1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 FunctionType *FTy = 75 CI.getCalledFunction()->getFunctionType(); 76 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 77 } 78 79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 80 const CallBase &CI, 81 unsigned Factor) : 82 RetTy(CI.getType()), IID(Id), VF(Factor) { 83 84 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 85 FMF = FPMO->getFastMathFlags(); 86 87 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 88 FunctionType *FTy = 89 CI.getCalledFunction()->getFunctionType(); 90 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 91 } 92 93 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 94 const CallBase &CI, 95 unsigned Factor, 96 unsigned ScalarCost) : 97 RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 98 99 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 100 FMF = FPMO->getFastMathFlags(); 101 102 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 103 FunctionType *FTy = 104 CI.getCalledFunction()->getFunctionType(); 105 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 106 } 107 108 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 109 ArrayRef<Type *> Tys, 110 FastMathFlags Flags) : 111 RetTy(RTy), IID(Id), FMF(Flags) { 112 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 113 } 114 115 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 116 ArrayRef<Type *> Tys, 117 FastMathFlags Flags, 118 unsigned ScalarCost) : 119 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 120 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 121 } 122 123 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 124 ArrayRef<Type *> Tys, 125 FastMathFlags Flags, 126 unsigned ScalarCost, 127 const IntrinsicInst *I) : 128 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 129 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 130 } 131 132 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 133 ArrayRef<Type *> Tys) : 134 RetTy(RTy), IID(Id) { 135 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 136 } 137 138 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 139 ArrayRef<const Value *> Args) 140 : RetTy(Ty), IID(Id) { 141 142 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 143 ParamTys.reserve(Arguments.size()); 144 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 145 ParamTys.push_back(Arguments[Idx]->getType()); 146 } 147 148 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 149 LoopInfo &LI, DominatorTree &DT, 150 bool ForceNestedLoop, 151 bool ForceHardwareLoopPHI) { 152 SmallVector<BasicBlock *, 4> ExitingBlocks; 153 L->getExitingBlocks(ExitingBlocks); 154 155 for (BasicBlock *BB : ExitingBlocks) { 156 // If we pass the updated counter back through a phi, we need to know 157 // which latch the updated value will be coming from. 158 if (!L->isLoopLatch(BB)) { 159 if (ForceHardwareLoopPHI || CounterInReg) 160 continue; 161 } 162 163 const SCEV *EC = SE.getExitCount(L, BB); 164 if (isa<SCEVCouldNotCompute>(EC)) 165 continue; 166 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 167 if (ConstEC->getValue()->isZero()) 168 continue; 169 } else if (!SE.isLoopInvariant(EC, L)) 170 continue; 171 172 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 173 continue; 174 175 // If this exiting block is contained in a nested loop, it is not eligible 176 // for insertion of the branch-and-decrement since the inner loop would 177 // end up messing up the value in the CTR. 178 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 179 continue; 180 181 // We now have a loop-invariant count of loop iterations (which is not the 182 // constant zero) for which we know that this loop will not exit via this 183 // existing block. 184 185 // We need to make sure that this block will run on every loop iteration. 186 // For this to be true, we must dominate all blocks with backedges. Such 187 // blocks are in-loop predecessors to the header block. 188 bool NotAlways = false; 189 for (BasicBlock *Pred : predecessors(L->getHeader())) { 190 if (!L->contains(Pred)) 191 continue; 192 193 if (!DT.dominates(BB, Pred)) { 194 NotAlways = true; 195 break; 196 } 197 } 198 199 if (NotAlways) 200 continue; 201 202 // Make sure this blocks ends with a conditional branch. 203 Instruction *TI = BB->getTerminator(); 204 if (!TI) 205 continue; 206 207 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 208 if (!BI->isConditional()) 209 continue; 210 211 ExitBranch = BI; 212 } else 213 continue; 214 215 // Note that this block may not be the loop latch block, even if the loop 216 // has a latch block. 