1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/Operator.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } // namespace 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 57 LoopInfo &LI, DominatorTree &DT, 58 bool ForceNestedLoop, 59 bool ForceHardwareLoopPHI) { 60 SmallVector<BasicBlock *, 4> ExitingBlocks; 61 L->getExitingBlocks(ExitingBlocks); 62 63 for (BasicBlock *BB : ExitingBlocks) { 64 // If we pass the updated counter back through a phi, we need to know 65 // which latch the updated value will be coming from. 66 if (!L->isLoopLatch(BB)) { 67 if (ForceHardwareLoopPHI || CounterInReg) 68 continue; 69 } 70 71 const SCEV *EC = SE.getExitCount(L, BB); 72 if (isa<SCEVCouldNotCompute>(EC)) 73 continue; 74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 75 if (ConstEC->getValue()->isZero()) 76 continue; 77 } else if (!SE.isLoopInvariant(EC, L)) 78 continue; 79 80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 81 continue; 82 83 // If this exiting block is contained in a nested loop, it is not eligible 84 // for insertion of the branch-and-decrement since the inner loop would 85 // end up messing up the value in the CTR. 86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 87 continue; 88 89 // We now have a loop-invariant count of loop iterations (which is not the 90 // constant zero) for which we know that this loop will not exit via this 91 // existing block. 92 93 // We need to make sure that this block will run on every loop iteration. 94 // For this to be true, we must dominate all blocks with backedges. Such 95 // blocks are in-loop predecessors to the header block. 96 bool NotAlways = false; 97 for (BasicBlock *Pred : predecessors(L->getHeader())) { 98 if (!L->contains(Pred)) 99 continue; 100 101 if (!DT.dominates(BB, Pred)) { 102 NotAlways = true; 103 break; 104 } 105 } 106 107 if (NotAlways) 108 continue; 109 110 // Make sure this blocks ends with a conditional branch. 111 Instruction *TI = BB->getTerminator(); 112 if (!TI) 113 continue; 114 115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 116 if (!BI->isConditional()) 117 continue; 118 119 ExitBranch = BI; 120 } else 121 continue; 122 123 // Note that this block may not be the loop latch block, even if the loop 124 // has a latch block. 125 ExitBlock = BB; 126 ExitCount = EC; 127 break; 128 } 129 130 if (!ExitBlock) 131 return false; 132 return true; 133 } 134 135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 137 138 TargetTransformInfo::~TargetTransformInfo() {} 139 140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 141 : TTIImpl(std::move(Arg.TTIImpl)) {} 142 143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 144 TTIImpl = std::move(RHS.TTIImpl); 145 return *this; 146 } 147 148 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 149 return TTIImpl->getInliningThresholdMultiplier(); 150 } 151 152 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 153 return TTIImpl->getInlinerVectorBonusPercent(); 154 } 155 156 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 157 ArrayRef<const Value *> Operands, 158 TTI::TargetCostKind CostKind) const { 159 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 160 } 161 162 int TargetTransformInfo::getExtCost(const Instruction *I, 163 const Value *Src) const { 164 return TTIImpl->getExtCost(I, Src); 165 } 166 167 int TargetTransformInfo::getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 168 ArrayRef<const Value *> Arguments, 169 const User *U, 170 TTI::TargetCostKind CostKind) const { 171 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U, CostKind); 172 assert(Cost >= 0 && "TTI should not produce negative costs!"); 173 return Cost; 174 } 175 176 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 177 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 178 BlockFrequencyInfo *BFI) const { 179 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 180 } 181 182 int TargetTransformInfo::getUserCost(const User *U, 183 ArrayRef<const Value *> Operands, 184 enum TargetCostKind CostKind) const { 185 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 186 assert(Cost >= 0 && "TTI should not produce negative costs!"); 187 return Cost; 188 } 189 190 bool TargetTransformInfo::hasBranchDivergence() const { 191 return TTIImpl->hasBranchDivergence(); 192 } 193 194 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 195 return TTIImpl->useGPUDivergenceAnalysis(); 196 } 197 198 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 199 return TTIImpl->isSourceOfDivergence(V); 200 } 201 202 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 203 return TTIImpl->isAlwaysUniform(V); 204 } 205 206 unsigned TargetTransformInfo::getFlatAddressSpace() const { 207 return TTIImpl->getFlatAddressSpace(); 208 } 209 210 bool TargetTransformInfo::collectFlatAddressOperands( 211 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 212 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 213 } 214 215 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 216 Value *OldV, 217 Value *NewV) const { 218 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 219 } 220 221 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 222 return TTIImpl->isLoweredToCall(F); 223 } 224 225 bool TargetTransformInfo::isHardwareLoopProfitable( 226 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 227 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 228 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 229 } 230 231 bool TargetTransformInfo::preferPredicateOverEpilogue( 232 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 233 TargetLibraryInfo *TLI, DominatorTree *DT, 234 const LoopAccessInfo *LAI) const { 235 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 236 } 237 238 void TargetTransformInfo::getUnrollingPreferences( 239 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 240 return TTIImpl->getUnrollingPreferences(L, SE, UP); 241 } 242 243 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 244 return TTIImpl->isLegalAddImmediate(Imm); 245 } 246 247 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 248 return TTIImpl->isLegalICmpImmediate(Imm); 249 } 250 251 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 252 int64_t BaseOffset, 253 bool HasBaseReg, int64_t Scale, 254 unsigned AddrSpace, 255 Instruction *I) const { 256 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 257 Scale, AddrSpace, I); 258 } 259 260 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 261 return TTIImpl->isLSRCostLess(C1, C2); 262 } 263 264 bool TargetTransformInfo::canMacroFuseCmp() const { 265 return TTIImpl->canMacroFuseCmp(); 266 } 267 268 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 269 ScalarEvolution *SE, LoopInfo *LI, 270 DominatorTree *DT, AssumptionCache *AC, 271 TargetLibraryInfo *LibInfo) const { 272 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 273 } 274 275 bool TargetTransformInfo::shouldFavorPostInc() const { 276 return TTIImpl->shouldFavorPostInc(); 277 } 278 279 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 280 return TTIImpl->shouldFavorBackedgeIndex(L); 281 } 282 283 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 284 MaybeAlign Alignment) const { 285 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 286 } 287 288 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 289 MaybeAlign Alignment) const { 290 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 291 } 292 293 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 294 Align Alignment) const { 295 return TTIImpl->isLegalNTStore(DataType, Alignment); 296 } 297 298 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 299 return TTIImpl->isLegalNTLoad(DataType, Alignment); 300 } 301 302 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 303 MaybeAlign Alignment) const { 304 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 305 } 306 307 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 308 MaybeAlign Alignment) const { 309 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 310 } 311 312 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 313 return TTIImpl->isLegalMaskedCompressStore(DataType); 314 } 315 316 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 317 return TTIImpl->isLegalMaskedExpandLoad(DataType); 318 } 319 320 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 321 return TTIImpl->hasDivRemOp(DataType, IsSigned); 322 } 323 324 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 325 unsigned AddrSpace) const { 326 return TTIImpl->hasVolatileVariant(I, AddrSpace); 327 } 328 329 bool TargetTransformInfo::prefersVectorizedAddressing() const { 330 return TTIImpl->prefersVectorizedAddressing(); 331 } 332 333 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 334 int64_t BaseOffset, 335 bool HasBaseReg, int64_t Scale, 336 unsigned AddrSpace) const { 337 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 338 Scale, AddrSpace); 339 assert(Cost >= 0 && "TTI should not produce negative costs!"); 340 return Cost; 341 } 342 343 bool TargetTransformInfo::LSRWithInstrQueries() const { 344 return TTIImpl->LSRWithInstrQueries(); 345 } 346 347 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 348 return TTIImpl->isTruncateFree(Ty1, Ty2); 349 } 350 351 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 352 return TTIImpl->isProfitableToHoist(I); 353 } 354 355 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 356 357 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 358 return TTIImpl->isTypeLegal(Ty); 359 } 360 361 bool TargetTransformInfo::shouldBuildLookupTables() const { 362 return TTIImpl->shouldBuildLookupTables(); 363 } 364 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 365 Constant *C) const { 366 return TTIImpl->shouldBuildLookupTablesForConstant(C); 367 } 368 369 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 370 return TTIImpl->useColdCCForColdCall(F); 371 } 372 373 unsigned 374 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 375 const APInt &DemandedElts, 376 bool Insert, bool Extract) const { 377 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 378 } 379 380 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 381 ArrayRef<const Value *> Args, unsigned VF) const { 382 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 383 } 384 385 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 386 return TTIImpl->supportsEfficientVectorElementLoadStore(); 387 } 388 389 bool TargetTransformInfo::enableAggressiveInterleaving( 390 bool LoopHasReductions) const { 391 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 392 } 393 394 TargetTransformInfo::MemCmpExpansionOptions 395 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 396 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 397 } 398 399 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 400 return TTIImpl->enableInterleavedAccessVectorization(); 401 } 402 403 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 404 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 405 } 406 407 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 408 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 409 } 410 411 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 412 unsigned BitWidth, 413 unsigned AddressSpace, 414 unsigned Alignment, 415 bool *Fast) const { 416 