1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40   explicit NoTTIImpl(const DataLayout &DL)
41       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
42 };
43 } // namespace
44 
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46   // If the loop has irreducible control flow, it can not be converted to
47   // Hardware loop.
48   LoopBlocksRPO RPOT(L);
49   RPOT.perform(&LI);
50   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51     return false;
52   return true;
53 }
54 
55 IntrinsicCostAttributes::IntrinsicCostAttributes(
56     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
57     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
58       ScalarizationCost(ScalarizationCost) {
59 
60   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
61     FMF = FPMO->getFastMathFlags();
62 
63   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
64   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
65   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
66 }
67 
68 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
69                                                  ArrayRef<Type *> Tys,
70                                                  FastMathFlags Flags,
71                                                  const IntrinsicInst *I,
72                                                  InstructionCost ScalarCost)
73     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
74   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
75 }
76 
77 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
78                                                  ArrayRef<const Value *> Args)
79     : RetTy(Ty), IID(Id) {
80 
81   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
82   ParamTys.reserve(Arguments.size());
83   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
84     ParamTys.push_back(Arguments[Idx]->getType());
85 }
86 
87 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
88                                                  ArrayRef<const Value *> Args,
89                                                  ArrayRef<Type *> Tys,
90                                                  FastMathFlags Flags,
91                                                  const IntrinsicInst *I,
92                                                  InstructionCost ScalarCost)
93     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
94   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
95   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
96 }
97 
98 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
99                                                LoopInfo &LI, DominatorTree &DT,
100                                                bool ForceNestedLoop,
101                                                bool ForceHardwareLoopPHI) {
102   SmallVector<BasicBlock *, 4> ExitingBlocks;
103   L->getExitingBlocks(ExitingBlocks);
104 
105   for (BasicBlock *BB : ExitingBlocks) {
106     // If we pass the updated counter back through a phi, we need to know
107     // which latch the updated value will be coming from.
108     if (!L->isLoopLatch(BB)) {
109       if (ForceHardwareLoopPHI || CounterInReg)
110         continue;
111     }
112 
113     const SCEV *EC = SE.getExitCount(L, BB);
114     if (isa<SCEVCouldNotCompute>(EC))
115       continue;
116     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
117       if (ConstEC->getValue()->isZero())
118         continue;
119     } else if (!SE.isLoopInvariant(EC, L))
120       continue;
121 
122     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
123       continue;
124 
125     // If this exiting block is contained in a nested loop, it is not eligible
126     // for insertion of the branch-and-decrement since the inner loop would
127     // end up messing up the value in the CTR.
128     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
129       continue;
130 
131     // We now have a loop-invariant count of loop iterations (which is not the
132     // constant zero) for which we know that this loop will not exit via this
133     // existing block.
134 
135     // We need to make sure that this block will run on every loop iteration.
136     // For this to be true, we must dominate all blocks with backedges. Such
137     // blocks are in-loop predecessors to the header block.
138     bool NotAlways = false;
139     for (BasicBlock *Pred : predecessors(L->getHeader())) {
140       if (!L->contains(Pred))
141         continue;
142 
143       if (!DT.dominates(BB, Pred)) {
144         NotAlways = true;
145         break;
146       }
147     }
148 
149     if (NotAlways)
150       continue;
151 
152     // Make sure this blocks ends with a conditional branch.
153     Instruction *TI = BB->getTerminator();
154     if (!TI)
155       continue;
156 
157     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
158       if (!BI->isConditional())
159         continue;
160 
161       ExitBranch = BI;
162     } else
163       continue;
164 
165     // Note that this block may not be the loop latch block, even if the loop
166     // has a latch block.
