1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/CallSite.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 58 LoopInfo &LI, DominatorTree &DT, 59 bool ForceNestedLoop, 60 bool ForceHardwareLoopPHI) { 61 SmallVector<BasicBlock *, 4> ExitingBlocks; 62 L->getExitingBlocks(ExitingBlocks); 63 64 for (BasicBlock *BB : ExitingBlocks) { 65 // If we pass the updated counter back through a phi, we need to know 66 // which latch the updated value will be coming from. 67 if (!L->isLoopLatch(BB)) { 68 if (ForceHardwareLoopPHI || CounterInReg) 69 continue; 70 } 71 72 const SCEV *EC = SE.getExitCount(L, BB); 73 if (isa<SCEVCouldNotCompute>(EC)) 74 continue; 75 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 76 if (ConstEC->getValue()->isZero()) 77 continue; 78 } else if (!SE.isLoopInvariant(EC, L)) 79 continue; 80 81 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 82 continue; 83 84 // If this exiting block is contained in a nested loop, it is not eligible 85 // for insertion of the branch-and-decrement since the inner loop would 86 // end up messing up the value in the CTR. 87 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 88 continue; 89 90 // We now have a loop-invariant count of loop iterations (which is not the 91 // constant zero) for which we know that this loop will not exit via this 92 // existing block. 93 94 // We need to make sure that this block will run on every loop iteration. 95 // For this to be true, we must dominate all blocks with backedges. Such 96 // blocks are in-loop predecessors to the header block. 97 bool NotAlways = false; 98 for (BasicBlock *Pred : predecessors(L->getHeader())) { 99 if (!L->contains(Pred)) 100 continue; 101 102 if (!DT.dominates(BB, Pred)) { 103 NotAlways = true; 104 break; 105 } 106 } 107 108 if (NotAlways) 109 continue; 110 111 // Make sure this blocks ends with a conditional branch. 112 Instruction *TI = BB->getTerminator(); 113 if (!TI) 114 continue; 115 116 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 117 if (!BI->isConditional()) 118 continue; 119 120 ExitBranch = BI; 121 } else 122 continue; 123 124 // Note that this block may not be the loop latch block, even if the loop 125 // has a latch block. 126 ExitBlock = BB; 127 ExitCount = EC; 128 break; 129 } 130 131 if (!ExitBlock) 132 return false; 133 return true; 134 } 135 136 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 137 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 138 139 TargetTransformInfo::~TargetTransformInfo() {} 140 141 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 142 : TTIImpl(std::move(Arg.TTIImpl)) {} 143 144 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 145 TTIImpl = std::move(RHS.TTIImpl); 146 return *this; 147 } 148 149 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 150 return TTIImpl->getInliningThresholdMultiplier(); 151 } 152 153 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 154 return TTIImpl->getInlinerVectorBonusPercent(); 155 } 156 157 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 158 ArrayRef<const Value *> Operands) const { 159 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 160 } 161 162 int TargetTransformInfo::getExtCost(const Instruction *I, 163 const Value *Src) const { 164 return TTIImpl->getExtCost(I, Src); 165 } 166 167 int TargetTransformInfo::getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 168 ArrayRef<const Value *> Arguments, 169 const User *U) const { 170 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 171 assert(Cost >= 0 && "TTI should not produce negative costs!"); 172 return Cost; 173 } 174 175 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 176 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 177 BlockFrequencyInfo *BFI) const { 178 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 179 } 180 181 int TargetTransformInfo::getUserCost(const User *U, 182 ArrayRef<const Value *> Operands) const { 183 int Cost = TTIImpl->getUserCost(U, Operands); 184 assert(Cost >= 0 && "TTI should not produce negative costs!"); 185 return Cost; 186 } 187 188 bool TargetTransformInfo::hasBranchDivergence() const { 189 return TTIImpl->hasBranchDivergence(); 190 } 191 192 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 193 return TTIImpl->useGPUDivergenceAnalysis(); 194 } 195 196 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 197 return TTIImpl->isSourceOfDivergence(V); 198 } 199 200 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 201 return TTIImpl->isAlwaysUniform(V); 202 } 203 204 unsigned TargetTransformInfo::getFlatAddressSpace() const { 205 return TTIImpl->getFlatAddressSpace(); 206 } 207 208 bool TargetTransformInfo::collectFlatAddressOperands( 209 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 210 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 211 } 212 213 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 214 Value *OldV, 215 Value *NewV) const { 216 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 217 } 218 219 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 220 return TTIImpl->isLoweredToCall(F); 221 } 222 223 bool TargetTransformInfo::isHardwareLoopProfitable( 224 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 225 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 226 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 227 } 228 229 bool TargetTransformInfo::preferPredicateOverEpilogue( 230 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 231 TargetLibraryInfo *TLI, DominatorTree *DT, 