1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 static cl::opt<unsigned> CacheLineSize(
35     "cache-line-size", cl::init(0), cl::Hidden,
36     cl::desc("Use this to override the target cache line size when "
37              "specified by the user."));
38 
39 namespace {
40 /// No-op implementation of the TTI interface using the utility base
41 /// classes.
42 ///
43 /// This is used when no target specific information is available.
44 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
45   explicit NoTTIImpl(const DataLayout &DL)
46       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
47 };
48 } // namespace
49 
50 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
51   // If the loop has irreducible control flow, it can not be converted to
52   // Hardware loop.
53   LoopBlocksRPO RPOT(L);
54   RPOT.perform(&LI);
55   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
56     return false;
57   return true;
58 }
59 
60 IntrinsicCostAttributes::IntrinsicCostAttributes(
61     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
62     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
63       ScalarizationCost(ScalarizationCost) {
64 
65   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
66     FMF = FPMO->getFastMathFlags();
67 
68   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
69   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
70   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
71 }
72 
73 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
74                                                  ArrayRef<Type *> Tys,
75                                                  FastMathFlags Flags,
76                                                  const IntrinsicInst *I,
77                                                  InstructionCost ScalarCost)
78     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
79   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
80 }
81 
82 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
83                                                  ArrayRef<const Value *> Args)
84     : RetTy(Ty), IID(Id) {
85 
86   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
87   ParamTys.reserve(Arguments.size());
88   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
89     ParamTys.push_back(Arguments[Idx]->getType());
90 }
91 
92 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
93                                                  ArrayRef<const Value *> Args,
94                                                  ArrayRef<Type *> Tys,
95                                                  FastMathFlags Flags,
96                                                  const IntrinsicInst *I,
97                                                  InstructionCost ScalarCost)
98     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
99   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
100   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
101 }
102 
103 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
104                                                LoopInfo &LI, DominatorTree &DT,
105                                                bool ForceNestedLoop,
106                                                bool ForceHardwareLoopPHI) {
107   SmallVector<BasicBlock *, 4> ExitingBlocks;
108   L->getExitingBlocks(ExitingBlocks);
109 
110   for (BasicBlock *BB : ExitingBlocks) {
111     // If we pass the updated counter back through a phi, we need to know
112     // which latch the updated value will be coming from.
113     if (!L->isLoopLatch(BB)) {
114       if (ForceHardwareLoopPHI || CounterInReg)
115         continue;
116     }
117 
118     const SCEV *EC = SE.getExitCount(L, BB);
119     if (isa<SCEVCouldNotCompute>(EC))
120       continue;
121     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
122       if (ConstEC->getValue()->isZero())
123         continue;
124     } else if (!SE.isLoopInvariant(EC, L))
125       continue;
126 
127     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
128       continue;
129 
130     // If this exiting block is contained in a nested loop, it is not eligible
131     // for insertion of the branch-and-decrement since the inner loop would
132     // end up messing up the value in the CTR.
133     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
134       continue;
135 
136     // We now have a loop-invariant count of loop iterations (which is not the
137     // constant zero) for which we know that this loop will not exit via this
138     // existing block.
139 
140     // We need to make sure that this block will run on every loop iteration.
141     // For this to be true, we must dominate all blocks with backedges. Such
142     // blocks are in-loop predecessors to the header block.
143     bool NotAlways = false;
144     for (BasicBlock *Pred : predecessors(L->getHeader())) {
145       if (!L->contains(Pred))
146         continue;
147 
148       if (!DT.dominates(BB, Pred)) {
149         NotAlways = true;
150         break;
151       }
152     }
153 
154     if (NotAlways)
155       continue;
156 
157     // Make sure this blocks ends with a conditional branch.
158     Instruction *TI = BB->getTerminator();
159     if (!TI)
160       continue;
161 
162     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
163       if (!BI->isConditional())
164         continue;
165 
166       ExitBranch = BI;
167     } else
168       continue;
169 
170     // Note that this block may not be the loop latch block, even if the loop
171     // has a latch block.