167     ExitBlock = BB;
168     ExitCount = EC;
169     break;
170   }
171 
172   if (!ExitBlock)
173     return false;
174   return true;
175 }
176 
177 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
178     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
179 
180 TargetTransformInfo::~TargetTransformInfo() = default;
181 
182 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
183     : TTIImpl(std::move(Arg.TTIImpl)) {}
184 
185 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
186   TTIImpl = std::move(RHS.TTIImpl);
187   return *this;
188 }
189 
190 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
191   return TTIImpl->getInliningThresholdMultiplier();
192 }
193 
194 unsigned
195 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
196   return TTIImpl->adjustInliningThreshold(CB);
197 }
198 
199 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
200   return TTIImpl->getInlinerVectorBonusPercent();
201 }
202 
203 InstructionCost
204 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
205                                 ArrayRef<const Value *> Operands,
206                                 TTI::TargetCostKind CostKind) const {
207   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
208 }
209 
210 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
211     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
212     BlockFrequencyInfo *BFI) const {
213   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
214 }
215 
216 InstructionCost
217 TargetTransformInfo::getUserCost(const User *U,
218                                  ArrayRef<const Value *> Operands,
219                                  enum TargetCostKind CostKind) const {
220   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
221   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
222          "TTI should not produce negative costs!");
223   return Cost;
224 }
225 
226 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
227   return TTIImpl->getPredictableBranchThreshold();
228 }
229 
230 bool TargetTransformInfo::hasBranchDivergence() const {
231   return TTIImpl->hasBranchDivergence();
232 }
233 
234 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
235   return TTIImpl->useGPUDivergenceAnalysis();
236 }
237 
238 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
239   return TTIImpl->isSourceOfDivergence(V);
240 }
241 
242 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
243   return TTIImpl->isAlwaysUniform(V);
244 }
245 
246 unsigned TargetTransformInfo::getFlatAddressSpace() const {
247   return TTIImpl->getFlatAddressSpace();
248 }
249 
250 bool TargetTransformInfo::collectFlatAddressOperands(
251     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
252   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
253 }
254 
255 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
256                                               unsigned ToAS) const {
257   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
258 }
259 
260 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
261     unsigned AS) const {
262   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
263 }
264 
265 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
266   return TTIImpl->getAssumedAddrSpace(V);
267 }
268 
269 std::pair<const Value *, unsigned>
270 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
271   return TTIImpl->getPredicatedAddrSpace(V);
272 }
273 
274 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
275     IntrinsicInst *II, Value *OldV, Value *NewV) const {
276   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
277 }
278 
279 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
280   return TTIImpl->isLoweredToCall(F);
281 }
282 
283 bool TargetTransformInfo::isHardwareLoopProfitable(
284     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
285     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
286   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
287 }
288 
289 bool TargetTransformInfo::preferPredicateOverEpilogue(
290     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
291     TargetLibraryInfo *TLI, DominatorTree *DT,
292     const LoopAccessInfo *LAI) const {
293   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
294 }
295 
296 bool TargetTransformInfo::emitGetActiveLaneMask() const {
297   return TTIImpl->emitGetActiveLaneMask();
298 }
299 
300 Optional<Instruction *>
301 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
302                                           IntrinsicInst &II) const {
303   return TTIImpl->instCombineIntrinsic(IC, II);
304 }
305 
306 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
307     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
308     bool &KnownBitsComputed) const {
309   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
310                                                    KnownBitsComputed);
311 }
312 
313 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
314     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
315     APInt &UndefElts2, APInt &UndefElts3,
316     std::function<void(Instruction *, unsigned, APInt, APInt &)>
317         SimplifyAndSetOp) const {
318   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
319       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
320       SimplifyAndSetOp);
321 }
322 
323 void TargetTransformInfo::getUnrollingPreferences(
324     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
325     OptimizationRemarkEmitter *ORE) const {
326   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
