1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Instruction.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Module.h" 17 #include "llvm/IR/Operator.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <utility> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "tti" 27 28 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 29 cl::Hidden, 30 cl::desc("Recognize reduction patterns.")); 31 32 namespace { 33 /// No-op implementation of the TTI interface using the utility base 34 /// classes. 35 /// 36 /// This is used when no target specific information is available. 37 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 38 explicit NoTTIImpl(const DataLayout &DL) 39 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 40 }; 41 } 42 43 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 44 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 45 46 TargetTransformInfo::~TargetTransformInfo() {} 47 48 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 49 : TTIImpl(std::move(Arg.TTIImpl)) {} 50 51 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 52 TTIImpl = std::move(RHS.TTIImpl); 53 return *this; 54 } 55 56 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 57 Type *OpTy) const { 58 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 59 assert(Cost >= 0 && "TTI should not produce negative costs!"); 60 return Cost; 61 } 62 63 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 64 const User *U) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments, 72 const User *U) const { 73 int Cost = TTIImpl->getCallCost(F, Arguments, U); 74 assert(Cost >= 0 && "TTI should not produce negative costs!"); 75 return Cost; 76 } 77 78 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 79 return TTIImpl->getInliningThresholdMultiplier(); 80 } 81 82 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 83 ArrayRef<const Value *> Operands) const { 84 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 85 } 86 87 int TargetTransformInfo::getExtCost(const Instruction *I, 88 const Value *Src) const { 89 return TTIImpl->getExtCost(I, Src); 90 } 91 92 int TargetTransformInfo::getIntrinsicCost( 93 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 94 const User *U) const { 95 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 96 assert(Cost >= 0 && "TTI should not produce negative costs!"); 97 return Cost; 98 } 99 100 unsigned 101 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 102 unsigned &JTSize) const { 103 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 104 } 105 106 int TargetTransformInfo::getUserCost(const User *U, 107 ArrayRef<const Value *> Operands) const { 108 int Cost = TTIImpl->getUserCost(U, Operands); 109 assert(Cost >= 0 && "TTI should not produce negative costs!"); 110 return Cost; 111 } 112 113 bool TargetTransformInfo::hasBranchDivergence() const { 114 return TTIImpl->hasBranchDivergence(); 115 } 116 117 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 118 return TTIImpl->isSourceOfDivergence(V); 119 } 120 121 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 122 return TTIImpl->isAlwaysUniform(V); 123 } 124 125 unsigned TargetTransformInfo::getFlatAddressSpace() const { 126 return TTIImpl->getFlatAddressSpace(); 127 } 128 129 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 130 return TTIImpl->isLoweredToCall(F); 131 } 132 133 void TargetTransformInfo::getUnrollingPreferences( 134 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 135 return TTIImpl->getUnrollingPreferences(L, SE, UP); 136 } 137 138 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 139 return TTIImpl->isLegalAddImmediate(Imm); 140 } 141 142 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 143 return TTIImpl->isLegalICmpImmediate(Imm); 144 } 145 146 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 147 int64_t BaseOffset, 148 bool HasBaseReg, 149 int64_t Scale, 150 unsigned AddrSpace, 151 Instruction *I) const { 152 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 153 Scale, AddrSpace, I); 154 } 155 156 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 157 return TTIImpl->isLSRCostLess(C1, C2); 158 } 159 160 bool TargetTransformInfo::canMacroFuseCmp() const { 161 return TTIImpl->canMacroFuseCmp(); 162 } 163 164 bool TargetTransformInfo::shouldFavorPostInc() const { 165 return TTIImpl->shouldFavorPostInc(); 166 } 167 168 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 169 return TTIImpl->shouldFavorBackedgeIndex(L); 170 } 171 172 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 173 return TTIImpl->isLegalMaskedStore(DataType); 174 } 175 176 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 177 return TTIImpl->isLegalMaskedLoad(DataType); 178 } 179 180 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 181 return TTIImpl->isLegalMaskedGather(DataType); 182 } 183 184 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 185 return TTIImpl->isLegalMaskedScatter(DataType); 