217 ExitBlock = BB; 218 ExitCount = EC; 219 break; 220 } 221 222 if (!ExitBlock) 223 return false; 224 return true; 225 } 226 227 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 228 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 229 230 TargetTransformInfo::~TargetTransformInfo() {} 231 232 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 233 : TTIImpl(std::move(Arg.TTIImpl)) {} 234 235 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 236 TTIImpl = std::move(RHS.TTIImpl); 237 return *this; 238 } 239 240 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 241 return TTIImpl->getInliningThresholdMultiplier(); 242 } 243 244 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 245 return TTIImpl->getInlinerVectorBonusPercent(); 246 } 247 248 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 249 ArrayRef<const Value *> Operands, 250 TTI::TargetCostKind CostKind) const { 251 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 252 } 253 254 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 255 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 256 BlockFrequencyInfo *BFI) const { 257 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 258 } 259 260 int TargetTransformInfo::getUserCost(const User *U, 261 ArrayRef<const Value *> Operands, 262 enum TargetCostKind CostKind) const { 263 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 264 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 265 "TTI should not produce negative costs!"); 266 return Cost; 267 } 268 269 bool TargetTransformInfo::hasBranchDivergence() const { 270 return TTIImpl->hasBranchDivergence(); 271 } 272 273 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 274 return TTIImpl->useGPUDivergenceAnalysis(); 275 } 276 277 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 278 return TTIImpl->isSourceOfDivergence(V); 279 } 280 281 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 282 return TTIImpl->isAlwaysUniform(V); 283 } 284 285 unsigned TargetTransformInfo::getFlatAddressSpace() const { 286 return TTIImpl->getFlatAddressSpace(); 287 } 288 289 bool TargetTransformInfo::collectFlatAddressOperands( 290 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 291 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 292 } 293 294 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 295 unsigned ToAS) const { 296 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 297 } 298 299 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 300 IntrinsicInst *II, Value *OldV, Value *NewV) const { 301 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 302 } 303 304 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 305 return TTIImpl->isLoweredToCall(F); 306 } 307 308 bool TargetTransformInfo::isHardwareLoopProfitable( 309 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 310 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 311 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 312 } 313 314 bool TargetTransformInfo::preferPredicateOverEpilogue( 315 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 316 TargetLibraryInfo *TLI, DominatorTree *DT, 317 const LoopAccessInfo *LAI) const { 318 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 319 } 320 321 bool TargetTransformInfo::emitGetActiveLaneMask() const { 322 return TTIImpl->emitGetActiveLaneMask(); 323 } 324 325 void TargetTransformInfo::getUnrollingPreferences( 326 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 327 return TTIImpl->getUnrollingPreferences(L, SE, UP); 328 } 329 330 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 331 return TTIImpl->isLegalAddImmediate(Imm); 332 } 333 334 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 335 return TTIImpl->isLegalICmpImmediate(Imm); 336 } 337 338 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 339 int64_t BaseOffset, 340 bool HasBaseReg, int64_t Scale, 341 unsigned AddrSpace, 342 Instruction *I) const { 343 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 344 Scale, AddrSpace, I); 345 } 346 347 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 348 return TTIImpl->isLSRCostLess(C1, C2); 349 } 350 351 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 352 return TTIImpl->isProfitableLSRChainElement(I); 353 } 354 355 bool TargetTransformInfo::canMacroFuseCmp() const { 356 return TTIImpl->canMacroFuseCmp(); 357 } 358 359 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 360 ScalarEvolution *SE, LoopInfo *LI, 361 DominatorTree *DT, AssumptionCache *AC, 362 TargetLibraryInfo *LibInfo) const { 363 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 364 } 365 366 bool TargetTransformInfo::shouldFavorPostInc() const { 367 return TTIImpl->shouldFavorPostInc(); 368 } 369 370 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 371 return TTIImpl->shouldFavorBackedgeIndex(L); 372 } 373 374 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 375 Align Alignment) const { 376 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 377 } 378 379 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 380 Align Alignment) const { 381 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 382 } 383 384 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 385 Align Alignment) const { 386 return TTIImpl->isLegalNTStore(DataType, Alignment); 387 } 388 389 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 390 return TTIImpl->isLegalNTLoad(DataType, Alignment); 391 } 392 393 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 394 Align Alignment) const { 395 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 396 } 397 398 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 399 Align Alignment) const { 400 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 401 } 