1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40   explicit NoTTIImpl(const DataLayout &DL)
41       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
42 };
43 } // namespace
44 
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46   // If the loop has irreducible control flow, it can not be converted to
47   // Hardware loop.
48   LoopBlocksRPO RPOT(L);
49   RPOT.perform(&LI);
50   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51     return false;
52   return true;
53 }
54 
55 IntrinsicCostAttributes::IntrinsicCostAttributes(
56     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
57     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
58       ScalarizationCost(ScalarizationCost) {
59 
60   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
61     FMF = FPMO->getFastMathFlags();
62 
63   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
64   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
65   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
66 }
67 
68 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
69                                                  ArrayRef<Type *> Tys,
70                                                  FastMathFlags Flags,
71                                                  const IntrinsicInst *I,
72                                                  InstructionCost ScalarCost)
73     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
74   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
75 }
76 
77 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
78                                                  ArrayRef<const Value *> Args)
79     : RetTy(Ty), IID(Id) {
80 
81   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
82   ParamTys.reserve(Arguments.size());
83   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
84     ParamTys.push_back(Arguments[Idx]->getType());
85 }
86 
87 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
88                                                  ArrayRef<const Value *> Args,
89                                                  ArrayRef<Type *> Tys,
90                                                  FastMathFlags Flags,
91                                                  const IntrinsicInst *I,
92                                                  InstructionCost ScalarCost)
93     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
94   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
95   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
96 }
97 
98 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
99                                                LoopInfo &LI, DominatorTree &DT,
100                                                bool ForceNestedLoop,
101                                                bool ForceHardwareLoopPHI) {
102   SmallVector<BasicBlock *, 4> ExitingBlocks;
103   L->getExitingBlocks(ExitingBlocks);
104 
105   for (BasicBlock *BB : ExitingBlocks) {
106     // If we pass the updated counter back through a phi, we need to know
107     // which latch the updated value will be coming from.
108     if (!L->isLoopLatch(BB)) {
109       if (ForceHardwareLoopPHI || CounterInReg)
110         continue;
111     }
112 
113     const SCEV *EC = SE.getExitCount(L, BB);
114     if (isa<SCEVCouldNotCompute>(EC))
115       continue;
116     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
117       if (ConstEC->getValue()->isZero())
118         continue;
119     } else if (!SE.isLoopInvariant(EC, L))
120       continue;
121 
122     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
123       continue;
124 
125     // If this exiting block is contained in a nested loop, it is not eligible
126     // for insertion of the branch-and-decrement since the inner loop would
127     // end up messing up the value in the CTR.
128     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
129       continue;
130 
131     // We now have a loop-invariant count of loop iterations (which is not the
132     // constant zero) for which we know that this loop will not exit via this
133     // existing block.
134 
135     // We need to make sure that this block will run on every loop iteration.
136     // For this to be true, we must dominate all blocks with backedges. Such
137     // blocks are in-loop predecessors to the header block.
138     bool NotAlways = false;
139     for (BasicBlock *Pred : predecessors(L->getHeader())) {
140       if (!L->contains(Pred))
141         continue;
142 
143       if (!DT.dominates(BB, Pred)) {
144         NotAlways = true;
145         break;
146       }
147     }
148 
149     if (NotAlways)
150       continue;
151 
152     // Make sure this blocks ends with a conditional branch.
153     Instruction *TI = BB->getTerminator();
154     if (!TI)
155       continue;
156 
157     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
158       if (!BI->isConditional())
159         continue;
160 
161       ExitBranch = BI;
162     } else
163       continue;
164 
165     // Note that this block may not be the loop latch block, even if the loop
166     // has a latch block.