186 } 187 188 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 189 return TTIImpl->isLegalMaskedCompressStore(DataType); 190 } 191 192 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 193 return TTIImpl->isLegalMaskedExpandLoad(DataType); 194 } 195 196 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 197 return TTIImpl->hasDivRemOp(DataType, IsSigned); 198 } 199 200 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 201 unsigned AddrSpace) const { 202 return TTIImpl->hasVolatileVariant(I, AddrSpace); 203 } 204 205 bool TargetTransformInfo::prefersVectorizedAddressing() const { 206 return TTIImpl->prefersVectorizedAddressing(); 207 } 208 209 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 210 int64_t BaseOffset, 211 bool HasBaseReg, 212 int64_t Scale, 213 unsigned AddrSpace) const { 214 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 215 Scale, AddrSpace); 216 assert(Cost >= 0 && "TTI should not produce negative costs!"); 217 return Cost; 218 } 219 220 bool TargetTransformInfo::LSRWithInstrQueries() const { 221 return TTIImpl->LSRWithInstrQueries(); 222 } 223 224 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 225 return TTIImpl->isTruncateFree(Ty1, Ty2); 226 } 227 228 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 229 return TTIImpl->isProfitableToHoist(I); 230 } 231 232 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 233 234 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 235 return TTIImpl->isTypeLegal(Ty); 236 } 237 238 unsigned TargetTransformInfo::getJumpBufAlignment() const { 239 return TTIImpl->getJumpBufAlignment(); 240 } 241 242 unsigned TargetTransformInfo::getJumpBufSize() const { 243 return TTIImpl->getJumpBufSize(); 244 } 245 246 bool TargetTransformInfo::shouldBuildLookupTables() const { 247 return TTIImpl->shouldBuildLookupTables(); 248 } 249 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 250 return TTIImpl->shouldBuildLookupTablesForConstant(C); 251 } 252 253 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 254 return TTIImpl->useColdCCForColdCall(F); 255 } 256 257 unsigned TargetTransformInfo:: 258 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 259 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 260 } 261 262 unsigned TargetTransformInfo:: 263 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 264 unsigned VF) const { 265 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 266 } 267 268 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 269 return TTIImpl->supportsEfficientVectorElementLoadStore(); 270 } 271 272 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 273 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 274 } 275 276 const TargetTransformInfo::MemCmpExpansionOptions * 277 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 278 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 279 } 280 281 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 282 return TTIImpl->enableInterleavedAccessVectorization(); 283 } 284 285 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 286 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 287 } 288 289 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 290 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 291 } 292 293 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 294 unsigned BitWidth, 295 unsigned AddressSpace, 296 unsigned Alignment, 297 bool *Fast) const { 298 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 299 Alignment, Fast); 300 } 301 302 TargetTransformInfo::PopcntSupportKind 303 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 304 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 305 } 306 307 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 308 return TTIImpl->haveFastSqrt(Ty); 309 } 310 311 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 312 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 313 } 314 315 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 316 int Cost = TTIImpl->getFPOpCost(Ty); 317 assert(Cost >= 0 && "TTI should not produce negative costs!"); 318 return Cost; 319 } 320 321 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 322 const APInt &Imm, 323 Type *Ty) const { 324 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 325 assert(Cost >= 0 && "TTI should not produce negative costs!"); 326 return Cost; 327 } 328 329 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 330 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 331 assert(Cost >= 0 && "TTI should not produce negative costs!"); 332 return Cost; 333 } 334 335 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 336 const APInt &Imm, Type *Ty) const { 337 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 338 assert(Cost >= 0 && "TTI should not produce negative costs!"); 339 return Cost; 340 } 341 342 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 343 const APInt &Imm, Type *Ty) const { 344 