232 const LoopAccessInfo *LAI) const { 233 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 234 } 235 236 void TargetTransformInfo::getUnrollingPreferences( 237 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 238 return TTIImpl->getUnrollingPreferences(L, SE, UP); 239 } 240 241 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 242 return TTIImpl->isLegalAddImmediate(Imm); 243 } 244 245 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 246 return TTIImpl->isLegalICmpImmediate(Imm); 247 } 248 249 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 250 int64_t BaseOffset, 251 bool HasBaseReg, int64_t Scale, 252 unsigned AddrSpace, 253 Instruction *I) const { 254 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 255 Scale, AddrSpace, I); 256 } 257 258 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 259 return TTIImpl->isLSRCostLess(C1, C2); 260 } 261 262 bool TargetTransformInfo::canMacroFuseCmp() const { 263 return TTIImpl->canMacroFuseCmp(); 264 } 265 266 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 267 ScalarEvolution *SE, LoopInfo *LI, 268 DominatorTree *DT, AssumptionCache *AC, 269 TargetLibraryInfo *LibInfo) const { 270 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 271 } 272 273 bool TargetTransformInfo::shouldFavorPostInc() const { 274 return TTIImpl->shouldFavorPostInc(); 275 } 276 277 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 278 return TTIImpl->shouldFavorBackedgeIndex(L); 279 } 280 281 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 282 MaybeAlign Alignment) const { 283 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 284 } 285 286 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 287 MaybeAlign Alignment) const { 288 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 289 } 290 291 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 292 Align Alignment) const { 293 return TTIImpl->isLegalNTStore(DataType, Alignment); 294 } 295 296 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 297 return TTIImpl->isLegalNTLoad(DataType, Alignment); 298 } 299 300 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 301 MaybeAlign Alignment) const { 302 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 303 } 304 305 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 306 MaybeAlign Alignment) const { 307 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 308 } 309 310 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 311 return TTIImpl->isLegalMaskedCompressStore(DataType); 312 } 313 314 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 315 return TTIImpl->isLegalMaskedExpandLoad(DataType); 316 } 317 318 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 319 return TTIImpl->hasDivRemOp(DataType, IsSigned); 320 } 321 322 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 323 unsigned AddrSpace) const { 324 return TTIImpl->hasVolatileVariant(I, AddrSpace); 325 } 326 327 bool TargetTransformInfo::prefersVectorizedAddressing() const { 328 return TTIImpl->prefersVectorizedAddressing(); 329 } 330 331 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 332 int64_t BaseOffset, 333 bool HasBaseReg, int64_t Scale, 334 unsigned AddrSpace) const { 335 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 336 Scale, AddrSpace); 337 assert(Cost >= 0 && "TTI should not produce negative costs!"); 338 return Cost; 339 } 340 341 bool TargetTransformInfo::LSRWithInstrQueries() const { 342 return TTIImpl->LSRWithInstrQueries(); 343 } 344 345 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 346 return TTIImpl->isTruncateFree(Ty1, Ty2); 347 } 348 349 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 350 return TTIImpl->isProfitableToHoist(I); 351 } 352 353 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 354 355 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 356 return TTIImpl->isTypeLegal(Ty); 357 } 358 359 bool TargetTransformInfo::shouldBuildLookupTables() const { 360 return TTIImpl->shouldBuildLookupTables(); 361 } 362 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 363 Constant *C) const { 364 return TTIImpl->shouldBuildLookupTablesForConstant(C); 365 } 366 367 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 368 return TTIImpl->useColdCCForColdCall(F); 369 } 370 371 unsigned TargetTransformInfo::getScalarizationOverhead(Type *Ty, bool Insert, 372 bool Extract) const { 373 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 374 } 375 376 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 377 ArrayRef<const Value *> Args, unsigned VF) const { 378 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 379 } 380 381 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 382 return TTIImpl->supportsEfficientVectorElementLoadStore(); 383 } 384 385 bool TargetTransformInfo::enableAggressiveInterleaving( 386 bool LoopHasReductions) const { 387 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 388 } 389 390 TargetTransformInfo::MemCmpExpansionOptions 391 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 392 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 393 } 394 395 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 396 return TTIImpl->enableInterleavedAccessVectorization(); 397 } 398 399 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 400 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 401 } 402 403 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 404 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 405 } 406 407 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 