1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40   explicit NoTTIImpl(const DataLayout &DL)
41       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
42 };
43 } // namespace
44 
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46   // If the loop has irreducible control flow, it can not be converted to
47   // Hardware loop.
48   LoopBlocksRPO RPOT(L);
49   RPOT.perform(&LI);
50   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51     return false;
52   return true;
53 }
54 
55 IntrinsicCostAttributes::IntrinsicCostAttributes(
56     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
57     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
58       ScalarizationCost(ScalarizationCost) {
59 
60   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
61     FMF = FPMO->getFastMathFlags();
62 
63   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
64   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
65   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
66 }
67 
68 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
69                                                  ArrayRef<Type *> Tys,
70                                                  FastMathFlags Flags,
71                                                  const IntrinsicInst *I,
72                                                  InstructionCost ScalarCost)
73     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
74   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
75 }
76 
77 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
78                                                  ArrayRef<const Value *> Args)
79     : RetTy(Ty), IID(Id) {
80 
81   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
82   ParamTys.reserve(Arguments.size());
83   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
84     ParamTys.push_back(Arguments[Idx]->getType());
85 }
86 
87 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
88                                                  ArrayRef<const Value *> Args,
89                                                  ArrayRef<Type *> Tys,
90                                                  FastMathFlags Flags,
91                                                  const IntrinsicInst *I,
92                                                  InstructionCost ScalarCost)
93     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
94   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
95   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
96 }
97 
98 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
99                                                LoopInfo &LI, DominatorTree &DT,
100                                                bool ForceNestedLoop,
101                                                bool ForceHardwareLoopPHI) {
102   SmallVector<BasicBlock *, 4> ExitingBlocks;
103   L->getExitingBlocks(ExitingBlocks);
104 
105   for (BasicBlock *BB : ExitingBlocks) {
106     // If we pass the updated counter back through a phi, we need to know
107     // which latch the updated value will be coming from.
108     if (!L->isLoopLatch(BB)) {
109       if (ForceHardwareLoopPHI || CounterInReg)
110         continue;
111     }
112 
113     const SCEV *EC = SE.getExitCount(L, BB);
114     if (isa<SCEVCouldNotCompute>(EC))
115       continue;
116     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
117       if (ConstEC->getValue()->isZero())
118         continue;
119     } else if (!SE.isLoopInvariant(EC, L))
120       continue;
121 
122     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
123       continue;
124 
125     // If this exiting block is contained in a nested loop, it is not eligible
126     // for insertion of the branch-and-decrement since the inner loop would
127     // end up messing up the value in the CTR.
128     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
129       continue;
130 
131     // We now have a loop-invariant count of loop iterations (which is not the
132     // constant zero) for which we know that this loop will not exit via this
133     // existing block.
134 
135     // We need to make sure that this block will run on every loop iteration.
136     // For this to be true, we must dominate all blocks with backedges. Such
137     // blocks are in-loop predecessors to the header block.
138     bool NotAlways = false;
139     for (BasicBlock *Pred : predecessors(L->getHeader())) {
140       if (!L->contains(Pred))
141         continue;
142 
143       if (!DT.dominates(BB, Pred)) {
144         NotAlways = true;
145         break;
146       }
147     }
148 
149     if (NotAlways)
150       continue;
151 
152     // Make sure this blocks ends with a conditional branch.
153     Instruction *TI = BB->getTerminator();
154     if (!TI)
155       continue;
156 
157     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
158       if (!BI->isConditional())
159         continue;
160 
161       ExitBranch = BI;
162     } else
163       continue;
164 
165     // Note that this block may not be the loop latch block, even if the loop
166     // has a latch block.