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 345 assert(Cost >= 0 && "TTI should not produce negative costs!"); 346 return Cost; 347 } 348 349 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 350 return TTIImpl->getNumberOfRegisters(Vector); 351 } 352 353 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 354 return TTIImpl->getRegisterBitWidth(Vector); 355 } 356 357 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 358 return TTIImpl->getMinVectorRegisterBitWidth(); 359 } 360 361 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 362 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 363 } 364 365 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 366 return TTIImpl->getMinimumVF(ElemWidth); 367 } 368 369 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 370 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 371 return TTIImpl->shouldConsiderAddressTypePromotion( 372 I, AllowPromotionWithoutCommonHeader); 373 } 374 375 unsigned TargetTransformInfo::getCacheLineSize() const { 376 return TTIImpl->getCacheLineSize(); 377 } 378 379 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 380 const { 381 return TTIImpl->getCacheSize(Level); 382 } 383 384 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 385 CacheLevel Level) const { 386 return TTIImpl->getCacheAssociativity(Level); 387 } 388 389 unsigned TargetTransformInfo::getPrefetchDistance() const { 390 return TTIImpl->getPrefetchDistance(); 391 } 392 393 unsigned TargetTransformInfo::getMinPrefetchStride() const { 394 return TTIImpl->getMinPrefetchStride(); 395 } 396 397 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 398 return TTIImpl->getMaxPrefetchIterationsAhead(); 399 } 400 401 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 402 return TTIImpl->getMaxInterleaveFactor(VF); 403 } 404 405 TargetTransformInfo::OperandValueKind 406 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 407 OperandValueKind OpInfo = OK_AnyValue; 408 OpProps = OP_None; 409 410 if (auto *CI = dyn_cast<ConstantInt>(V)) { 411 if (CI->getValue().isPowerOf2()) 412 OpProps = OP_PowerOf2; 413 return OK_UniformConstantValue; 414 } 415 416 // A broadcast shuffle creates a uniform value. 417 // TODO: Add support for non-zero index broadcasts. 418 // TODO: Add support for different source vector width. 419 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 420 if (ShuffleInst->isZeroEltSplat()) 421 OpInfo = OK_UniformValue; 422 423 const Value *Splat = getSplatValue(V); 424 425 // Check for a splat of a constant or for a non uniform vector of constants 426 // and check if the constant(s) are all powers of two. 427 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 428 OpInfo = OK_NonUniformConstantValue; 429 if (Splat) { 430 OpInfo = OK_UniformConstantValue; 431 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 432 if (CI->getValue().isPowerOf2()) 433 OpProps = OP_PowerOf2; 434 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 435 OpProps = OP_PowerOf2; 436 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 437 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 438 if (CI->getValue().isPowerOf2()) 439 continue; 440 OpProps = OP_None; 441 break; 442 } 443 } 444 } 445 446 // Check for a splat of a uniform value. This is not loop aware, so return 447 // true only for the obviously uniform cases (argument, globalvalue) 448 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 449 OpInfo = OK_UniformValue; 450 451 return OpInfo; 452 } 453 454 int TargetTransformInfo::getArithmeticInstrCost( 455 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 456 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 457 OperandValueProperties Opd2PropInfo, 458 ArrayRef<const Value *> Args) const { 459 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 460 Opd1PropInfo, Opd2PropInfo, Args); 461 assert(Cost >= 0 && "TTI should not produce negative costs!"); 462 return Cost; 463 } 464 465 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 466 Type *SubTp) const { 467 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 468 assert(Cost >= 0 && "TTI should not produce negative costs!"); 469 return Cost; 470 } 471 472 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 473 Type *Src, const Instruction *I) const { 474 assert ((I == nullptr || I->getOpcode() == Opcode) && 475 "Opcode should reflect passed instruction."); 476 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 477 assert(Cost >= 0 && "TTI should not produce negative costs!"); 478 return Cost; 479 } 480 481 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 482 VectorType *VecTy, 483 unsigned Index) const { 484 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 485 assert(Cost >= 0 && "TTI should not produce negative costs!"); 486 return Cost; 487 } 488 489 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 490 int Cost = TTIImpl->getCFInstrCost(Opcode); 491 assert(Cost >= 0 && "TTI should not produce