1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/CallSite.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 58 LoopInfo &LI, DominatorTree &DT, 59 bool ForceNestedLoop, 60 bool ForceHardwareLoopPHI) { 61 SmallVector<BasicBlock *, 4> ExitingBlocks; 62 L->getExitingBlocks(ExitingBlocks); 63 64 for (BasicBlock *BB : ExitingBlocks) { 65 // If we pass the updated counter back through a phi, we need to know 66 // which latch the updated value will be coming from. 67 if (!L->isLoopLatch(BB)) { 68 if (ForceHardwareLoopPHI || CounterInReg) 69 continue; 70 } 71 72 const SCEV *EC = SE.getExitCount(L, BB); 73 if (isa<SCEVCouldNotCompute>(EC)) 74 continue; 75 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 76 if (ConstEC->getValue()->isZero()) 77 continue; 78 } else if (!SE.isLoopInvariant(EC, L)) 79 continue; 80 81 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 82 continue; 83 84 // If this exiting block is contained in a nested loop, it is not eligible 85 // for insertion of the branch-and-decrement since the inner loop would 86 // end up messing up the value in the CTR. 87 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 88 continue; 89 90 // We now have a loop-invariant count of loop iterations (which is not the 91 // constant zero) for which we know that this loop will not exit via this 92 // existing block. 93 94 // We need to make sure that this block will run on every loop iteration. 95 // For this to be true, we must dominate all blocks with backedges. Such 96 // blocks are in-loop predecessors to the header block. 97 bool NotAlways = false; 98 for (BasicBlock *Pred : predecessors(L->getHeader())) { 99 if (!L->contains(Pred)) 100 continue; 101 102 if (!DT.dominates(BB, Pred)) { 103 NotAlways = true; 104 break; 105 } 106 } 107 108 if (NotAlways) 109 continue; 110 111 // Make sure this blocks ends with a conditional branch. 112 Instruction *TI = BB->getTerminator(); 113 if (!TI) 114 continue; 115 116 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 117 if (!BI->isConditional()) 118 continue; 119 120 ExitBranch = BI; 121 } else 122 continue; 123 124 // Note that this block may not be the loop latch block, even if the loop 125 // has a latch block. 126 ExitBlock = BB; 127 ExitCount = EC; 128 break; 129 } 130 131 if (!ExitBlock) 132 return false; 133 return true; 134 } 135 136 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 137 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 138 139 TargetTransformInfo::~TargetTransformInfo() {} 140 141 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 142 : TTIImpl(std::move(Arg.TTIImpl)) {} 143 144 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 145 TTIImpl = std::move(RHS.TTIImpl); 146 return *this; 147 } 148 149 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 150 Type *OpTy) const { 151 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 152 assert(Cost >= 0 && "TTI should not produce negative costs!"); 153 return Cost; 154 } 155 156 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 157 return TTIImpl->getInliningThresholdMultiplier(); 158 } 159 160 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 161 return TTIImpl->getInlinerVectorBonusPercent(); 162 } 163 164 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 165 ArrayRef<const Value *> Operands) const { 166 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 167 } 168 169 int TargetTransformInfo::getExtCost(const Instruction *I, 170 const Value *Src) const { 171 return TTIImpl->getExtCost(I, Src); 172 } 173 174 int TargetTransformInfo::getIntrinsicCost( 175 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 176 const User *U) const { 177 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 178 assert(Cost >= 0 && "TTI should not produce negative costs!"); 179 return Cost; 180 } 181 182 unsigned 183 TargetTransformInfo::getEstimatedNumberOfCaseClusters( 184 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 185 BlockFrequencyInfo *BFI) const { 186 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 187 } 188 189 int TargetTransformInfo::getUserCost(const User *U, 190 ArrayRef<const Value *> Operands) const { 191 int Cost = TTIImpl->getUserCost(U, Operands); 192 assert(Cost >= 0 && "TTI should not produce negative costs!"); 193 return Cost; 194 } 195 196 bool TargetTransformInfo::hasBranchDivergence() const { 197 return TTIImpl->hasBranchDivergence(); 198 } 199 200 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 201 return TTIImpl->useGPUDivergenceAnalysis(); 202 } 203 204 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 205 return TTIImpl->isSourceOfDivergence(V); 206 } 207 208 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 209 return TTIImpl->isAlwaysUniform(V); 210 } 211 212 unsigned TargetTransformInfo::getFlatAddressSpace() const { 213 return TTIImpl->getFlatAddressSpace(); 214 } 215 216 bool TargetTransformInfo::collectFlatAddressOperands( 217 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 218 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 219 } 220 221 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 222 IntrinsicInst *II, Value *OldV, Value *NewV) const { 223 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 224 } 225 226 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 227 return TTIImpl->isLoweredToCall(F); 228 } 229 230 bool TargetTransformInfo::isHardwareLoopProfitable( 231 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 232 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 233 