327 }
328 
329 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
330                                                 PeelingPreferences &PP) const {
331   return TTIImpl->getPeelingPreferences(L, SE, PP);
332 }
333 
334 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
335   return TTIImpl->isLegalAddImmediate(Imm);
336 }
337 
338 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
339   return TTIImpl->isLegalICmpImmediate(Imm);
340 }
341 
342 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
343                                                 int64_t BaseOffset,
344                                                 bool HasBaseReg, int64_t Scale,
345                                                 unsigned AddrSpace,
346                                                 Instruction *I) const {
347   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
348                                         Scale, AddrSpace, I);
349 }
350 
351 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
352   return TTIImpl->isLSRCostLess(C1, C2);
353 }
354 
355 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
356   return TTIImpl->isNumRegsMajorCostOfLSR();
357 }
358 
359 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
360   return TTIImpl->isProfitableLSRChainElement(I);
361 }
362 
363 bool TargetTransformInfo::canMacroFuseCmp() const {
364   return TTIImpl->canMacroFuseCmp();
365 }
366 
367 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
368                                      ScalarEvolution *SE, LoopInfo *LI,
369                                      DominatorTree *DT, AssumptionCache *AC,
370                                      TargetLibraryInfo *LibInfo) const {
371   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
372 }
373 
374 TTI::AddressingModeKind
375 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
376                                                 ScalarEvolution *SE) const {
377   return TTIImpl->getPreferredAddressingMode(L, SE);
378 }
379 
380 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
381                                              Align Alignment) const {
382   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
383 }
384 
385 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
386                                             Align Alignment) const {
387   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
388 }
389 
390 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
391                                          Align Alignment) const {
392   return TTIImpl->isLegalNTStore(DataType, Alignment);
393 }
394 
395 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
396   return TTIImpl->isLegalNTLoad(DataType, Alignment);
397 }
398 
399 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
400                                               Align Alignment) const {
401   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
402 }
403 
404 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
405                                                Align Alignment) const {
406   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
407 }
408 
409 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
410                                                      Align Alignment) const {
411   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
412 }
413 
414 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
415                                                       Align Alignment) const {
416   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
417 }
418 
419 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
420   return TTIImpl->isLegalMaskedCompressStore(DataType);
421 }
422 
423 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
424   return TTIImpl->isLegalMaskedExpandLoad(DataType);
425 }
426 
427 bool TargetTransformInfo::enableOrderedReductions() const {
428   return TTIImpl->enableOrderedReductions();
429 }
430 
431 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
432   return TTIImpl->hasDivRemOp(DataType, IsSigned);
433 }
434 
435 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
436                                              unsigned AddrSpace) const {
437   return TTIImpl->hasVolatileVariant(I, AddrSpace);
438 }
439 
440 bool TargetTransformInfo::prefersVectorizedAddressing() const {
441   return TTIImpl->prefersVectorizedAddressing();
442 }
443 
444 InstructionCost TargetTransformInfo::getScalingFactorCost(
445     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
446     int64_t Scale, unsigned AddrSpace) const {
447   InstructionCost Cost = TTIImpl->getScalingFactorCost(
448       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
449   assert(Cost >= 0 && "TTI should not produce negative costs!");
450   return Cost;
451 }
452 
453 bool TargetTransformInfo::LSRWithInstrQueries() const {
454   return TTIImpl->LSRWithInstrQueries();
455 }
456 
457 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
458   return TTIImpl->isTruncateFree(Ty1, Ty2);
459 }
460 
461 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
462   return TTIImpl->isProfitableToHoist(I);
463 }
464 
465 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
466 
467 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
468   return TTIImpl->isTypeLegal(Ty);
469 }
470 
471 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
472   return TTIImpl->getRegUsageForType(Ty);
473 }
474 
475 bool TargetTransformInfo::shouldBuildLookupTables() const {
476   return TTIImpl->shouldBuildLookupTables();
477 }
478 
