1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 75 FunctionType *FTy = 76 CI.getCalledFunction()->getFunctionType(); 77 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 78 } 79 80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 81 const CallBase &CI, 82 ElementCount Factor) 83 : RetTy(CI.getType()), IID(Id), VF(Factor) { 84 85 assert(!Factor.isScalable() && "Scalable vectors are not yet supported"); 86 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 87 FMF = FPMO->getFastMathFlags(); 88 89 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 90 FunctionType *FTy = 91 CI.getCalledFunction()->getFunctionType(); 92 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 93 } 94 95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 96 const CallBase &CI, 97 ElementCount Factor, 98 unsigned ScalarCost) 99 : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 100 101 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 102 FMF = FPMO->getFastMathFlags(); 103 104 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 105 FunctionType *FTy = 106 CI.getCalledFunction()->getFunctionType(); 107 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 108 } 109 110 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 111 ArrayRef<Type *> Tys, 112 FastMathFlags Flags) : 113 RetTy(RTy), IID(Id), FMF(Flags) { 114 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 115 } 116 117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 118 ArrayRef<Type *> Tys, 119 FastMathFlags Flags, 120 unsigned ScalarCost) : 121 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 122 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 123 } 124 125 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 126 ArrayRef<Type *> Tys, 127 FastMathFlags Flags, 128 unsigned ScalarCost, 129 const IntrinsicInst *I) : 130 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 131 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 132 } 133 134 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 135 ArrayRef<Type *> Tys) : 136 RetTy(RTy), IID(Id) { 137 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 138 } 139 140 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 141 ArrayRef<const Value *> Args) 142 : RetTy(Ty), IID(Id) { 143 144 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 145 ParamTys.reserve(Arguments.size()); 146 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 147 ParamTys.push_back(Arguments[Idx]->getType()); 148 } 149 150 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 151 LoopInfo &LI, DominatorTree &DT, 152 bool ForceNestedLoop, 153 bool ForceHardwareLoopPHI) { 154 SmallVector<BasicBlock *, 4> ExitingBlocks; 155 L->getExitingBlocks(ExitingBlocks); 156 157 for (BasicBlock *BB : ExitingBlocks) { 158 // If we pass the updated counter back through a phi, we need to know 159 // which latch the updated value will be coming from. 160 if (!L->isLoopLatch(BB)) { 161 if (ForceHardwareLoopPHI || CounterInReg) 162 continue; 163 } 164 165 const SCEV *EC = SE.getExitCount(L, BB); 166 if (isa<SCEVCouldNotCompute>(EC)) 167 continue; 168 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 169 if (ConstEC->getValue()->isZero()) 170 continue; 171 } else if (!SE.isLoopInvariant(EC, L)) 172 continue; 173 174 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 175 continue; 176 177 // If this exiting block is contained in a nested loop, it is not eligible 178 // for insertion of the branch-and-decrement since the inner loop would 179 // end up messing up the value in the CTR. 180 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 181 continue; 182 183 // We now have a loop-invariant count of loop iterations (which is not the 184 // constant zero) for which we know that this loop will not exit via this 185 // existing block. 186 187 // We need to make sure that this block will run on every loop iteration. 188 // For this to be true, we must dominate all blocks with backedges. Such 189 // blocks are in-loop predecessors to the header block. 190 bool NotAlways = false; 191 for (BasicBlock *Pred : predecessors(L->getHeader())) { 192 if (!L->contains(Pred)) 193 continue; 194 195 if (!DT.dominates(BB, Pred)) { 196 NotAlways = true; 197 break; 198 } 199 } 200 201 if (NotAlways) 202 continue; 203 204 // Make sure this blocks ends with a conditional branch. 205 Instruction *TI = BB->getTerminator(); 206 if (!TI) 207 continue; 208 209 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 210 if (!BI->isConditional()) 211 continue; 212 213 ExitBranch = BI; 214 } else 215 continue; 216 217 // Note that this block may not be the loop latch block, even if the loop 218 // has a latch block. 219 ExitBlock = BB; 220 TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType())); 221 222 if (!EC->getType()->isPointerTy() && EC->getType() != CountType) 223 TripCount = SE.getZeroExtendExpr(TripCount, CountType); 224 225 break; 226 } 227 228 if (!ExitBlock) 229 return false; 230 return true; 231 } 232 233 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 234 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 235 236 TargetTransformInfo::~TargetTransformInfo() {} 237 238 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 239 : TTIImpl(std::move(Arg.TTIImpl)) {} 240 241 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 242 TTIImpl = std::move(RHS.TTIImpl); 243 return *this; 244 } 245 246 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 247 return TTIImpl->getInliningThresholdMultiplier(); 248 } 249 250 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 251 return TTIImpl->getInlinerVectorBonusPercent(); 252 } 253 254 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 