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 234 } 235 236 bool TargetTransformInfo::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 237 ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, 238 DominatorTree *DT, const LoopAccessInfo *LAI) const { 239 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 240 } 241 242 void TargetTransformInfo::getUnrollingPreferences( 243 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 244 return TTIImpl->getUnrollingPreferences(L, SE, UP); 245 } 246 247 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 248 return TTIImpl->isLegalAddImmediate(Imm); 249 } 250 251 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 252 return TTIImpl->isLegalICmpImmediate(Imm); 253 } 254 255 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 256 int64_t BaseOffset, 257 bool HasBaseReg, 258 int64_t Scale, 259 unsigned AddrSpace, 260 Instruction *I) const { 261 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 262 Scale, AddrSpace, I); 263 } 264 265 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 266 return TTIImpl->isLSRCostLess(C1, C2); 267 } 268 269 bool TargetTransformInfo::canMacroFuseCmp() const { 270 return TTIImpl->canMacroFuseCmp(); 271 } 272 273 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 274 ScalarEvolution *SE, LoopInfo *LI, 275 DominatorTree *DT, AssumptionCache *AC, 276 TargetLibraryInfo *LibInfo) const { 277 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 278 } 279 280 bool TargetTransformInfo::shouldFavorPostInc() const { 281 return TTIImpl->shouldFavorPostInc(); 282 } 283 284 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 285 return TTIImpl->shouldFavorBackedgeIndex(L); 286 } 287 288 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 289 MaybeAlign Alignment) const { 290 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 291 } 292 293 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 294 MaybeAlign Alignment) const { 295 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 296 } 297 298 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 299 Align Alignment) const { 300 return TTIImpl->isLegalNTStore(DataType, Alignment); 301 } 302 303 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 304 return TTIImpl->isLegalNTLoad(DataType, Alignment); 305 } 306 307 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 308 MaybeAlign Alignment) const { 309 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 310 } 311 312 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 313 MaybeAlign Alignment) const { 314 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 315 } 316 317 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 318 return TTIImpl->isLegalMaskedCompressStore(DataType); 319 } 320 321 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 322 return TTIImpl->isLegalMaskedExpandLoad(DataType); 323 } 324 325 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 326 return TTIImpl->hasDivRemOp(DataType, IsSigned); 327 } 328 329 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 330 unsigned AddrSpace) const { 331 return TTIImpl->hasVolatileVariant(I, AddrSpace); 332 } 333 334 bool TargetTransformInfo::prefersVectorizedAddressing() const { 335 return TTIImpl->prefersVectorizedAddressing(); 336 } 337 338 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 339 int64_t BaseOffset, 340 bool HasBaseReg, 341 int64_t Scale, 342 unsigned AddrSpace) const { 343 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 344 Scale, AddrSpace); 345 assert(Cost >= 0 && "TTI should not produce negative costs!"); 346 return Cost; 347 } 348 349 bool TargetTransformInfo::LSRWithInstrQueries() const { 350 return TTIImpl->LSRWithInstrQueries(); 351 } 352 353 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 354 return TTIImpl->isTruncateFree(Ty1, Ty2); 355 } 356 357 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 358 return TTIImpl->isProfitableToHoist(I); 359 } 360 361 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 362 363 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 364 return TTIImpl->isTypeLegal(Ty); 365 } 366 367 bool TargetTransformInfo::shouldBuildLookupTables() const { 368 return TTIImpl->shouldBuildLookupTables(); 369 } 370 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 371 return TTIImpl->shouldBuildLookupTablesForConstant(C); 372 } 373 374 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 375 return TTIImpl->useColdCCForColdCall(F); 376 } 377 378 unsigned TargetTransformInfo:: 379 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 380 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 381 } 382 383 unsigned TargetTransformInfo:: 384 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 385 unsigned VF) const { 386 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 387 } 388 389 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 390 return TTIImpl->supportsEfficientVectorElementLoadStore(); 391 } 392 393 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 394 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 395 } 396 397 TargetTransformInfo::MemCmpExpansionOptions 398 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 399 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 400 } 401 402 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 403 return TTIImpl->enableInterleavedAccessVectorization(); 404 } 405 406 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 407 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 408 } 409 410 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 