167     ExitBlock = BB;
168     ExitCount = EC;
169     break;
170   }
171 
172   if (!ExitBlock)
173     return false;
174   return true;
175 }
176 
177 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
178     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
179 
180 TargetTransformInfo::~TargetTransformInfo() = default;
181 
182 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
183     : TTIImpl(std::move(Arg.TTIImpl)) {}
184 
185 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
186   TTIImpl = std::move(RHS.TTIImpl);
187   return *this;
188 }
189 
190 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
191   return TTIImpl->getInliningThresholdMultiplier();
192 }
193 
194 unsigned
195 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
196   return TTIImpl->adjustInliningThreshold(CB);
197 }
198 
199 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
200   return TTIImpl->getInlinerVectorBonusPercent();
201 }
202 
203 InstructionCost
204 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
205                                 ArrayRef<const Value *> Operands,
206                                 TTI::TargetCostKind CostKind) const {
207   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
208 }
209 
210 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
211     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
212     BlockFrequencyInfo *BFI) const {
213   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
214 }
215 
216 InstructionCost
217 TargetTransformInfo::getUserCost(const User *U,
218                                  ArrayRef<const Value *> Operands,
219                                  enum TargetCostKind CostKind) const {
220   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
221   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
222          "TTI should not produce negative costs!");
223   return Cost;
224 }
225 
226 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
227   return TTIImpl->getPredictableBranchThreshold();
228 }
229 
230 bool TargetTransformInfo::hasBranchDivergence() const {
231   return TTIImpl->hasBranchDivergence();
232 }
233 
234 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
235   return TTIImpl->useGPUDivergenceAnalysis();
236 }
237 
238 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
239   return TTIImpl->isSourceOfDivergence(V);
240 }
241 
242 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
243   return TTIImpl->isAlwaysUniform(V);
244 }
245 
246 unsigned TargetTransformInfo::getFlatAddressSpace() const {
247   return TTIImpl->getFlatAddressSpace();
248 }
249 
250 bool TargetTransformInfo::collectFlatAddressOperands(
251     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
252   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
253 }
254 
255 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
256                                               unsigned ToAS) const {
257   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
258 }
259 
260 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
261     unsigned AS) const {
262   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
263 }
264 
265 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
266   return TTIImpl->getAssumedAddrSpace(V);
267 }
268 
269 std::pair<const Value *, unsigned>
270 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
271   return TTIImpl->getPredicatedAddrSpace(V);
272 }
273 
274 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
275     IntrinsicInst *II, Value *OldV, Value *NewV) const {
276   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
277 }
278 
279 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
280   return TTIImpl->isLoweredToCall(F);
281 }
282 
283 bool TargetTransformInfo::isHardwareLoopProfitable(
284     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
285     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
286   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
287 }
288 
289 bool TargetTransformInfo::preferPredicateOverEpilogue(
290     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
291     TargetLibraryInfo *TLI, DominatorTree *DT,
292     const LoopAccessInfo *LAI) const {
293   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
294 }
295 
296 bool TargetTransformInfo::emitGetActiveLaneMask() const {
297   return TTIImpl->emitGetActiveLaneMask();
298 }
299 
300 Optional<Instruction *>
301 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
302                                           IntrinsicInst &II) const {
303   return TTIImpl->instCombineIntrinsic(IC, II);
304 }
305 
306 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
307     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
308     bool &KnownBitsComputed) const {
309   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
310                                                    KnownBitsComputed);
311 }
312 
313 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
314     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
315     APInt &UndefElts2, APInt &UndefElts3,
316     std::function<void(Instruction *, unsigned, APInt, APInt &)>
317         SimplifyAndSetOp) const {
318   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
319       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
320       SimplifyAndSetOp);
321 }
322 
323 void TargetTransformInfo::getUnrollingPreferences(
324     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
325     OptimizationRemarkEmitter *ORE) const {
326   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
327 }
328 
329 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