172     ExitBlock = BB;
173     ExitCount = EC;
174     break;
175   }
176 
177   if (!ExitBlock)
178     return false;
179   return true;
180 }
181 
182 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
183     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
184 
185 TargetTransformInfo::~TargetTransformInfo() = default;
186 
187 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
188     : TTIImpl(std::move(Arg.TTIImpl)) {}
189 
190 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
191   TTIImpl = std::move(RHS.TTIImpl);
192   return *this;
193 }
194 
195 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
196   return TTIImpl->getInliningThresholdMultiplier();
197 }
198 
199 unsigned
200 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
201   return TTIImpl->adjustInliningThreshold(CB);
202 }
203 
204 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
205   return TTIImpl->getInlinerVectorBonusPercent();
206 }
207 
208 InstructionCost
209 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
210                                 ArrayRef<const Value *> Operands,
211                                 TTI::TargetCostKind CostKind) const {
212   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
213 }
214 
215 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
216     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
217     BlockFrequencyInfo *BFI) const {
218   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
219 }
220 
221 InstructionCost
222 TargetTransformInfo::getUserCost(const User *U,
223                                  ArrayRef<const Value *> Operands,
224                                  enum TargetCostKind CostKind) const {
225   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
226   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
227          "TTI should not produce negative costs!");
228   return Cost;
229 }
230 
231 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
232   return TTIImpl->getPredictableBranchThreshold();
233 }
234 
235 bool TargetTransformInfo::hasBranchDivergence() const {
236   return TTIImpl->hasBranchDivergence();
237 }
238 
239 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
240   return TTIImpl->useGPUDivergenceAnalysis();
241 }
242 
243 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
244   return TTIImpl->isSourceOfDivergence(V);
245 }
246 
247 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
248   return TTIImpl->isAlwaysUniform(V);
249 }
250 
251 unsigned TargetTransformInfo::getFlatAddressSpace() const {
252   return TTIImpl->getFlatAddressSpace();
253 }
254 
255 bool TargetTransformInfo::collectFlatAddressOperands(
256     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
257   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
258 }
259 
260 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
261                                               unsigned ToAS) const {
262   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
263 }
264 
265 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
266     unsigned AS) const {
267   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
268 }
269 
270 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
271   return TTIImpl->getAssumedAddrSpace(V);
272 }
273 
274 std::pair<const Value *, unsigned>
275 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
276   return TTIImpl->getPredicatedAddrSpace(V);
277 }
278 
279 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
280     IntrinsicInst *II, Value *OldV, Value *NewV) const {
281   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
282 }
283 
284 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
285   return TTIImpl->isLoweredToCall(F);
286 }
287 
288 bool TargetTransformInfo::isHardwareLoopProfitable(
289     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
290     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
291   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
292 }
293 
294 bool TargetTransformInfo::preferPredicateOverEpilogue(
295     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
296     TargetLibraryInfo *TLI, DominatorTree *DT,
297     const LoopAccessInfo *LAI) const {
298   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
299 }
300 
301 PredicationStyle TargetTransformInfo::emitGetActiveLaneMask() const {
302   return TTIImpl->emitGetActiveLaneMask();
303 }
304 
305 Optional<Instruction *>
306 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
307                                           IntrinsicInst &II) const {
308   return TTIImpl->instCombineIntrinsic(IC, II);
309 }
310 
311 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
312     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
313     bool &KnownBitsComputed) const {
314   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
315                                                    KnownBitsComputed);
316 }
317 
318 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
319     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
320     APInt &UndefElts2, APInt &UndefElts3,
321     std::function<void(Instruction *, unsigned, APInt, APInt &)>
322         SimplifyAndSetOp) const {
323   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
324       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
325       SimplifyAndSetOp);
326 }
327 
328 void TargetTransformInfo::getUnrollingPreferences(
329     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
330     OptimizationRemarkEmitter *ORE) const {
331   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
332 }
333 
334 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
335                                                 PeelingPreferences &PP) const {
