1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40   explicit NoTTIImpl(const DataLayout &DL)
41       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
42 };
43 } // namespace
44 
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46   // If the loop has irreducible control flow, it can not be converted to
47   // Hardware loop.
48   LoopBlocksRPO RPOT(L);
49   RPOT.perform(&LI);
50   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51     return false;
52   return true;
53 }
54 
55 IntrinsicCostAttributes::IntrinsicCostAttributes(
56     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
57     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
58       ScalarizationCost(ScalarizationCost) {
59 
60   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
61     FMF = FPMO->getFastMathFlags();
62 
63   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
64   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
65   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
66 }
67 
68 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
69                                                  ArrayRef<Type *> Tys,
70                                                  FastMathFlags Flags,
71                                                  const IntrinsicInst *I,
72                                                  InstructionCost ScalarCost)
73     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
74   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
75 }
76 
77 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
78                                                  ArrayRef<const Value *> Args)
79     : RetTy(Ty), IID(Id) {
80 
81   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
82   ParamTys.reserve(Arguments.size());
83   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
84     ParamTys.push_back(Arguments[Idx]->getType());
85 }
86 
87 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
88                                                  ArrayRef<const Value *> Args,
89                                                  ArrayRef<Type *> Tys,
90                                                  FastMathFlags Flags,
91                                                  const IntrinsicInst *I,
92                                                  InstructionCost ScalarCost)
93     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
94   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
95   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
96 }
97 
98 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
99                                                LoopInfo &LI, DominatorTree &DT,
100                                                bool ForceNestedLoop,
101                                                bool ForceHardwareLoopPHI) {
102   SmallVector<BasicBlock *, 4> ExitingBlocks;
103   L->getExitingBlocks(ExitingBlocks);
104 
105   for (BasicBlock *BB : ExitingBlocks) {
106     // If we pass the updated counter back through a phi, we need to know
107     // which latch the updated value will be coming from.
108     if (!L->isLoopLatch(BB)) {
109       if (ForceHardwareLoopPHI || CounterInReg)
110         continue;
111     }
112 
113     const SCEV *EC = SE.getExitCount(L, BB);
114     if (isa<SCEVCouldNotCompute>(EC))
115       continue;
116     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
117       if (ConstEC->getValue()->isZero())
118         continue;
119     } else if (!SE.isLoopInvariant(EC, L))
120       continue;
121 
122     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
123       continue;
124 
125     // If this exiting block is contained in a nested loop, it is not eligible
126     // for insertion of the branch-and-decrement since the inner loop would
127     // end up messing up the value in the CTR.
128     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
129       continue;
130 
131     // We now have a loop-invariant count of loop iterations (which is not the
132     // constant zero) for which we know that this loop will not exit via this
133     // existing block.
134 
135     // We need to make sure that this block will run on every loop iteration.
136     // For this to be true, we must dominate all blocks with backedges. Such
137     // blocks are in-loop predecessors to the header block.
138     bool NotAlways = false;
139     for (BasicBlock *Pred : predecessors(L->getHeader())) {
140       if (!L->contains(Pred))
141         continue;
142 
143       if (!DT.dominates(BB, Pred)) {
144         NotAlways = true;
145         break;
146       }
147     }
148 
149     if (NotAlways)
150       continue;
151 
152     // Make sure this blocks ends with a conditional branch.
153     Instruction *TI = BB->getTerminator();
154     if (!TI)
155       continue;
156 
157     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
158       if (!BI->isConditional())
159         continue;
160 
161       ExitBranch = BI;
162     } else
163       continue;
164 
165     // Note that this block may not be the loop latch block, even if the loop
166     // has a latch block.