255 ArrayRef<const Value *> Operands, 256 TTI::TargetCostKind CostKind) const { 257 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 258 } 259 260 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 261 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 262 BlockFrequencyInfo *BFI) const { 263 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 264 } 265 266 int TargetTransformInfo::getUserCost(const User *U, 267 ArrayRef<const Value *> Operands, 268 enum TargetCostKind CostKind) const { 269 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 270 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 271 "TTI should not produce negative costs!"); 272 return Cost; 273 } 274 275 bool TargetTransformInfo::hasBranchDivergence() const { 276 return TTIImpl->hasBranchDivergence(); 277 } 278 279 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 280 return TTIImpl->useGPUDivergenceAnalysis(); 281 } 282 283 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 284 return TTIImpl->isSourceOfDivergence(V); 285 } 286 287 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 288 return TTIImpl->isAlwaysUniform(V); 289 } 290 291 unsigned TargetTransformInfo::getFlatAddressSpace() const { 292 return TTIImpl->getFlatAddressSpace(); 293 } 294 295 bool TargetTransformInfo::collectFlatAddressOperands( 296 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 297 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 298 } 299 300 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 301 unsigned ToAS) const { 302 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 303 } 304 305 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const { 306 return TTIImpl->getAssumedAddrSpace(V); 307 } 308 309 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 310 IntrinsicInst *II, Value *OldV, Value *NewV) const { 311 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 312 } 313 314 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 315 return TTIImpl->isLoweredToCall(F); 316 } 317 318 bool TargetTransformInfo::isHardwareLoopProfitable( 319 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 320 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 321 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 322 } 323 324 bool TargetTransformInfo::preferPredicateOverEpilogue( 325 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 326 TargetLibraryInfo *TLI, DominatorTree *DT, 327 const LoopAccessInfo *LAI) const { 328 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 329 } 330 331 bool TargetTransformInfo::emitGetActiveLaneMask() const { 332 return TTIImpl->emitGetActiveLaneMask(); 333 } 334 335 Optional<Instruction *> 336 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC, 337 IntrinsicInst &II) const { 338 return TTIImpl->instCombineIntrinsic(IC, II); 339 } 340 341 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic( 342 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 343 bool &KnownBitsComputed) const { 344 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 345 KnownBitsComputed); 346 } 347 348 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic( 349 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 350 APInt &UndefElts2, APInt &UndefElts3, 351 std::function<void(Instruction *, unsigned, APInt, APInt &)> 352 SimplifyAndSetOp) const { 353 return TTIImpl->simplifyDemandedVectorEltsIntrinsic( 354 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 355 SimplifyAndSetOp); 356 } 357 358 void TargetTransformInfo::getUnrollingPreferences( 359 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 360 return TTIImpl->getUnrollingPreferences(L, SE, UP); 361 } 362 363 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 364 PeelingPreferences &PP) const { 365 return TTIImpl->getPeelingPreferences(L, SE, PP); 366 } 367 368 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 369 return TTIImpl->isLegalAddImmediate(Imm); 370 } 371 372 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 373 return TTIImpl->isLegalICmpImmediate(Imm); 374 } 375 376 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 377 int64_t BaseOffset, 378 bool HasBaseReg, int64_t Scale, 379 unsigned AddrSpace, 380 Instruction *I) const { 381 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 382 Scale, AddrSpace, I); 383 } 384 385 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 386 return TTIImpl->isLSRCostLess(C1, C2); 387 } 388 389 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const { 390 return TTIImpl->isNumRegsMajorCostOfLSR(); 391 } 392 393 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 394 return TTIImpl->isProfitableLSRChainElement(I); 395 } 396 397 bool TargetTransformInfo::canMacroFuseCmp() const { 398 return TTIImpl->canMacroFuseCmp(); 399 } 400 401 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 402 ScalarEvolution *SE, LoopInfo *LI, 403 DominatorTree *DT, AssumptionCache *AC, 404 TargetLibraryInfo *LibInfo) const { 405 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 406 } 407 408 bool TargetTransformInfo::shouldFavorPostInc() const { 409 return TTIImpl->shouldFavorPostInc(); 410 } 411 412 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 413 return TTIImpl->shouldFavorBackedgeIndex(L); 414 } 415 416 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 417 Align Alignment) const { 418 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 419 } 420 421 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 422 Align Alignment) const { 423 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 424 } 425 426 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 427 Align Alignment) const { 428 return