408 unsigned BitWidth, 409 unsigned AddressSpace, 410 unsigned Alignment, 411 bool *Fast) const { 412 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 413 AddressSpace, Alignment, Fast); 414 } 415 416 TargetTransformInfo::PopcntSupportKind 417 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 418 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 419 } 420 421 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 422 return TTIImpl->haveFastSqrt(Ty); 423 } 424 425 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 426 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 427 } 428 429 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 430 int Cost = TTIImpl->getFPOpCost(Ty); 431 assert(Cost >= 0 && "TTI should not produce negative costs!"); 432 return Cost; 433 } 434 435 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 436 const APInt &Imm, 437 Type *Ty) const { 438 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 439 assert(Cost >= 0 && "TTI should not produce negative costs!"); 440 return Cost; 441 } 442 443 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 444 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 445 assert(Cost >= 0 && "TTI should not produce negative costs!"); 446 return Cost; 447 } 448 449 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 450 const APInt &Imm, Type *Ty) const { 451 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty); 452 assert(Cost >= 0 && "TTI should not produce negative costs!"); 453 return Cost; 454 } 455 456 int TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 457 const APInt &Imm, Type *Ty) const { 458 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty); 459 assert(Cost >= 0 && "TTI should not produce negative costs!"); 460 return Cost; 461 } 462 463 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 464 return TTIImpl->getNumberOfRegisters(ClassID); 465 } 466 467 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 468 Type *Ty) const { 469 return TTIImpl->getRegisterClassForType(Vector, Ty); 470 } 471 472 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 473 return TTIImpl->getRegisterClassName(ClassID); 474 } 475 476 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 477 return TTIImpl->getRegisterBitWidth(Vector); 478 } 479 480 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 481 return TTIImpl->getMinVectorRegisterBitWidth(); 482 } 483 484 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 485 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 486 } 487 488 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 489 return TTIImpl->getMinimumVF(ElemWidth); 490 } 491 492 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 493 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 494 return TTIImpl->shouldConsiderAddressTypePromotion( 495 I, AllowPromotionWithoutCommonHeader); 496 } 497 498 unsigned TargetTransformInfo::getCacheLineSize() const { 499 return TTIImpl->getCacheLineSize(); 500 } 501 502 llvm::Optional<unsigned> 503 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 504 return TTIImpl->getCacheSize(Level); 505 } 506 507 llvm::Optional<unsigned> 508 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 509 return TTIImpl->getCacheAssociativity(Level); 510 } 511 512 unsigned TargetTransformInfo::getPrefetchDistance() const { 513 return TTIImpl->getPrefetchDistance(); 514 } 515 516 unsigned TargetTransformInfo::getMinPrefetchStride( 517 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 518 unsigned NumPrefetches, bool HasCall) const { 519 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 520 NumPrefetches, HasCall); 521 } 522 523 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 524 return TTIImpl->getMaxPrefetchIterationsAhead(); 525 } 526 527 bool TargetTransformInfo::enableWritePrefetching() const { 528 return TTIImpl->enableWritePrefetching(); 529 } 530 531 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 532 return TTIImpl->getMaxInterleaveFactor(VF); 533 } 534 535 TargetTransformInfo::OperandValueKind 536 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 537 OperandValueKind OpInfo = OK_AnyValue; 538 OpProps = OP_None; 539 540 if (auto *CI = dyn_cast<ConstantInt>(V)) { 541 if (CI->getValue().isPowerOf2()) 542 OpProps = OP_PowerOf2; 543 return OK_UniformConstantValue; 544 } 545 546 // A broadcast shuffle creates a uniform value. 547 // TODO: Add support for non-zero index broadcasts. 548 // TODO: Add support for different source vector width. 549 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 550 if (ShuffleInst->isZeroEltSplat()) 551 OpInfo = OK_UniformValue; 552 553 const Value *Splat = getSplatValue(V); 554 555 // Check for a splat of a constant or for a non uniform vector of constants 556 // and check if the constant(s) are all powers of two. 557 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 558 OpInfo = OK_NonUniformConstantValue; 559 if (Splat) { 560 OpInfo = OK_UniformConstantValue; 561 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 562 if (CI->getValue().isPowerOf2()) 563 OpProps = OP_PowerOf2; 564 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 565 OpProps = OP_PowerOf2; 566 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 567 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 568 if (CI->getValue().isPowerOf2()) 569 continue; 570 OpProps = OP_None; 571 break; 572 } 573 } 574 } 575 576 // Check for a splat of a uniform value. This is not loop aware, so return 577 // true only for the obviously uniform cases (argument, globalvalue) 578 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 579 OpInfo = OK_UniformValue; 580 581 return OpInfo; 582 } 583 584 int TargetTransformInfo::getArithmeticInstrCost( 585 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 586 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 587 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 588 const Instruction *CxtI) const { 589 int Cost = TTIImpl->getArithmeticInstrCost( 590 Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); 591 assert(Cost >= 0 && "TTI should not produce negative costs!"); 592 return Cost; 593 } 594 595 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 596 int Index, VectorType *SubTp) const { 597 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 598 assert(Cost >= 0 && "TTI should not produce negative costs!"); 599 return Cost; 600 } 601 602 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 603 const Instruction *I) const { 604 assert((I == nullptr || I->getOpcode() == Opcode) && 605 "Opcode should reflect passed instruction."); 606 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 607 assert(Cost >= 0 && "TTI should not produce negative costs!"); 608 return Cost; 609 } 610 611 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 612 VectorType *VecTy, 613 unsigned Index) const { 614 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 615 assert(Cost >= 0 && "TTI should not produce negative costs!"); 616 return Cost; 617 } 618 619 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 620 int Cost = TTIImpl->getCFInstrCost(Opcode); 621 assert(Cost >= 0 && "TTI should not produce negative costs!"); 622 return Cost; 623 } 624 625 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 626 Type *CondTy, 627 const Instruction *I) const { 628 assert((I == nullptr || I->getOpcode() == Opcode) && 629 "Opcode should reflect passed instruction."); 630 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 636 unsigned Index) const { 637 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 638 assert(Cost >= 0 && "TTI should not produce negative costs!"); 639 return Cost; 640 } 641 642 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 643 MaybeAlign Alignment, 644 unsigned AddressSpace, 645 const Instruction *I) const { 646 assert((I == nullptr || I->getOpcode() == Opcode) && 647 "Opcode should reflect passed instruction."); 648 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 649 assert(Cost >= 0 && "TTI should not produce negative costs!"); 650 return Cost; 651 } 652 653 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 654 unsigned Alignment, 655 unsigned AddressSpace) const { 656 int Cost = 657 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 658 assert(Cost >= 0 && "TTI should not produce negative costs!"); 659 return Cost; 660 } 661 662 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 663 Value *Ptr, bool VariableMask, 664 unsigned Alignment, 665 const Instruction *I) const { 666 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 667 Alignment, I); 668 assert(Cost >= 0 && "TTI should not produce negative costs!"); 669 return Cost; 670 } 671 672 int TargetTransformInfo::getInterleavedMemoryOpCost( 673 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 674 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 675 bool UseMaskForGaps) const { 676 int Cost = TTIImpl->getInterleavedMemoryOpCost( 677 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, UseMaskForCond, 678 UseMaskForGaps); 679 assert(Cost >= 0 && "TTI should not produce negative costs!"); 680 return Cost; 681 } 682 683 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 684 ArrayRef<Type *> Tys, 685 FastMathFlags FMF, 686 unsigned ScalarizationCostPassed, 687 const Instruction *I) const { 688 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 689 ScalarizationCostPassed, I); 690 assert(Cost >= 0 && "TTI should not produce negative costs!"); 691 return Cost; 692 } 693 694 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 695 ArrayRef<Value *> Args, 696 FastMathFlags FMF, unsigned VF, 697 const Instruction *I) const { 698 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 699 assert(Cost >= 0 && "TTI should not produce negative costs!"); 700 return Cost; 701 } 702 703 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 704 ArrayRef<Type *> Tys) const { 705 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 706 assert(Cost >= 0 && "TTI should not produce negative costs!"); 707 return Cost; 708 } 709 710 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 711 return TTIImpl->getNumberOfParts(Tp); 712 } 713 714 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 715 ScalarEvolution *SE, 716 const SCEV *Ptr) const { 717 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 718 assert(Cost >= 0 && "TTI should not produce negative costs!"); 719 return Cost; 720 } 721 722 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 723 int Cost = TTIImpl->getMemcpyCost(I); 724 assert(Cost >= 0 && "TTI should not produce negative costs!"); 725 return Cost; 726 } 727 728 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 729 VectorType *Ty, 730 bool IsPairwiseForm) const { 731 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 732 assert(Cost >= 0 && "TTI should not produce negative costs!"); 733 return Cost; 734 } 735 736 int TargetTransformInfo::getMinMaxReductionCost(VectorType *Ty, 737 VectorType *CondTy, 738 bool IsPairwiseForm, 739 