479 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
480     Constant *C) const {
481   return TTIImpl->shouldBuildLookupTablesForConstant(C);
482 }
483 
484 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
485   return TTIImpl->shouldBuildRelLookupTables();
486 }
487 
488 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
489   return TTIImpl->useColdCCForColdCall(F);
490 }
491 
492 InstructionCost
493 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
494                                               const APInt &DemandedElts,
495                                               bool Insert, bool Extract) const {
496   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
497 }
498 
499 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
500     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
501   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
502 }
503 
504 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
505   return TTIImpl->supportsEfficientVectorElementLoadStore();
506 }
507 
508 bool TargetTransformInfo::enableAggressiveInterleaving(
509     bool LoopHasReductions) const {
510   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
511 }
512 
513 TargetTransformInfo::MemCmpExpansionOptions
514 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
515   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
516 }
517 
518 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
519   return TTIImpl->enableInterleavedAccessVectorization();
520 }
521 
522 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
523   return TTIImpl->enableMaskedInterleavedAccessVectorization();
524 }
525 
526 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
527   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
528 }
529 
530 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
531                                                          unsigned BitWidth,
532                                                          unsigned AddressSpace,
533                                                          Align Alignment,
534                                                          bool *Fast) const {
535   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
536                                                  AddressSpace, Alignment, Fast);
537 }
538 
539 TargetTransformInfo::PopcntSupportKind
540 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
541   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
542 }
543 
544 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
545   return TTIImpl->haveFastSqrt(Ty);
546 }
547 
548 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
549   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
550 }
551 
552 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
553   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
554   assert(Cost >= 0 && "TTI should not produce negative costs!");
555   return Cost;
556 }
557 
558 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
559                                                            unsigned Idx,
560                                                            const APInt &Imm,
561                                                            Type *Ty) const {
562   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
563   assert(Cost >= 0 && "TTI should not produce negative costs!");
564   return Cost;
565 }
566 
567 InstructionCost
568 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
569                                    TTI::TargetCostKind CostKind) const {
570   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
571   assert(Cost >= 0 && "TTI should not produce negative costs!");
572   return Cost;
573 }
574 
575 InstructionCost TargetTransformInfo::getIntImmCostInst(
576     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
577     TTI::TargetCostKind CostKind, Instruction *Inst) const {
578   InstructionCost Cost =
579       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
580   assert(Cost >= 0 && "TTI should not produce negative costs!");
581   return Cost;
582 }
583 
584 InstructionCost
585 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
586                                          const APInt &Imm, Type *Ty,
587                                          TTI::TargetCostKind CostKind) const {
588   InstructionCost Cost =
589       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
590   assert(Cost >= 0 && "TTI should not produce negative costs!");
591   return Cost;
592 }
593 
594 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
595   return TTIImpl->getNumberOfRegisters(ClassID);
596 }
597 
598 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
599                                                       Type *Ty) const {
600   return TTIImpl->getRegisterClassForType(Vector, Ty);
601 }
602 
603 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
604   return TTIImpl->getRegisterClassName(ClassID);
605 }
606 
607 TypeSize TargetTransformInfo::getRegisterBitWidth(
608     TargetTransformInfo::RegisterKind K) const {
609   return TTIImpl->getRegisterBitWidth(K);
610 }
611 
612 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
613   return TTIImpl->getMinVectorRegisterBitWidth();
614 }
615 
616 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
617   return TTIImpl->getMaxVScale();
618 }
619 
620 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
621   return TTIImpl->getVScaleForTuning();
622 }
623 
624 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
625   return TTIImpl->shouldMaximizeVectorBandwidth();