167     ExitBlock = BB;
168     ExitCount = EC;
169     break;
170   }
171 
172   if (!ExitBlock)
173     return false;
174   return true;
175 }
176 
177 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
178     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
179 
180 TargetTransformInfo::~TargetTransformInfo() = default;
181 
182 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
183     : TTIImpl(std::move(Arg.TTIImpl)) {}
184 
185 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
186   TTIImpl = std::move(RHS.TTIImpl);
187   return *this;
188 }
189 
190 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
191   return TTIImpl->getInliningThresholdMultiplier();
192 }
193 
194 unsigned
195 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
196   return TTIImpl->adjustInliningThreshold(CB);
197 }
198 
199 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
200   return TTIImpl->getInlinerVectorBonusPercent();
201 }
202 
203 InstructionCost
204 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
205                                 ArrayRef<const Value *> Operands,
206                                 TTI::TargetCostKind CostKind) const {
207   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
208 }
209 
210 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
211     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
212     BlockFrequencyInfo *BFI) const {
213   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
214 }
215 
216 InstructionCost
217 TargetTransformInfo::getUserCost(const User *U,
218                                  ArrayRef<const Value *> Operands,
219                                  enum TargetCostKind CostKind) const {
220   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
221   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
222          "TTI should not produce negative costs!");
223   return Cost;
224 }
225 
226 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
227   return TTIImpl->getPredictableBranchThreshold();
228 }
229 
230 bool TargetTransformInfo::hasBranchDivergence() const {
231   return TTIImpl->hasBranchDivergence();
232 }
233 
234 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
235   return TTIImpl->useGPUDivergenceAnalysis();
236 }
237 
238 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
239   return TTIImpl->isSourceOfDivergence(V);
240 }
241 
242 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
243   return TTIImpl->isAlwaysUniform(V);
244 }
245 
246 unsigned TargetTransformInfo::getFlatAddressSpace() const {
247   return TTIImpl->getFlatAddressSpace();
248 }
249 
250 bool TargetTransformInfo::collectFlatAddressOperands(
251     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
252   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
253 }
254 
255 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
256                                               unsigned ToAS) const {
257   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
258 }
259 
260 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
261     unsigned AS) const {
262   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
263 }
264 
265 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
266   return TTIImpl->getAssumedAddrSpace(V);
267 }
268 
269 std::pair<const Value *, unsigned>
270 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
271   return TTIImpl->getPredicatedAddrSpace(V);
272 }
273 
274 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
275     IntrinsicInst *II, Value *OldV, Value *NewV) const {
276   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
277 }
278 
279 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
280   return TTIImpl->isLoweredToCall(F);
281 }
282 
283 bool TargetTransformInfo::isHardwareLoopProfitable(
284     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
285     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
286   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
287 }
288 
289 bool TargetTransformInfo::preferPredicateOverEpilogue(
290     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
291     TargetLibraryInfo *TLI, DominatorTree *DT,
292     const LoopAccessInfo *LAI) const {
293   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
294 }
295 
296 bool TargetTransformInfo::emitGetActiveLaneMask() const {
297   return TTIImpl->emitGetActiveLaneMask();
298 }
299 
300 Optional<Instruction *>
301 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
302                                           IntrinsicInst &II) const {
303   return TTIImpl->instCombineIntrinsic(IC, II);
304 }
305 
306 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
307     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
308     bool &KnownBitsComputed) const {
309   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
310                                                    KnownBitsComputed);
311 }
312 
313 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
314     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
315     APInt &UndefElts2, APInt &UndefElts3,
316     std::function<void(Instruction *, unsigned, APInt, APInt &)>
317         SimplifyAndSetOp) const {
318   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
319       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
320       SimplifyAndSetOp);
321 }
322 
323 void TargetTransformInfo::getUnrollingPreferences(
324     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
325     OptimizationRemarkEmitter *ORE) const {
326   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
327 }
328 