167     ExitBlock = BB;
168     ExitCount = EC;
169     break;
170   }
171 
172   if (!ExitBlock)
173     return false;
174   return true;
175 }
176 
177 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
178     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
179 
180 TargetTransformInfo::~TargetTransformInfo() = default;
181 
182 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
183     : TTIImpl(std::move(Arg.TTIImpl)) {}
184 
185 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
186   TTIImpl = std::move(RHS.TTIImpl);
187   return *this;
188 }
189 
190 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
191   return TTIImpl->getInliningThresholdMultiplier();
192 }
193 
194 unsigned
195 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
196   return TTIImpl->adjustInliningThreshold(CB);
197 }
198 
199 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
200   return TTIImpl->getInlinerVectorBonusPercent();
201 }
202 
203 InstructionCost
204 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
205                                 ArrayRef<const Value *> Operands,
206                                 TTI::TargetCostKind CostKind) const {
207   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
208 }
209 
210 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
211     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
212     BlockFrequencyInfo *BFI) const {
213   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
214 }
215 
216 InstructionCost
217 TargetTransformInfo::getUserCost(const User *U,
218                                  ArrayRef<const Value *> Operands,
219                                  enum TargetCostKind CostKind) const {
220   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
221   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
222          "TTI should not produce negative costs!");
223   return Cost;
224 }
225 
226 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
227   return TTIImpl->getPredictableBranchThreshold();
228 }
229 
230 bool TargetTransformInfo::hasBranchDivergence() const {
231   return TTIImpl->hasBranchDivergence();
232 }
233 
234 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
235   return TTIImpl->useGPUDivergenceAnalysis();
236 }
237 
238 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
239   return TTIImpl->isSourceOfDivergence(V);
240 }
241 
242 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
243   return TTIImpl->isAlwaysUniform(V);
244 }
245 
246 unsigned TargetTransformInfo::getFlatAddressSpace() const {
247   return TTIImpl->getFlatAddressSpace();
248 }
249 
250 bool TargetTransformInfo::collectFlatAddressOperands(
251     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
252   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
253 }
254 
255 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
256                                               unsigned ToAS) const {
257   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
258 }
259 
260 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
261     unsigned AS) const {
262   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
263 }
264 
265 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
266   return TTIImpl->getAssumedAddrSpace(V);
267 }
268 
269 std::pair<const Value *, unsigned>
270 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
271   return TTIImpl->getPredicatedAddrSpace(V);
272 }
273 
274 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
275     IntrinsicInst *II, Value *OldV, Value *NewV) const {
276   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
277 }
278 
279 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
280   return TTIImpl->isLoweredToCall(F);
281 }
282 
283 bool TargetTransformInfo::isHardwareLoopProfitable(
284     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
285     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
286   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
287 }
288 
289 bool TargetTransformInfo::preferPredicateOverEpilogue(
290     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
291     TargetLibraryInfo *TLI, DominatorTree *DT,
292     const LoopAccessInfo *LAI) const {
293   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
294 }
295 
296 bool TargetTransformInfo::emitGetActiveLaneMask() const {
297   return TTIImpl->emitGetActiveLaneMask();
298 }
299 
300 Optional<Instruction *>
301 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
302                                           IntrinsicInst &II) const {
303   return TTIImpl->instCombineIntrinsic(IC, II);
304 }
305 
306 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
307     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
308     bool &KnownBitsComputed) const {
309   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
310                                                    KnownBitsComputed);
311 }
312 
313 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
314     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
315     APInt &UndefElts2, APInt &UndefElts3,
316     std::function<void(Instruction *, unsigned, APInt, APInt &)>
317         SimplifyAndSetOp) const {
318   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
319       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
320       SimplifyAndSetOp);
321 }
322 
323 void TargetTransformInfo::getUnrollingPreferences(
324     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
325     OptimizationRemarkEmitter *ORE) const {
326   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
327 }
328 
329 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
330                                                 PeelingPreferences &PP) const {
331   return TTIImpl->getPeelingPreferences(L, SE, PP);
332 }
333 
334 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
335   return TTIImpl->isLegalAddImmediate(Imm);
336 }
337 
338 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
339   return TTIImpl->isLegalICmpImmediate(Imm);
340 }
341 
342 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
343                                                 int64_t BaseOffset,
344                                                 bool HasBaseReg, int64_t Scale,
345                                                 unsigned AddrSpace,
346                                                 Instruction *I) const {
347   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
348                                         Scale, AddrSpace, I);
349 }
350 
351 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
352                                         const LSRCost &C2) const {
353   return TTIImpl->isLSRCostLess(C1, C2);
354 }
355 
356 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
357   return TTIImpl->isNumRegsMajorCostOfLSR();
358 }
359 
360 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
361   return TTIImpl->isProfitableLSRChainElement(I);
362 }
363 
364 bool TargetTransformInfo::canMacroFuseCmp() const {
365   return TTIImpl->canMacroFuseCmp();
366 }
367 
368 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
369                                      ScalarEvolution *SE, LoopInfo *LI,
370                                      DominatorTree *DT, AssumptionCache *AC,
371                                      TargetLibraryInfo *LibInfo) const {