TTIImpl->isLegalNTStore(DataType, Alignment); 429 } 430 431 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 432 return TTIImpl->isLegalNTLoad(DataType, Alignment); 433 } 434 435 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 436 Align Alignment) const { 437 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 438 } 439 440 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 441 Align Alignment) const { 442 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 443 } 444 445 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 446 return TTIImpl->isLegalMaskedCompressStore(DataType); 447 } 448 449 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 450 return TTIImpl->isLegalMaskedExpandLoad(DataType); 451 } 452 453 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 454 return TTIImpl->hasDivRemOp(DataType, IsSigned); 455 } 456 457 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 458 unsigned AddrSpace) const { 459 return TTIImpl->hasVolatileVariant(I, AddrSpace); 460 } 461 462 bool TargetTransformInfo::prefersVectorizedAddressing() const { 463 return TTIImpl->prefersVectorizedAddressing(); 464 } 465 466 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 467 int64_t BaseOffset, 468 bool HasBaseReg, int64_t Scale, 469 unsigned AddrSpace) const { 470 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 471 Scale, AddrSpace); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 bool TargetTransformInfo::LSRWithInstrQueries() const { 477 return TTIImpl->LSRWithInstrQueries(); 478 } 479 480 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 481 return TTIImpl->isTruncateFree(Ty1, Ty2); 482 } 483 484 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 485 return TTIImpl->isProfitableToHoist(I); 486 } 487 488 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 489 490 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 491 return TTIImpl->isTypeLegal(Ty); 492 } 493 494 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const { 495 return TTIImpl->getRegUsageForType(Ty); 496 } 497 498 bool TargetTransformInfo::shouldBuildLookupTables() const { 499 return TTIImpl->shouldBuildLookupTables(); 500 } 501 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 502 Constant *C) const { 503 return TTIImpl->shouldBuildLookupTablesForConstant(C); 504 } 505 506 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 507 return TTIImpl->useColdCCForColdCall(F); 508 } 509 510 unsigned 511 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 512 const APInt &DemandedElts, 513 bool Insert, bool Extract) const { 514 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 515 } 516 517 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 518 ArrayRef<const Value *> Args, unsigned VF) const { 519 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 520 } 521 522 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 523 return TTIImpl->supportsEfficientVectorElementLoadStore(); 524 } 525 526 bool TargetTransformInfo::enableAggressiveInterleaving( 527 bool LoopHasReductions) const { 528 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 529 } 530 531 TargetTransformInfo::MemCmpExpansionOptions 532 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 533 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 534 } 535 536 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 537 return TTIImpl->enableInterleavedAccessVectorization(); 538 } 539 540 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 541 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 542 } 543 544 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 545 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 546 } 547 548 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 549 unsigned BitWidth, 550 unsigned AddressSpace, 551 unsigned Alignment, 552 bool *Fast) const { 553 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 554 AddressSpace, Alignment, Fast); 555 } 556 557 TargetTransformInfo::PopcntSupportKind 558 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 559 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 560 } 561 562 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 563 return TTIImpl->haveFastSqrt(Ty); 564 } 565 566 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 567 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 568 } 569 570 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 571 int Cost = TTIImpl->getFPOpCost(Ty); 572 assert(Cost >= 0 && "TTI should not produce negative costs!"); 573 return Cost; 574 } 575 576 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 577 const APInt &Imm, 578 Type *Ty) const { 579 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 580 assert(Cost >= 0 && "TTI should not produce negative costs!"); 581 return Cost; 582 } 583 584 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 585 TTI::TargetCostKind CostKind) const { 586 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 587 assert(Cost >= 0 && "TTI should not produce negative costs!"); 588 return Cost; 589 } 590 591 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 592 const APInt &Imm, Type *Ty, 593 TTI::TargetCostKind CostKind, 594 Instruction *Inst) const { 595 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 596 assert(Cost >= 0 && "TTI should not produce negative costs!"); 597 return Cost; 598 } 599 600 int 601 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 602 const APInt &Imm, Type *Ty, 603 TTI::TargetCostKind CostKind) const { 604 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 605 assert(Cost >= 0 && "TTI should not produce negative costs!"); 606 return Cost; 607 } 608 609 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 