411 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 412 } 413 414 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 415 unsigned BitWidth, 416 unsigned AddressSpace, 417 unsigned Alignment, 418 bool *Fast) const { 419 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 420 Alignment, Fast); 421 } 422 423 TargetTransformInfo::PopcntSupportKind 424 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 425 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 426 } 427 428 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 429 return TTIImpl->haveFastSqrt(Ty); 430 } 431 432 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 433 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 434 } 435 436 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 437 int Cost = TTIImpl->getFPOpCost(Ty); 438 assert(Cost >= 0 && "TTI should not produce negative costs!"); 439 return Cost; 440 } 441 442 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 443 const APInt &Imm, 444 Type *Ty) const { 445 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 446 assert(Cost >= 0 && "TTI should not produce negative costs!"); 447 return Cost; 448 } 449 450 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 451 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 452 assert(Cost >= 0 && "TTI should not produce negative costs!"); 453 return Cost; 454 } 455 456 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 457 const APInt &Imm, Type *Ty) const { 458 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty); 459 assert(Cost >= 0 && "TTI should not produce negative costs!"); 460 return Cost; 461 } 462 463 int TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 464 const APInt &Imm, Type *Ty) const { 465 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty); 466 assert(Cost >= 0 && "TTI should not produce negative costs!"); 467 return Cost; 468 } 469 470 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 471 return TTIImpl->getNumberOfRegisters(ClassID); 472 } 473 474 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const { 475 return TTIImpl->getRegisterClassForType(Vector, Ty); 476 } 477 478 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 479 return TTIImpl->getRegisterClassName(ClassID); 480 } 481 482 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 483 return TTIImpl->getRegisterBitWidth(Vector); 484 } 485 486 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 487 return TTIImpl->getMinVectorRegisterBitWidth(); 488 } 489 490 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 491 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 492 } 493 494 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 495 return TTIImpl->getMinimumVF(ElemWidth); 496 } 497 498 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 499 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 500 return TTIImpl->shouldConsiderAddressTypePromotion( 501 I, AllowPromotionWithoutCommonHeader); 502 } 503 504 unsigned TargetTransformInfo::getCacheLineSize() const { 505 return TTIImpl->getCacheLineSize(); 506 } 507 508 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 509 const { 510 return TTIImpl->getCacheSize(Level); 511 } 512 513 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 514 CacheLevel Level) const { 515 return TTIImpl->getCacheAssociativity(Level); 516 } 517 518 unsigned TargetTransformInfo::getPrefetchDistance() const { 519 return TTIImpl->getPrefetchDistance(); 520 } 521 522 unsigned TargetTransformInfo::getMinPrefetchStride(unsigned NumMemAccesses, 523 unsigned NumStridedMemAccesses, 524 unsigned NumPrefetches, 525 bool HasCall) const { 526 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 527 NumPrefetches, HasCall); 528 } 529 530 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 531 return TTIImpl->getMaxPrefetchIterationsAhead(); 532 } 533 534 bool TargetTransformInfo::enableWritePrefetching() const { 535 return TTIImpl->enableWritePrefetching(); 536 } 537 538 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 539 return TTIImpl->getMaxInterleaveFactor(VF); 540 } 541 542 TargetTransformInfo::OperandValueKind 543 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 544 OperandValueKind OpInfo = OK_AnyValue; 545 OpProps = OP_None; 546 547 if (auto *CI = dyn_cast<ConstantInt>(V)) { 548 if (CI->getValue().isPowerOf2()) 549 OpProps = OP_PowerOf2; 550 return OK_UniformConstantValue; 551 } 552 553 // A broadcast shuffle creates a uniform value. 554 // TODO: Add support for non-zero index broadcasts. 555 // TODO: Add support for different source vector width. 556 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 557 if (ShuffleInst->isZeroEltSplat()) 558 OpInfo = OK_UniformValue; 559 560 const Value *Splat = getSplatValue(V); 561 562 // Check for a splat of a constant or for a non uniform vector of constants 563 // and check if the constant(s) are all powers of two. 564 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 565 OpInfo = OK_NonUniformConstantValue; 566 if (Splat) { 567 OpInfo = OK_UniformConstantValue; 568 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 569 if (CI->getValue().isPowerOf2()) 570 OpProps = OP_PowerOf2; 571 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 572 OpProps = OP_PowerOf2; 573 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 574 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 575 if (CI->getValue().isPowerOf2()) 576 continue; 577 OpProps = OP_None; 578 break; 579 } 580 } 581 } 582 583 // Check for a splat of a uniform value. This