402 403 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 404 return TTIImpl->isLegalMaskedCompressStore(DataType); 405 } 406 407 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 408 return TTIImpl->isLegalMaskedExpandLoad(DataType); 409 } 410 411 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 412 return TTIImpl->hasDivRemOp(DataType, IsSigned); 413 } 414 415 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 416 unsigned AddrSpace) const { 417 return TTIImpl->hasVolatileVariant(I, AddrSpace); 418 } 419 420 bool TargetTransformInfo::prefersVectorizedAddressing() const { 421 return TTIImpl->prefersVectorizedAddressing(); 422 } 423 424 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 425 int64_t BaseOffset, 426 bool HasBaseReg, int64_t Scale, 427 unsigned AddrSpace) const { 428 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 429 Scale, AddrSpace); 430 assert(Cost >= 0 && "TTI should not produce negative costs!"); 431 return Cost; 432 } 433 434 bool TargetTransformInfo::LSRWithInstrQueries() const { 435 return TTIImpl->LSRWithInstrQueries(); 436 } 437 438 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 439 return TTIImpl->isTruncateFree(Ty1, Ty2); 440 } 441 442 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 443 return TTIImpl->isProfitableToHoist(I); 444 } 445 446 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 447 448 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 449 return TTIImpl->isTypeLegal(Ty); 450 } 451 452 bool TargetTransformInfo::shouldBuildLookupTables() const { 453 return TTIImpl->shouldBuildLookupTables(); 454 } 455 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 456 Constant *C) const { 457 return TTIImpl->shouldBuildLookupTablesForConstant(C); 458 } 459 460 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 461 return TTIImpl->useColdCCForColdCall(F); 462 } 463 464 unsigned 465 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 466 const APInt &DemandedElts, 467 bool Insert, bool Extract) const { 468 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 469 } 470 471 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 472 ArrayRef<const Value *> Args, unsigned VF) const { 473 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 474 } 475 476 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 477 return TTIImpl->supportsEfficientVectorElementLoadStore(); 478 } 479 480 bool TargetTransformInfo::enableAggressiveInterleaving( 481 bool LoopHasReductions) const { 482 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 483 } 484 485 TargetTransformInfo::MemCmpExpansionOptions 486 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 487 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 488 } 489 490 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 491 return TTIImpl->enableInterleavedAccessVectorization(); 492 } 493 494 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 495 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 496 } 497 498 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 499 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 500 } 501 502 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 503 unsigned BitWidth, 504 unsigned AddressSpace, 505 unsigned Alignment, 506 bool *Fast) const { 507 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 508 AddressSpace, Alignment, Fast); 509 } 510 511 TargetTransformInfo::PopcntSupportKind 512 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 513 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 514 } 515 516 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 517 return TTIImpl->haveFastSqrt(Ty); 518 } 519 520 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 521 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 522 } 523 524 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 525 int Cost = TTIImpl->getFPOpCost(Ty); 526 assert(Cost >= 0 && "TTI should not produce negative costs!"); 527 return Cost; 528 } 529 530 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 531 const APInt &Imm, 532 Type *Ty) const { 533 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 534 assert(Cost >= 0 && "TTI should not produce negative costs!"); 535 return Cost; 536 } 537 538 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 539 TTI::TargetCostKind CostKind) const { 540 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 541 assert(Cost >= 0 && "TTI should not produce negative costs!"); 542 return Cost; 543 } 544 545 int 546 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 547 const APInt &Imm, Type *Ty, 548 TTI::TargetCostKind CostKind) const { 549 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 550 assert(Cost >= 0 && "TTI should not produce negative costs!"); 551 return Cost; 552 } 553 554 int 555 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 556 const APInt &Imm, Type *Ty, 557 TTI::TargetCostKind CostKind) const { 558 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 559 assert(Cost >= 0 && "TTI should not produce negative costs!"); 560 return Cost; 561 } 562 563 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 564 return TTIImpl->getNumberOfRegisters(ClassID); 