610 return TTIImpl->getNumberOfRegisters(ClassID); 611 } 612 613 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 614 Type *Ty) const { 615 return TTIImpl->getRegisterClassForType(Vector, Ty); 616 } 617 618 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 619 return TTIImpl->getRegisterClassName(ClassID); 620 } 621 622 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 623 return TTIImpl->getRegisterBitWidth(Vector); 624 } 625 626 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 627 return TTIImpl->getMinVectorRegisterBitWidth(); 628 } 629 630 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 631 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 632 } 633 634 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 635 return TTIImpl->getMinimumVF(ElemWidth); 636 } 637 638 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth, 639 unsigned Opcode) const { 640 return TTIImpl->getMaximumVF(ElemWidth, Opcode); 641 } 642 643 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 644 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 645 return TTIImpl->shouldConsiderAddressTypePromotion( 646 I, AllowPromotionWithoutCommonHeader); 647 } 648 649 unsigned TargetTransformInfo::getCacheLineSize() const { 650 return TTIImpl->getCacheLineSize(); 651 } 652 653 llvm::Optional<unsigned> 654 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 655 return TTIImpl->getCacheSize(Level); 656 } 657 658 llvm::Optional<unsigned> 659 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 660 return TTIImpl->getCacheAssociativity(Level); 661 } 662 663 unsigned TargetTransformInfo::getPrefetchDistance() const { 664 return TTIImpl->getPrefetchDistance(); 665 } 666 667 unsigned TargetTransformInfo::getMinPrefetchStride( 668 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 669 unsigned NumPrefetches, bool HasCall) const { 670 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 671 NumPrefetches, HasCall); 672 } 673 674 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 675 return TTIImpl->getMaxPrefetchIterationsAhead(); 676 } 677 678 bool TargetTransformInfo::enableWritePrefetching() const { 679 return TTIImpl->enableWritePrefetching(); 680 } 681 682 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 683 return TTIImpl->getMaxInterleaveFactor(VF); 684 } 685 686 TargetTransformInfo::OperandValueKind 687 TargetTransformInfo::getOperandInfo(const Value *V, 688 OperandValueProperties &OpProps) { 689 OperandValueKind OpInfo = OK_AnyValue; 690 OpProps = OP_None; 691 692 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 693 if (CI->getValue().isPowerOf2()) 694 OpProps = OP_PowerOf2; 695 return OK_UniformConstantValue; 696 } 697 698 // A broadcast shuffle creates a uniform value. 699 // TODO: Add support for non-zero index broadcasts. 700 // TODO: Add support for different source vector width. 701 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 702 if (ShuffleInst->isZeroEltSplat()) 703 OpInfo = OK_UniformValue; 704 705 const Value *Splat = getSplatValue(V); 706 707 // Check for a splat of a constant or for a non uniform vector of constants 708 // and check if the constant(s) are all powers of two. 709 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 710 OpInfo = OK_NonUniformConstantValue; 711 if (Splat) { 712 OpInfo = OK_UniformConstantValue; 713 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 714 if (CI->getValue().isPowerOf2()) 715 OpProps = OP_PowerOf2; 716 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 717 OpProps = OP_PowerOf2; 718 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 719 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 720 if (CI->getValue().isPowerOf2()) 721 continue; 722 OpProps = OP_None; 723 break; 724 } 725 } 726 } 727 728 // Check for a splat of a uniform value. This is not loop aware, so return 729 // true only for the obviously uniform cases (argument, globalvalue) 730 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 731 OpInfo = OK_UniformValue; 732 733 return OpInfo; 734 } 735 736 int TargetTransformInfo::getArithmeticInstrCost( 737 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 738 OperandValueKind Opd1Info, 739 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 740 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 741 const Instruction *CxtI) const { 742 int Cost = TTIImpl->getArithmeticInstrCost( 743 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 744 Args, CxtI); 745 assert(Cost >= 0 && "TTI should not produce negative costs!"); 746 return Cost; 747 } 748 749 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 750 int Index, VectorType *SubTp) const { 751 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 752 assert(Cost >= 0 && "TTI should not produce negative costs!"); 753 return Cost; 754 } 755 756 TTI::CastContextHint 757 TargetTransformInfo::getCastContextHint(const Instruction *I) { 758 if (!I) 759 return CastContextHint::None; 760 761 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp, 762 unsigned GatScatOp) { 763 const Instruction *I = dyn_cast<Instruction>(V); 764 if (!I) 765 return CastContextHint::None; 766 767 if (I->getOpcode() == LdStOp) 768 return CastContextHint::Normal; 769 770 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 771 if (II->getIntrinsicID() == MaskedOp) 772 return TTI::CastContextHint::Masked; 773 if (II->getIntrinsicID() == GatScatOp) 774 return TTI::CastContextHint::GatherScatter; 775 } 776 777 return TTI::CastContextHint::None; 778 }; 779 780 switch (I->getOpcode()) { 781 case Instruction::ZExt: 782 case Instruction::SExt: 783 case Instruction::FPExt: 784 return getLoadStoreKind(I->getOperand(0), Instruction::Load, 