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 417 AddressSpace, Alignment, Fast); 418 } 419 420 TargetTransformInfo::PopcntSupportKind 421 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 422 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 423 } 424 425 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 426 return TTIImpl->haveFastSqrt(Ty); 427 } 428 429 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 430 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 431 } 432 433 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 434 int Cost = TTIImpl->getFPOpCost(Ty); 435 assert(Cost >= 0 && "TTI should not produce negative costs!"); 436 return Cost; 437 } 438 439 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 440 const APInt &Imm, 441 Type *Ty) const { 442 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 443 assert(Cost >= 0 && "TTI should not produce negative costs!"); 444 return Cost; 445 } 446 447 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 448 TTI::TargetCostKind CostKind) const { 449 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 450 assert(Cost >= 0 && "TTI should not produce negative costs!"); 451 return Cost; 452 } 453 454 int 455 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 456 const APInt &Imm, Type *Ty, 457 TTI::TargetCostKind CostKind) const { 458 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 459 assert(Cost >= 0 && "TTI should not produce negative costs!"); 460 return Cost; 461 } 462 463 int 464 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 465 const APInt &Imm, Type *Ty, 466 TTI::TargetCostKind CostKind) const { 467 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 468 assert(Cost >= 0 && "TTI should not produce negative costs!"); 469 return Cost; 470 } 471 472 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 473 return TTIImpl->getNumberOfRegisters(ClassID); 474 } 475 476 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 477 Type *Ty) const { 478 return TTIImpl->getRegisterClassForType(Vector, Ty); 479 } 480 481 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 482 return TTIImpl->getRegisterClassName(ClassID); 483 } 484 485 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 486 return TTIImpl->getRegisterBitWidth(Vector); 487 } 488 489 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 490 return TTIImpl->getMinVectorRegisterBitWidth(); 491 } 492 493 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 494 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 495 } 496 497 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 498 return TTIImpl->getMinimumVF(ElemWidth); 499 } 500 501 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 502 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 503 return TTIImpl->shouldConsiderAddressTypePromotion( 504 I, AllowPromotionWithoutCommonHeader); 505 } 506 507 unsigned TargetTransformInfo::getCacheLineSize() const { 508 return TTIImpl->getCacheLineSize(); 509 } 510 511 llvm::Optional<unsigned> 512 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 513 return TTIImpl->getCacheSize(Level); 514 } 515 516 llvm::Optional<unsigned> 517 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 518 return TTIImpl->getCacheAssociativity(Level); 519 } 520 521 unsigned TargetTransformInfo::getPrefetchDistance() const { 522 return TTIImpl->getPrefetchDistance(); 523 } 524 525 unsigned TargetTransformInfo::getMinPrefetchStride( 526 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 527 unsigned NumPrefetches, bool HasCall) const { 528 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 529 NumPrefetches, HasCall); 530 } 531 532 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 533 return TTIImpl->getMaxPrefetchIterationsAhead(); 534 } 535 536 bool TargetTransformInfo::enableWritePrefetching() const { 537 return TTIImpl->enableWritePrefetching(); 538 } 539 540 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 541 return TTIImpl->getMaxInterleaveFactor(VF); 542 } 543 544 TargetTransformInfo::OperandValueKind 545 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 546 OperandValueKind OpInfo = OK_AnyValue; 547 OpProps = OP_None; 548 549 if (auto *CI = dyn_cast<ConstantInt>(V)) { 550 if (CI->getValue().isPowerOf2()) 551 OpProps = OP_PowerOf2; 552 return OK_UniformConstantValue; 553 } 554 555 // A broadcast shuffle creates a uniform value. 556 // TODO: Add support for non-zero index broadcasts. 557 // TODO: Add support for different source vector width. 558 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 559 if (ShuffleInst->isZeroEltSplat()) 560 OpInfo = OK_UniformValue; 561 562 const Value *Splat = getSplatValue(V); 563 564 // Check for a splat of a constant or for a non uniform vector of constants 565 // and check if the constant(s) are all powers of two. 566 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 567 OpInfo = OK_NonUniformConstantValue; 568 if (Splat) { 569 OpInfo = OK_UniformConstantValue; 570 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 571 if (CI->getValue().isPowerOf2()) 572 OpProps = OP_PowerOf2; 573 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 574 OpProps = OP_PowerOf2; 575 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 576 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 577 if (CI->getValue().isPowerOf2()) 578 continue; 579 OpProps = OP_None; 580 break; 581 } 582 } 583 } 584 585 // Check for a splat of a uniform value. This is not loop aware, so return 586 // true only for the obviously uniform cases (argument, globalvalue) 587 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 588 OpInfo = OK_UniformValue; 589 590 return OpInfo; 591 } 592 593 