565 } 566 567 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 568 Type *Ty) const { 569 return TTIImpl->getRegisterClassForType(Vector, Ty); 570 } 571 572 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 573 return TTIImpl->getRegisterClassName(ClassID); 574 } 575 576 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 577 return TTIImpl->getRegisterBitWidth(Vector); 578 } 579 580 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 581 return TTIImpl->getMinVectorRegisterBitWidth(); 582 } 583 584 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 585 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 586 } 587 588 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 589 return TTIImpl->getMinimumVF(ElemWidth); 590 } 591 592 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 593 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 594 return TTIImpl->shouldConsiderAddressTypePromotion( 595 I, AllowPromotionWithoutCommonHeader); 596 } 597 598 unsigned TargetTransformInfo::getCacheLineSize() const { 599 return TTIImpl->getCacheLineSize(); 600 } 601 602 llvm::Optional<unsigned> 603 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 604 return TTIImpl->getCacheSize(Level); 605 } 606 607 llvm::Optional<unsigned> 608 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 609 return TTIImpl->getCacheAssociativity(Level); 610 } 611 612 unsigned TargetTransformInfo::getPrefetchDistance() const { 613 return TTIImpl->getPrefetchDistance(); 614 } 615 616 unsigned TargetTransformInfo::getMinPrefetchStride( 617 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 618 unsigned NumPrefetches, bool HasCall) const { 619 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 620 NumPrefetches, HasCall); 621 } 622 623 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 624 return TTIImpl->getMaxPrefetchIterationsAhead(); 625 } 626 627 bool TargetTransformInfo::enableWritePrefetching() const { 628 return TTIImpl->enableWritePrefetching(); 629 } 630 631 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 632 return TTIImpl->getMaxInterleaveFactor(VF); 633 } 634 635 TargetTransformInfo::OperandValueKind 636 TargetTransformInfo::getOperandInfo(const Value *V, 637 OperandValueProperties &OpProps) { 638 OperandValueKind OpInfo = OK_AnyValue; 639 OpProps = OP_None; 640 641 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 642 if (CI->getValue().isPowerOf2()) 643 OpProps = OP_PowerOf2; 644 return OK_UniformConstantValue; 645 } 646 647 // A broadcast shuffle creates a uniform value. 648 // TODO: Add support for non-zero index broadcasts. 649 // TODO: Add support for different source vector width. 650 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 651 if (ShuffleInst->isZeroEltSplat()) 652 OpInfo = OK_UniformValue; 653 654 const Value *Splat = getSplatValue(V); 655 656 // Check for a splat of a constant or for a non uniform vector of constants 657 // and check if the constant(s) are all powers of two. 658 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 659 OpInfo = OK_NonUniformConstantValue; 660 if (Splat) { 661 OpInfo = OK_UniformConstantValue; 662 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 663 if (CI->getValue().isPowerOf2()) 664 OpProps = OP_PowerOf2; 665 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 666 OpProps = OP_PowerOf2; 667 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 668 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 669 if (CI->getValue().isPowerOf2()) 670 continue; 671 OpProps = OP_None; 672 break; 673 } 674 } 675 } 676 677 // Check for a splat of a uniform value. This is not loop aware, so return 678 // true only for the obviously uniform cases (argument, globalvalue) 679 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 680 OpInfo = OK_UniformValue; 681 682 return OpInfo; 683 } 684 685 int TargetTransformInfo::getArithmeticInstrCost( 686 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 687 OperandValueKind Opd1Info, 688 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 689 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 690 const Instruction *CxtI) const { 691 int Cost = TTIImpl->getArithmeticInstrCost( 692 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 693 Args, CxtI); 694 assert(Cost >= 0 && "TTI should not produce negative costs!"); 695 return Cost; 696 } 697 698 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 699 int Index, VectorType *SubTp) const { 700 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 701 assert(Cost >= 0 && "TTI should not produce negative costs!"); 702 return Cost; 703 } 704 705 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 706 TTI::TargetCostKind CostKind, 707 const Instruction *I) const { 708 assert((I == nullptr || I->getOpcode() == Opcode) && 709 "Opcode should reflect passed instruction."); 710 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 711 assert(Cost >= 0 && "TTI should not produce negative costs!"); 712 return Cost; 713 } 714 715 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 716 VectorType *VecTy, 717 unsigned Index) const { 718 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 719 