626 }
627 
628 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
629                                                bool IsScalable) const {
630   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
631 }
632 
633 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
634                                            unsigned Opcode) const {
635   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
636 }
637 
638 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
639     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
640   return TTIImpl->shouldConsiderAddressTypePromotion(
641       I, AllowPromotionWithoutCommonHeader);
642 }
643 
644 unsigned TargetTransformInfo::getCacheLineSize() const {
645   return TTIImpl->getCacheLineSize();
646 }
647 
648 llvm::Optional<unsigned>
649 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
650   return TTIImpl->getCacheSize(Level);
651 }
652 
653 llvm::Optional<unsigned>
654 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
655   return TTIImpl->getCacheAssociativity(Level);
656 }
657 
658 unsigned TargetTransformInfo::getPrefetchDistance() const {
659   return TTIImpl->getPrefetchDistance();
660 }
661 
662 unsigned TargetTransformInfo::getMinPrefetchStride(
663     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
664     unsigned NumPrefetches, bool HasCall) const {
665   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
666                                        NumPrefetches, HasCall);
667 }
668 
669 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
670   return TTIImpl->getMaxPrefetchIterationsAhead();
671 }
672 
673 bool TargetTransformInfo::enableWritePrefetching() const {
674   return TTIImpl->enableWritePrefetching();
675 }
676 
677 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
678   return TTIImpl->getMaxInterleaveFactor(VF);
679 }
680 
681 TargetTransformInfo::OperandValueKind
682 TargetTransformInfo::getOperandInfo(const Value *V,
683                                     OperandValueProperties &OpProps) {
684   OperandValueKind OpInfo = OK_AnyValue;
685   OpProps = OP_None;
686 
687   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
688     if (CI->getValue().isPowerOf2())
689       OpProps = OP_PowerOf2;
690     return OK_UniformConstantValue;
691   }
692 
693   // A broadcast shuffle creates a uniform value.
694   // TODO: Add support for non-zero index broadcasts.
695   // TODO: Add support for different source vector width.
696   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
697     if (ShuffleInst->isZeroEltSplat())
698       OpInfo = OK_UniformValue;
699 
700   const Value *Splat = getSplatValue(V);
701 
702   // Check for a splat of a constant or for a non uniform vector of constants
703   // and check if the constant(s) are all powers of two.
704   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
705     OpInfo = OK_NonUniformConstantValue;
706     if (Splat) {
707       OpInfo = OK_UniformConstantValue;
708       if (auto *CI = dyn_cast<ConstantInt>(Splat))
709         if (CI->getValue().isPowerOf2())
710           OpProps = OP_PowerOf2;
711     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
712       OpProps = OP_PowerOf2;
713       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
714         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
715           if (CI->getValue().isPowerOf2())
716             continue;
717         OpProps = OP_None;
718         break;
719       }
720     }
721   }
722 
723   // Check for a splat of a uniform value. This is not loop aware, so return
724   // true only for the obviously uniform cases (argument, globalvalue)
725   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
726     OpInfo = OK_UniformValue;
727 
728   return OpInfo;
729 }
730 
731 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
732     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
733     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
734     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
735     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
736   InstructionCost Cost =
737       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
738                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
739   assert(Cost >= 0 && "TTI should not produce negative costs!");
740   return Cost;
741 }
742 
743 InstructionCost TargetTransformInfo::getShuffleCost(ShuffleKind Kind,
744                                                     VectorType *Ty,
745                                                     ArrayRef<int> Mask,
746                                                     int Index,
747                                                     VectorType *SubTp) const {
748   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
749   assert(Cost >= 0 && "TTI should not produce negative costs!");
750   return Cost;
751 }
752 
753 TTI::CastContextHint
754 TargetTransformInfo::getCastContextHint(const Instruction *I) {
755   if (!I)
756     return CastContextHint::None;
757 
758   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
759                              unsigned GatScatOp) {
760     const Instruction *I = dyn_cast<Instruction>(V);
761     if (!I)
762       return CastContextHint::None;
763 
764     if (I->getOpcode() == LdStOp)
765       return CastContextHint::Normal;
766 
767     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
768       if (II->getIntrinsicID() == MaskedOp)
769         return TTI::CastContextHint::Masked;
770       if (II->getIntrinsicID() == GatScatOp)