336   return TTIImpl->getPeelingPreferences(L, SE, PP);
337 }
338 
339 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
340   return TTIImpl->isLegalAddImmediate(Imm);
341 }
342 
343 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
344   return TTIImpl->isLegalICmpImmediate(Imm);
345 }
346 
347 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
348                                                 int64_t BaseOffset,
349                                                 bool HasBaseReg, int64_t Scale,
350                                                 unsigned AddrSpace,
351                                                 Instruction *I) const {
352   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
353                                         Scale, AddrSpace, I);
354 }
355 
356 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
357                                         const LSRCost &C2) const {
358   return TTIImpl->isLSRCostLess(C1, C2);
359 }
360 
361 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
362   return TTIImpl->isNumRegsMajorCostOfLSR();
363 }
364 
365 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
366   return TTIImpl->isProfitableLSRChainElement(I);
367 }
368 
369 bool TargetTransformInfo::canMacroFuseCmp() const {
370   return TTIImpl->canMacroFuseCmp();
371 }
372 
373 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
374                                      ScalarEvolution *SE, LoopInfo *LI,
375                                      DominatorTree *DT, AssumptionCache *AC,
376                                      TargetLibraryInfo *LibInfo) const {
377   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
378 }
379 
380 TTI::AddressingModeKind
381 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
382                                                 ScalarEvolution *SE) const {
383   return TTIImpl->getPreferredAddressingMode(L, SE);
384 }
385 
386 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
387                                              Align Alignment) const {
388   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
389 }
390 
391 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
392                                             Align Alignment) const {
393   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
394 }
395 
396 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
397                                          Align Alignment) const {
398   return TTIImpl->isLegalNTStore(DataType, Alignment);
399 }
400 
401 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
402   return TTIImpl->isLegalNTLoad(DataType, Alignment);
403 }
404 
405 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
406                                                ElementCount NumElements) const {
407   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
408 }
409 
410 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
411                                               Align Alignment) const {
412   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
413 }
414 
415 bool TargetTransformInfo::isLegalAltInstr(
416     VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
417     const SmallBitVector &OpcodeMask) const {
418   return TTIImpl->isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
419 }
420 
421 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
422                                                Align Alignment) const {
423   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
424 }
425 
426 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
427                                                      Align Alignment) const {
428   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
429 }
430 
431 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
432                                                       Align Alignment) const {
433   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
434 }
435 
436 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
437   return TTIImpl->isLegalMaskedCompressStore(DataType);
438 }
439 
440 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
441   return TTIImpl->isLegalMaskedExpandLoad(DataType);
442 }
443 
444 bool TargetTransformInfo::enableOrderedReductions() const {
445   return TTIImpl->enableOrderedReductions();
446 }
447 
448 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
449   return TTIImpl->hasDivRemOp(DataType, IsSigned);
450 }
451 
452 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
453                                              unsigned AddrSpace) const {
454   return TTIImpl->hasVolatileVariant(I, AddrSpace);
455 }
456 
457 bool TargetTransformInfo::prefersVectorizedAddressing() const {
458   return TTIImpl->prefersVectorizedAddressing();
459 }
460 
461 InstructionCost TargetTransformInfo::getScalingFactorCost(
462     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
463     int64_t Scale, unsigned AddrSpace) const {
464   InstructionCost Cost = TTIImpl->getScalingFactorCost(
465       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
466   assert(Cost >= 0 && "TTI should not produce negative costs!");
467   return Cost;
468 }
469 
470 bool TargetTransformInfo::LSRWithInstrQueries() const {
471   return TTIImpl->LSRWithInstrQueries();
472 }
473 
474 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
475   return TTIImpl->isTruncateFree(Ty1, Ty2);
476 }
477 
478 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
479   return TTIImpl->isProfitableToHoist(I);
480 }
481 
482 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
483 
484 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
485   return TTIImpl->isTypeLegal(Ty);