negative costs!"); 492 return Cost; 493 } 494 495 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 496 Type *CondTy, const Instruction *I) const { 497 assert ((I == nullptr || I->getOpcode() == Opcode) && 498 "Opcode should reflect passed instruction."); 499 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 500 assert(Cost >= 0 && "TTI should not produce negative costs!"); 501 return Cost; 502 } 503 504 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 505 unsigned Index) const { 506 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 507 assert(Cost >= 0 && "TTI should not produce negative costs!"); 508 return Cost; 509 } 510 511 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 512 unsigned Alignment, 513 unsigned AddressSpace, 514 const Instruction *I) const { 515 assert ((I == nullptr || I->getOpcode() == Opcode) && 516 "Opcode should reflect passed instruction."); 517 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 518 assert(Cost >= 0 && "TTI should not produce negative costs!"); 519 return Cost; 520 } 521 522 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 523 unsigned Alignment, 524 unsigned AddressSpace) const { 525 int Cost = 526 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 527 assert(Cost >= 0 && "TTI should not produce negative costs!"); 528 return Cost; 529 } 530 531 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 532 Value *Ptr, bool VariableMask, 533 unsigned Alignment) const { 534 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 535 Alignment); 536 assert(Cost >= 0 && "TTI should not produce negative costs!"); 537 return Cost; 538 } 539 540 int TargetTransformInfo::getInterleavedMemoryOpCost( 541 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 542 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 543 bool UseMaskForGaps) const { 544 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 545 Alignment, AddressSpace, 546 UseMaskForCond, 547 UseMaskForGaps); 548 assert(Cost >= 0 && "TTI should not produce negative costs!"); 549 return Cost; 550 } 551 552 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 553 ArrayRef<Type *> Tys, FastMathFlags FMF, 554 unsigned ScalarizationCostPassed) const { 555 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 556 ScalarizationCostPassed); 557 assert(Cost >= 0 && "TTI should not produce negative costs!"); 558 return Cost; 559 } 560 561 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 562 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 563 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 564 assert(Cost >= 0 && "TTI should not produce negative costs!"); 565 return Cost; 566 } 567 568 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 569 ArrayRef<Type *> Tys) const { 570 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 571 assert(Cost >= 0 && "TTI should not produce negative costs!"); 572 return Cost; 573 } 574 575 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 576 return TTIImpl->getNumberOfParts(Tp); 577 } 578 579 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 580 ScalarEvolution *SE, 581 const SCEV *Ptr) const { 582 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 583 assert(Cost >= 0 && "TTI should not produce negative costs!"); 584 return Cost; 585 } 586 587 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 588 bool IsPairwiseForm) const { 589 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 590 assert(Cost >= 0 && "TTI should not produce negative costs!"); 591 return Cost; 592 } 593 594 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 595 bool IsPairwiseForm, 596 bool IsUnsigned) const { 597 int Cost = 598 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 599 assert(Cost >= 0 && "TTI should not produce negative costs!"); 600 return Cost; 601 } 602 603 unsigned 604 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 605 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 606 } 607 608 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 609 MemIntrinsicInfo &Info) const { 610 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 611 } 612 613 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 614 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 615 } 616 617 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 618 IntrinsicInst *Inst, Type *ExpectedType) const { 619 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 620 } 621 622 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 623 Value *Length, 624 unsigned SrcAlign, 625 unsigned DestAlign) const { 626 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 627 DestAlign); 628 } 629 630 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 631 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 632 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 633 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 634 SrcAlign, DestAlign); 635 } 636 637 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 