329 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
330                                                 PeelingPreferences &PP) const {
331   return TTIImpl->getPeelingPreferences(L, SE, PP);
332 }
333 
334 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
335   return TTIImpl->isLegalAddImmediate(Imm);
336 }
337 
338 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
339   return TTIImpl->isLegalICmpImmediate(Imm);
340 }
341 
342 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
343                                                 int64_t BaseOffset,
344                                                 bool HasBaseReg, int64_t Scale,
345                                                 unsigned AddrSpace,
346                                                 Instruction *I) const {
347   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
348                                         Scale, AddrSpace, I);
349 }
350 
351 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
352   return TTIImpl->isLSRCostLess(C1, C2);
353 }
354 
355 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
356   return TTIImpl->isNumRegsMajorCostOfLSR();
357 }
358 
359 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
360   return TTIImpl->isProfitableLSRChainElement(I);
361 }
362 
363 bool TargetTransformInfo::canMacroFuseCmp() const {
364   return TTIImpl->canMacroFuseCmp();
365 }
366 
367 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
368                                      ScalarEvolution *SE, LoopInfo *LI,
369                                      DominatorTree *DT, AssumptionCache *AC,
370                                      TargetLibraryInfo *LibInfo) const {
371   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
372 }
373 
374 TTI::AddressingModeKind
375 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
376                                                 ScalarEvolution *SE) const {
377   return TTIImpl->getPreferredAddressingMode(L, SE);
378 }
379 
380 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
381                                              Align Alignment) const {
382   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
383 }
384 
385 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
386                                             Align Alignment) const {
387   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
388 }
389 
390 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
391                                          Align Alignment) const {
392   return TTIImpl->isLegalNTStore(DataType, Alignment);
393 }
394 
395 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
396   return TTIImpl->isLegalNTLoad(DataType, Alignment);
397 }
398 
399 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
400                                                unsigned NumElements) const {
401   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
402 }
403 
404 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
405                                               Align Alignment) const {
406   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
407 }
408 
409 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
410                                                Align Alignment) const {
411   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
412 }
413 
414 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
415                                                      Align Alignment) const {
416   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
417 }
418 
419 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
420                                                       Align Alignment) const {
421   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
422 }
423 
424 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
425   return TTIImpl->isLegalMaskedCompressStore(DataType);
426 }
427 
428 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
429   return TTIImpl->isLegalMaskedExpandLoad(DataType);
430 }
431 
432 bool TargetTransformInfo::enableOrderedReductions() const {
433   return TTIImpl->enableOrderedReductions();
434 }
435 
436 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
437   return TTIImpl->hasDivRemOp(DataType, IsSigned);
438 }
439 
440 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
441                                              unsigned AddrSpace) const {
442   return TTIImpl->hasVolatileVariant(I, AddrSpace);
443 }
444 
445 bool TargetTransformInfo::prefersVectorizedAddressing() const {
446   return TTIImpl->prefersVectorizedAddressing();
447 }
448 
449 InstructionCost TargetTransformInfo::getScalingFactorCost(
450     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
451     int64_t Scale, unsigned AddrSpace) const {
452   InstructionCost Cost = TTIImpl->getScalingFactorCost(
453       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
454   assert(Cost >= 0 && "TTI should not produce negative costs!");
455   return Cost;
456 }
457 
458 bool TargetTransformInfo::LSRWithInstrQueries() const {
459   return TTIImpl->LSRWithInstrQueries();
460 }
461 
462 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
463   return TTIImpl->isTruncateFree(Ty1, Ty2);
464 }
465 
466 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
467   return TTIImpl->isProfitableToHoist(I);
468 }
469 
470 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
471 
472 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
473   return TTIImpl->isTypeLegal(Ty);
474 }
475 
476 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
477   return TTIImpl->getRegUsageForType(Ty);