330                                                 PeelingPreferences &PP) const {
331   return TTIImpl->getPeelingPreferences(L, SE, PP);
332 }
333 
334 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
335   return TTIImpl->isLegalAddImmediate(Imm);
336 }
337 
338 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
339   return TTIImpl->isLegalICmpImmediate(Imm);
340 }
341 
342 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
343                                                 int64_t BaseOffset,
344                                                 bool HasBaseReg, int64_t Scale,
345                                                 unsigned AddrSpace,
346                                                 Instruction *I) const {
347   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
348                                         Scale, AddrSpace, I);
349 }
350 
351 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
352   return TTIImpl->isLSRCostLess(C1, C2);
353 }
354 
355 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
356   return TTIImpl->isNumRegsMajorCostOfLSR();
357 }
358 
359 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
360   return TTIImpl->isProfitableLSRChainElement(I);
361 }
362 
363 bool TargetTransformInfo::canMacroFuseCmp() const {
364   return TTIImpl->canMacroFuseCmp();
365 }
366 
367 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
368                                      ScalarEvolution *SE, LoopInfo *LI,
369                                      DominatorTree *DT, AssumptionCache *AC,
370                                      TargetLibraryInfo *LibInfo) const {
371   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
372 }
373 
374 TTI::AddressingModeKind
375 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
376                                                 ScalarEvolution *SE) const {
377   return TTIImpl->getPreferredAddressingMode(L, SE);
378 }
379 
380 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
381                                              Align Alignment) const {
382   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
383 }
384 
385 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
386                                             Align Alignment) const {
387   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
388 }
389 
390 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
391                                          Align Alignment) const {
392   return TTIImpl->isLegalNTStore(DataType, Alignment);
393 }
394 
395 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
396   return TTIImpl->isLegalNTLoad(DataType, Alignment);
397 }
398 
399 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
400                                                ElementCount NumElements) const {
401   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
402 }
403 
404 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
405                                               Align Alignment) const {
406   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
407 }
408 
409 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
410                                                Align Alignment) const {
411   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
412 }
413 
414 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
415                                                      Align Alignment) const {
416   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
417 }
418 
419 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
420                                                       Align Alignment) const {
421   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
422 }
423 
424 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
425   return TTIImpl->isLegalMaskedCompressStore(DataType);
426 }
427 
428 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
429   return TTIImpl->isLegalMaskedExpandLoad(DataType);
430 }
431 
432 bool TargetTransformInfo::enableOrderedReductions() const {
433   return TTIImpl->enableOrderedReductions();
434 }
435 
436 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
437   return TTIImpl->hasDivRemOp(DataType, IsSigned);
438 }
439 
440 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
441                                              unsigned AddrSpace) const {
442   return TTIImpl->hasVolatileVariant(I, AddrSpace);
443 }
444 
445 bool TargetTransformInfo::prefersVectorizedAddressing() const {
446   return TTIImpl->prefersVectorizedAddressing();
447 }
448 
449 InstructionCost TargetTransformInfo::getScalingFactorCost(
450     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
451     int64_t Scale, unsigned AddrSpace) const {
452   InstructionCost Cost = TTIImpl->getScalingFactorCost(
453       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
454   assert(Cost >= 0 && "TTI should not produce negative costs!");
455   return Cost;
456 }
457 
458 bool TargetTransformInfo::LSRWithInstrQueries() const {
459   return TTIImpl->LSRWithInstrQueries();
460 }
461 
462 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
463   return TTIImpl->isTruncateFree(Ty1, Ty2);
464 }
465 
466 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
467   return TTIImpl->isProfitableToHoist(I);
468 }
469 
470 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
471 
472 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
473   return TTIImpl->isTypeLegal(Ty);
474 }
475 
476 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
477   return TTIImpl->getRegUsageForType(Ty);
478 }
479 