486 }
487 
488 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
489   return TTIImpl->getRegUsageForType(Ty);
490 }
491 
492 bool TargetTransformInfo::shouldBuildLookupTables() const {
493   return TTIImpl->shouldBuildLookupTables();
494 }
495 
496 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
497     Constant *C) const {
498   return TTIImpl->shouldBuildLookupTablesForConstant(C);
499 }
500 
501 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
502   return TTIImpl->shouldBuildRelLookupTables();
503 }
504 
505 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
506   return TTIImpl->useColdCCForColdCall(F);
507 }
508 
509 InstructionCost
510 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
511                                               const APInt &DemandedElts,
512                                               bool Insert, bool Extract) const {
513   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
514 }
515 
516 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
517     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
518   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
519 }
520 
521 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
522   return TTIImpl->supportsEfficientVectorElementLoadStore();
523 }
524 
525 bool TargetTransformInfo::supportsTailCalls() const {
526   return TTIImpl->supportsTailCalls();
527 }
528 
529 bool TargetTransformInfo::enableAggressiveInterleaving(
530     bool LoopHasReductions) const {
531   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
532 }
533 
534 TargetTransformInfo::MemCmpExpansionOptions
535 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
536   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
537 }
538 
539 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
540   return TTIImpl->enableInterleavedAccessVectorization();
541 }
542 
543 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
544   return TTIImpl->enableMaskedInterleavedAccessVectorization();
545 }
546 
547 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
548   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
549 }
550 
551 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
552                                                          unsigned BitWidth,
553                                                          unsigned AddressSpace,
554                                                          Align Alignment,
555                                                          bool *Fast) const {
556   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
557                                                  AddressSpace, Alignment, Fast);
558 }
559 
560 TargetTransformInfo::PopcntSupportKind
561 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
562   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
563 }
564 
565 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
566   return TTIImpl->haveFastSqrt(Ty);
567 }
568 
569 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
570   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
571 }
572 
573 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
574   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
575   assert(Cost >= 0 && "TTI should not produce negative costs!");
576   return Cost;
577 }
578 
579 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
580                                                            unsigned Idx,
581                                                            const APInt &Imm,
582                                                            Type *Ty) const {
583   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
584   assert(Cost >= 0 && "TTI should not produce negative costs!");
585   return Cost;
586 }
587 
588 InstructionCost
589 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
590                                    TTI::TargetCostKind CostKind) const {
591   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
592   assert(Cost >= 0 && "TTI should not produce negative costs!");
593   return Cost;
594 }
595 
596 InstructionCost TargetTransformInfo::getIntImmCostInst(
597     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
598     TTI::TargetCostKind CostKind, Instruction *Inst) const {
599   InstructionCost Cost =
600       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
601   assert(Cost >= 0 && "TTI should not produce negative costs!");
602   return Cost;
603 }
604 
605 InstructionCost
606 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
607                                          const APInt &Imm, Type *Ty,
608                                          TTI::TargetCostKind CostKind) const {
609   InstructionCost Cost =
610       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
611   assert(Cost >= 0 && "TTI should not produce negative costs!");
612   return Cost;
613 }
614 
615 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
616   return TTIImpl->getNumberOfRegisters(ClassID);
617 }
618 
619 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
620                                                       Type *Ty) const {
621   return TTIImpl->getRegisterClassForType(Vector, Ty);
622 }
623 
624 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
625   return TTIImpl->getRegisterClassName(ClassID);
626 }
627 
628 TypeSize TargetTransformInfo::getRegisterBitWidth(
629     TargetTransformInfo::RegisterKind K) const {
630   return TTIImpl->getRegisterBitWidth(K);
631 }
632 
633 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
634   return TTIImpl->getMinVectorRegisterBitWidth();
635 }
636 
637 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
638   return TTIImpl->getMaxVScale();
639 }
640 