372   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
373 }
374 
375 TTI::AddressingModeKind
376 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
377                                                 ScalarEvolution *SE) const {
378   return TTIImpl->getPreferredAddressingMode(L, SE);
379 }
380 
381 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
382                                              Align Alignment) const {
383   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
384 }
385 
386 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
387                                             Align Alignment) const {
388   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
389 }
390 
391 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
392                                          Align Alignment) const {
393   return TTIImpl->isLegalNTStore(DataType, Alignment);
394 }
395 
396 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
397   return TTIImpl->isLegalNTLoad(DataType, Alignment);
398 }
399 
400 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
401                                                ElementCount NumElements) const {
402   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
403 }
404 
405 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
406                                               Align Alignment) const {
407   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
408 }
409 
410 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
411                                                Align Alignment) const {
412   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
413 }
414 
415 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
416                                                      Align Alignment) const {
417   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
418 }
419 
420 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
421                                                       Align Alignment) const {
422   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
423 }
424 
425 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
426   return TTIImpl->isLegalMaskedCompressStore(DataType);
427 }
428 
429 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
430   return TTIImpl->isLegalMaskedExpandLoad(DataType);
431 }
432 
433 bool TargetTransformInfo::enableOrderedReductions() const {
434   return TTIImpl->enableOrderedReductions();
435 }
436 
437 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
438   return TTIImpl->hasDivRemOp(DataType, IsSigned);
439 }
440 
441 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
442                                              unsigned AddrSpace) const {
443   return TTIImpl->hasVolatileVariant(I, AddrSpace);
444 }
445 
446 bool TargetTransformInfo::prefersVectorizedAddressing() const {
447   return TTIImpl->prefersVectorizedAddressing();
448 }
449 
450 InstructionCost TargetTransformInfo::getScalingFactorCost(
451     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
452     int64_t Scale, unsigned AddrSpace) const {
453   InstructionCost Cost = TTIImpl->getScalingFactorCost(
454       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
455   assert(Cost >= 0 && "TTI should not produce negative costs!");
456   return Cost;
457 }
458 
459 bool TargetTransformInfo::LSRWithInstrQueries() const {
460   return TTIImpl->LSRWithInstrQueries();
461 }
462 
463 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
464   return TTIImpl->isTruncateFree(Ty1, Ty2);
465 }
466 
467 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
468   return TTIImpl->isProfitableToHoist(I);
469 }
470 
471 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
472 
473 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
474   return TTIImpl->isTypeLegal(Ty);
475 }
476 
477 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
478   return TTIImpl->getRegUsageForType(Ty);
479 }
480 
481 bool TargetTransformInfo::shouldBuildLookupTables() const {
482   return TTIImpl->shouldBuildLookupTables();
483 }
484 
485 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
486     Constant *C) const {
487   return TTIImpl->shouldBuildLookupTablesForConstant(C);
488 }
489 
490 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
491   return TTIImpl->shouldBuildRelLookupTables();
492 }
493 
494 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
495   return TTIImpl->useColdCCForColdCall(F);
496 }
497 
498 InstructionCost
499 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
500                                               const APInt &DemandedElts,
501                                               bool Insert, bool Extract) const {
502   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
503 }
504 
505 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
506     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
507   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
508 }
509 
510 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
511   return TTIImpl->supportsEfficientVectorElementLoadStore();
512 }
513 
514 bool TargetTransformInfo::enableAggressiveInterleaving(
515     bool LoopHasReductions) const {
516   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
517 }
518 
519 TargetTransformInfo::MemCmpExpansionOptions
520 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
521   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
522 }
523 
524 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
525   return TTIImpl->enableInterleavedAccessVectorization();
526 }
527 
528 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
529   return TTIImpl->enableMaskedInterleavedAccessVectorization();
530 }
531 
532 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
533   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
534 }
535 
536 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
537                                                          unsigned BitWidth,
538                                                          unsigned AddressSpace,
539                                                          Align Alignment,
540                                                          bool *Fast) const {
541   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
542                                                  AddressSpace, Alignment, Fast);
543 }
544 
545 TargetTransformInfo::PopcntSupportKind
546 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
547   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
548 }
549 
550 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
551   return TTIImpl->haveFastSqrt(Ty);
552 }
553 
554 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
555   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
556 }
557 
558 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
559   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
560   assert(Cost >= 0 && "TTI should not produce negative costs!");
561   return Cost;
562 }
563 
564 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
565                                                            unsigned Idx,
566                                                            const APInt &Imm,
567                                                            Type *Ty) const {