int TargetTransformInfo::getArithmeticInstrCost( 594 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 595 OperandValueKind Opd1Info, 596 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 597 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 598 const Instruction *CxtI) const { 599 int Cost = TTIImpl->getArithmeticInstrCost( 600 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 601 Args, CxtI); 602 assert(Cost >= 0 && "TTI should not produce negative costs!"); 603 return Cost; 604 } 605 606 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 607 int Index, VectorType *SubTp) const { 608 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 609 assert(Cost >= 0 && "TTI should not produce negative costs!"); 610 return Cost; 611 } 612 613 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 614 TTI::TargetCostKind CostKind, 615 const Instruction *I) const { 616 assert((I == nullptr || I->getOpcode() == Opcode) && 617 "Opcode should reflect passed instruction."); 618 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 619 assert(Cost >= 0 && "TTI should not produce negative costs!"); 620 return Cost; 621 } 622 623 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 624 VectorType *VecTy, 625 unsigned Index) const { 626 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 627 assert(Cost >= 0 && "TTI should not produce negative costs!"); 628 return Cost; 629 } 630 631 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 632 TTI::TargetCostKind CostKind) const { 633 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 634 assert(Cost >= 0 && "TTI should not produce negative costs!"); 635 return Cost; 636 } 637 638 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 639 Type *CondTy, 640 TTI::TargetCostKind CostKind, 641 const Instruction *I) const { 642 assert((I == nullptr || I->getOpcode() == Opcode) && 643 "Opcode should reflect passed instruction."); 644 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 645 assert(Cost >= 0 && "TTI should not produce negative costs!"); 646 return Cost; 647 } 648 649 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 650 unsigned Index) const { 651 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 652 assert(Cost >= 0 && "TTI should not produce negative costs!"); 653 return Cost; 654 } 655 656 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 657 MaybeAlign Alignment, 658 unsigned AddressSpace, 659 TTI::TargetCostKind CostKind, 660 const Instruction *I) const { 661 assert((I == nullptr || I->getOpcode() == Opcode) && 662 "Opcode should reflect passed instruction."); 663 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 664 CostKind, I); 665 assert(Cost >= 0 && "TTI should not produce negative costs!"); 666 return Cost; 667 } 668 669 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 670 unsigned Alignment, 671 unsigned AddressSpace, 672 TTI::TargetCostKind CostKind) const { 673 int Cost = 674 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 675 CostKind); 676 assert(Cost >= 0 && "TTI should not produce negative costs!"); 677 return Cost; 678 } 679 680 int TargetTransformInfo::getGatherScatterOpCost( 681 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 682 unsigned Alignment, TTI::TargetCostKind CostKind, 683 const Instruction *I) const { 684 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 685 Alignment, CostKind, I); 686 assert(Cost >= 0 && "TTI should not produce negative costs!"); 687 return Cost; 688 } 689 690 int TargetTransformInfo::getInterleavedMemoryOpCost( 691 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 692 unsigned Alignment, unsigned AddressSpace, 693 TTI::TargetCostKind CostKind, 694 bool UseMaskForCond, bool UseMaskForGaps) const { 695 int Cost = TTIImpl->getInterleavedMemoryOpCost( 696 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 697 UseMaskForCond, UseMaskForGaps); 698 assert(Cost >= 0 && "TTI should not produce negative costs!"); 699 return Cost; 700 } 701 702 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 703 ArrayRef<Type *> Tys, 704 FastMathFlags FMF, 705 unsigned ScalarizationCostPassed, 706 TTI::TargetCostKind CostKind, 707 const Instruction *I) const { 708 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 709 ScalarizationCostPassed, CostKind, 710 I); 711 assert(Cost >= 0 && "TTI should not produce negative costs!"); 712 return Cost; 713 } 714 715 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 716 ArrayRef<Value *> Args, 717 FastMathFlags FMF, unsigned VF, 718 TTI::TargetCostKind CostKind, 719 const Instruction *I) const { 720 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, 721 CostKind, I); 722 assert(Cost >= 0 && "TTI should not produce negative costs!"); 723 return Cost; 724 } 725 726 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 727 ArrayRef<Type *> Tys, 728 TTI::TargetCostKind CostKind) const { 729 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 730 assert(Cost >= 0 && "TTI should not produce negative costs!"); 731 return Cost; 732 } 733 734 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 735 return TTIImpl->getNumberOfParts(Tp); 736 } 737 738 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 739 ScalarEvolution *SE, 740 const SCEV *Ptr) const { 741 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 742 assert(Cost >= 0 && "TTI should not produce negative costs!"); 743 return Cost; 744 } 745 746 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 747 int Cost = TTIImpl->getMemcpyCost(I); 748 assert(Cost >= 0 && "TTI should not produce negative costs!"); 749 return Cost; 750 } 751 752 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 753 VectorType *Ty, 754 bool IsPairwiseForm, 755 TTI::TargetCostKind CostKind) const { 756 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 757 CostKind); 758 assert(Cost >= 0 && "TTI should not produce negative costs!"); 759 return Cost; 760 } 761 762 int TargetTransformInfo::getMinMaxReductionCost( 763 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 764 TTI::TargetCostKind CostKind) const { 765 int Cost = 766 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 767 CostKind); 768 assert(Cost >= 0 && "TTI should not produce negative costs!"); 769 return Cost; 770 } 771 772 unsigned 773 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 774 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 775 } 776 777 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 778 MemIntrinsicInfo &Info) const { 779 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 780 } 781 782 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 783 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 784 } 785 786 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 787 IntrinsicInst *Inst, Type *ExpectedType) const { 788 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 789 } 790 791 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 792 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 793 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 794 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 795 DestAddrSpace, SrcAlign, DestAlign); 796 } 797 798 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 799 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 800 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 801 unsigned SrcAlign, unsigned DestAlign) const { 802 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 803 SrcAddrSpace, DestAddrSpace, 804 SrcAlign, DestAlign); 805 } 806 807 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 808 const Function *Callee) const { 809 return TTIImpl->areInlineCompatible(Caller, Callee); 810 } 811 812 bool TargetTransformInfo::areFunctionArgsABICompatible( 813 const Function *Caller, const Function *Callee, 814 SmallPtrSetImpl<Argument *> &Args) const { 815 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 816 } 817 818 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 819 Type *Ty) const { 820 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 821 } 822 823 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 824 Type *Ty) const { 825 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 826 } 827 828 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 829 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 830 } 831 832 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 833 return TTIImpl->isLegalToVectorizeLoad(LI); 834 } 835 836 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 837 return TTIImpl->isLegalToVectorizeStore(SI); 838 } 839 840 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 841 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 842 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 843 AddrSpace); 844 } 845 846 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 847 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 848 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 849 AddrSpace); 850 } 851 852 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 853 unsigned LoadSize, 854 unsigned ChainSizeInBytes, 855 VectorType *VecTy) const { 856 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 857 } 858 859 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 860 unsigned StoreSize, 861 unsigned ChainSizeInBytes, 862 VectorType *VecTy) const { 863 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 864 } 865 866 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 867 ReductionFlags Flags) const { 868 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 869 } 870 871 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 872 return TTIImpl->shouldExpandReduction(II); 873 } 874 875 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 876 return TTIImpl->getGISelRematGlobalCost(); 877 } 878 879 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 880 return TTIImpl->getInstructionLatency(I); 881 } 882 883 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 884 unsigned Level) { 885 // We don't need a shuffle if we just want to have element 0 in position 0 of 886 // the vector. 887 if (!SI && Level == 0 && IsLeft) 888 return true; 889 else if (!SI) 890 return false; 891 892 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 893 894 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 895 // we look at the left or right side. 896 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 897 Mask[i] = val; 898 899 ArrayRef<int> ActualMask = SI->getShuffleMask(); 900 return Mask == ActualMask; 901 } 902 903 namespace { 904 /// Kind of the reduction data. 905 enum ReductionKind { 906 RK_None, /// Not a reduction. 907 RK_Arithmetic, /// Binary reduction data. 908 RK_MinMax, /// Min/max reduction data. 909 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 910 }; 911 /// Contains opcode + LHS/RHS parts of the reduction operations. 