bool IsUnsigned) const { 740 int Cost = 741 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 742 assert(Cost >= 0 && "TTI should not produce negative costs!"); 743 return Cost; 744 } 745 746 unsigned 747 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 748 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 749 } 750 751 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 752 MemIntrinsicInfo &Info) const { 753 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 754 } 755 756 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 757 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 758 } 759 760 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 761 IntrinsicInst *Inst, Type *ExpectedType) const { 762 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 763 } 764 765 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 766 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 767 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 768 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 769 DestAddrSpace, SrcAlign, DestAlign); 770 } 771 772 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 773 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 774 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 775 unsigned SrcAlign, unsigned DestAlign) const { 776 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 777 SrcAddrSpace, DestAddrSpace, 778 SrcAlign, DestAlign); 779 } 780 781 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 782 const Function *Callee) const { 783 return TTIImpl->areInlineCompatible(Caller, Callee); 784 } 785 786 bool TargetTransformInfo::areFunctionArgsABICompatible( 787 const Function *Caller, const Function *Callee, 788 SmallPtrSetImpl<Argument *> &Args) const { 789 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 790 } 791 792 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 793 Type *Ty) const { 794 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 795 } 796 797 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 798 Type *Ty) const { 799 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 800 } 801 802 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 803 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 804 } 805 806 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 807 return TTIImpl->isLegalToVectorizeLoad(LI); 808 } 809 810 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 811 return TTIImpl->isLegalToVectorizeStore(SI); 812 } 813 814 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 815 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 816 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 817 AddrSpace); 818 } 819 820 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 821 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 822 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 823 AddrSpace); 824 } 825 826 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 827 unsigned LoadSize, 828 unsigned ChainSizeInBytes, 829 VectorType *VecTy) const { 830 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 831 } 832 833 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 834 unsigned StoreSize, 835 unsigned ChainSizeInBytes, 836 VectorType *VecTy) const { 837 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 838 } 839 840 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 841 ReductionFlags Flags) const { 842 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 843 } 844 845 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 846 return TTIImpl->shouldExpandReduction(II); 847 } 848 849 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 850 return TTIImpl->getGISelRematGlobalCost(); 851 } 852 853 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 854 return TTIImpl->getInstructionLatency(I); 855 } 856 857 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 858 unsigned Level) { 859 // We don't need a shuffle if we just want to have element 0 in position 0 of 860 // the vector. 861 if (!SI && Level == 0 && IsLeft) 862 return true; 863 else if (!SI) 864 return false; 865 866 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 867 868 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 869 // we look at the left or right side. 870 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 871 Mask[i] = val; 872 873 ArrayRef<int> ActualMask = SI->getShuffleMask(); 874 return Mask == ActualMask; 875 } 876 877 namespace { 878 /// Kind of the reduction data. 879 enum ReductionKind { 880 RK_None, /// Not a reduction. 881 RK_Arithmetic, /// Binary reduction data. 882 RK_MinMax, /// Min/max reduction data. 883 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 884 }; 885 /// Contains opcode + LHS/RHS parts of the reduction operations. 