is not loop aware, so return 584 // true only for the obviously uniform cases (argument, globalvalue) 585 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 586 OpInfo = OK_UniformValue; 587 588 return OpInfo; 589 } 590 591 int TargetTransformInfo::getArithmeticInstrCost( 592 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 593 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 594 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 595 const Instruction *CxtI) const { 596 int Cost = TTIImpl->getArithmeticInstrCost( 597 Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); 598 assert(Cost >= 0 && "TTI should not produce negative costs!"); 599 return Cost; 600 } 601 602 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 603 Type *SubTp) const { 604 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 605 assert(Cost >= 0 && "TTI should not produce negative costs!"); 606 return Cost; 607 } 608 609 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 610 Type *Src, const Instruction *I) const { 611 assert ((I == nullptr || I->getOpcode() == Opcode) && 612 "Opcode should reflect passed instruction."); 613 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 614 assert(Cost >= 0 && "TTI should not produce negative costs!"); 615 return Cost; 616 } 617 618 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 619 VectorType *VecTy, 620 unsigned Index) const { 621 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 622 assert(Cost >= 0 && "TTI should not produce negative costs!"); 623 return Cost; 624 } 625 626 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 627 int Cost = TTIImpl->getCFInstrCost(Opcode); 628 assert(Cost >= 0 && "TTI should not produce negative costs!"); 629 return Cost; 630 } 631 632 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 633 Type *CondTy, const Instruction *I) const { 634 assert ((I == nullptr || I->getOpcode() == Opcode) && 635 "Opcode should reflect passed instruction."); 636 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 637 assert(Cost >= 0 && "TTI should not produce negative costs!"); 638 return Cost; 639 } 640 641 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 642 unsigned Index) const { 643 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 644 assert(Cost >= 0 && "TTI should not produce negative costs!"); 645 return Cost; 646 } 647 648 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 649 MaybeAlign Alignment, 650 unsigned AddressSpace, 651 const Instruction *I) const { 652 assert ((I == nullptr || I->getOpcode() == Opcode) && 653 "Opcode should reflect passed instruction."); 654 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 655 assert(Cost >= 0 && "TTI should not produce negative costs!"); 656 return Cost; 657 } 658 659 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 660 unsigned Alignment, 661 unsigned AddressSpace) const { 662 int Cost = 663 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 664 assert(Cost >= 0 && "TTI should not produce negative costs!"); 665 return Cost; 666 } 667 668 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 669 Value *Ptr, bool VariableMask, 670 unsigned Alignment, 671 const Instruction *I) const { 672 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 673 Alignment, I); 674 assert(Cost >= 0 && "TTI should not produce negative costs!"); 675 return Cost; 676 } 677 678 int TargetTransformInfo::getInterleavedMemoryOpCost( 679 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 680 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 681 bool UseMaskForGaps) const { 682 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 683 Alignment, AddressSpace, 684 UseMaskForCond, 685 UseMaskForGaps); 686 assert(Cost >= 0 && "TTI should not produce negative costs!"); 687 return Cost; 688 } 689 690 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 691 ArrayRef<Type *> Tys, 692 FastMathFlags FMF, 693 unsigned ScalarizationCostPassed, 694 const Instruction *I) const { 695 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 696 ScalarizationCostPassed, I); 697 assert(Cost >= 0 && "TTI should not produce negative costs!"); 698 return Cost; 699 } 700 701 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 702 ArrayRef<Value *> Args, 703 FastMathFlags FMF, unsigned VF, 704 const Instruction *I) const { 705 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 706 assert(Cost >= 0 && "TTI should not produce negative costs!"); 707 return Cost; 708 } 709 710 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 711 ArrayRef<Type *> Tys) const { 712 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 713 assert(Cost >= 0 && "TTI should not produce negative costs!"); 714 return Cost; 715 } 716 717 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 718 return TTIImpl->getNumberOfParts(Tp); 719 } 720 721 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 722 ScalarEvolution *SE, 723 const SCEV *Ptr) const { 724 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 725 assert(Cost >= 0 && "TTI should not produce negative costs!"); 726 return Cost; 727 } 728 729 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 730 int Cost = TTIImpl->getMemcpyCost(I); 731 assert(Cost >= 0 && "TTI should not produce negative costs!"); 732 return Cost; 733 } 734 735 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 736 bool IsPairwiseForm) const { 737 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 738 assert(Cost >= 0 && "TTI should not produce negative costs!"); 739 return Cost; 740 } 741 742 