480 bool TargetTransformInfo::shouldBuildLookupTables() const {
481   return TTIImpl->shouldBuildLookupTables();
482 }
483 
484 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
485     Constant *C) const {
486   return TTIImpl->shouldBuildLookupTablesForConstant(C);
487 }
488 
489 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
490   return TTIImpl->shouldBuildRelLookupTables();
491 }
492 
493 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
494   return TTIImpl->useColdCCForColdCall(F);
495 }
496 
497 InstructionCost
498 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
499                                               const APInt &DemandedElts,
500                                               bool Insert, bool Extract) const {
501   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
502 }
503 
504 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
505     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
506   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
507 }
508 
509 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
510   return TTIImpl->supportsEfficientVectorElementLoadStore();
511 }
512 
513 bool TargetTransformInfo::enableAggressiveInterleaving(
514     bool LoopHasReductions) const {
515   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
516 }
517 
518 TargetTransformInfo::MemCmpExpansionOptions
519 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
520   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
521 }
522 
523 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
524   return TTIImpl->enableInterleavedAccessVectorization();
525 }
526 
527 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
528   return TTIImpl->enableMaskedInterleavedAccessVectorization();
529 }
530 
531 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
532   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
533 }
534 
535 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
536                                                          unsigned BitWidth,
537                                                          unsigned AddressSpace,
538                                                          Align Alignment,
539                                                          bool *Fast) const {
540   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
541                                                  AddressSpace, Alignment, Fast);
542 }
543 
544 TargetTransformInfo::PopcntSupportKind
545 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
546   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
547 }
548 
549 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
550   return TTIImpl->haveFastSqrt(Ty);
551 }
552 
553 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
554   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
555 }
556 
557 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
558   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
559   assert(Cost >= 0 && "TTI should not produce negative costs!");
560   return Cost;
561 }
562 
563 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
564                                                            unsigned Idx,
565                                                            const APInt &Imm,
566                                                            Type *Ty) const {
567   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
568   assert(Cost >= 0 && "TTI should not produce negative costs!");
569   return Cost;
570 }
571 
572 InstructionCost
573 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
574                                    TTI::TargetCostKind CostKind) const {
575   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
576   assert(Cost >= 0 && "TTI should not produce negative costs!");
577   return Cost;
578 }
579 
580 InstructionCost TargetTransformInfo::getIntImmCostInst(
581     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
582     TTI::TargetCostKind CostKind, Instruction *Inst) const {
583   InstructionCost Cost =
584       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
585   assert(Cost >= 0 && "TTI should not produce negative costs!");
586   return Cost;
587 }
588 
589 InstructionCost
590 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
591                                          const APInt &Imm, Type *Ty,
592                                          TTI::TargetCostKind CostKind) const {
593   InstructionCost Cost =
594       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
595   assert(Cost >= 0 && "TTI should not produce negative costs!");
596   return Cost;
597 }
598 
599 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
600   return TTIImpl->getNumberOfRegisters(ClassID);
601 }
602 
603 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
604                                                       Type *Ty) const {
605   return TTIImpl->getRegisterClassForType(Vector, Ty);
606 }
607 
608 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
609   return TTIImpl->getRegisterClassName(ClassID);
610 }
611 
612 TypeSize TargetTransformInfo::getRegisterBitWidth(
613     TargetTransformInfo::RegisterKind K) const {
614   return TTIImpl->getRegisterBitWidth(K);
615 }
616 
617 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
618   return TTIImpl->getMinVectorRegisterBitWidth();
619 }
620 
621 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
622   return TTIImpl->getMaxVScale();
623 }
624 
625 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
626   return TTIImpl->getVScaleForTuning();
627 }
628 
629 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