785 Intrinsic::masked_load, Intrinsic::masked_gather); 786 case Instruction::Trunc: 787 case Instruction::FPTrunc: 788 if (I->hasOneUse()) 789 return getLoadStoreKind(*I->user_begin(), Instruction::Store, 790 Intrinsic::masked_store, 791 Intrinsic::masked_scatter); 792 break; 793 default: 794 return CastContextHint::None; 795 } 796 797 return TTI::CastContextHint::None; 798 } 799 800 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 801 CastContextHint CCH, 802 TTI::TargetCostKind CostKind, 803 const Instruction *I) const { 804 assert((I == nullptr || I->getOpcode() == Opcode) && 805 "Opcode should reflect passed instruction."); 806 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 807 assert(Cost >= 0 && "TTI should not produce negative costs!"); 808 return Cost; 809 } 810 811 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 812 VectorType *VecTy, 813 unsigned Index) const { 814 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 815 assert(Cost >= 0 && "TTI should not produce negative costs!"); 816 return Cost; 817 } 818 819 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 820 TTI::TargetCostKind CostKind) const { 821 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 822 assert(Cost >= 0 && "TTI should not produce negative costs!"); 823 return Cost; 824 } 825 826 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 827 Type *CondTy, 828 CmpInst::Predicate VecPred, 829 TTI::TargetCostKind CostKind, 830 const Instruction *I) const { 831 assert((I == nullptr || I->getOpcode() == Opcode) && 832 "Opcode should reflect passed instruction."); 833 int Cost = 834 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 835 assert(Cost >= 0 && "TTI should not produce negative costs!"); 836 return Cost; 837 } 838 839 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 840 unsigned Index) const { 841 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 842 assert(Cost >= 0 && "TTI should not produce negative costs!"); 843 return Cost; 844 } 845 846 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 847 Align Alignment, unsigned AddressSpace, 848 TTI::TargetCostKind CostKind, 849 const Instruction *I) const { 850 assert((I == nullptr || I->getOpcode() == Opcode) && 851 "Opcode should reflect passed instruction."); 852 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 853 CostKind, I); 854 assert(Cost >= 0 && "TTI should not produce negative costs!"); 855 return Cost; 856 } 857 858 int TargetTransformInfo::getMaskedMemoryOpCost( 859 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 860 TTI::TargetCostKind CostKind) const { 861 int Cost = 862 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 863 CostKind); 864 assert(Cost >= 0 && "TTI should not produce negative costs!"); 865 return Cost; 866 } 867 868 int TargetTransformInfo::getGatherScatterOpCost( 869 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 870 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 871 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 872 Alignment, CostKind, I); 873 assert(Cost >= 0 && "TTI should not produce negative costs!"); 874 return Cost; 875 } 876 877 int TargetTransformInfo::getInterleavedMemoryOpCost( 878 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 879 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 880 bool UseMaskForCond, bool UseMaskForGaps) const { 881 int Cost = TTIImpl->getInterleavedMemoryOpCost( 882 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 883 UseMaskForCond, UseMaskForGaps); 884 assert(Cost >= 0 && "TTI should not produce negative costs!"); 885 return Cost; 886 } 887 888 int 889 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 890 TTI::TargetCostKind CostKind) const { 891 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 892 assert(Cost >= 0 && "TTI should not produce negative costs!"); 893 return Cost; 894 } 895 896 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 897 ArrayRef<Type *> Tys, 898 TTI::TargetCostKind CostKind) const { 899 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 900 assert(Cost >= 0 && "TTI should not produce negative costs!"); 901 return Cost; 902 } 903 904 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 905 return TTIImpl->getNumberOfParts(Tp); 906 } 907 908 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 909 ScalarEvolution *SE, 910 const SCEV *Ptr) const { 911 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 912 assert(Cost >= 0 && "TTI should not produce negative costs!"); 913 return Cost; 914 } 915 916 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 917 int Cost = TTIImpl->getMemcpyCost(I); 918 assert(Cost >= 0 && "TTI should not produce negative costs!"); 919 return Cost; 920 } 921 922 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 923 VectorType *Ty, 924 bool IsPairwiseForm, 925 TTI::TargetCostKind CostKind) const { 926 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 927 CostKind); 928 assert(Cost >= 0 && "TTI should not produce negative costs!"); 929 return Cost; 930 } 931 932 int TargetTransformInfo::getMinMaxReductionCost( 933 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 934 TTI::TargetCostKind CostKind) const { 935 int Cost = 936 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 937 CostKind); 938 assert(Cost >= 0 && "TTI should not produce negative costs!"); 939 return Cost; 940 } 941 942 unsigned 943 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 944 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 945 } 946 947 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 948 MemIntrinsicInfo &Info) const { 949 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 950 } 951 952 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 953 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 954 } 955 956 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 957 IntrinsicInst *Inst, Type *ExpectedType) const { 958 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 959 } 960 961 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 962 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 963 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 964 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 965 DestAddrSpace, SrcAlign, DestAlign); 966 } 967 968 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 969 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 970 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 971 unsigned SrcAlign, unsigned DestAlign) const { 972 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 973 SrcAddrSpace, DestAddrSpace, 974 SrcAlign, DestAlign); 975 } 976 977 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 978 const Function *Callee) const { 979 return TTIImpl->areInlineCompatible(Caller, Callee); 980 } 981 982 bool TargetTransformInfo::areFunctionArgsABICompatible( 983 const Function *Caller, const Function *Callee, 984 SmallPtrSetImpl<Argument *> &Args) const { 985 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 986 } 987 988 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 989 Type *Ty) const { 990 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 991 } 992 993 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 994 Type *Ty) const { 995 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 996 } 997 998 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 999 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 1000 } 1001 1002 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 1003 return TTIImpl->isLegalToVectorizeLoad(LI); 1004 } 1005 1006 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 1007 return TTIImpl->isLegalToVectorizeStore(SI); 1008 } 1009 1010 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 1011 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1012 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 1013 AddrSpace); 1014 } 1015 1016 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 1017 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1018 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 1019 AddrSpace); 1020 } 1021 1022 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 1023 unsigned LoadSize, 1024 unsigned ChainSizeInBytes, 1025 VectorType *VecTy) const { 1026 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 1027 } 1028 1029 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 1030 unsigned StoreSize, 1031 unsigned ChainSizeInBytes, 1032 VectorType *VecTy) const { 1033 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 1034 } 1035 1036 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1037 ReductionFlags Flags) const { 1038 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 1039 } 1040 1041 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty, 1042 ReductionFlags Flags) const { 1043 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags); 1044 } 1045 1046 bool TargetTransformInfo::preferPredicatedReductionSelect( 1047 unsigned Opcode, Type *Ty, ReductionFlags Flags) const { 1048 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags); 1049 } 1050 1051 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 1052 return TTIImpl->shouldExpandReduction(II); 1053 } 1054 1055 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 1056 return TTIImpl->getGISelRematGlobalCost(); 1057 } 1058 1059 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 1060 return TTIImpl->getInstructionLatency(I); 1061 } 1062 1063 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 1064 unsigned Level) { 1065 // We don't need a shuffle if we just want to have element 0 in position 0 of 1066 // the vector. 1067 if (!SI && Level == 0 && IsLeft) 1068 return true; 1069 else if (!SI) 1070 return false; 1071 1072 SmallVector<int, 32> Mask( 1073 cast<FixedVectorType>(SI->getType())->getNumElements(), -1); 1074 1075 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 1076 // we look at the left or right side. 1077 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 1078 Mask[i] = val; 1079 1080 ArrayRef<int> ActualMask = SI->getShuffleMask(); 1081 return Mask == ActualMask; 1082 } 1083 1084 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 1085 Value *L, *R; 1086 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 1087 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 1088 if (auto *SI = dyn_cast<SelectInst>(I)) { 1089 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 1090 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1091 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1092 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1093 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1094 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1095 auto *CI = cast<CmpInst>(SI->getCondition()); 1096 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 1097 } 1098 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1099 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1100 auto *CI = cast<CmpInst>(SI->getCondition()); 1101 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 1102 } 1103 } 1104 return llvm::None; 1105 } 1106 1107 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1108 unsigned Level, 1109 unsigned NumLevels) { 1110 // Match one level of pairwise operations. 