478 }
479 
480 bool TargetTransformInfo::shouldBuildLookupTables() const {
481   return TTIImpl->shouldBuildLookupTables();
482 }
483 
484 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
485     Constant *C) const {
486   return TTIImpl->shouldBuildLookupTablesForConstant(C);
487 }
488 
489 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
490   return TTIImpl->shouldBuildRelLookupTables();
491 }
492 
493 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
494   return TTIImpl->useColdCCForColdCall(F);
495 }
496 
497 InstructionCost
498 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
499                                               const APInt &DemandedElts,
500                                               bool Insert, bool Extract) const {
501   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
502 }
503 
504 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
505     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
506   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
507 }
508 
509 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
510   return TTIImpl->supportsEfficientVectorElementLoadStore();
511 }
512 
513 bool TargetTransformInfo::enableAggressiveInterleaving(
514     bool LoopHasReductions) const {
515   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
516 }
517 
518 TargetTransformInfo::MemCmpExpansionOptions
519 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
520   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
521 }
522 
523 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
524   return TTIImpl->enableInterleavedAccessVectorization();
525 }
526 
527 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
528   return TTIImpl->enableMaskedInterleavedAccessVectorization();
529 }
530 
531 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
532   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
533 }
534 
535 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
536                                                          unsigned BitWidth,
537                                                          unsigned AddressSpace,
538                                                          Align Alignment,
539                                                          bool *Fast) const {
540   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
541                                                  AddressSpace, Alignment, Fast);
542 }
543 
544 TargetTransformInfo::PopcntSupportKind
545 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
546   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
547 }
548 
549 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
550   return TTIImpl->haveFastSqrt(Ty);
551 }
552 
553 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
554   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
555 }
556 
557 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
558   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
559   assert(Cost >= 0 && "TTI should not produce negative costs!");
560   return Cost;
561 }
562 
563 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
564                                                            unsigned Idx,
565                                                            const APInt &Imm,
566                                                            Type *Ty) const {
567   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
568   assert(Cost >= 0 && "TTI should not produce negative costs!");
569   return Cost;
570 }
571 
572 InstructionCost
573 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
574                                    TTI::TargetCostKind CostKind) const {
575   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
576   assert(Cost >= 0 && "TTI should not produce negative costs!");
577   return Cost;
578 }
579 
580 InstructionCost TargetTransformInfo::getIntImmCostInst(
581     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
582     TTI::TargetCostKind CostKind, Instruction *Inst) const {
583   InstructionCost Cost =
584       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
585   assert(Cost >= 0 && "TTI should not produce negative costs!");
586   return Cost;
587 }
588 
589 InstructionCost
590 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
591                                          const APInt &Imm, Type *Ty,
592                                          TTI::TargetCostKind CostKind) const {
593   InstructionCost Cost =
594       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
595   assert(Cost >= 0 && "TTI should not produce negative costs!");
596   return Cost;
597 }
598 
599 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
600   return TTIImpl->getNumberOfRegisters(ClassID);
601 }
602 
603 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
604                                                       Type *Ty) const {
605   return TTIImpl->getRegisterClassForType(Vector, Ty);
606 }
607 
608 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
609   return TTIImpl->getRegisterClassName(ClassID);
610 }
611 
612 TypeSize TargetTransformInfo::getRegisterBitWidth(
613     TargetTransformInfo::RegisterKind K) const {
614   return TTIImpl->getRegisterBitWidth(K);
615 }
616 
617 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
618   return TTIImpl->getMinVectorRegisterBitWidth();
619 }
620 
621 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
622   return TTIImpl->getMaxVScale();
623 }
624 
625 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
626   return TTIImpl->getVScaleForTuning();
627 }
628 