assert(Cost >= 0 && "TTI should not produce negative costs!"); 720 return Cost; 721 } 722 723 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 724 TTI::TargetCostKind CostKind) const { 725 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 726 assert(Cost >= 0 && "TTI should not produce negative costs!"); 727 return Cost; 728 } 729 730 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 731 Type *CondTy, 732 TTI::TargetCostKind CostKind, 733 const Instruction *I) const { 734 assert((I == nullptr || I->getOpcode() == Opcode) && 735 "Opcode should reflect passed instruction."); 736 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 737 assert(Cost >= 0 && "TTI should not produce negative costs!"); 738 return Cost; 739 } 740 741 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 742 unsigned Index) const { 743 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 744 assert(Cost >= 0 && "TTI should not produce negative costs!"); 745 return Cost; 746 } 747 748 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 749 Align Alignment, unsigned AddressSpace, 750 TTI::TargetCostKind CostKind, 751 const Instruction *I) const { 752 assert((I == nullptr || I->getOpcode() == Opcode) && 753 "Opcode should reflect passed instruction."); 754 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 755 CostKind, I); 756 assert(Cost >= 0 && "TTI should not produce negative costs!"); 757 return Cost; 758 } 759 760 int TargetTransformInfo::getMaskedMemoryOpCost( 761 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 762 TTI::TargetCostKind CostKind) const { 763 int Cost = 764 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 765 CostKind); 766 assert(Cost >= 0 && "TTI should not produce negative costs!"); 767 return Cost; 768 } 769 770 int TargetTransformInfo::getGatherScatterOpCost( 771 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 772 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 773 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 774 Alignment, CostKind, I); 775 assert(Cost >= 0 && "TTI should not produce negative costs!"); 776 return Cost; 777 } 778 779 int TargetTransformInfo::getInterleavedMemoryOpCost( 780 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 781 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 782 bool UseMaskForCond, bool UseMaskForGaps) const { 783 int Cost = TTIImpl->getInterleavedMemoryOpCost( 784 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 785 UseMaskForCond, UseMaskForGaps); 786 assert(Cost >= 0 && "TTI should not produce negative costs!"); 787 return Cost; 788 } 789 790 int 791 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 792 TTI::TargetCostKind CostKind) const { 793 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 794 assert(Cost >= 0 && "TTI should not produce negative costs!"); 795 return Cost; 796 } 797 798 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 799 ArrayRef<Type *> Tys, 800 TTI::TargetCostKind CostKind) const { 801 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 802 assert(Cost >= 0 && "TTI should not produce negative costs!"); 803 return Cost; 804 } 805 806 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 807 return TTIImpl->getNumberOfParts(Tp); 808 } 809 810 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 811 ScalarEvolution *SE, 812 const SCEV *Ptr) const { 813 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 814 assert(Cost >= 0 && "TTI should not produce negative costs!"); 815 return Cost; 816 } 817 818 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 819 int Cost = TTIImpl->getMemcpyCost(I); 820 assert(Cost >= 0 && "TTI should not produce negative costs!"); 821 return Cost; 822 } 823 824 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 825 VectorType *Ty, 826 bool IsPairwiseForm, 827 TTI::TargetCostKind CostKind) const { 828 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 829 CostKind); 830 assert(Cost >= 0 && "TTI should not produce negative costs!"); 831 return Cost; 832 } 833 834 int TargetTransformInfo::getMinMaxReductionCost( 835 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 836 TTI::TargetCostKind CostKind) const { 837 int Cost = 838 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 839 CostKind); 840 assert(Cost >= 0 && "TTI should not produce negative costs!"); 841 return Cost; 842 } 843 844 unsigned 845 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 846 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 847 } 848 849 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 850 MemIntrinsicInfo &Info) const { 851 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 852 } 853 854 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 855 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 856 } 857 858 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 859 IntrinsicInst *Inst, Type *ExpectedType) const { 860 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 861 } 862 863 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 864 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 865 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 866 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 