638 const Function *Callee) const { 639 return TTIImpl->areInlineCompatible(Caller, Callee); 640 } 641 642 bool TargetTransformInfo::areFunctionArgsABICompatible( 643 const Function *Caller, const Function *Callee, 644 SmallPtrSetImpl<Argument *> &Args) const { 645 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 646 } 647 648 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 649 Type *Ty) const { 650 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 651 } 652 653 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 654 Type *Ty) const { 655 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 656 } 657 658 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 659 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 660 } 661 662 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 663 return TTIImpl->isLegalToVectorizeLoad(LI); 664 } 665 666 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 667 return TTIImpl->isLegalToVectorizeStore(SI); 668 } 669 670 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 671 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 672 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 673 AddrSpace); 674 } 675 676 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 677 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 678 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 679 AddrSpace); 680 } 681 682 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 683 unsigned LoadSize, 684 unsigned ChainSizeInBytes, 685 VectorType *VecTy) const { 686 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 687 } 688 689 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 690 unsigned StoreSize, 691 unsigned ChainSizeInBytes, 692 VectorType *VecTy) const { 693 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 694 } 695 696 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 697 Type *Ty, ReductionFlags Flags) const { 698 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 699 } 700 701 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 702 return TTIImpl->shouldExpandReduction(II); 703 } 704 705 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 706 return TTIImpl->getInstructionLatency(I); 707 } 708 709 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 710 unsigned Level) { 711 // We don't need a shuffle if we just want to have element 0 in position 0 of 712 // the vector. 713 if (!SI && Level == 0 && IsLeft) 714 return true; 715 else if (!SI) 716 return false; 717 718 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 719 720 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 721 // we look at the left or right side. 722 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 723 Mask[i] = val; 724 725 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 726 return Mask == ActualMask; 727 } 728 729 namespace { 730 /// Kind of the reduction data. 731 enum ReductionKind { 732 RK_None, /// Not a reduction. 733 RK_Arithmetic, /// Binary reduction data. 734 RK_MinMax, /// Min/max reduction data. 735 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 736 }; 737 /// Contains opcode + LHS/RHS parts of the reduction operations. 738 struct ReductionData { 739 ReductionData() = delete; 740 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 741 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 742 assert(Kind != RK_None && "expected binary or min/max reduction only."); 743 } 744 unsigned Opcode = 0; 745 Value *LHS = nullptr; 746 Value *RHS = nullptr; 747 ReductionKind Kind = RK_None; 748 bool hasSameData(ReductionData &RD) const { 749 return Kind == RD.Kind && Opcode == RD.Opcode; 750 } 751 }; 752 } // namespace 753 754 static Optional<ReductionData> getReductionData(Instruction *I) { 755 Value *L, *R; 756 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 757 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 758 if (auto *SI = dyn_cast<SelectInst>(I)) { 759 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 760 m_SMax(m_Value(L), m_Value(R)).match(SI) || 761 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 762 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 763 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 764 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 765 auto *CI = cast<CmpInst>(SI->getCondition()); 766 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 767 } 768 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 769 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 770 auto *CI = cast<CmpInst>(SI->getCondition()); 771 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 772 } 773 } 774 return llvm::None; 775 } 776 777 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 778 unsigned Level, 779 unsigned NumLevels) { 780 // Match one level of pairwise operations. 