641 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
642   return TTIImpl->getVScaleForTuning();
643 }
644 
645 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
646     TargetTransformInfo::RegisterKind K) const {
647   return TTIImpl->shouldMaximizeVectorBandwidth(K);
648 }
649 
650 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
651                                                bool IsScalable) const {
652   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
653 }
654 
655 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
656                                            unsigned Opcode) const {
657   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
658 }
659 
660 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
661                                                 Type *ScalarValTy) const {
662   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
663 }
664 
665 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
666     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
667   return TTIImpl->shouldConsiderAddressTypePromotion(
668       I, AllowPromotionWithoutCommonHeader);
669 }
670 
671 unsigned TargetTransformInfo::getCacheLineSize() const {
672   return CacheLineSize.getNumOccurrences() > 0 ? CacheLineSize
673                                                : TTIImpl->getCacheLineSize();
674 }
675 
676 llvm::Optional<unsigned>
677 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
678   return TTIImpl->getCacheSize(Level);
679 }
680 
681 llvm::Optional<unsigned>
682 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
683   return TTIImpl->getCacheAssociativity(Level);
684 }
685 
686 unsigned TargetTransformInfo::getPrefetchDistance() const {
687   return TTIImpl->getPrefetchDistance();
688 }
689 
690 unsigned TargetTransformInfo::getMinPrefetchStride(
691     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
692     unsigned NumPrefetches, bool HasCall) const {
693   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
694                                        NumPrefetches, HasCall);
695 }
696 
697 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
698   return TTIImpl->getMaxPrefetchIterationsAhead();
699 }
700 
701 bool TargetTransformInfo::enableWritePrefetching() const {
702   return TTIImpl->enableWritePrefetching();
703 }
704 
705 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
706   return TTIImpl->getMaxInterleaveFactor(VF);
707 }
708 
709 TargetTransformInfo::OperandValueKind
710 TargetTransformInfo::getOperandInfo(const Value *V,
711                                     OperandValueProperties &OpProps) {
712   OperandValueKind OpInfo = OK_AnyValue;
713   OpProps = OP_None;
714 
715   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
716     if (CI->getValue().isPowerOf2())
717       OpProps = OP_PowerOf2;
718     return OK_UniformConstantValue;
719   }
720 
721   // A broadcast shuffle creates a uniform value.
722   // TODO: Add support for non-zero index broadcasts.
723   // TODO: Add support for different source vector width.
724   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
725     if (ShuffleInst->isZeroEltSplat())
726       OpInfo = OK_UniformValue;
727 
728   const Value *Splat = getSplatValue(V);
729 
730   // Check for a splat of a constant or for a non uniform vector of constants
731   // and check if the constant(s) are all powers of two.
732   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
733     OpInfo = OK_NonUniformConstantValue;
734     if (Splat) {
735       OpInfo = OK_UniformConstantValue;
736       if (auto *CI = dyn_cast<ConstantInt>(Splat))
737         if (CI->getValue().isPowerOf2())
738           OpProps = OP_PowerOf2;
739     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
740       OpProps = OP_PowerOf2;
741       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
742         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
743           if (CI->getValue().isPowerOf2())
744             continue;
745         OpProps = OP_None;
746         break;
747       }
748     }
749   }
750 
751   // Check for a splat of a uniform value. This is not loop aware, so return
752   // true only for the obviously uniform cases (argument, globalvalue)
753   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
754     OpInfo = OK_UniformValue;
755 
756   return OpInfo;
757 }
758 
759 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
760     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
761     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
762     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
763     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
764   InstructionCost Cost =
765       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
766                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
767   assert(Cost >= 0 && "TTI should not produce negative costs!");
768   return Cost;
769 }
770 
771 InstructionCost TargetTransformInfo::getShuffleCost(
772     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, int Index,
773     VectorType *SubTp, ArrayRef<const Value *> Args) const {
774   InstructionCost Cost =
775       TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp, Args);
776   assert(Cost >= 0 && "TTI should not produce negative costs!");
777   return Cost;
778 }
779 
780 TTI::CastContextHint
781 TargetTransformInfo::getCastContextHint(const Instruction *I) {
782   if (!I)
783     return CastContextHint::None;
784 
785   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
786                              unsigned GatScatOp) {
787     const Instruction *I = dyn_cast<Instruction>(V);
788     if (!I)
789       return CastContextHint::None;
790 