630   return TTIImpl->shouldMaximizeVectorBandwidth();
631 }
632 
633 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
634                                                bool IsScalable) const {
635   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
636 }
637 
638 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
639                                            unsigned Opcode) const {
640   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
641 }
642 
643 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
644                                                 Type *ScalarValTy) const {
645   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
646 }
647 
648 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
649     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
650   return TTIImpl->shouldConsiderAddressTypePromotion(
651       I, AllowPromotionWithoutCommonHeader);
652 }
653 
654 unsigned TargetTransformInfo::getCacheLineSize() const {
655   return TTIImpl->getCacheLineSize();
656 }
657 
658 llvm::Optional<unsigned>
659 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
660   return TTIImpl->getCacheSize(Level);
661 }
662 
663 llvm::Optional<unsigned>
664 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
665   return TTIImpl->getCacheAssociativity(Level);
666 }
667 
668 unsigned TargetTransformInfo::getPrefetchDistance() const {
669   return TTIImpl->getPrefetchDistance();
670 }
671 
672 unsigned TargetTransformInfo::getMinPrefetchStride(
673     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
674     unsigned NumPrefetches, bool HasCall) const {
675   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
676                                        NumPrefetches, HasCall);
677 }
678 
679 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
680   return TTIImpl->getMaxPrefetchIterationsAhead();
681 }
682 
683 bool TargetTransformInfo::enableWritePrefetching() const {
684   return TTIImpl->enableWritePrefetching();
685 }
686 
687 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
688   return TTIImpl->getMaxInterleaveFactor(VF);
689 }
690 
691 TargetTransformInfo::OperandValueKind
692 TargetTransformInfo::getOperandInfo(const Value *V,
693                                     OperandValueProperties &OpProps) {
694   OperandValueKind OpInfo = OK_AnyValue;
695   OpProps = OP_None;
696 
697   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
698     if (CI->getValue().isPowerOf2())
699       OpProps = OP_PowerOf2;
700     return OK_UniformConstantValue;
701   }
702 
703   // A broadcast shuffle creates a uniform value.
704   // TODO: Add support for non-zero index broadcasts.
705   // TODO: Add support for different source vector width.
706   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
707     if (ShuffleInst->isZeroEltSplat())
708       OpInfo = OK_UniformValue;
709 
710   const Value *Splat = getSplatValue(V);
711 
712   // Check for a splat of a constant or for a non uniform vector of constants
713   // and check if the constant(s) are all powers of two.
714   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
715     OpInfo = OK_NonUniformConstantValue;
716     if (Splat) {
717       OpInfo = OK_UniformConstantValue;
718       if (auto *CI = dyn_cast<ConstantInt>(Splat))
719         if (CI->getValue().isPowerOf2())
720           OpProps = OP_PowerOf2;
721     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
722       OpProps = OP_PowerOf2;
723       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
724         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
725           if (CI->getValue().isPowerOf2())
726             continue;
727         OpProps = OP_None;
728         break;
729       }
730     }
731   }
732 
733   // Check for a splat of a uniform value. This is not loop aware, so return
734   // true only for the obviously uniform cases (argument, globalvalue)
735   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
736     OpInfo = OK_UniformValue;
737 
738   return OpInfo;
739 }
740 
741 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
742     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
743     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
744     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
745     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
746   InstructionCost Cost =
747       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
748                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
749   assert(Cost >= 0 && "TTI should not produce negative costs!");
750   return Cost;
751 }
752 
753 InstructionCost TargetTransformInfo::getShuffleCost(
754     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, int Index,
755     VectorType *SubTp, ArrayRef<const Value *> Args) const {
756   InstructionCost Cost =
757       TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp, Args);
758   assert(Cost >= 0 && "TTI should not produce negative costs!");
759   return Cost;
760 }
761 
762 TTI::CastContextHint
763 TargetTransformInfo::getCastContextHint(const Instruction *I) {
764   if (!I)
765     return CastContextHint::None;
766 
767   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
768                              unsigned GatScatOp) {
769     const Instruction *I = dyn_cast<Instruction>(V);
770     if (!I)
771       return CastContextHint::None;
772 
773     if (I->getOpcode() == LdStOp)
774       return CastContextHint::Normal;
775 
776     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777       if (II->getIntrinsicID() == MaskedOp)
778         return TTI::CastContextHint::Masked;