886 struct ReductionData { 887 ReductionData() = delete; 888 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 889 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 890 assert(Kind != RK_None && "expected binary or min/max reduction only."); 891 } 892 unsigned Opcode = 0; 893 Value *LHS = nullptr; 894 Value *RHS = nullptr; 895 ReductionKind Kind = RK_None; 896 bool hasSameData(ReductionData &RD) const { 897 return Kind == RD.Kind && Opcode == RD.Opcode; 898 } 899 }; 900 } // namespace 901 902 static Optional<ReductionData> getReductionData(Instruction *I) { 903 Value *L, *R; 904 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 905 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 906 if (auto *SI = dyn_cast<SelectInst>(I)) { 907 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 908 m_SMax(m_Value(L), m_Value(R)).match(SI) || 909 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 910 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 911 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 912 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 913 auto *CI = cast<CmpInst>(SI->getCondition()); 914 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 915 } 916 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 917 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 918 auto *CI = cast<CmpInst>(SI->getCondition()); 919 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 920 } 921 } 922 return llvm::None; 923 } 924 925 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 926 unsigned Level, 927 unsigned NumLevels) { 928 // Match one level of pairwise operations. 929 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 930 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 931 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 932 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 933 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 934 if (!I) 935 return RK_None; 936 937 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 938 939 Optional<ReductionData> RD = getReductionData(I); 940 if (!RD) 941 return RK_None; 942 943 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 944 if (!LS && Level) 945 return RK_None; 946 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 947 if (!RS && Level) 948 return RK_None; 949 950 // On level 0 we can omit one shufflevector instruction. 951 if (!Level && !RS && !LS) 952 return RK_None; 953 954 // Shuffle inputs must match. 955 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 956 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 957 Value *NextLevelOp = nullptr; 958 if (NextLevelOpR && NextLevelOpL) { 959 // If we have two shuffles their operands must match. 960 if (NextLevelOpL != NextLevelOpR) 961 return RK_None; 962 963 NextLevelOp = NextLevelOpL; 964 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 965 // On the first level we can omit the shufflevector <0, undef,...>. So the 966 // input to the other shufflevector <1, undef> must match with one of the 967 // inputs to the current binary operation. 968 // Example: 969 // %NextLevelOpL = shufflevector %R, <1, undef ...> 970 // %BinOp = fadd %NextLevelOpL, %R 971 if (NextLevelOpL && NextLevelOpL != RD->RHS) 972 return RK_None; 973 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 974 return RK_None; 975 976 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 977 } else 978 return RK_None; 979 980 // Check that the next levels binary operation exists and matches with the 981 // current one. 982 if (Level + 1 != NumLevels) { 983 Optional<ReductionData> NextLevelRD = 984 getReductionData(cast<Instruction>(NextLevelOp)); 985 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 986 return RK_None; 987 } 988 989 // Shuffle mask for pairwise operation must match. 990 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 991 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 992 return RK_None; 993 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 994 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 995 return RK_None; 996 } else { 997 return RK_None; 998 } 999 1000 if (++Level == NumLevels) 1001 return RD->Kind; 1002 1003 // Match next level. 1004 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1005 NumLevels); 1006 } 1007 1008 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1009 unsigned &Opcode, 1010 VectorType *&Ty) { 1011 if (!EnableReduxCost) 1012 return RK_None; 1013 1014 // Need to extract the first element. 1015 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1016 unsigned Idx = ~0u; 1017 if (CI) 1018 Idx = CI->getZExtValue(); 1019 if (Idx != 0) 1020 return RK_None; 1021 1022 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1023 if (!RdxStart) 1024 return RK_None; 1025 Optional<ReductionData> RD = getReductionData(RdxStart); 1026 if (!RD) 1027 return RK_None; 1028 1029 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1030 unsigned NumVecElems = VecTy->getNumElements(); 1031 if (!isPowerOf2_32(NumVecElems)) 1032 return RK_None; 1033 1034 // We look for a sequence of shuffle,shuffle,add triples like the following 1035 // that builds a pairwise reduction tree. 1036 // 1037 // (X0, X1, X2, X3) 1038 // (X0 + X1, X2 + X3, undef, undef) 1039 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1040 // 1041 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1042 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1043 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1044 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1045 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1046 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1047 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1048 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1049 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1050 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1051 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1052 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1053 RK_None) 1054 return RK_None; 1055 1056 Opcode = RD->Opcode; 1057 Ty = VecTy; 1058 1059 return RD->Kind; 1060 } 1061 1062 static std::pair<Value *, ShuffleVectorInst *> 1063 getShuffleAndOtherOprd(Value *L, Value *R) { 1064 ShuffleVectorInst *S = nullptr; 1065 1066 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1067 return std::make_pair(R, S); 1068 1069 S = dyn_cast<ShuffleVectorInst>(R); 1070 return std::make_pair(L, S); 1071 } 1072 1073 static ReductionKind 1074 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1075 unsigned &Opcode, VectorType *&Ty) { 1076 if (!EnableReduxCost) 1077 return RK_None; 1078 1079 // Need to extract the first element. 