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 743 bool IsPairwiseForm, 744 bool IsUnsigned) const { 745 int Cost = 746 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 747 assert(Cost >= 0 && "TTI should not produce negative costs!"); 748 return Cost; 749 } 750 751 unsigned 752 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 753 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 754 } 755 756 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 757 MemIntrinsicInfo &Info) const { 758 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 759 } 760 761 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 762 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 763 } 764 765 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 766 IntrinsicInst *Inst, Type *ExpectedType) const { 767 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 768 } 769 770 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 771 Value *Length, 772 unsigned SrcAddrSpace, 773 unsigned DestAddrSpace, 774 unsigned SrcAlign, 775 unsigned DestAlign) const { 776 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 777 DestAddrSpace, SrcAlign, 778 DestAlign); 779 } 780 781 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 782 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 783 unsigned RemainingBytes, 784 unsigned SrcAddrSpace, 785 unsigned DestAddrSpace, 786 unsigned SrcAlign, unsigned DestAlign) const { 787 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 788 SrcAddrSpace, DestAddrSpace, 789 SrcAlign, DestAlign); 790 } 791 792 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 793 const Function *Callee) const { 794 return TTIImpl->areInlineCompatible(Caller, Callee); 795 } 796 797 bool TargetTransformInfo::areFunctionArgsABICompatible( 798 const Function *Caller, const Function *Callee, 799 SmallPtrSetImpl<Argument *> &Args) const { 800 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 801 } 802 803 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 804 Type *Ty) const { 805 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 806 } 807 808 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 809 Type *Ty) const { 810 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 811 } 812 813 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 814 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 815 } 816 817 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 818 return TTIImpl->isLegalToVectorizeLoad(LI); 819 } 820 821 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 822 return TTIImpl->isLegalToVectorizeStore(SI); 823 } 824 825 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 826 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 827 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 828 AddrSpace); 829 } 830 831 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 832 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 833 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 834 AddrSpace); 835 } 836 837 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 838 unsigned LoadSize, 839 unsigned ChainSizeInBytes, 840 VectorType *VecTy) const { 841 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 842 } 843 844 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 845 unsigned StoreSize, 846 unsigned ChainSizeInBytes, 847 VectorType *VecTy) const { 848 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 849 } 850 851 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 852 Type *Ty, ReductionFlags Flags) const { 853 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 854 } 855 856 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 857 return TTIImpl->shouldExpandReduction(II); 858 } 859 860 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 861 return TTIImpl->getGISelRematGlobalCost(); 862 } 863 864 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 865 return TTIImpl->getInstructionLatency(I); 866 } 867 868 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 869 unsigned Level) { 870 // We don't need a shuffle if we just want to have element 0 in position 0 of 871 // the vector. 872 if (!SI && Level == 0 && IsLeft) 873 return true; 874 else if (!SI) 875 return false; 876 877 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 878 879 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 880 // we look at the left or right side. 881 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 882 Mask[i] = val; 883 884 ArrayRef<int> ActualMask = SI->getShuffleMask(); 885 return Mask == ActualMask; 886 } 887 888 namespace { 889 /// Kind of the reduction data. 890 enum ReductionKind { 891 RK_None, /// Not a reduction. 892 RK_Arithmetic, /// Binary reduction data. 893 RK_MinMax, /// Min/max reduction data. 894 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 895 }; 896 /// Contains opcode + LHS/RHS parts of the reduction operations. 