867 DestAddrSpace, SrcAlign, DestAlign); 868 } 869 870 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 871 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 872 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 873 unsigned SrcAlign, unsigned DestAlign) const { 874 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 875 SrcAddrSpace, DestAddrSpace, 876 SrcAlign, DestAlign); 877 } 878 879 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 880 const Function *Callee) const { 881 return TTIImpl->areInlineCompatible(Caller, Callee); 882 } 883 884 bool TargetTransformInfo::areFunctionArgsABICompatible( 885 const Function *Caller, const Function *Callee, 886 SmallPtrSetImpl<Argument *> &Args) const { 887 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 888 } 889 890 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 891 Type *Ty) const { 892 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 893 } 894 895 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 896 Type *Ty) const { 897 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 898 } 899 900 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 901 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 902 } 903 904 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 905 return TTIImpl->isLegalToVectorizeLoad(LI); 906 } 907 908 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 909 return TTIImpl->isLegalToVectorizeStore(SI); 910 } 911 912 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 913 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 914 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 915 AddrSpace); 916 } 917 918 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 919 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 920 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 921 AddrSpace); 922 } 923 924 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 925 unsigned LoadSize, 926 unsigned ChainSizeInBytes, 927 VectorType *VecTy) const { 928 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 929 } 930 931 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 932 unsigned StoreSize, 933 unsigned ChainSizeInBytes, 934 VectorType *VecTy) const { 935 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 936 } 937 938 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 939 ReductionFlags Flags) const { 940 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 941 } 942 943 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 944 return TTIImpl->shouldExpandReduction(II); 945 } 946 947 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 948 return TTIImpl->getGISelRematGlobalCost(); 949 } 950 951 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 952 return TTIImpl->getInstructionLatency(I); 953 } 954 955 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 956 unsigned Level) { 957 // We don't need a shuffle if we just want to have element 0 in position 0 of 958 // the vector. 959 if (!SI && Level == 0 && IsLeft) 960 return true; 961 else if (!SI) 962 return false; 963 964 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 965 966 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 967 // we look at the left or right side. 968 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 969 Mask[i] = val; 970 971 ArrayRef<int> ActualMask = SI->getShuffleMask(); 972 return Mask == ActualMask; 973 } 974 975 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 976 Value *L, *R; 977 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 978 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 979 if (auto *SI = dyn_cast<SelectInst>(I)) { 980 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 981 m_SMax(m_Value(L), m_Value(R)).match(SI) || 982 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 983 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 984 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 985 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 986 auto *CI = cast<CmpInst>(SI->getCondition()); 987 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 988 } 989 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 990 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 991 auto *CI = cast<CmpInst>(SI->getCondition()); 992 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 993 } 994 } 995 return llvm::None; 996 } 997 998 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 999 unsigned Level, 1000 unsigned NumLevels) { 1001 // Match one level of pairwise operations. 1002 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1003 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1004 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1005 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1006 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1007 if (!I) 1008 return TTI::RK_None; 1009 1010 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1011 1012 Optional<TTI::ReductionData> RD = getReductionData(I); 1013 if (!RD) 1014 return TTI::RK_None; 1015 1016 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1017 if (!LS && Level) 1018 return TTI::RK_None; 1019 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1020 if (!RS && Level) 1021 return TTI::RK_None; 1022 1023 // On level 0 we can omit one shufflevector instruction. 