781 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 782 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 783 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 784 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 785 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 786 if (!I) 787 return RK_None; 788 789 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 790 791 Optional<ReductionData> RD = getReductionData(I); 792 if (!RD) 793 return RK_None; 794 795 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 796 if (!LS && Level) 797 return RK_None; 798 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 799 if (!RS && Level) 800 return RK_None; 801 802 // On level 0 we can omit one shufflevector instruction. 803 if (!Level && !RS && !LS) 804 return RK_None; 805 806 // Shuffle inputs must match. 807 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 808 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 809 Value *NextLevelOp = nullptr; 810 if (NextLevelOpR && NextLevelOpL) { 811 // If we have two shuffles their operands must match. 812 if (NextLevelOpL != NextLevelOpR) 813 return RK_None; 814 815 NextLevelOp = NextLevelOpL; 816 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 817 // On the first level we can omit the shufflevector <0, undef,...>. So the 818 // input to the other shufflevector <1, undef> must match with one of the 819 // inputs to the current binary operation. 820 // Example: 821 // %NextLevelOpL = shufflevector %R, <1, undef ...> 822 // %BinOp = fadd %NextLevelOpL, %R 823 if (NextLevelOpL && NextLevelOpL != RD->RHS) 824 return RK_None; 825 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 826 return RK_None; 827 828 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 829 } else 830 return RK_None; 831 832 // Check that the next levels binary operation exists and matches with the 833 // current one. 834 if (Level + 1 != NumLevels) { 835 Optional<ReductionData> NextLevelRD = 836 getReductionData(cast<Instruction>(NextLevelOp)); 837 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 838 return RK_None; 839 } 840 841 // Shuffle mask for pairwise operation must match. 842 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 843 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 844 return RK_None; 845 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 846 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 847 return RK_None; 848 } else { 849 return RK_None; 850 } 851 852 if (++Level == NumLevels) 853 return RD->Kind; 854 855 // Match next level. 856 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 857 NumLevels); 858 } 859 860 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 861 unsigned &Opcode, Type *&Ty) { 862 if (!EnableReduxCost) 863 return RK_None; 864 865 // Need to extract the first element. 866 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 867 unsigned Idx = ~0u; 868 if (CI) 869 Idx = CI->getZExtValue(); 870 if (Idx != 0) 871 return RK_None; 872 873 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 874 if (!RdxStart) 875 return RK_None; 876 Optional<ReductionData> RD = getReductionData(RdxStart); 877 if (!RD) 878 return RK_None; 879 880 Type *VecTy = RdxStart->getType(); 881 unsigned NumVecElems = VecTy->getVectorNumElements(); 882 if (!isPowerOf2_32(NumVecElems)) 883 return RK_None; 884 885 // We look for a sequence of shuffle,shuffle,add triples like the following 886 // that builds a pairwise reduction tree. 887 // 888 // (X0, X1, X2, X3) 889 // (X0 + X1, X2 + X3, undef, undef) 890 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 891 // 892 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 893 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 894 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 895 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 896 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 897 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 898 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 899 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 900 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 901 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 902 // %r = extractelement <4 x float> %bin.rdx8, i32 0 903 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 904 RK_None) 905 return RK_None; 906 907 Opcode = RD->Opcode; 908 Ty = VecTy; 909 910 return RD->Kind; 911 } 912 913 static std::pair<Value *, ShuffleVectorInst *> 914 getShuffleAndOtherOprd(Value *L, Value *R) { 915 ShuffleVectorInst *S = nullptr; 916 917 if ((S = dyn_cast<ShuffleVectorInst>(L))) 918 return std::make_pair(R, S); 919 920 S = dyn_cast<ShuffleVectorInst>(R); 921 return std::make_pair(L, S); 922 } 923 924 static ReductionKind 925 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 926 unsigned &Opcode, Type *&Ty) { 927 if (!EnableReduxCost) 928 return RK_None; 929 930 // Need to extract the first element. 