912 struct ReductionData { 913 ReductionData() = delete; 914 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 915 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 916 assert(Kind != RK_None && "expected binary or min/max reduction only."); 917 } 918 unsigned Opcode = 0; 919 Value *LHS = nullptr; 920 Value *RHS = nullptr; 921 ReductionKind Kind = RK_None; 922 bool hasSameData(ReductionData &RD) const { 923 return Kind == RD.Kind && Opcode == RD.Opcode; 924 } 925 }; 926 } // namespace 927 928 static Optional<ReductionData> getReductionData(Instruction *I) { 929 Value *L, *R; 930 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 931 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 932 if (auto *SI = dyn_cast<SelectInst>(I)) { 933 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 934 m_SMax(m_Value(L), m_Value(R)).match(SI) || 935 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 936 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 937 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 938 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 939 auto *CI = cast<CmpInst>(SI->getCondition()); 940 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 941 } 942 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 943 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 944 auto *CI = cast<CmpInst>(SI->getCondition()); 945 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 946 } 947 } 948 return llvm::None; 949 } 950 951 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 952 unsigned Level, 953 unsigned NumLevels) { 954 // Match one level of pairwise operations. 955 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 956 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 957 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 958 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 959 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 960 if (!I) 961 return RK_None; 962 963 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 964 965 Optional<ReductionData> RD = getReductionData(I); 966 if (!RD) 967 return RK_None; 968 969 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 970 if (!LS && Level) 971 return RK_None; 972 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 973 if (!RS && Level) 974 return RK_None; 975 976 // On level 0 we can omit one shufflevector instruction. 977 if (!Level && !RS && !LS) 978 return RK_None; 979 980 // Shuffle inputs must match. 981 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 982 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 983 Value *NextLevelOp = nullptr; 984 if (NextLevelOpR && NextLevelOpL) { 985 // If we have two shuffles their operands must match. 986 if (NextLevelOpL != NextLevelOpR) 987 return RK_None; 988 989 NextLevelOp = NextLevelOpL; 990 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 991 // On the first level we can omit the shufflevector <0, undef,...>. So the 992 // input to the other shufflevector <1, undef> must match with one of the 993 // inputs to the current binary operation. 994 // Example: 995 // %NextLevelOpL = shufflevector %R, <1, undef ...> 996 // %BinOp = fadd %NextLevelOpL, %R 997 if (NextLevelOpL && NextLevelOpL != RD->RHS) 998 return RK_None; 999 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1000 return RK_None; 1001 1002 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1003 } else 1004 return RK_None; 1005 1006 // Check that the next levels binary operation exists and matches with the 1007 // current one. 1008 if (Level + 1 != NumLevels) { 1009 Optional<ReductionData> NextLevelRD = 1010 getReductionData(cast<Instruction>(NextLevelOp)); 1011 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1012 return RK_None; 1013 } 1014 1015 // Shuffle mask for pairwise operation must match. 1016 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1017 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1018 return RK_None; 1019 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1020 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1021 return RK_None; 1022 } else { 1023 return RK_None; 1024 } 1025 1026 if (++Level == NumLevels) 1027 return RD->Kind; 1028 1029 // Match next level. 1030 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1031 NumLevels); 1032 } 1033 1034 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1035 unsigned &Opcode, 1036 VectorType *&Ty) { 1037 if (!EnableReduxCost) 1038 return RK_None; 1039 1040 // Need to extract the first element. 1041 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1042 unsigned Idx = ~0u; 1043 if (CI) 1044 Idx = CI->getZExtValue(); 1045 if (Idx != 0) 1046 return RK_None; 1047 1048 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1049 if (!RdxStart) 1050 return RK_None; 1051 Optional<ReductionData> RD = getReductionData(RdxStart); 1052 if (!RD) 1053 return RK_None; 1054 1055 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1056 unsigned NumVecElems = VecTy->getNumElements(); 1057 if (!isPowerOf2_32(NumVecElems)) 1058 return RK_None; 1059 1060 // We look for a sequence of shuffle,shuffle,add triples like the following 1061 // that builds a pairwise reduction tree. 1062 // 1063 // (X0, X1, X2, X3) 1064 // (X0 + X1, X2 + X3, undef, undef) 1065 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1066 // 1067 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1068 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1069 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1070 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1071 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1072 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1073 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1074 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1075 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1076 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1077 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1078 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1079 RK_None) 1080 return RK_None; 1081 1082 Opcode = RD->Opcode; 1083 Ty = VecTy; 1084 1085 return RD->Kind; 1086 } 1087 1088 static std::pair<Value *, ShuffleVectorInst *> 1089 getShuffleAndOtherOprd(Value *L, Value *R) { 1090 ShuffleVectorInst *S = nullptr; 1091 1092 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1093 return std::make_pair(R, S); 1094 1095 S = dyn_cast<ShuffleVectorInst>(R); 1096 return std::make_pair(L, S); 1097 } 1098 1099 static ReductionKind 1100 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1101 unsigned &Opcode, VectorType *&Ty) { 1102 if (!EnableReduxCost) 1103 return RK_None; 1104 1105 // Need to extract the first element. 