1024 if (!Level && !RS && !LS) 1025 return TTI::RK_None; 1026 1027 // Shuffle inputs must match. 1028 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1029 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1030 Value *NextLevelOp = nullptr; 1031 if (NextLevelOpR && NextLevelOpL) { 1032 // If we have two shuffles their operands must match. 1033 if (NextLevelOpL != NextLevelOpR) 1034 return TTI::RK_None; 1035 1036 NextLevelOp = NextLevelOpL; 1037 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1038 // On the first level we can omit the shufflevector <0, undef,...>. So the 1039 // input to the other shufflevector <1, undef> must match with one of the 1040 // inputs to the current binary operation. 1041 // Example: 1042 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1043 // %BinOp = fadd %NextLevelOpL, %R 1044 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1045 return TTI::RK_None; 1046 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1047 return TTI::RK_None; 1048 1049 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1050 } else 1051 return TTI::RK_None; 1052 1053 // Check that the next levels binary operation exists and matches with the 1054 // current one. 1055 if (Level + 1 != NumLevels) { 1056 Optional<TTI::ReductionData> NextLevelRD = 1057 getReductionData(cast<Instruction>(NextLevelOp)); 1058 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1059 return TTI::RK_None; 1060 } 1061 1062 // Shuffle mask for pairwise operation must match. 1063 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1064 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1065 return TTI::RK_None; 1066 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1067 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1068 return TTI::RK_None; 1069 } else { 1070 return TTI::RK_None; 1071 } 1072 1073 if (++Level == NumLevels) 1074 return RD->Kind; 1075 1076 // Match next level. 1077 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1078 NumLevels); 1079 } 1080 1081 TTI::ReductionKind TTI::matchPairwiseReduction( 1082 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1083 if (!EnableReduxCost) 1084 return TTI::RK_None; 1085 1086 // Need to extract the first element. 1087 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1088 unsigned Idx = ~0u; 1089 if (CI) 1090 Idx = CI->getZExtValue(); 1091 if (Idx != 0) 1092 return TTI::RK_None; 1093 1094 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1095 if (!RdxStart) 1096 return TTI::RK_None; 1097 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1098 if (!RD) 1099 return TTI::RK_None; 1100 1101 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1102 unsigned NumVecElems = VecTy->getNumElements(); 1103 if (!isPowerOf2_32(NumVecElems)) 1104 return TTI::RK_None; 1105 1106 // We look for a sequence of shuffle,shuffle,add triples like the following 1107 // that builds a pairwise reduction tree. 1108 // 1109 // (X0, X1, X2, X3) 1110 // (X0 + X1, X2 + X3, undef, undef) 1111 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1112 // 1113 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1114 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1115 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1116 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1117 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1118 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1119 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1120 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1121 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1122 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1123 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1124 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1125 TTI::RK_None) 1126 return TTI::RK_None; 1127 1128 Opcode = RD->Opcode; 1129 Ty = VecTy; 1130 1131 return RD->Kind; 1132 } 1133 1134 static std::pair<Value *, ShuffleVectorInst *> 1135 getShuffleAndOtherOprd(Value *L, Value *R) { 1136 ShuffleVectorInst *S = nullptr; 1137 1138 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1139 return std::make_pair(R, S); 1140 1141 S = dyn_cast<ShuffleVectorInst>(R); 1142 return std::make_pair(L, S); 1143 } 1144 1145 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1146 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1147 1148 if (!EnableReduxCost) 1149 return TTI::RK_None; 1150 1151 // Need to extract the first element. 