791     if (I->getOpcode() == LdStOp)
792       return CastContextHint::Normal;
793 
794     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
795       if (II->getIntrinsicID() == MaskedOp)
796         return TTI::CastContextHint::Masked;
797       if (II->getIntrinsicID() == GatScatOp)
798         return TTI::CastContextHint::GatherScatter;
799     }
800 
801     return TTI::CastContextHint::None;
802   };
803 
804   switch (I->getOpcode()) {
805   case Instruction::ZExt:
806   case Instruction::SExt:
807   case Instruction::FPExt:
808     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
809                             Intrinsic::masked_load, Intrinsic::masked_gather);
810   case Instruction::Trunc:
811   case Instruction::FPTrunc:
812     if (I->hasOneUse())
813       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
814                               Intrinsic::masked_store,
815                               Intrinsic::masked_scatter);
816     break;
817   default:
818     return CastContextHint::None;
819   }
820 
821   return TTI::CastContextHint::None;
822 }
823 
824 InstructionCost TargetTransformInfo::getCastInstrCost(
825     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
826     TTI::TargetCostKind CostKind, const Instruction *I) const {
827   assert((I == nullptr || I->getOpcode() == Opcode) &&
828          "Opcode should reflect passed instruction.");
829   InstructionCost Cost =
830       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
831   assert(Cost >= 0 && "TTI should not produce negative costs!");
832   return Cost;
833 }
834 
835 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
836     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
837   InstructionCost Cost =
838       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
839   assert(Cost >= 0 && "TTI should not produce negative costs!");
840   return Cost;
841 }
842 
843 InstructionCost TargetTransformInfo::getCFInstrCost(
844     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
845   assert((I == nullptr || I->getOpcode() == Opcode) &&
846          "Opcode should reflect passed instruction.");
847   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
848   assert(Cost >= 0 && "TTI should not produce negative costs!");
849   return Cost;
850 }
851 
852 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
853     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
854     TTI::TargetCostKind CostKind, const Instruction *I) const {
855   assert((I == nullptr || I->getOpcode() == Opcode) &&
856          "Opcode should reflect passed instruction.");
857   InstructionCost Cost =
858       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
859   assert(Cost >= 0 && "TTI should not produce negative costs!");
860   return Cost;
861 }
862 
863 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
864                                                         Type *Val,
865                                                         unsigned Index) const {
866   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
867   assert(Cost >= 0 && "TTI should not produce negative costs!");
868   return Cost;
869 }
870 
871 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
872     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
873     TTI::TargetCostKind CostKind) {
874   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
875       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
876   assert(Cost >= 0 && "TTI should not produce negative costs!");
877   return Cost;
878 }
879 
880 InstructionCost TargetTransformInfo::getMemoryOpCost(
881     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
882     TTI::TargetCostKind CostKind, const Instruction *I) const {
883   assert((I == nullptr || I->getOpcode() == Opcode) &&
884          "Opcode should reflect passed instruction.");
885   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
886                                                   AddressSpace, CostKind, I);
887   assert(Cost >= 0 && "TTI should not produce negative costs!");
888   return Cost;
889 }
890 
891 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
892     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
893     TTI::TargetCostKind CostKind) const {
894   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
895                                                         AddressSpace, CostKind);
896   assert(Cost >= 0 && "TTI should not produce negative costs!");
897   return Cost;
898 }
899 
900 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
901     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
902     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
903   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
904       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
905   assert(Cost >= 0 && "TTI should not produce negative costs!");
906   return Cost;
907 }
908 
909 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
910     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
911     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
912     bool UseMaskForCond, bool UseMaskForGaps) const {
913   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
914       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
915       UseMaskForCond, UseMaskForGaps);
916   assert(Cost >= 0 && "TTI should not produce negative costs!");
917   return Cost;
918 }
919 
920 InstructionCost
921 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
922                                            TTI::TargetCostKind CostKind) const {
923   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
924   assert(Cost >= 0 && "TTI should not produce negative costs!");