1106 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1107 unsigned Idx = ~0u; 1108 if (CI) 1109 Idx = CI->getZExtValue(); 1110 if (Idx != 0) 1111 return RK_None; 1112 1113 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1114 if (!RdxStart) 1115 return RK_None; 1116 Optional<ReductionData> RD = getReductionData(RdxStart); 1117 if (!RD) 1118 return RK_None; 1119 1120 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1121 unsigned NumVecElems = VecTy->getNumElements(); 1122 if (!isPowerOf2_32(NumVecElems)) 1123 return RK_None; 1124 1125 // We look for a sequence of shuffles and adds like the following matching one 1126 // fadd, shuffle vector pair at a time. 1127 // 1128 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1129 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1130 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1131 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1132 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1133 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1134 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1135 1136 unsigned MaskStart = 1; 1137 Instruction *RdxOp = RdxStart; 1138 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1139 unsigned NumVecElemsRemain = NumVecElems; 1140 while (NumVecElemsRemain - 1) { 1141 // Check for the right reduction operation. 1142 if (!RdxOp) 1143 return RK_None; 1144 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1145 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1146 return RK_None; 1147 1148 Value *NextRdxOp; 1149 ShuffleVectorInst *Shuffle; 1150 std::tie(NextRdxOp, Shuffle) = 1151 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1152 1153 // Check the current reduction operation and the shuffle use the same value. 1154 if (Shuffle == nullptr) 1155 return RK_None; 1156 if (Shuffle->getOperand(0) != NextRdxOp) 1157 return RK_None; 1158 1159 // Check that shuffle masks matches. 1160 for (unsigned j = 0; j != MaskStart; ++j) 1161 ShuffleMask[j] = MaskStart + j; 1162 // Fill the rest of the mask with -1 for undef. 1163 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1164 1165 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1166 if (ShuffleMask != Mask) 1167 return RK_None; 1168 1169 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1170 NumVecElemsRemain /= 2; 1171 MaskStart *= 2; 1172 } 1173 1174 Opcode = RD->Opcode; 1175 Ty = VecTy; 1176 return RD->Kind; 1177 } 1178 1179 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1180 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1181 1182 switch (I->getOpcode()) { 1183 case Instruction::GetElementPtr: 1184 return getUserCost(I, CostKind); 1185 1186 case Instruction::Ret: 1187 case Instruction::PHI: 1188 case Instruction::Br: { 1189 return getCFInstrCost(I->getOpcode(), CostKind); 1190 } 1191 case Instruction::Add: 1192 case Instruction::FAdd: 1193 case Instruction::Sub: 1194 case Instruction::FSub: 1195 case Instruction::Mul: 1196 case Instruction::FMul: 1197 case Instruction::UDiv: 1198 case Instruction::SDiv: 1199 case Instruction::FDiv: 1200 case Instruction::URem: 1201 case Instruction::SRem: 1202 case Instruction::FRem: 1203 case Instruction::Shl: 1204 case Instruction::LShr: 1205 case Instruction::AShr: 1206 case Instruction::And: 1207 case Instruction::Or: 1208 case Instruction::Xor: { 1209 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1210 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1211 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1212 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1213 SmallVector<const Value *, 2> Operands(I->operand_values()); 1214 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1215 Op1VK, Op2VK, 1216 Op1VP, Op2VP, Operands, I); 1217 } 1218 case Instruction::FNeg: { 1219 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1220 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1221 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1222 Op2VK = OK_AnyValue; 1223 Op2VP = OP_None; 1224 SmallVector<const Value *, 2> Operands(I->operand_values()); 1225 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1226 Op1VK, Op2VK, 1227 Op1VP, Op2VP, Operands, I); 1228 } 1229 case Instruction::Select: { 1230 const SelectInst *SI = cast<SelectInst>(I); 1231 Type *CondTy = SI->getCondition()->getType(); 1232 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, 1233 CostKind, I); 1234 } 1235 case Instruction::ICmp: 1236 case Instruction::FCmp: { 1237 Type *ValTy = I->getOperand(0)->getType(); 1238 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), 1239 CostKind, I); 1240 } 1241 case Instruction::Store: { 1242 const StoreInst *SI = cast<StoreInst>(I); 1243 Type *ValTy = SI->getValueOperand()->getType(); 1244 return getMemoryOpCost(I->getOpcode(), ValTy, 1245 MaybeAlign(SI->getAlignment()), 1246 SI->getPointerAddressSpace(), CostKind, I); 1247 } 1248 case Instruction::Load: { 1249 const LoadInst *LI = cast<LoadInst>(I); 1250 return getMemoryOpCost(I->getOpcode(), I->getType(), 1251 MaybeAlign(LI->getAlignment()), 1252 LI->getPointerAddressSpace(), CostKind, I); 1253 } 1254 case Instruction::ZExt: 1255 case Instruction::SExt: 1256 case Instruction::FPToUI: 1257 case Instruction::FPToSI: 1258 case Instruction::FPExt: 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 case Instruction::SIToFP: 1262 case Instruction::UIToFP: 1263 case Instruction::Trunc: 1264 case Instruction::FPTrunc: 1265 case Instruction::BitCast: 1266 case Instruction::AddrSpaceCast: { 1267 Type *SrcTy = I->getOperand(0)->getType(); 1268 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, CostKind, I); 1269 } 1270 case Instruction::ExtractElement: { 1271 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1272 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1273 unsigned Idx = -1; 1274 if (CI) 1275 Idx = CI->getZExtValue(); 1276 1277 // Try to match a reduction sequence (series of shufflevector and vector 1278 // adds followed by a extractelement). 