931 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 932 unsigned Idx = ~0u; 933 if (CI) 934 Idx = CI->getZExtValue(); 935 if (Idx != 0) 936 return RK_None; 937 938 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 939 if (!RdxStart) 940 return RK_None; 941 Optional<ReductionData> RD = getReductionData(RdxStart); 942 if (!RD) 943 return RK_None; 944 945 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 946 unsigned NumVecElems = VecTy->getVectorNumElements(); 947 if (!isPowerOf2_32(NumVecElems)) 948 return RK_None; 949 950 // We look for a sequence of shuffles and adds like the following matching one 951 // fadd, shuffle vector pair at a time. 952 // 953 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 954 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 955 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 956 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 957 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 958 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 959 // %r = extractelement <4 x float> %bin.rdx8, i32 0 960 961 unsigned MaskStart = 1; 962 Instruction *RdxOp = RdxStart; 963 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 964 unsigned NumVecElemsRemain = NumVecElems; 965 while (NumVecElemsRemain - 1) { 966 // Check for the right reduction operation. 967 if (!RdxOp) 968 return RK_None; 969 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 970 if (!RDLevel || !RDLevel->hasSameData(*RD)) 971 return RK_None; 972 973 Value *NextRdxOp; 974 ShuffleVectorInst *Shuffle; 975 std::tie(NextRdxOp, Shuffle) = 976 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 977 978 // Check the current reduction operation and the shuffle use the same value. 979 if (Shuffle == nullptr) 980 return RK_None; 981 if (Shuffle->getOperand(0) != NextRdxOp) 982 return RK_None; 983 984 // Check that shuffle masks matches. 985 for (unsigned j = 0; j != MaskStart; ++j) 986 ShuffleMask[j] = MaskStart + j; 987 // Fill the rest of the mask with -1 for undef. 988 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 989 990 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 991 if (ShuffleMask != Mask) 992 return RK_None; 993 994 RdxOp = dyn_cast<Instruction>(NextRdxOp); 995 NumVecElemsRemain /= 2; 996 MaskStart *= 2; 997 } 998 999 Opcode = RD->Opcode; 1000 Ty = VecTy; 1001 return RD->Kind; 1002 } 1003 1004 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1005 switch (I->getOpcode()) { 1006 case Instruction::GetElementPtr: 1007 return getUserCost(I); 1008 1009 case Instruction::Ret: 1010 case Instruction::PHI: 1011 case Instruction::Br: { 1012 return getCFInstrCost(I->getOpcode()); 1013 } 1014 case Instruction::Add: 1015 case Instruction::FAdd: 1016 case Instruction::Sub: 1017 case Instruction::FSub: 1018 case Instruction::Mul: 1019 case Instruction::FMul: 1020 case Instruction::UDiv: 1021 case Instruction::SDiv: 1022 case Instruction::FDiv: 1023 case Instruction::URem: 1024 case Instruction::SRem: 1025 case Instruction::FRem: 1026 case Instruction::Shl: 1027 case Instruction::LShr: 1028 case Instruction::AShr: 1029 case Instruction::And: 1030 case Instruction::Or: 1031 case Instruction::Xor: { 1032 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1033 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1034 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1035 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1036 SmallVector<const Value *, 2> Operands(I->operand_values()); 1037 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1038 Op1VP, Op2VP, Operands); 1039 } 1040 case Instruction::Select: { 1041 const SelectInst *SI = cast<SelectInst>(I); 1042 Type *CondTy = SI->getCondition()->getType(); 1043 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1044 } 1045 case Instruction::ICmp: 1046 case Instruction::FCmp: { 1047 Type *ValTy = I->getOperand(0)->getType(); 1048 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1049 } 1050 case Instruction::Store: { 1051 const StoreInst *SI = cast<StoreInst>(I); 1052 Type *ValTy = SI->getValueOperand()->getType(); 1053 return getMemoryOpCost(I->getOpcode(), ValTy, 1054 SI->getAlignment(), 1055 SI->getPointerAddressSpace(), I); 1056 } 1057 case Instruction::Load: { 1058 const LoadInst *LI = cast<LoadInst>(I); 1059 return getMemoryOpCost(I->getOpcode(), I->getType(), 1060 LI->getAlignment(), 1061 LI->getPointerAddressSpace(), I); 1062 } 1063 case Instruction::ZExt: 1064 case Instruction::SExt: 1065 case Instruction::FPToUI: 1066 case Instruction::FPToSI: 1067 case Instruction::FPExt: 1068 case Instruction::PtrToInt: 1069 case Instruction::IntToPtr: 1070 case Instruction::SIToFP: 1071 case Instruction::UIToFP: 1072 case Instruction::Trunc: 1073 case Instruction::FPTrunc: 1074 case Instruction::BitCast: 1075 case Instruction::AddrSpaceCast: { 1076 Type *SrcTy = I->getOperand(0)->getType(); 1077 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1078 } 1079 case Instruction::ExtractElement: { 1080 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1081 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1082 unsigned Idx = -1; 1083 if (CI) 1084 Idx = CI->getZExtValue(); 1085 1086 // Try to match a reduction sequence (series of shufflevector and vector 1087 // adds followed by a extractelement). 