925   return Cost;
926 }
927 
928 InstructionCost
929 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
930                                       ArrayRef<Type *> Tys,
931                                       TTI::TargetCostKind CostKind) const {
932   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
933   assert(Cost >= 0 && "TTI should not produce negative costs!");
934   return Cost;
935 }
936 
937 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
938   return TTIImpl->getNumberOfParts(Tp);
939 }
940 
941 InstructionCost
942 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
943                                                const SCEV *Ptr) const {
944   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
945   assert(Cost >= 0 && "TTI should not produce negative costs!");
946   return Cost;
947 }
948 
949 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
950   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
951   assert(Cost >= 0 && "TTI should not produce negative costs!");
952   return Cost;
953 }
954 
955 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
956     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
957     TTI::TargetCostKind CostKind) const {
958   InstructionCost Cost =
959       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
960   assert(Cost >= 0 && "TTI should not produce negative costs!");
961   return Cost;
962 }
963 
964 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
965     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
966     TTI::TargetCostKind CostKind) const {
967   InstructionCost Cost =
968       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
969   assert(Cost >= 0 && "TTI should not produce negative costs!");
970   return Cost;
971 }
972 
973 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
974     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
975     TTI::TargetCostKind CostKind) const {
976   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
977                                               CostKind);
978 }
979 
980 InstructionCost
981 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
982   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
983 }
984 
985 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
986                                              MemIntrinsicInfo &Info) const {
987   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
988 }
989 
990 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
991   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
992 }
993 
994 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
995     IntrinsicInst *Inst, Type *ExpectedType) const {
996   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
997 }
998 
999 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
1000     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1001     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1002     Optional<uint32_t> AtomicElementSize) const {
1003   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
1004                                             DestAddrSpace, SrcAlign, DestAlign,
1005                                             AtomicElementSize);
1006 }
1007 
1008 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1009     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1010     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1011     unsigned SrcAlign, unsigned DestAlign,
1012     Optional<uint32_t> AtomicCpySize) const {
1013   TTIImpl->getMemcpyLoopResidualLoweringType(
1014       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
1015       DestAlign, AtomicCpySize);
1016 }
1017 
1018 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1019                                               const Function *Callee) const {
1020   return TTIImpl->areInlineCompatible(Caller, Callee);
1021 }
1022 
1023 bool TargetTransformInfo::areTypesABICompatible(
1024     const Function *Caller, const Function *Callee,
1025     const ArrayRef<Type *> &Types) const {
1026   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1027 }
1028 
1029 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1030                                              Type *Ty) const {
1031   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1032 }
1033 
1034 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1035                                               Type *Ty) const {
1036   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1037 }
1038 
1039 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1040   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1041 }
1042 
1043 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1044   return TTIImpl->isLegalToVectorizeLoad(LI);
1045 }
1046 
1047 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1048   return TTIImpl->isLegalToVectorizeStore(SI);
1049 }
1050 
1051 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1052     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1053   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1054                                               AddrSpace);
1055 }
1056 
1057 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1058     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1059   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1060                                                AddrSpace);
1061 }
1062 
1063 bool TargetTransformInfo::isLegalToVectorizeReduction(
1064     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1065   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1066 }
1067 
1068 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1069   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1070 }
1071 