779       if (II->getIntrinsicID() == GatScatOp)
780         return TTI::CastContextHint::GatherScatter;
781     }
782 
783     return TTI::CastContextHint::None;
784   };
785 
786   switch (I->getOpcode()) {
787   case Instruction::ZExt:
788   case Instruction::SExt:
789   case Instruction::FPExt:
790     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
791                             Intrinsic::masked_load, Intrinsic::masked_gather);
792   case Instruction::Trunc:
793   case Instruction::FPTrunc:
794     if (I->hasOneUse())
795       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
796                               Intrinsic::masked_store,
797                               Intrinsic::masked_scatter);
798     break;
799   default:
800     return CastContextHint::None;
801   }
802 
803   return TTI::CastContextHint::None;
804 }
805 
806 InstructionCost TargetTransformInfo::getCastInstrCost(
807     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
808     TTI::TargetCostKind CostKind, const Instruction *I) const {
809   assert((I == nullptr || I->getOpcode() == Opcode) &&
810          "Opcode should reflect passed instruction.");
811   InstructionCost Cost =
812       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
813   assert(Cost >= 0 && "TTI should not produce negative costs!");
814   return Cost;
815 }
816 
817 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
818     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
819   InstructionCost Cost =
820       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
821   assert(Cost >= 0 && "TTI should not produce negative costs!");
822   return Cost;
823 }
824 
825 InstructionCost TargetTransformInfo::getCFInstrCost(
826     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
827   assert((I == nullptr || I->getOpcode() == Opcode) &&
828          "Opcode should reflect passed instruction.");
829   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
830   assert(Cost >= 0 && "TTI should not produce negative costs!");
831   return Cost;
832 }
833 
834 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
835     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
836     TTI::TargetCostKind CostKind, const Instruction *I) const {
837   assert((I == nullptr || I->getOpcode() == Opcode) &&
838          "Opcode should reflect passed instruction.");
839   InstructionCost Cost =
840       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
841   assert(Cost >= 0 && "TTI should not produce negative costs!");
842   return Cost;
843 }
844 
845 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
846                                                         Type *Val,
847                                                         unsigned Index) const {
848   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
849   assert(Cost >= 0 && "TTI should not produce negative costs!");
850   return Cost;
851 }
852 
853 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
854     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
855     TTI::TargetCostKind CostKind) {
856   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
857       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
858   assert(Cost >= 0 && "TTI should not produce negative costs!");
859   return Cost;
860 }
861 
862 InstructionCost TargetTransformInfo::getMemoryOpCost(
863     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
864     TTI::TargetCostKind CostKind, const Instruction *I) const {
865   assert((I == nullptr || I->getOpcode() == Opcode) &&
866          "Opcode should reflect passed instruction.");
867   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
868                                                   AddressSpace, CostKind, I);
869   assert(Cost >= 0 && "TTI should not produce negative costs!");
870   return Cost;
871 }
872 
873 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
874     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
875     TTI::TargetCostKind CostKind) const {
876   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
877                                                         AddressSpace, CostKind);
878   assert(Cost >= 0 && "TTI should not produce negative costs!");
879   return Cost;
880 }
881 
882 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
883     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
884     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
885   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
886       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
887   assert(Cost >= 0 && "TTI should not produce negative costs!");
888   return Cost;
889 }
890 
891 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
892     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
893     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
894     bool UseMaskForCond, bool UseMaskForGaps) const {
895   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
896       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
897       UseMaskForCond, UseMaskForGaps);
898   assert(Cost >= 0 && "TTI should not produce negative costs!");
899   return Cost;
900 }
901 
902 InstructionCost
903 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
904                                            TTI::TargetCostKind CostKind) const {
905   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
906   assert(Cost >= 0 && "TTI should not produce negative costs!");
907   return Cost;
908 }
909 
910 InstructionCost
911 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
912                                       ArrayRef<Type *> Tys,