771         return TTI::CastContextHint::GatherScatter;
772     }
773 
774     return TTI::CastContextHint::None;
775   };
776 
777   switch (I->getOpcode()) {
778   case Instruction::ZExt:
779   case Instruction::SExt:
780   case Instruction::FPExt:
781     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
782                             Intrinsic::masked_load, Intrinsic::masked_gather);
783   case Instruction::Trunc:
784   case Instruction::FPTrunc:
785     if (I->hasOneUse())
786       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
787                               Intrinsic::masked_store,
788                               Intrinsic::masked_scatter);
789     break;
790   default:
791     return CastContextHint::None;
792   }
793 
794   return TTI::CastContextHint::None;
795 }
796 
797 InstructionCost TargetTransformInfo::getCastInstrCost(
798     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
799     TTI::TargetCostKind CostKind, const Instruction *I) const {
800   assert((I == nullptr || I->getOpcode() == Opcode) &&
801          "Opcode should reflect passed instruction.");
802   InstructionCost Cost =
803       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
804   assert(Cost >= 0 && "TTI should not produce negative costs!");
805   return Cost;
806 }
807 
808 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
809     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
810   InstructionCost Cost =
811       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
812   assert(Cost >= 0 && "TTI should not produce negative costs!");
813   return Cost;
814 }
815 
816 InstructionCost TargetTransformInfo::getCFInstrCost(
817     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
818   assert((I == nullptr || I->getOpcode() == Opcode) &&
819          "Opcode should reflect passed instruction.");
820   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
821   assert(Cost >= 0 && "TTI should not produce negative costs!");
822   return Cost;
823 }
824 
825 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
826     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
827     TTI::TargetCostKind CostKind, const Instruction *I) const {
828   assert((I == nullptr || I->getOpcode() == Opcode) &&
829          "Opcode should reflect passed instruction.");
830   InstructionCost Cost =
831       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
832   assert(Cost >= 0 && "TTI should not produce negative costs!");
833   return Cost;
834 }
835 
836 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
837                                                         Type *Val,
838                                                         unsigned Index) const {
839   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
840   assert(Cost >= 0 && "TTI should not produce negative costs!");
841   return Cost;
842 }
843 
844 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
845     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
846     TTI::TargetCostKind CostKind) {
847   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
848       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
849   assert(Cost >= 0 && "TTI should not produce negative costs!");
850   return Cost;
851 }
852 
853 InstructionCost TargetTransformInfo::getMemoryOpCost(
854     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
855     TTI::TargetCostKind CostKind, const Instruction *I) const {
856   assert((I == nullptr || I->getOpcode() == Opcode) &&
857          "Opcode should reflect passed instruction.");
858   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
859                                                   AddressSpace, CostKind, I);
860   assert(Cost >= 0 && "TTI should not produce negative costs!");
861   return Cost;
862 }
863 
864 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
865     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
866     TTI::TargetCostKind CostKind) const {
867   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
868                                                         AddressSpace, CostKind);
869   assert(Cost >= 0 && "TTI should not produce negative costs!");
870   return Cost;
871 }
872 
873 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
874     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
875     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
876   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
877       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
878   assert(Cost >= 0 && "TTI should not produce negative costs!");
879   return Cost;
880 }
881 
882 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
883     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
884     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
885     bool UseMaskForCond, bool UseMaskForGaps) const {
886   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
887       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
888       UseMaskForCond, UseMaskForGaps);
889   assert(Cost >= 0 && "TTI should not produce negative costs!");
890   return Cost;
891 }
892 
893 InstructionCost
894 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
895                                            TTI::TargetCostKind CostKind) const {
896   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
897   assert(Cost >= 0 && "TTI should not produce negative costs!");
898   return Cost;
899 }
900 
901 InstructionCost
902 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
903                                       ArrayRef<Type *> Tys,