1111 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1112 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1113 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1114 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1115 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1116 if (!I) 1117 return TTI::RK_None; 1118 1119 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1120 1121 Optional<TTI::ReductionData> RD = getReductionData(I); 1122 if (!RD) 1123 return TTI::RK_None; 1124 1125 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1126 if (!LS && Level) 1127 return TTI::RK_None; 1128 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1129 if (!RS && Level) 1130 return TTI::RK_None; 1131 1132 // On level 0 we can omit one shufflevector instruction. 1133 if (!Level && !RS && !LS) 1134 return TTI::RK_None; 1135 1136 // Shuffle inputs must match. 1137 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1138 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1139 Value *NextLevelOp = nullptr; 1140 if (NextLevelOpR && NextLevelOpL) { 1141 // If we have two shuffles their operands must match. 1142 if (NextLevelOpL != NextLevelOpR) 1143 return TTI::RK_None; 1144 1145 NextLevelOp = NextLevelOpL; 1146 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1147 // On the first level we can omit the shufflevector <0, undef,...>. So the 1148 // input to the other shufflevector <1, undef> must match with one of the 1149 // inputs to the current binary operation. 1150 // Example: 1151 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1152 // %BinOp = fadd %NextLevelOpL, %R 1153 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1154 return TTI::RK_None; 1155 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1156 return TTI::RK_None; 1157 1158 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1159 } else 1160 return TTI::RK_None; 1161 1162 // Check that the next levels binary operation exists and matches with the 1163 // current one. 1164 if (Level + 1 != NumLevels) { 1165 if (!isa<Instruction>(NextLevelOp)) 1166 return TTI::RK_None; 1167 Optional<TTI::ReductionData> NextLevelRD = 1168 getReductionData(cast<Instruction>(NextLevelOp)); 1169 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1170 return TTI::RK_None; 1171 } 1172 1173 // Shuffle mask for pairwise operation must match. 1174 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1175 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1176 return TTI::RK_None; 1177 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1178 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1179 return TTI::RK_None; 1180 } else { 1181 return TTI::RK_None; 1182 } 1183 1184 if (++Level == NumLevels) 1185 return RD->Kind; 1186 1187 // Match next level. 1188 return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level, 1189 NumLevels); 1190 } 1191 1192 TTI::ReductionKind TTI::matchPairwiseReduction( 1193 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1194 if (!EnableReduxCost) 1195 return TTI::RK_None; 1196 1197 // Need to extract the first element. 1198 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1199 unsigned Idx = ~0u; 1200 if (CI) 1201 Idx = CI->getZExtValue(); 1202 if (Idx != 0) 1203 return TTI::RK_None; 1204 1205 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1206 if (!RdxStart) 1207 return TTI::RK_None; 1208 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1209 if (!RD) 1210 return TTI::RK_None; 1211 1212 auto *VecTy = cast<FixedVectorType>(RdxStart->getType()); 1213 unsigned NumVecElems = VecTy->getNumElements(); 1214 if (!isPowerOf2_32(NumVecElems)) 1215 return TTI::RK_None; 1216 1217 // We look for a sequence of shuffle,shuffle,add triples like the following 1218 // that builds a pairwise reduction tree. 1219 // 1220 // (X0, X1, X2, X3) 1221 // (X0 + X1, X2 + X3, undef, undef) 1222 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1223 // 1224 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1225 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1226 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1227 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1228 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1229 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1230 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1231 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1232 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1233 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1234 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1235 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1236 TTI::RK_None) 1237 return TTI::RK_None; 1238 1239 Opcode = RD->Opcode; 1240 Ty = VecTy; 1241 1242 return RD->Kind; 1243 } 1244 1245 static std::pair<Value *, ShuffleVectorInst *> 1246 getShuffleAndOtherOprd(Value *L, Value *R) { 1247 ShuffleVectorInst *S = nullptr; 1248 1249 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1250 return std::make_pair(R, S); 1251 1252 S = dyn_cast<ShuffleVectorInst>(R); 1253 return std::make_pair(L, S); 1254 } 1255 1256 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1257 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1258 1259 if (!EnableReduxCost) 1260 return TTI::RK_None; 1261 1262 // Need to extract the first element. 