1080 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1081 unsigned Idx = ~0u; 1082 if (CI) 1083 Idx = CI->getZExtValue(); 1084 if (Idx != 0) 1085 return RK_None; 1086 1087 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1088 if (!RdxStart) 1089 return RK_None; 1090 Optional<ReductionData> RD = getReductionData(RdxStart); 1091 if (!RD) 1092 return RK_None; 1093 1094 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1095 unsigned NumVecElems = VecTy->getNumElements(); 1096 if (!isPowerOf2_32(NumVecElems)) 1097 return RK_None; 1098 1099 // We look for a sequence of shuffles and adds like the following matching one 1100 // fadd, shuffle vector pair at a time. 1101 // 1102 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1103 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1104 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1105 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1106 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1107 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1108 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1109 1110 unsigned MaskStart = 1; 1111 Instruction *RdxOp = RdxStart; 1112 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1113 unsigned NumVecElemsRemain = NumVecElems; 1114 while (NumVecElemsRemain - 1) { 1115 // Check for the right reduction operation. 1116 if (!RdxOp) 1117 return RK_None; 1118 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1119 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1120 return RK_None; 1121 1122 Value *NextRdxOp; 1123 ShuffleVectorInst *Shuffle; 1124 std::tie(NextRdxOp, Shuffle) = 1125 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1126 1127 // Check the current reduction operation and the shuffle use the same value. 1128 if (Shuffle == nullptr) 1129 return RK_None; 1130 if (Shuffle->getOperand(0) != NextRdxOp) 1131 return RK_None; 1132 1133 // Check that shuffle masks matches. 1134 for (unsigned j = 0; j != MaskStart; ++j) 1135 ShuffleMask[j] = MaskStart + j; 1136 // Fill the rest of the mask with -1 for undef. 1137 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1138 1139 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1140 if (ShuffleMask != Mask) 1141 return RK_None; 1142 1143 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1144 NumVecElemsRemain /= 2; 1145 MaskStart *= 2; 1146 } 1147 1148 Opcode = RD->Opcode; 1149 Ty = VecTy; 1150 return RD->Kind; 1151 } 1152 1153 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1154 switch (I->getOpcode()) { 1155 case Instruction::GetElementPtr: 1156 return getUserCost(I); 1157 1158 case Instruction::Ret: 1159 case Instruction::PHI: 1160 case Instruction::Br: { 1161 return getCFInstrCost(I->getOpcode()); 1162 } 1163 case Instruction::Add: 1164 case Instruction::FAdd: 1165 case Instruction::Sub: 1166 case Instruction::FSub: 1167 case Instruction::Mul: 1168 case Instruction::FMul: 1169 case Instruction::UDiv: 1170 case Instruction::SDiv: 1171 case Instruction::FDiv: 1172 case Instruction::URem: 1173 case Instruction::SRem: 1174 case Instruction::FRem: 1175 case Instruction::Shl: 1176 case Instruction::LShr: 1177 case Instruction::AShr: 1178 case Instruction::And: 1179 case Instruction::Or: 1180 case Instruction::Xor: { 1181 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1182 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1183 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1184 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1185 SmallVector<const Value *, 2> Operands(I->operand_values()); 1186 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1187 Op1VP, Op2VP, Operands, I); 1188 } 1189 case Instruction::FNeg: { 1190 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1191 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1192 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1193 Op2VK = OK_AnyValue; 1194 Op2VP = OP_None; 1195 SmallVector<const Value *, 2> Operands(I->operand_values()); 1196 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1197 Op1VP, Op2VP, Operands, I); 1198 } 1199 case Instruction::Select: { 1200 const SelectInst *SI = cast<SelectInst>(I); 1201 Type *CondTy = SI->getCondition()->getType(); 1202 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1203 } 1204 case Instruction::ICmp: 1205 case Instruction::FCmp: { 1206 Type *ValTy = I->getOperand(0)->getType(); 1207 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1208 } 1209 case Instruction::Store: { 1210 const StoreInst *SI = cast<StoreInst>(I); 1211 Type *ValTy = SI->getValueOperand()->getType(); 1212 return getMemoryOpCost(I->getOpcode(), ValTy, 1213 MaybeAlign(SI->getAlignment()), 1214 SI->getPointerAddressSpace(), I); 1215 } 1216 case Instruction::Load: { 1217 const LoadInst *LI = cast<LoadInst>(I); 1218 return getMemoryOpCost(I->getOpcode(), I->getType(), 1219 MaybeAlign(LI->getAlignment()), 1220 LI->getPointerAddressSpace(), I); 1221 } 1222 case Instruction::ZExt: 1223 case Instruction::SExt: 1224 case Instruction::FPToUI: 1225 case Instruction::FPToSI: 1226 case Instruction::FPExt: 1227 case Instruction::PtrToInt: 1228 case Instruction::IntToPtr: 1229 case Instruction::SIToFP: 1230 case Instruction::UIToFP: 1231 case Instruction::Trunc: 1232 case Instruction::FPTrunc: 1233 case Instruction::BitCast: 1234 case Instruction::AddrSpaceCast: { 1235 Type *SrcTy = I->getOperand(0)->getType(); 1236 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1237 } 1238 case Instruction::ExtractElement: { 1239 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1240 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1241 unsigned Idx = -1; 1242 if (CI) 1243 Idx = CI->getZExtValue(); 1244 1245 // Try to match a reduction sequence (series of shufflevector and vector 1246 // adds followed by a extractelement). 