1072 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1073                                                   unsigned LoadSize,
1074                                                   unsigned ChainSizeInBytes,
1075                                                   VectorType *VecTy) const {
1076   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1077 }
1078 
1079 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1080                                                    unsigned StoreSize,
1081                                                    unsigned ChainSizeInBytes,
1082                                                    VectorType *VecTy) const {
1083   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1084 }
1085 
1086 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1087                                                 ReductionFlags Flags) const {
1088   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1089 }
1090 
1091 bool TargetTransformInfo::preferPredicatedReductionSelect(
1092     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1093   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1094 }
1095 
1096 TargetTransformInfo::VPLegalization
1097 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1098   return TTIImpl->getVPLegalizationStrategy(VPI);
1099 }
1100 
1101 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1102   return TTIImpl->shouldExpandReduction(II);
1103 }
1104 
1105 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1106   return TTIImpl->getGISelRematGlobalCost();
1107 }
1108 
1109 bool TargetTransformInfo::supportsScalableVectors() const {
1110   return TTIImpl->supportsScalableVectors();
1111 }
1112 
1113 bool TargetTransformInfo::enableScalableVectorization() const {
1114   return TTIImpl->enableScalableVectorization();
1115 }
1116 
1117 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1118                                                 Align Alignment) const {
1119   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1120 }
1121 
1122 InstructionCost
1123 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1124   return TTIImpl->getInstructionLatency(I);
1125 }
1126 
1127 InstructionCost
1128 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1129   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1130 
1131   switch (I->getOpcode()) {
1132   case Instruction::GetElementPtr:
1133   case Instruction::Ret:
1134   case Instruction::PHI:
1135   case Instruction::Br:
1136   case Instruction::Add:
1137   case Instruction::FAdd:
1138   case Instruction::Sub:
1139   case Instruction::FSub:
1140   case Instruction::Mul:
1141   case Instruction::FMul:
1142   case Instruction::UDiv:
1143   case Instruction::SDiv:
1144   case Instruction::FDiv:
1145   case Instruction::URem:
1146   case Instruction::SRem:
1147   case Instruction::FRem:
1148   case Instruction::Shl:
1149   case Instruction::LShr:
1150   case Instruction::AShr:
1151   case Instruction::And:
1152   case Instruction::Or:
1153   case Instruction::Xor:
1154   case Instruction::FNeg:
1155   case Instruction::Select:
1156   case Instruction::ICmp:
1157   case Instruction::FCmp:
1158   case Instruction::Store:
1159   case Instruction::Load:
1160   case Instruction::ZExt:
1161   case Instruction::SExt:
1162   case Instruction::FPToUI:
1163   case Instruction::FPToSI:
1164   case Instruction::FPExt:
1165   case Instruction::PtrToInt:
1166   case Instruction::IntToPtr:
1167   case Instruction::SIToFP:
1168   case Instruction::UIToFP:
1169   case Instruction::Trunc:
1170   case Instruction::FPTrunc:
1171   case Instruction::BitCast:
1172   case Instruction::AddrSpaceCast:
1173   case Instruction::ExtractElement:
1174   case Instruction::InsertElement:
1175   case Instruction::ExtractValue:
1176   case Instruction::ShuffleVector:
1177   case Instruction::Call:
1178   case Instruction::Switch:
1179     return getUserCost(I, CostKind);
1180   default:
1181     // We don't have any information on this instruction.
1182     return -1;
1183   }
1184 }
1185 
1186 TargetTransformInfo::Concept::~Concept() = default;
1187 
1188 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1189 
1190 TargetIRAnalysis::TargetIRAnalysis(
1191     std::function<Result(const Function &)> TTICallback)
1192     : TTICallback(std::move(TTICallback)) {}
1193 
1194 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1195                                                FunctionAnalysisManager &) {
1196   return TTICallback(F);
1197 }
1198 
1199 AnalysisKey TargetIRAnalysis::Key;
1200 
1201 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1202   return Result(F.getParent()->getDataLayout());
1203 }
1204 
1205 // Register the basic pass.
1206 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1207                 "Target Transform Information", false, true)
1208 char TargetTransformInfoWrapperPass::ID = 0;
1209 
1210 void TargetTransformInfoWrapperPass::anchor() {}
1211 
1212 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1213     : ImmutablePass(ID) {
1214   initializeTargetTransformInfoWrapperPassPass(
1215       *PassRegistry::getPassRegistry());
1216 }
1217 
1218 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1219     TargetIRAnalysis TIRA)
1220     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1221   initializeTargetTransformInfoWrapperPassPass(
1222       *PassRegistry::getPassRegistry());
1223 }
1224 
1225 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1226   FunctionAnalysisManager DummyFAM;
1227   TTI = TIRA.run(F, DummyFAM);
1228   return *TTI;
1229 }
1230 
1231 ImmutablePass *
1232 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1233   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1234 }
1235