913                                       TTI::TargetCostKind CostKind) const {
914   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
915   assert(Cost >= 0 && "TTI should not produce negative costs!");
916   return Cost;
917 }
918 
919 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
920   return TTIImpl->getNumberOfParts(Tp);
921 }
922 
923 InstructionCost
924 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
925                                                const SCEV *Ptr) const {
926   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
927   assert(Cost >= 0 && "TTI should not produce negative costs!");
928   return Cost;
929 }
930 
931 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
932   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
933   assert(Cost >= 0 && "TTI should not produce negative costs!");
934   return Cost;
935 }
936 
937 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
938     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
939     TTI::TargetCostKind CostKind) const {
940   InstructionCost Cost =
941       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
942   assert(Cost >= 0 && "TTI should not produce negative costs!");
943   return Cost;
944 }
945 
946 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
947     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
948     TTI::TargetCostKind CostKind) const {
949   InstructionCost Cost =
950       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
951   assert(Cost >= 0 && "TTI should not produce negative costs!");
952   return Cost;
953 }
954 
955 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
956     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
957     TTI::TargetCostKind CostKind) const {
958   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
959                                               CostKind);
960 }
961 
962 InstructionCost
963 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
964   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
965 }
966 
967 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
968                                              MemIntrinsicInfo &Info) const {
969   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
970 }
971 
972 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
973   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
974 }
975 
976 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
977     IntrinsicInst *Inst, Type *ExpectedType) const {
978   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
979 }
980 
981 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
982     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
983     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
984     Optional<uint32_t> AtomicElementSize) const {
985   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
986                                             DestAddrSpace, SrcAlign, DestAlign,
987                                             AtomicElementSize);
988 }
989 
990 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
991     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
992     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
993     unsigned SrcAlign, unsigned DestAlign,
994     Optional<uint32_t> AtomicCpySize) const {
995   TTIImpl->getMemcpyLoopResidualLoweringType(
996       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
997       DestAlign, AtomicCpySize);
998 }
999 
1000 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1001                                               const Function *Callee) const {
1002   return TTIImpl->areInlineCompatible(Caller, Callee);
1003 }
1004 
1005 bool TargetTransformInfo::areTypesABICompatible(
1006     const Function *Caller, const Function *Callee,
1007     const ArrayRef<Type *> &Types) const {
1008   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1009 }
1010 
1011 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1012                                              Type *Ty) const {
1013   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1014 }
1015 
1016 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1017                                               Type *Ty) const {
1018   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1019 }
1020 
1021 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1022   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1023 }
1024 
1025 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1026   return TTIImpl->isLegalToVectorizeLoad(LI);
1027 }
1028 
1029 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1030   return TTIImpl->isLegalToVectorizeStore(SI);
1031 }
1032 
1033 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1034     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1035   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1036                                               AddrSpace);
1037 }
1038 
1039 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1040     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1041   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1042                                                AddrSpace);
1043 }
1044 
1045 bool TargetTransformInfo::isLegalToVectorizeReduction(
1046     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1047   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1048 }
1049 
1050 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1051   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1052 }
1053 
1054 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1055                                                   unsigned LoadSize,