1152 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1153 unsigned Idx = ~0u; 1154 if (CI) 1155 Idx = CI->getZExtValue(); 1156 if (Idx != 0) 1157 return TTI::RK_None; 1158 1159 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1160 if (!RdxStart) 1161 return TTI::RK_None; 1162 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1163 if (!RD) 1164 return TTI::RK_None; 1165 1166 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1167 unsigned NumVecElems = VecTy->getNumElements(); 1168 if (!isPowerOf2_32(NumVecElems)) 1169 return TTI::RK_None; 1170 1171 // We look for a sequence of shuffles and adds like the following matching one 1172 // fadd, shuffle vector pair at a time. 1173 // 1174 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1175 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1176 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1177 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1178 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1179 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1180 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1181 1182 unsigned MaskStart = 1; 1183 Instruction *RdxOp = RdxStart; 1184 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1185 unsigned NumVecElemsRemain = NumVecElems; 1186 while (NumVecElemsRemain - 1) { 1187 // Check for the right reduction operation. 1188 if (!RdxOp) 1189 return TTI::RK_None; 1190 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1191 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1192 return TTI::RK_None; 1193 1194 Value *NextRdxOp; 1195 ShuffleVectorInst *Shuffle; 1196 std::tie(NextRdxOp, Shuffle) = 1197 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1198 1199 // Check the current reduction operation and the shuffle use the same value. 1200 if (Shuffle == nullptr) 1201 return TTI::RK_None; 1202 if (Shuffle->getOperand(0) != NextRdxOp) 1203 return TTI::RK_None; 1204 1205 // Check that shuffle masks matches. 1206 for (unsigned j = 0; j != MaskStart; ++j) 1207 ShuffleMask[j] = MaskStart + j; 1208 // Fill the rest of the mask with -1 for undef. 1209 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1210 1211 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1212 if (ShuffleMask != Mask) 1213 return TTI::RK_None; 1214 1215 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1216 NumVecElemsRemain /= 2; 1217 MaskStart *= 2; 1218 } 1219 1220 Opcode = RD->Opcode; 1221 Ty = VecTy; 1222 return RD->Kind; 1223 } 1224 1225 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1226 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1227 1228 switch (I->getOpcode()) { 1229 case Instruction::GetElementPtr: 1230 case Instruction::Ret: 1231 case Instruction::PHI: 1232 case Instruction::Br: 1233 case Instruction::Add: 1234 case Instruction::FAdd: 1235 case Instruction::Sub: 1236 case Instruction::FSub: 1237 case Instruction::Mul: 1238 case Instruction::FMul: 1239 case Instruction::UDiv: 1240 case Instruction::SDiv: 1241 case Instruction::FDiv: 1242 case Instruction::URem: 1243 case Instruction::SRem: 1244 case Instruction::FRem: 1245 case Instruction::Shl: 1246 case Instruction::LShr: 1247 case Instruction::AShr: 1248 case Instruction::And: 1249 case Instruction::Or: 1250 case Instruction::Xor: 1251 case Instruction::FNeg: 1252 case Instruction::Select: 1253 case Instruction::ICmp: 1254 case Instruction::FCmp: 1255 case Instruction::Store: 1256 case Instruction::Load: 1257 case Instruction::ZExt: 1258 case Instruction::SExt: 1259 case Instruction::FPToUI: 1260 case Instruction::FPToSI: 1261 case Instruction::FPExt: 1262 case Instruction::PtrToInt: 1263 case Instruction::IntToPtr: 1264 case Instruction::SIToFP: 1265 case Instruction::UIToFP: 1266 case Instruction::Trunc: 1267 case Instruction::FPTrunc: 1268 case Instruction::BitCast: 1269 case Instruction::AddrSpaceCast: 1270 case Instruction::ExtractElement: 1271 case Instruction::InsertElement: 1272 case Instruction::ExtractValue: 1273 case Instruction::ShuffleVector: 1274 case Instruction::Call: 1275 return getUserCost(I, CostKind); 1276 default: 1277 // We don't have any information on this instruction. 1278 return -1; 1279 } 1280 } 1281 1282 TargetTransformInfo::Concept::~Concept() {} 1283 1284 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1285 1286 TargetIRAnalysis::TargetIRAnalysis( 1287 std::function<Result(const Function &)> TTICallback) 1288 : TTICallback(std::move(TTICallback)) {} 1289 1290 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1291 FunctionAnalysisManager &) { 1292 return TTICallback(F); 1293 } 1294 1295 AnalysisKey TargetIRAnalysis::Key; 1296 1297 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1298 return Result(F.getParent()->getDataLayout()); 1299 } 1300 1301 // Register the basic pass. 1302 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1303 "Target Transform Information", false, true) 1304 char TargetTransformInfoWrapperPass::ID = 0; 1305 1306 void TargetTransformInfoWrapperPass::anchor() {} 1307 1308 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1309 : ImmutablePass(ID) { 1310 initializeTargetTransformInfoWrapperPassPass( 1311 *PassRegistry::getPassRegistry()); 1312 } 1313 1314 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1315 TargetIRAnalysis TIRA) 1316 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1317 initializeTargetTransformInfoWrapperPassPass( 1318 *PassRegistry::getPassRegistry()); 1319 } 1320 1321 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1322 FunctionAnalysisManager DummyFAM; 1323 TTI = TIRA.run(F, DummyFAM); 1324 return *TTI; 1325 } 1326 1327 ImmutablePass * 1328 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1329 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1330 } 1331