897 struct ReductionData { 898 ReductionData() = delete; 899 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 900 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 901 assert(Kind != RK_None && "expected binary or min/max reduction only."); 902 } 903 unsigned Opcode = 0; 904 Value *LHS = nullptr; 905 Value *RHS = nullptr; 906 ReductionKind Kind = RK_None; 907 bool hasSameData(ReductionData &RD) const { 908 return Kind == RD.Kind && Opcode == RD.Opcode; 909 } 910 }; 911 } // namespace 912 913 static Optional<ReductionData> getReductionData(Instruction *I) { 914 Value *L, *R; 915 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 916 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 917 if (auto *SI = dyn_cast<SelectInst>(I)) { 918 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 919 m_SMax(m_Value(L), m_Value(R)).match(SI) || 920 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 921 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 922 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 923 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 924 auto *CI = cast<CmpInst>(SI->getCondition()); 925 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 926 } 927 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 928 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 929 auto *CI = cast<CmpInst>(SI->getCondition()); 930 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 931 } 932 } 933 return llvm::None; 934 } 935 936 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 937 unsigned Level, 938 unsigned NumLevels) { 939 // Match one level of pairwise operations. 940 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 941 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 942 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 943 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 944 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 945 if (!I) 946 return RK_None; 947 948 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 949 950 Optional<ReductionData> RD = getReductionData(I); 951 if (!RD) 952 return RK_None; 953 954 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 955 if (!LS && Level) 956 return RK_None; 957 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 958 if (!RS && Level) 959 return RK_None; 960 961 // On level 0 we can omit one shufflevector instruction. 962 if (!Level && !RS && !LS) 963 return RK_None; 964 965 // Shuffle inputs must match. 966 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 967 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 968 Value *NextLevelOp = nullptr; 969 if (NextLevelOpR && NextLevelOpL) { 970 // If we have two shuffles their operands must match. 971 if (NextLevelOpL != NextLevelOpR) 972 return RK_None; 973 974 NextLevelOp = NextLevelOpL; 975 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 976 // On the first level we can omit the shufflevector <0, undef,...>. So the 977 // input to the other shufflevector <1, undef> must match with one of the 978 // inputs to the current binary operation. 979 // Example: 980 // %NextLevelOpL = shufflevector %R, <1, undef ...> 981 // %BinOp = fadd %NextLevelOpL, %R 982 if (NextLevelOpL && NextLevelOpL != RD->RHS) 983 return RK_None; 984 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 985 return RK_None; 986 987 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 988 } else 989 return RK_None; 990 991 // Check that the next levels binary operation exists and matches with the 992 // current one. 993 if (Level + 1 != NumLevels) { 994 Optional<ReductionData> NextLevelRD = 995 getReductionData(cast<Instruction>(NextLevelOp)); 996 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 997 return RK_None; 998 } 999 1000 // Shuffle mask for pairwise operation must match. 1001 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1002 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1003 return RK_None; 1004 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1005 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1006 return RK_None; 1007 } else { 1008 return RK_None; 1009 } 1010 1011 if (++Level == NumLevels) 1012 return RD->Kind; 1013 1014 // Match next level. 1015 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1016 NumLevels); 1017 } 1018 1019 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1020 unsigned &Opcode, Type *&Ty) { 1021 if (!EnableReduxCost) 1022 return RK_None; 1023 1024 // Need to extract the first element. 1025 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1026 unsigned Idx = ~0u; 1027 if (CI) 1028 Idx = CI->getZExtValue(); 1029 if (Idx != 0) 1030 return RK_None; 1031 1032 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1033 if (!RdxStart) 1034 return RK_None; 1035 Optional<ReductionData> RD = getReductionData(RdxStart); 1036 if (!RD) 1037 return RK_None; 1038 1039 Type *VecTy = RdxStart->getType(); 1040 unsigned NumVecElems = VecTy->getVectorNumElements(); 1041 if (!isPowerOf2_32(NumVecElems)) 1042 return RK_None; 1043 1044 // We look for a sequence of shuffle,shuffle,add triples like the following 1045 // that builds a pairwise reduction tree. 1046 // 1047 // (X0, X1, X2, X3) 1048 // (X0 + X1, X2 + X3, undef, undef) 1049 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1050 // 1051 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1052 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1053 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1054 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1055 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1056 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1057 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1058 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1059 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1060 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1061 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1062 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1063 RK_None) 1064 return RK_None; 1065 1066 Opcode = RD->Opcode; 1067 Ty = VecTy; 1068 1069 return RD->Kind; 1070 } 1071 1072 static std::pair<Value *, ShuffleVectorInst *> 1073 getShuffleAndOtherOprd(Value *L, Value *R) { 1074 ShuffleVectorInst *S = nullptr; 1075 1076 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1077 return std::make_pair(R, S); 1078 1079 S = dyn_cast<ShuffleVectorInst>(R); 1080 return std::make_pair(L, S); 1081 } 1082 1083 static ReductionKind 1084 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1085 unsigned &Opcode, Type *&Ty) { 1086 if (!EnableReduxCost) 1087 return RK_None; 1088 1089 // Need to extract the first element. 