1056                                                   unsigned ChainSizeInBytes,
1057                                                   VectorType *VecTy) const {
1058   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1059 }
1060 
1061 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1062                                                    unsigned StoreSize,
1063                                                    unsigned ChainSizeInBytes,
1064                                                    VectorType *VecTy) const {
1065   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1066 }
1067 
1068 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1069                                                 ReductionFlags Flags) const {
1070   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1071 }
1072 
1073 bool TargetTransformInfo::preferPredicatedReductionSelect(
1074     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1075   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1076 }
1077 
1078 TargetTransformInfo::VPLegalization
1079 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1080   return TTIImpl->getVPLegalizationStrategy(VPI);
1081 }
1082 
1083 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1084   return TTIImpl->shouldExpandReduction(II);
1085 }
1086 
1087 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1088   return TTIImpl->getGISelRematGlobalCost();
1089 }
1090 
1091 bool TargetTransformInfo::supportsScalableVectors() const {
1092   return TTIImpl->supportsScalableVectors();
1093 }
1094 
1095 bool TargetTransformInfo::enableScalableVectorization() const {
1096   return TTIImpl->enableScalableVectorization();
1097 }
1098 
1099 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1100                                                 Align Alignment) const {
1101   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1102 }
1103 
1104 InstructionCost
1105 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1106   return TTIImpl->getInstructionLatency(I);
1107 }
1108 
1109 InstructionCost
1110 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1111   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1112 
1113   switch (I->getOpcode()) {
1114   case Instruction::GetElementPtr:
1115   case Instruction::Ret:
1116   case Instruction::PHI:
1117   case Instruction::Br:
1118   case Instruction::Add:
1119   case Instruction::FAdd:
1120   case Instruction::Sub:
1121   case Instruction::FSub:
1122   case Instruction::Mul:
1123   case Instruction::FMul:
1124   case Instruction::UDiv:
1125   case Instruction::SDiv:
1126   case Instruction::FDiv:
1127   case Instruction::URem:
1128   case Instruction::SRem:
1129   case Instruction::FRem:
1130   case Instruction::Shl:
1131   case Instruction::LShr:
1132   case Instruction::AShr:
1133   case Instruction::And:
1134   case Instruction::Or:
1135   case Instruction::Xor:
1136   case Instruction::FNeg:
1137   case Instruction::Select:
1138   case Instruction::ICmp:
1139   case Instruction::FCmp:
1140   case Instruction::Store:
1141   case Instruction::Load:
1142   case Instruction::ZExt:
1143   case Instruction::SExt:
1144   case Instruction::FPToUI:
1145   case Instruction::FPToSI:
1146   case Instruction::FPExt:
1147   case Instruction::PtrToInt:
1148   case Instruction::IntToPtr:
1149   case Instruction::SIToFP:
1150   case Instruction::UIToFP:
1151   case Instruction::Trunc:
1152   case Instruction::FPTrunc:
1153   case Instruction::BitCast:
1154   case Instruction::AddrSpaceCast:
1155   case Instruction::ExtractElement:
1156   case Instruction::InsertElement:
1157   case Instruction::ExtractValue:
1158   case Instruction::ShuffleVector:
1159   case Instruction::Call:
1160   case Instruction::Switch:
1161     return getUserCost(I, CostKind);
1162   default:
1163     // We don't have any information on this instruction.
1164     return -1;
1165   }
1166 }
1167 
1168 TargetTransformInfo::Concept::~Concept() = default;
1169 
1170 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1171 
1172 TargetIRAnalysis::TargetIRAnalysis(
1173     std::function<Result(const Function &)> TTICallback)
1174     : TTICallback(std::move(TTICallback)) {}
1175 
1176 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1177                                                FunctionAnalysisManager &) {
1178   return TTICallback(F);
1179 }
1180 
1181 AnalysisKey TargetIRAnalysis::Key;
1182 
1183 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1184   return Result(F.getParent()->getDataLayout());
1185 }
1186 
1187 // Register the basic pass.
1188 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1189                 "Target Transform Information", false, true)
1190 char TargetTransformInfoWrapperPass::ID = 0;
1191 
1192 void TargetTransformInfoWrapperPass::anchor() {}
1193 
1194 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1195     : ImmutablePass(ID) {
1196   initializeTargetTransformInfoWrapperPassPass(
1197       *PassRegistry::getPassRegistry());
1198 }
1199 
1200 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1201     TargetIRAnalysis TIRA)
1202     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1203   initializeTargetTransformInfoWrapperPassPass(
1204       *PassRegistry::getPassRegistry());
1205 }
1206 
1207 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1208   FunctionAnalysisManager DummyFAM;
1209   TTI = TIRA.run(F, DummyFAM);
1210   return *TTI;
1211 }
1212 
1213 ImmutablePass *
1214 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1215   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1216 }
1217