1263 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1264 unsigned Idx = ~0u; 1265 if (CI) 1266 Idx = CI->getZExtValue(); 1267 if (Idx != 0) 1268 return TTI::RK_None; 1269 1270 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1271 if (!RdxStart) 1272 return TTI::RK_None; 1273 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1274 if (!RD) 1275 return TTI::RK_None; 1276 1277 auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType()); 1278 unsigned NumVecElems = VecTy->getNumElements(); 1279 if (!isPowerOf2_32(NumVecElems)) 1280 return TTI::RK_None; 1281 1282 // We look for a sequence of shuffles and adds like the following matching one 1283 // fadd, shuffle vector pair at a time. 1284 // 1285 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1286 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1287 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1288 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1289 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1290 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1291 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1292 1293 unsigned MaskStart = 1; 1294 Instruction *RdxOp = RdxStart; 1295 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1296 unsigned NumVecElemsRemain = NumVecElems; 1297 while (NumVecElemsRemain - 1) { 1298 // Check for the right reduction operation. 1299 if (!RdxOp) 1300 return TTI::RK_None; 1301 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1302 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1303 return TTI::RK_None; 1304 1305 Value *NextRdxOp; 1306 ShuffleVectorInst *Shuffle; 1307 std::tie(NextRdxOp, Shuffle) = 1308 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1309 1310 // Check the current reduction operation and the shuffle use the same value. 1311 if (Shuffle == nullptr) 1312 return TTI::RK_None; 1313 if (Shuffle->getOperand(0) != NextRdxOp) 1314 return TTI::RK_None; 1315 1316 // Check that shuffle masks matches. 1317 for (unsigned j = 0; j != MaskStart; ++j) 1318 ShuffleMask[j] = MaskStart + j; 1319 // Fill the rest of the mask with -1 for undef. 1320 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1321 1322 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1323 if (ShuffleMask != Mask) 1324 return TTI::RK_None; 1325 1326 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1327 NumVecElemsRemain /= 2; 1328 MaskStart *= 2; 1329 } 1330 1331 Opcode = RD->Opcode; 1332 Ty = VecTy; 1333 return RD->Kind; 1334 } 1335 1336 TTI::ReductionKind 1337 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode, 1338 VectorType *&Ty, bool &IsPairwise) { 1339 TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty); 1340 if (RdxKind != TTI::ReductionKind::RK_None) { 1341 IsPairwise = false; 1342 return RdxKind; 1343 } 1344 IsPairwise = true; 1345 return matchPairwiseReduction(Root, Opcode, Ty); 1346 } 1347 1348 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1349 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1350 1351 switch (I->getOpcode()) { 1352 case Instruction::GetElementPtr: 1353 case Instruction::Ret: 1354 case Instruction::PHI: 1355 case Instruction::Br: 1356 case Instruction::Add: 1357 case Instruction::FAdd: 1358 case Instruction::Sub: 1359 case Instruction::FSub: 1360 case Instruction::Mul: 1361 case Instruction::FMul: 1362 case Instruction::UDiv: 1363 case Instruction::SDiv: 1364 case Instruction::FDiv: 1365 case Instruction::URem: 1366 case Instruction::SRem: 1367 case Instruction::FRem: 1368 case Instruction::Shl: 1369 case Instruction::LShr: 1370 case Instruction::AShr: 1371 case Instruction::And: 1372 case Instruction::Or: 1373 case Instruction::Xor: 1374 case Instruction::FNeg: 1375 case Instruction::Select: 1376 case Instruction::ICmp: 1377 case Instruction::FCmp: 1378 case Instruction::Store: 1379 case Instruction::Load: 1380 case Instruction::ZExt: 1381 case Instruction::SExt: 1382 case Instruction::FPToUI: 1383 case Instruction::FPToSI: 1384 case Instruction::FPExt: 1385 case Instruction::PtrToInt: 1386 case Instruction::IntToPtr: 1387 case Instruction::SIToFP: 1388 case Instruction::UIToFP: 1389 case Instruction::Trunc: 1390 case Instruction::FPTrunc: 1391 case Instruction::BitCast: 1392 case Instruction::AddrSpaceCast: 1393 case Instruction::ExtractElement: 1394 case Instruction::InsertElement: 1395 case Instruction::ExtractValue: 1396 case Instruction::ShuffleVector: 1397 case Instruction::Call: 1398 return getUserCost(I, CostKind); 1399 default: 1400 // We don't have any information on this instruction. 1401 return -1; 1402 } 1403 } 1404 1405 TargetTransformInfo::Concept::~Concept() {} 1406 1407 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1408 1409 TargetIRAnalysis::TargetIRAnalysis( 1410 std::function<Result(const Function &)> TTICallback) 1411 : TTICallback(std::move(TTICallback)) {} 1412 1413 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1414 FunctionAnalysisManager &) { 1415 return TTICallback(F); 1416 } 1417 1418 AnalysisKey TargetIRAnalysis::Key; 1419 1420 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1421 return Result(F.getParent()->getDataLayout()); 1422 } 1423 1424 // Register the basic pass. 1425 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1426 "Target Transform Information", false, true) 1427 char TargetTransformInfoWrapperPass::ID = 0; 1428 1429 void TargetTransformInfoWrapperPass::anchor() {} 1430 1431 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1432 : ImmutablePass(ID) { 1433 initializeTargetTransformInfoWrapperPassPass( 1434 *PassRegistry::getPassRegistry()); 1435 } 1436 1437 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1438 TargetIRAnalysis TIRA) 1439 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1440 initializeTargetTransformInfoWrapperPassPass( 1441 *PassRegistry::getPassRegistry()); 1442 } 1443 1444 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1445 FunctionAnalysisManager DummyFAM; 1446 TTI = TIRA.run(F, DummyFAM); 1447 return *TTI; 1448 } 1449 1450 ImmutablePass * 1451 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1452 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1453 } 1454