629 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
630     TargetTransformInfo::RegisterKind K) const {
631   return TTIImpl->shouldMaximizeVectorBandwidth(K);
632 }
633 
634 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
635                                                bool IsScalable) const {
636   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
637 }
638 
639 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
640                                            unsigned Opcode) const {
641   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
642 }
643 
644 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
645     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
646   return TTIImpl->shouldConsiderAddressTypePromotion(
647       I, AllowPromotionWithoutCommonHeader);
648 }
649 
650 unsigned TargetTransformInfo::getCacheLineSize() const {
651   return TTIImpl->getCacheLineSize();
652 }
653 
654 llvm::Optional<unsigned>
655 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
656   return TTIImpl->getCacheSize(Level);
657 }
658 
659 llvm::Optional<unsigned>
660 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
661   return TTIImpl->getCacheAssociativity(Level);
662 }
663 
664 unsigned TargetTransformInfo::getPrefetchDistance() const {
665   return TTIImpl->getPrefetchDistance();
666 }
667 
668 unsigned TargetTransformInfo::getMinPrefetchStride(
669     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
670     unsigned NumPrefetches, bool HasCall) const {
671   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
672                                        NumPrefetches, HasCall);
673 }
674 
675 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
676   return TTIImpl->getMaxPrefetchIterationsAhead();
677 }
678 
679 bool TargetTransformInfo::enableWritePrefetching() const {
680   return TTIImpl->enableWritePrefetching();
681 }
682 
683 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
684   return TTIImpl->getMaxInterleaveFactor(VF);
685 }
686 
687 TargetTransformInfo::OperandValueKind
688 TargetTransformInfo::getOperandInfo(const Value *V,
689                                     OperandValueProperties &OpProps) {
690   OperandValueKind OpInfo = OK_AnyValue;
691   OpProps = OP_None;
692 
693   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
694     if (CI->getValue().isPowerOf2())
695       OpProps = OP_PowerOf2;
696     return OK_UniformConstantValue;
697   }
698 
699   // A broadcast shuffle creates a uniform value.
700   // TODO: Add support for non-zero index broadcasts.
701   // TODO: Add support for different source vector width.
702   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
703     if (ShuffleInst->isZeroEltSplat())
704       OpInfo = OK_UniformValue;
705 
706   const Value *Splat = getSplatValue(V);
707 
708   // Check for a splat of a constant or for a non uniform vector of constants
709   // and check if the constant(s) are all powers of two.
710   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
711     OpInfo = OK_NonUniformConstantValue;
712     if (Splat) {
713       OpInfo = OK_UniformConstantValue;
714       if (auto *CI = dyn_cast<ConstantInt>(Splat))
715         if (CI->getValue().isPowerOf2())
716           OpProps = OP_PowerOf2;
717     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
718       OpProps = OP_PowerOf2;
719       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
720         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
721           if (CI->getValue().isPowerOf2())
722             continue;
723         OpProps = OP_None;
724         break;
725       }
726     }
727   }
728 
729   // Check for a splat of a uniform value. This is not loop aware, so return
730   // true only for the obviously uniform cases (argument, globalvalue)
731   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
732     OpInfo = OK_UniformValue;
733 
734   return OpInfo;
735 }
736 
737 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
738     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
739     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
740     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
741     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
742   InstructionCost Cost =
743       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
744                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
745   assert(Cost >= 0 && "TTI should not produce negative costs!");
746   return Cost;
747 }
748 
749 InstructionCost TargetTransformInfo::getShuffleCost(
750     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, int Index,
751     VectorType *SubTp, ArrayRef<Value *> Args) const {
752   InstructionCost Cost =
753       TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp, Args);
754   assert(Cost >= 0 && "TTI should not produce negative costs!");
755   return Cost;
756 }
757 
758 TTI::CastContextHint
759 TargetTransformInfo::getCastContextHint(const Instruction *I) {
760   if (!I)
761     return CastContextHint::None;
762 
763   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
764                              unsigned GatScatOp) {
765     const Instruction *I = dyn_cast<Instruction>(V);
766     if (!I)
767       return CastContextHint::None;
768 
769     if (I->getOpcode() == LdStOp)
770       return CastContextHint::Normal;
771 
772     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
773       if (II->getIntrinsicID() == MaskedOp)
774         return TTI::CastContextHint::Masked;
775       if (II->getIntrinsicID() == GatScatOp)
776         return TTI::CastContextHint::GatherScatter;