1090 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1091 unsigned Idx = ~0u; 1092 if (CI) 1093 Idx = CI->getZExtValue(); 1094 if (Idx != 0) 1095 return RK_None; 1096 1097 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1098 if (!RdxStart) 1099 return RK_None; 1100 Optional<ReductionData> RD = getReductionData(RdxStart); 1101 if (!RD) 1102 return RK_None; 1103 1104 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 1105 unsigned NumVecElems = VecTy->getVectorNumElements(); 1106 if (!isPowerOf2_32(NumVecElems)) 1107 return RK_None; 1108 1109 // We look for a sequence of shuffles and adds like the following matching one 1110 // fadd, shuffle vector pair at a time. 1111 // 1112 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1113 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1114 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1115 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1116 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1117 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1118 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1119 1120 unsigned MaskStart = 1; 1121 Instruction *RdxOp = RdxStart; 1122 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1123 unsigned NumVecElemsRemain = NumVecElems; 1124 while (NumVecElemsRemain - 1) { 1125 // Check for the right reduction operation. 1126 if (!RdxOp) 1127 return RK_None; 1128 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1129 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1130 return RK_None; 1131 1132 Value *NextRdxOp; 1133 ShuffleVectorInst *Shuffle; 1134 std::tie(NextRdxOp, Shuffle) = 1135 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1136 1137 // Check the current reduction operation and the shuffle use the same value. 1138 if (Shuffle == nullptr) 1139 return RK_None; 1140 if (Shuffle->getOperand(0) != NextRdxOp) 1141 return RK_None; 1142 1143 // Check that shuffle masks matches. 1144 for (unsigned j = 0; j != MaskStart; ++j) 1145 ShuffleMask[j] = MaskStart + j; 1146 // Fill the rest of the mask with -1 for undef. 1147 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1148 1149 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1150 if (ShuffleMask != Mask) 1151 return RK_None; 1152 1153 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1154 NumVecElemsRemain /= 2; 1155 MaskStart *= 2; 1156 } 1157 1158 Opcode = RD->Opcode; 1159 Ty = VecTy; 1160 return RD->Kind; 1161 } 1162 1163 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1164 switch (I->getOpcode()) { 1165 case Instruction::GetElementPtr: 1166 return getUserCost(I); 1167 1168 case Instruction::Ret: 1169 case Instruction::PHI: 1170 case Instruction::Br: { 1171 return getCFInstrCost(I->getOpcode()); 1172 } 1173 case Instruction::Add: 1174 case Instruction::FAdd: 1175 case Instruction::Sub: 1176 case Instruction::FSub: 1177 case Instruction::Mul: 1178 case Instruction::FMul: 1179 case Instruction::UDiv: 1180 case Instruction::SDiv: 1181 case Instruction::FDiv: 1182 case Instruction::URem: 1183 case Instruction::SRem: 1184 case Instruction::FRem: 1185 case Instruction::Shl: 1186 case Instruction::LShr: 1187 case Instruction::AShr: 1188 case Instruction::And: 1189 case Instruction::Or: 1190 case Instruction::Xor: { 1191 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1192 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1193 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1194 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1195 SmallVector<const Value *, 2> Operands(I->operand_values()); 1196 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1197 Op1VP, Op2VP, Operands, I); 1198 } 1199 case Instruction::FNeg: { 1200 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1201 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1202 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1203 Op2VK = OK_AnyValue; 1204 Op2VP = OP_None; 1205 SmallVector<const Value *, 2> Operands(I->operand_values()); 1206 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1207 Op1VP, Op2VP, Operands, I); 1208 } 1209 case Instruction::Select: { 1210 const SelectInst *SI = cast<SelectInst>(I); 1211 Type *CondTy = SI->getCondition()->getType(); 1212 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1213 } 1214 case Instruction::ICmp: 1215 case Instruction::FCmp: { 1216 Type *ValTy = I->getOperand(0)->getType(); 1217 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1218 } 1219 case Instruction::Store: { 1220 const StoreInst *SI = cast<StoreInst>(I); 1221 Type *ValTy = SI->getValueOperand()->getType(); 1222 return getMemoryOpCost(I->getOpcode(), ValTy, 1223 MaybeAlign(SI->getAlignment()), 1224 SI->getPointerAddressSpace(), I); 1225 } 1226 case Instruction::Load: { 1227 const LoadInst *LI = cast<LoadInst>(I); 1228 return getMemoryOpCost(I->getOpcode(), I->getType(), 1229 MaybeAlign(LI->getAlignment()), 1230 LI->getPointerAddressSpace(), I); 1231 } 1232 case Instruction::ZExt: 1233 case Instruction::SExt: 1234 case Instruction::FPToUI: 1235 case Instruction::FPToSI: 1236 case Instruction::FPExt: 1237 case Instruction::PtrToInt: 1238 case Instruction::IntToPtr: 1239 case Instruction::SIToFP: 1240 case Instruction::UIToFP: 1241 case Instruction::Trunc: 1242 case Instruction::FPTrunc: 1243 case Instruction::BitCast: 1244 case Instruction::AddrSpaceCast: { 1245 Type *SrcTy = I->getOperand(0)->getType(); 1246 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1247 } 1248 case Instruction::ExtractElement: { 1249 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1250 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1251 unsigned Idx = -1; 1252 if (CI) 1253 Idx = CI->getZExtValue(); 1254 1255 // Try to match a reduction sequence (series of shufflevector and vector 1256 // adds followed by a extractelement). 