 1382 case Instruction::SIToFP: 1383 case Instruction::UIToFP: 1384 case Instruction::Trunc: 1385 case Instruction::FPTrunc: 1386 case Instruction::BitCast: 1387 case Instruction::AddrSpaceCast: 1388 case Instruction::ExtractElement: 1389 case Instruction::InsertElement: 1390 case Instruction::ExtractValue: 1391 case Instruction::ShuffleVector: 1392 case Instruction::Call: 1393 return getUserCost(I, CostKind); 1394 default: 1395 // We don't have any information on this instruction. 1396 return -1; 1397 } 1398 } 1399 1400 TargetTransformInfo::Concept::~Concept() {} 1401 1402 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1403 1404 TargetIRAnalysis::TargetIRAnalysis( 1405 std::function<Result(const Function &)> TTICallback) 1406 : TTICallback(std::move(TTICallback)) {} 1407 1408 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1409 FunctionAnalysisManager &) { 1410 return TTICallback(F); 1411 } 1412 1413 AnalysisKey TargetIRAnalysis::Key; 1414 1415 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1416 return Result(F.getParent()->getDataLayout()); 1417 } 1418 1419 // Register the basic pass. 1420 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1421 "Target Transform Information", false, true) 1422 char TargetTransformInfoWrapperPass::ID = 0; 1423 1424 void TargetTransformInfoWrapperPass::anchor() {} 1425 1426 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1427 : ImmutablePass(ID) { 1428 initializeTargetTransformInfoWrapperPassPass( 1429 *PassRegistry::getPassRegistry()); 1430 } 1431 1432 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1433 TargetIRAnalysis TIRA) 1434 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1435 initializeTargetTransformInfoWrapperPassPass( 1436 *PassRegistry::getPassRegistry()); 1437 } 1438 1439 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1440 FunctionAnalysisManager DummyFAM; 1441 TTI = TIRA.run(F, DummyFAM); 1442 return *TTI; 1443 } 1444 1445 ImmutablePass * 1446 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1447 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1448 } 1449