777     }
778 
779     return TTI::CastContextHint::None;
780   };
781 
782   switch (I->getOpcode()) {
783   case Instruction::ZExt:
784   case Instruction::SExt:
785   case Instruction::FPExt:
786     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
787                             Intrinsic::masked_load, Intrinsic::masked_gather);
788   case Instruction::Trunc:
789   case Instruction::FPTrunc:
790     if (I->hasOneUse())
791       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
792                               Intrinsic::masked_store,
793                               Intrinsic::masked_scatter);
794     break;
795   default:
796     return CastContextHint::None;
797   }
798 
799   return TTI::CastContextHint::None;
800 }
801 
802 InstructionCost TargetTransformInfo::getCastInstrCost(
803     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
804     TTI::TargetCostKind CostKind, const Instruction *I) const {
805   assert((I == nullptr || I->getOpcode() == Opcode) &&
806          "Opcode should reflect passed instruction.");
807   InstructionCost Cost =
808       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
809   assert(Cost >= 0 && "TTI should not produce negative costs!");
810   return Cost;
811 }
812 
813 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
814     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
815   InstructionCost Cost =
816       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
817   assert(Cost >= 0 && "TTI should not produce negative costs!");
818   return Cost;
819 }
820 
821 InstructionCost TargetTransformInfo::getCFInstrCost(
822     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
823   assert((I == nullptr || I->getOpcode() == Opcode) &&
824          "Opcode should reflect passed instruction.");
825   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
826   assert(Cost >= 0 && "TTI should not produce negative costs!");
827   return Cost;
828 }
829 
830 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
831     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
832     TTI::TargetCostKind CostKind, const Instruction *I) const {
833   assert((I == nullptr || I->getOpcode() == Opcode) &&
834          "Opcode should reflect passed instruction.");
835   InstructionCost Cost =
836       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
837   assert(Cost >= 0 && "TTI should not produce negative costs!");
838   return Cost;
839 }
840 
841 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
842                                                         Type *Val,
843                                                         unsigned Index) const {
844   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
845   assert(Cost >= 0 && "TTI should not produce negative costs!");
846   return Cost;
847 }
848 
849 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
850     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
851     TTI::TargetCostKind CostKind) {
852   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
853       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
854   assert(Cost >= 0 && "TTI should not produce negative costs!");
855   return Cost;
856 }
857 
858 InstructionCost TargetTransformInfo::getMemoryOpCost(
859     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
860     TTI::TargetCostKind CostKind, const Instruction *I) const {
861   assert((I == nullptr || I->getOpcode() == Opcode) &&
862          "Opcode should reflect passed instruction.");
863   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
864                                                   AddressSpace, CostKind, I);
865   assert(Cost >= 0 && "TTI should not produce negative costs!");
866   return Cost;
867 }
868 
869 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
870     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
871     TTI::TargetCostKind CostKind) const {
872   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
873                                                         AddressSpace, CostKind);
874   assert(Cost >= 0 && "TTI should not produce negative costs!");
875   return Cost;
876 }
877 
878 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
879     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
880     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
881   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
882       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
883   assert(Cost >= 0 && "TTI should not produce negative costs!");
884   return Cost;
885 }
886 
887 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
888     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
889     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
890     bool UseMaskForCond, bool UseMaskForGaps) const {
891   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
892       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
893       UseMaskForCond, UseMaskForGaps);
894   assert(Cost >= 0 && "TTI should not produce negative costs!");
895   return Cost;
896 }
897 
898 InstructionCost
899 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
900                                            TTI::TargetCostKind CostKind) const {
901   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
902   assert(Cost >= 0 && "TTI should not produce negative costs!");
903   return Cost;
904 }
905 
906 InstructionCost
907 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
908                                       ArrayRef<Type *> Tys,
909                                       TTI::TargetCostKind CostKind) const {