1257 unsigned ReduxOpCode; 1258 Type *ReduxType; 1259 1260 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1261 case RK_Arithmetic: 1262 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1263 /*IsPairwiseForm=*/false); 1264 case RK_MinMax: 1265 return getMinMaxReductionCost( 1266 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1267 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1268 case RK_UnsignedMinMax: 1269 return getMinMaxReductionCost( 1270 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1271 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1272 case RK_None: 1273 break; 1274 } 1275 1276 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1277 case RK_Arithmetic: 1278 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1279 /*IsPairwiseForm=*/true); 1280 case RK_MinMax: 1281 return getMinMaxReductionCost( 1282 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1283 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1284 case RK_UnsignedMinMax: 1285 return getMinMaxReductionCost( 1286 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1287 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1288 case RK_None: 1289 break; 1290 } 1291 1292 return getVectorInstrCost(I->getOpcode(), 1293 EEI->getOperand(0)->getType(), Idx); 1294 } 1295 case Instruction::InsertElement: { 1296 const InsertElementInst * IE = cast<InsertElementInst>(I); 1297 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1298 unsigned Idx = -1; 1299 if (CI) 1300 Idx = CI->getZExtValue(); 1301 return getVectorInstrCost(I->getOpcode(), 1302 IE->getType(), Idx); 1303 } 1304 case Instruction::ExtractValue: 1305 return 0; // Model all ExtractValue nodes as free. 1306 case Instruction::ShuffleVector: { 1307 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1308 Type *Ty = Shuffle->getType(); 1309 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1310 1311 // TODO: Identify and add costs for insert subvector, etc. 1312 int SubIndex; 1313 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1314 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1315 1316 if (Shuffle->changesLength()) 1317 return -1; 1318 1319 if (Shuffle->isIdentity()) 1320 return 0; 1321 1322 if (Shuffle->isReverse()) 1323 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1324 1325 if (Shuffle->isSelect()) 1326 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1327 1328 if (Shuffle->isTranspose()) 1329 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1330 1331 if (Shuffle->isZeroEltSplat()) 1332 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1333 1334 if (Shuffle->isSingleSource()) 1335 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1336 1337 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1338 } 1339 case Instruction::Call: 1340 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1341 SmallVector<Value *, 4> Args(II->arg_operands()); 1342 1343 FastMathFlags FMF; 1344 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1345 FMF = FPMO->getFastMathFlags(); 1346 1347 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 1348 FMF, 1, II); 1349 } 1350 return -1; 1351 default: 1352 // We don't have any information on this instruction. 1353 return -1; 1354 } 1355 } 1356 1357 TargetTransformInfo::Concept::~Concept() {} 1358 1359 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1360 1361 TargetIRAnalysis::TargetIRAnalysis( 1362 std::function<Result(const Function &)> TTICallback) 1363 : TTICallback(std::move(TTICallback)) {} 1364 1365 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1366 FunctionAnalysisManager &) { 1367 return TTICallback(F); 1368 } 1369 1370 AnalysisKey TargetIRAnalysis::Key; 1371 1372 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1373 return Result(F.getParent()->getDataLayout()); 1374 } 1375 1376 // Register the basic pass. 1377 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1378 "Target Transform Information", false, true) 1379 char TargetTransformInfoWrapperPass::ID = 0; 1380 1381 void TargetTransformInfoWrapperPass::anchor() {} 1382 1383 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1384 : ImmutablePass(ID) { 1385 initializeTargetTransformInfoWrapperPassPass( 1386 *PassRegistry::getPassRegistry()); 1387 } 1388 1389 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1390 TargetIRAnalysis TIRA) 1391 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1392 initializeTargetTransformInfoWrapperPassPass( 1393 *PassRegistry::getPassRegistry()); 1394 } 1395 1396 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1397 FunctionAnalysisManager DummyFAM; 1398 TTI = TIRA.run(F, DummyFAM); 1399 return *TTI; 1400 } 1401 1402 ImmutablePass * 1403 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1404 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1405 } 1406