1279 unsigned ReduxOpCode; 1280 VectorType *ReduxType; 1281 1282 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1283 case RK_Arithmetic: 1284 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1285 /*IsPairwiseForm=*/false, 1286 CostKind); 1287 case RK_MinMax: 1288 return getMinMaxReductionCost( 1289 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1290 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1291 case RK_UnsignedMinMax: 1292 return getMinMaxReductionCost( 1293 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1294 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1295 case RK_None: 1296 break; 1297 } 1298 1299 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1300 case RK_Arithmetic: 1301 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1302 /*IsPairwiseForm=*/true, CostKind); 1303 case RK_MinMax: 1304 return getMinMaxReductionCost( 1305 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1306 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1307 case RK_UnsignedMinMax: 1308 return getMinMaxReductionCost( 1309 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1310 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1311 case RK_None: 1312 break; 1313 } 1314 1315 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1316 Idx); 1317 } 1318 case Instruction::InsertElement: { 1319 const InsertElementInst *IE = cast<InsertElementInst>(I); 1320 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1321 unsigned Idx = -1; 1322 if (CI) 1323 Idx = CI->getZExtValue(); 1324 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1325 } 1326 case Instruction::ExtractValue: 1327 return 0; // Model all ExtractValue nodes as free. 1328 case Instruction::ShuffleVector: { 1329 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1330 auto *Ty = cast<VectorType>(Shuffle->getType()); 1331 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1332 1333 // TODO: Identify and add costs for insert subvector, etc. 1334 int SubIndex; 1335 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1336 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1337 1338 if (Shuffle->changesLength()) 1339 return -1; 1340 1341 if (Shuffle->isIdentity()) 1342 return 0; 1343 1344 if (Shuffle->isReverse()) 1345 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1346 1347 if (Shuffle->isSelect()) 1348 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1349 1350 if (Shuffle->isTranspose()) 1351 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1352 1353 if (Shuffle->isZeroEltSplat()) 1354 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1355 1356 if (Shuffle->isSingleSource()) 1357 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1358 1359 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1360 } 1361 case Instruction::Call: 1362 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1363 SmallVector<Value *, 4> Args(II->arg_operands()); 1364 1365 FastMathFlags FMF; 1366 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1367 FMF = FPMO->getFastMathFlags(); 1368 1369 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 1370 FMF, 1, CostKind, II); 1371 } 1372 return -1; 1373 default: 1374 // We don't have any information on this instruction. 1375 return -1; 1376 } 1377 } 1378 1379 TargetTransformInfo::Concept::~Concept() {} 1380 1381 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1382 1383 TargetIRAnalysis::TargetIRAnalysis( 1384 std::function<Result(const Function &)> TTICallback) 1385 : TTICallback(std::move(TTICallback)) {} 1386 1387 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1388 FunctionAnalysisManager &) { 1389 return TTICallback(F); 1390 } 1391 1392 AnalysisKey TargetIRAnalysis::Key; 1393 1394 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1395 return Result(F.getParent()->getDataLayout()); 1396 } 1397 1398 // Register the basic pass. 1399 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1400 "Target Transform Information", false, true) 1401 char TargetTransformInfoWrapperPass::ID = 0; 1402 1403 void TargetTransformInfoWrapperPass::anchor() {} 1404 1405 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1406 : ImmutablePass(ID) { 1407 initializeTargetTransformInfoWrapperPassPass( 1408 *PassRegistry::getPassRegistry()); 1409 } 1410 1411 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1412 TargetIRAnalysis TIRA) 1413 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1414 initializeTargetTransformInfoWrapperPassPass( 1415 *PassRegistry::getPassRegistry()); 1416 } 1417 1418 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1419 FunctionAnalysisManager DummyFAM; 1420 TTI = TIRA.run(F, DummyFAM); 1421 return *TTI; 1422 } 1423 1424 ImmutablePass * 1425 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1426 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1427 } 1428