910   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
911   assert(Cost >= 0 && "TTI should not produce negative costs!");
912   return Cost;
913 }
914 
915 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
916   return TTIImpl->getNumberOfParts(Tp);
917 }
918 
919 InstructionCost
920 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
921                                                const SCEV *Ptr) const {
922   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
923   assert(Cost >= 0 && "TTI should not produce negative costs!");
924   return Cost;
925 }
926 
927 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
928   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
929   assert(Cost >= 0 && "TTI should not produce negative costs!");
930   return Cost;
931 }
932 
933 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
934     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
935     TTI::TargetCostKind CostKind) const {
936   InstructionCost Cost =
937       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
938   assert(Cost >= 0 && "TTI should not produce negative costs!");
939   return Cost;
940 }
941 
942 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
943     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
944     TTI::TargetCostKind CostKind) const {
945   InstructionCost Cost =
946       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
947   assert(Cost >= 0 && "TTI should not produce negative costs!");
948   return Cost;
949 }
950 
951 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
952     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
953     TTI::TargetCostKind CostKind) const {
954   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
955                                               CostKind);
956 }
957 
958 InstructionCost
959 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
960   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
961 }
962 
963 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
964                                              MemIntrinsicInfo &Info) const {
965   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
966 }
967 
968 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
969   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
970 }
971 
972 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
973     IntrinsicInst *Inst, Type *ExpectedType) const {
974   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
975 }
976 
977 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
978     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
979     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
980     Optional<uint32_t> AtomicElementSize) const {
981   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
982                                             DestAddrSpace, SrcAlign, DestAlign,
983                                             AtomicElementSize);
984 }
985 
986 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
987     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
988     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
989     unsigned SrcAlign, unsigned DestAlign,
990     Optional<uint32_t> AtomicCpySize) const {
991   TTIImpl->getMemcpyLoopResidualLoweringType(
992       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
993       DestAlign, AtomicCpySize);
994 }
995 
996 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
997                                               const Function *Callee) const {
998   return TTIImpl->areInlineCompatible(Caller, Callee);
999 }
1000 
1001 bool TargetTransformInfo::areTypesABICompatible(
1002     const Function *Caller, const Function *Callee,
1003     const ArrayRef<Type *> &Types) const {
1004   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1005 }
1006 
1007 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1008                                              Type *Ty) const {
1009   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1010 }
1011 
1012 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1013                                               Type *Ty) const {
1014   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1015 }
1016 
1017 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1018   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1019 }
1020 
1021 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1022   return TTIImpl->isLegalToVectorizeLoad(LI);
1023 }
1024 
1025 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1026   return TTIImpl->isLegalToVectorizeStore(SI);
1027 }
1028 
1029 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1030     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1031   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1032                                               AddrSpace);
1033 }
1034 
1035 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1036     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1037   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1038                                                AddrSpace);
1039 }
1040 
1041 bool TargetTransformInfo::isLegalToVectorizeReduction(
1042     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1043   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1044 }
1045 
1046 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1047   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1048 }
1049 
1050 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1051                                                   unsigned LoadSize,