1088 unsigned ReduxOpCode; 1089 Type *ReduxType; 1090 1091 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1092 case RK_Arithmetic: 1093 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1094 /*IsPairwiseForm=*/false); 1095 case RK_MinMax: 1096 return getMinMaxReductionCost( 1097 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1098 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1099 case RK_UnsignedMinMax: 1100 return getMinMaxReductionCost( 1101 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1102 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1103 case RK_None: 1104 break; 1105 } 1106 1107 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1108 case RK_Arithmetic: 1109 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1110 /*IsPairwiseForm=*/true); 1111 case RK_MinMax: 1112 return getMinMaxReductionCost( 1113 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1114 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1115 case RK_UnsignedMinMax: 1116 return getMinMaxReductionCost( 1117 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1118 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1119 case RK_None: 1120 break; 1121 } 1122 1123 return getVectorInstrCost(I->getOpcode(), 1124 EEI->getOperand(0)->getType(), Idx); 1125 } 1126 case Instruction::InsertElement: { 1127 const InsertElementInst * IE = cast<InsertElementInst>(I); 1128 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1129 unsigned Idx = -1; 1130 if (CI) 1131 Idx = CI->getZExtValue(); 1132 return getVectorInstrCost(I->getOpcode(), 1133 IE->getType(), Idx); 1134 } 1135 case Instruction::ShuffleVector: { 1136 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1137 Type *Ty = Shuffle->getType(); 1138 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1139 1140 // TODO: Identify and add costs for insert subvector, etc. 1141 int SubIndex; 1142 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1143 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1144 1145 if (Shuffle->changesLength()) 1146 return -1; 1147 1148 if (Shuffle->isIdentity()) 1149 return 0; 1150 1151 if (Shuffle->isReverse()) 1152 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1153 1154 if (Shuffle->isSelect()) 1155 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1156 1157 if (Shuffle->isTranspose()) 1158 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1159 1160 if (Shuffle->isZeroEltSplat()) 1161 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1162 1163 if (Shuffle->isSingleSource()) 1164 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1165 1166 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1167 } 1168 case Instruction::Call: 1169 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1170 SmallVector<Value *, 4> Args(II->arg_operands()); 1171 1172 FastMathFlags FMF; 1173 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1174 FMF = FPMO->getFastMathFlags(); 1175 1176 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1177 Args, FMF); 1178 } 1179 return -1; 1180 default: 1181 // We don't have any information on this instruction. 1182 return -1; 1183 } 1184 } 1185 1186 TargetTransformInfo::Concept::~Concept() {} 1187 1188 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1189 1190 TargetIRAnalysis::TargetIRAnalysis( 1191 std::function<Result(const Function &)> TTICallback) 1192 : TTICallback(std::move(TTICallback)) {} 1193 1194 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1195 FunctionAnalysisManager &) { 1196 return TTICallback(F); 1197 } 1198 1199 AnalysisKey TargetIRAnalysis::Key; 1200 1201 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1202 return Result(F.getParent()->getDataLayout()); 1203 } 1204 1205 // Register the basic pass. 1206 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1207 "Target Transform Information", false, true) 1208 char TargetTransformInfoWrapperPass::ID = 0; 1209 1210 void TargetTransformInfoWrapperPass::anchor() {} 1211 1212 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1213 : ImmutablePass(ID) { 1214 initializeTargetTransformInfoWrapperPassPass( 1215 *PassRegistry::getPassRegistry()); 1216 } 1217 1218 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1219 TargetIRAnalysis TIRA) 1220 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1221 initializeTargetTransformInfoWrapperPassPass( 1222 *PassRegistry::getPassRegistry()); 1223 } 1224 1225 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1226 FunctionAnalysisManager DummyFAM; 1227 TTI = TIRA.run(F, DummyFAM); 1228 return *TTI; 1229 } 1230 1231 ImmutablePass * 1232 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1233 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1234 } 1235