1247 unsigned ReduxOpCode; 1248 VectorType *ReduxType; 1249 1250 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1251 case RK_Arithmetic: 1252 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1253 /*IsPairwiseForm=*/false); 1254 case RK_MinMax: 1255 return getMinMaxReductionCost( 1256 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1257 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1258 case RK_UnsignedMinMax: 1259 return getMinMaxReductionCost( 1260 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1261 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1262 case RK_None: 1263 break; 1264 } 1265 1266 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1267 case RK_Arithmetic: 1268 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1269 /*IsPairwiseForm=*/true); 1270 case RK_MinMax: 1271 return getMinMaxReductionCost( 1272 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1273 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1274 case RK_UnsignedMinMax: 1275 return getMinMaxReductionCost( 1276 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1277 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1278 case RK_None: 1279 break; 1280 } 1281 1282 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1283 Idx); 1284 } 1285 case Instruction::InsertElement: { 1286 const InsertElementInst *IE = cast<InsertElementInst>(I); 1287 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1288 unsigned Idx = -1; 1289 if (CI) 1290 Idx = CI->getZExtValue(); 1291 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1292 } 1293 case Instruction::ExtractValue: 1294 return 0; // Model all ExtractValue nodes as free. 1295 case Instruction::ShuffleVector: { 1296 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1297 auto *Ty = cast<VectorType>(Shuffle->getType()); 1298 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1299 1300 // TODO: Identify and add costs for insert subvector, etc. 1301 int SubIndex; 1302 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1303 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1304 1305 if (Shuffle->changesLength()) 1306 return -1; 1307 1308 if (Shuffle->isIdentity()) 1309 return 0; 1310 1311 if (Shuffle->isReverse()) 1312 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1313 1314 if (Shuffle->isSelect()) 1315 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1316 1317 if (Shuffle->isTranspose()) 1318 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1319 1320 if (Shuffle->isZeroEltSplat()) 1321 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1322 1323 if (Shuffle->isSingleSource()) 1324 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1325 1326 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1327 } 1328 case Instruction::Call: 1329 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1330 SmallVector<Value *, 4> Args(II->arg_operands()); 1331 1332 FastMathFlags FMF; 1333 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1334 FMF = FPMO->getFastMathFlags(); 1335 1336 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 1337 FMF, 1, II); 1338 } 1339 return -1; 1340 default: 1341 // We don't have any information on this instruction. 1342 return -1; 1343 } 1344 } 1345 1346 TargetTransformInfo::Concept::~Concept() {} 1347 1348 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1349 1350 TargetIRAnalysis::TargetIRAnalysis( 1351 std::function<Result(const Function &)> TTICallback) 1352 : TTICallback(std::move(TTICallback)) {} 1353 1354 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1355 FunctionAnalysisManager &) { 1356 return TTICallback(F); 1357 } 1358 1359 AnalysisKey TargetIRAnalysis::Key; 1360 1361 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1362 return Result(F.getParent()->getDataLayout()); 1363 } 1364 1365 // Register the basic pass. 1366 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1367 "Target Transform Information", false, true) 1368 char TargetTransformInfoWrapperPass::ID = 0; 1369 1370 void TargetTransformInfoWrapperPass::anchor() {} 1371 1372 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1373 : ImmutablePass(ID) { 1374 initializeTargetTransformInfoWrapperPassPass( 1375 *PassRegistry::getPassRegistry()); 1376 } 1377 1378 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1379 TargetIRAnalysis TIRA) 1380 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1381 initializeTargetTransformInfoWrapperPassPass( 1382 *PassRegistry::getPassRegistry()); 1383 } 1384 1385 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1386 FunctionAnalysisManager DummyFAM; 1387 TTI = TIRA.run(F, DummyFAM); 1388 return *TTI; 1389 } 1390 1391 ImmutablePass * 1392 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1393 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1394 } 1395