904                                       TTI::TargetCostKind CostKind) const {
905   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
906   assert(Cost >= 0 && "TTI should not produce negative costs!");
907   return Cost;
908 }
909 
910 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
911   return TTIImpl->getNumberOfParts(Tp);
912 }
913 
914 InstructionCost
915 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
916                                                const SCEV *Ptr) const {
917   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
918   assert(Cost >= 0 && "TTI should not produce negative costs!");
919   return Cost;
920 }
921 
922 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
923   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
924   assert(Cost >= 0 && "TTI should not produce negative costs!");
925   return Cost;
926 }
927 
928 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
929     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
930     TTI::TargetCostKind CostKind) const {
931   InstructionCost Cost =
932       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
933   assert(Cost >= 0 && "TTI should not produce negative costs!");
934   return Cost;
935 }
936 
937 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
938     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
939     TTI::TargetCostKind CostKind) const {
940   InstructionCost Cost =
941       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
942   assert(Cost >= 0 && "TTI should not produce negative costs!");
943   return Cost;
944 }
945 
946 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
947     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
948     TTI::TargetCostKind CostKind) const {
949   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
950                                               CostKind);
951 }
952 
953 InstructionCost
954 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
955   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
956 }
957 
958 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
959                                              MemIntrinsicInfo &Info) const {
960   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
961 }
962 
963 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
964   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
965 }
966 
967 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
968     IntrinsicInst *Inst, Type *ExpectedType) const {
969   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
970 }
971 
972 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
973     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
974     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
975   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
976                                             DestAddrSpace, SrcAlign, DestAlign);
977 }
978 
979 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
980     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
981     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
982     unsigned SrcAlign, unsigned DestAlign) const {
983   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
984                                              SrcAddrSpace, DestAddrSpace,
985                                              SrcAlign, DestAlign);
986 }
987 
988 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
989                                               const Function *Callee) const {
990   return TTIImpl->areInlineCompatible(Caller, Callee);
991 }
992 
993 bool TargetTransformInfo::areTypesABICompatible(
994     const Function *Caller, const Function *Callee,
995     const ArrayRef<Type *> &Types) const {
996   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
997 }
998 
999 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1000                                              Type *Ty) const {
1001   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1002 }
1003 
1004 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1005                                               Type *Ty) const {
1006   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1007 }
1008 
1009 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1010   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1011 }
1012 
1013 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1014   return TTIImpl->isLegalToVectorizeLoad(LI);
1015 }
1016 
1017 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1018   return TTIImpl->isLegalToVectorizeStore(SI);
1019 }
1020 
1021 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1022     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1023   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1024                                               AddrSpace);
1025 }
1026 
1027 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1028     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1029   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1030                                                AddrSpace);
1031 }
1032 
1033 bool TargetTransformInfo::isLegalToVectorizeReduction(
1034     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1035   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1036 }
1037 
1038 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1039   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1040 }
1041 
1042 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1043                                                   unsigned LoadSize,