1052                                                   unsigned ChainSizeInBytes,
1053                                                   VectorType *VecTy) const {
1054   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1055 }
1056 
1057 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1058                                                    unsigned StoreSize,
1059                                                    unsigned ChainSizeInBytes,
1060                                                    VectorType *VecTy) const {
1061   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1062 }
1063 
1064 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1065                                                 ReductionFlags Flags) const {
1066   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1067 }
1068 
1069 bool TargetTransformInfo::preferPredicatedReductionSelect(
1070     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1071   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1072 }
1073 
1074 TargetTransformInfo::VPLegalization
1075 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1076   return TTIImpl->getVPLegalizationStrategy(VPI);
1077 }
1078 
1079 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1080   return TTIImpl->shouldExpandReduction(II);
1081 }
1082 
1083 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1084   return TTIImpl->getGISelRematGlobalCost();
1085 }
1086 
1087 bool TargetTransformInfo::supportsScalableVectors() const {
1088   return TTIImpl->supportsScalableVectors();
1089 }
1090 
1091 bool TargetTransformInfo::enableScalableVectorization() const {
1092   return TTIImpl->enableScalableVectorization();
1093 }
1094 
1095 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1096                                                 Align Alignment) const {
1097   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1098 }
1099 
1100 InstructionCost
1101 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1102   return TTIImpl->getInstructionLatency(I);
1103 }
1104 
1105 InstructionCost
1106 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1107   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1108 
1109   switch (I->getOpcode()) {
1110   case Instruction::GetElementPtr:
1111   case Instruction::Ret:
1112   case Instruction::PHI:
1113   case Instruction::Br:
1114   case Instruction::Add:
1115   case Instruction::FAdd:
1116   case Instruction::Sub:
1117   case Instruction::FSub:
1118   case Instruction::Mul:
1119   case Instruction::FMul:
1120   case Instruction::UDiv:
1121   case Instruction::SDiv:
1122   case Instruction::FDiv:
1123   case Instruction::URem:
1124   case Instruction::SRem:
1125   case Instruction::FRem:
1126   case Instruction::Shl:
1127   case Instruction::LShr:
1128   case Instruction::AShr:
1129   case Instruction::And:
1130   case Instruction::Or:
1131   case Instruction::Xor:
1132   case Instruction::FNeg:
1133   case Instruction::Select:
1134   case Instruction::ICmp:
1135   case Instruction::FCmp:
1136   case Instruction::Store:
1137   case Instruction::Load:
1138   case Instruction::ZExt:
1139   case Instruction::SExt:
1140   case Instruction::FPToUI:
1141   case Instruction::FPToSI:
1142   case Instruction::FPExt:
1143   case Instruction::PtrToInt:
1144   case Instruction::IntToPtr:
1145   case Instruction::SIToFP:
1146   case Instruction::UIToFP:
1147   case Instruction::Trunc:
1148   case Instruction::FPTrunc:
1149   case Instruction::BitCast:
1150   case Instruction::AddrSpaceCast:
1151   case Instruction::ExtractElement:
1152   case Instruction::InsertElement:
1153   case Instruction::ExtractValue:
1154   case Instruction::ShuffleVector:
1155   case Instruction::Call:
1156   case Instruction::Switch:
1157     return getUserCost(I, CostKind);
1158   default:
1159     // We don't have any information on this instruction.
1160     return -1;
1161   }
1162 }
1163 
1164 TargetTransformInfo::Concept::~Concept() = default;
1165 
1166 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1167 
1168 TargetIRAnalysis::TargetIRAnalysis(
1169     std::function<Result(const Function &)> TTICallback)
1170     : TTICallback(std::move(TTICallback)) {}
1171 
1172 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1173                                                FunctionAnalysisManager &) {
1174   return TTICallback(F);
1175 }
1176 
1177 AnalysisKey TargetIRAnalysis::Key;
1178 
1179 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1180   return Result(F.getParent()->getDataLayout());
1181 }
1182 
1183 // Register the basic pass.
1184 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1185                 "Target Transform Information", false, true)
1186 char TargetTransformInfoWrapperPass::ID = 0;
1187 
1188 void TargetTransformInfoWrapperPass::anchor() {}
1189 
1190 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1191     : ImmutablePass(ID) {
1192   initializeTargetTransformInfoWrapperPassPass(
1193       *PassRegistry::getPassRegistry());
1194 }
1195 
1196 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1197     TargetIRAnalysis TIRA)
1198     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1199   initializeTargetTransformInfoWrapperPassPass(
1200       *PassRegistry::getPassRegistry());
1201 }
1202 
1203 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1204   FunctionAnalysisManager DummyFAM;
1205   TTI = TIRA.run(F, DummyFAM);
1206   return *TTI;
1207 }
1208 
1209 ImmutablePass *
1210 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1211   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1212 }
1213