1044                                                   unsigned ChainSizeInBytes,
1045                                                   VectorType *VecTy) const {
1046   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1047 }
1048 
1049 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1050                                                    unsigned StoreSize,
1051                                                    unsigned ChainSizeInBytes,
1052                                                    VectorType *VecTy) const {
1053   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1054 }
1055 
1056 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1057                                                 ReductionFlags Flags) const {
1058   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1059 }
1060 
1061 bool TargetTransformInfo::preferPredicatedReductionSelect(
1062     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1063   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1064 }
1065 
1066 TargetTransformInfo::VPLegalization
1067 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1068   return TTIImpl->getVPLegalizationStrategy(VPI);
1069 }
1070 
1071 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1072   return TTIImpl->shouldExpandReduction(II);
1073 }
1074 
1075 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1076   return TTIImpl->getGISelRematGlobalCost();
1077 }
1078 
1079 bool TargetTransformInfo::supportsScalableVectors() const {
1080   return TTIImpl->supportsScalableVectors();
1081 }
1082 
1083 bool TargetTransformInfo::enableScalableVectorization() const {
1084   return TTIImpl->enableScalableVectorization();
1085 }
1086 
1087 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1088                                                 Align Alignment) const {
1089   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1090 }
1091 
1092 InstructionCost
1093 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1094   return TTIImpl->getInstructionLatency(I);
1095 }
1096 
1097 InstructionCost
1098 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1099   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1100 
1101   switch (I->getOpcode()) {
1102   case Instruction::GetElementPtr:
1103   case Instruction::Ret:
1104   case Instruction::PHI:
1105   case Instruction::Br:
1106   case Instruction::Add:
1107   case Instruction::FAdd:
1108   case Instruction::Sub:
1109   case Instruction::FSub:
1110   case Instruction::Mul:
1111   case Instruction::FMul:
1112   case Instruction::UDiv:
1113   case Instruction::SDiv:
1114   case Instruction::FDiv:
1115   case Instruction::URem:
1116   case Instruction::SRem:
1117   case Instruction::FRem:
1118   case Instruction::Shl:
1119   case Instruction::LShr:
1120   case Instruction::AShr:
1121   case Instruction::And:
1122   case Instruction::Or:
1123   case Instruction::Xor:
1124   case Instruction::FNeg:
1125   case Instruction::Select:
1126   case Instruction::ICmp:
1127   case Instruction::FCmp:
1128   case Instruction::Store:
1129   case Instruction::Load:
1130   case Instruction::ZExt:
1131   case Instruction::SExt:
1132   case Instruction::FPToUI:
1133   case Instruction::FPToSI:
1134   case Instruction::FPExt:
1135   case Instruction::PtrToInt:
1136   case Instruction::IntToPtr:
1137   case Instruction::SIToFP:
1138   case Instruction::UIToFP:
1139   case Instruction::Trunc:
1140   case Instruction::FPTrunc:
1141   case Instruction::BitCast:
1142   case Instruction::AddrSpaceCast:
1143   case Instruction::ExtractElement:
1144   case Instruction::InsertElement:
1145   case Instruction::ExtractValue:
1146   case Instruction::ShuffleVector:
1147   case Instruction::Call:
1148   case Instruction::Switch:
1149     return getUserCost(I, CostKind);
1150   default:
1151     // We don't have any information on this instruction.
1152     return -1;
1153   }
1154 }
1155 
1156 TargetTransformInfo::Concept::~Concept() = default;
1157 
1158 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1159 
1160 TargetIRAnalysis::TargetIRAnalysis(
1161     std::function<Result(const Function &)> TTICallback)
1162     : TTICallback(std::move(TTICallback)) {}
1163 
1164 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1165                                                FunctionAnalysisManager &) {
1166   return TTICallback(F);
1167 }
1168 
1169 AnalysisKey TargetIRAnalysis::Key;
1170 
1171 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1172   return Result(F.getParent()->getDataLayout());
1173 }
1174 
1175 // Register the basic pass.
1176 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1177                 "Target Transform Information", false, true)
1178 char TargetTransformInfoWrapperPass::ID = 0;
1179 
1180 void TargetTransformInfoWrapperPass::anchor() {}
1181 
1182 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1183     : ImmutablePass(ID) {
1184   initializeTargetTransformInfoWrapperPassPass(
1185       *PassRegistry::getPassRegistry());
1186 }
1187 
1188 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1189     TargetIRAnalysis TIRA)
1190     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1191   initializeTargetTransformInfoWrapperPassPass(
1192       *PassRegistry::getPassRegistry());
1193 }
1194 
1195 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1196   FunctionAnalysisManager DummyFAM;
1197   TTI = TIRA.run(F, DummyFAM);
1198   return *TTI;
1199 }
1200 
1201 ImmutablePass *
1202 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1203   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1204 }
1205