568   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
569   assert(Cost >= 0 && "TTI should not produce negative costs!");
570   return Cost;
571 }
572 
573 InstructionCost
574 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
575                                    TTI::TargetCostKind CostKind) const {
576   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
577   assert(Cost >= 0 && "TTI should not produce negative costs!");
578   return Cost;
579 }
580 
581 InstructionCost TargetTransformInfo::getIntImmCostInst(
582     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
583     TTI::TargetCostKind CostKind, Instruction *Inst) const {
584   InstructionCost Cost =
585       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
586   assert(Cost >= 0 && "TTI should not produce negative costs!");
587   return Cost;
588 }
589 
590 InstructionCost
591 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
592                                          const APInt &Imm, Type *Ty,
593                                          TTI::TargetCostKind CostKind) const {
594   InstructionCost Cost =
595       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
596   assert(Cost >= 0 && "TTI should not produce negative costs!");
597   return Cost;
598 }
599 
600 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
601   return TTIImpl->getNumberOfRegisters(ClassID);
602 }
603 
604 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
605                                                       Type *Ty) const {
606   return TTIImpl->getRegisterClassForType(Vector, Ty);
607 }
608 
609 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
610   return TTIImpl->getRegisterClassName(ClassID);
611 }
612 
613 TypeSize TargetTransformInfo::getRegisterBitWidth(
614     TargetTransformInfo::RegisterKind K) const {
615   return TTIImpl->getRegisterBitWidth(K);
616 }
617 
618 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
619   return TTIImpl->getMinVectorRegisterBitWidth();
620 }
621 
622 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
623   return TTIImpl->getMaxVScale();
624 }
625 
626 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
627   return TTIImpl->getVScaleForTuning();
628 }
629 
630 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
631     TargetTransformInfo::RegisterKind K) const {
632   return TTIImpl->shouldMaximizeVectorBandwidth(K);
633 }
634 
635 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
636                                                bool IsScalable) const {
637   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
638 }
639 
640 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
641                                            unsigned Opcode) const {
642   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
643 }
644 
645 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
646                                                 Type *ScalarValTy) const {
647   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
648 }
649 
650 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
651     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
652   return TTIImpl->shouldConsiderAddressTypePromotion(
653       I, AllowPromotionWithoutCommonHeader);
654 }
655 
656 unsigned TargetTransformInfo::getCacheLineSize() const {
657   return TTIImpl->getCacheLineSize();
658 }
659 
660 llvm::Optional<unsigned>
661 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
662   return TTIImpl->getCacheSize(Level);
663 }
664 
665 llvm::Optional<unsigned>
666 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
667   return TTIImpl->getCacheAssociativity(Level);
668 }
669 
670 unsigned TargetTransformInfo::getPrefetchDistance() const {
671   return TTIImpl->getPrefetchDistance();
672 }
673 
674 unsigned TargetTransformInfo::getMinPrefetchStride(
675     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
676     unsigned NumPrefetches, bool HasCall) const {
677   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
678                                        NumPrefetches, HasCall);
679 }
680 
681 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
682   return TTIImpl->getMaxPrefetchIterationsAhead();
683 }
684 
685 bool TargetTransformInfo::enableWritePrefetching() const {
686   return TTIImpl->enableWritePrefetching();
687 }
688 
689 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
690   return TTIImpl->getMaxInterleaveFactor(VF);
691 }
692 
693 TargetTransformInfo::OperandValueKind
694 TargetTransformInfo::getOperandInfo(const Value *V,
695                                     OperandValueProperties &OpProps) {
696   OperandValueKind OpInfo = OK_AnyValue;
697   OpProps = OP_None;
698 
699   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
700     if (CI->getValue().isPowerOf2())
701       OpProps = OP_PowerOf2;
702     return OK_UniformConstantValue;
703   }
704 
705   // A broadcast shuffle creates a uniform value.
706   // TODO: Add support for non-zero index broadcasts.
707   // TODO: Add support for different source vector width.
708   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
709     if (ShuffleInst->isZeroEltSplat())
710       OpInfo = OK_UniformValue;
711 
712   const Value *Splat = getSplatValue(V);
713 
714   // Check for a splat of a constant or for a non uniform vector of constants
715   // and check if the constant(s) are all powers of two.
716   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
717     OpInfo = OK_NonUniformConstantValue;
718     if (Splat) {
719       OpInfo = OK_UniformConstantValue;
720       if (auto *CI = dyn_cast<ConstantInt>(Splat))
721         if (CI->getValue().isPowerOf2())
722           OpProps = OP_PowerOf2;
723     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
724       OpProps = OP_PowerOf2;
725       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
726         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
727           if (CI->getValue().isPowerOf2())
728             continue;
729         OpProps = OP_None;
730         break;
731       }
732     }
733   }
734 
735   // Check for a splat of a uniform value. This is not loop aware, so return
736   // true only for the obviously uniform cases (argument, globalvalue)
737   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
738     OpInfo = OK_UniformValue;
739 
740   return OpInfo;
741 }
742 
743 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
744     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
745     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
746     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
747     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
748   InstructionCost Cost =
749       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
750                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
751   assert(Cost >= 0 && "TTI should not produce negative costs!");
752   return Cost;
753 }
754 
755 InstructionCost TargetTransformInfo::getShuffleCost(
756     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, int Index,
757     VectorType *SubTp, ArrayRef<const Value *> Args) const {
758   InstructionCost Cost =
759       TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp, Args);
760   assert(Cost >= 0 && "TTI should not produce negative costs!");
761   return Cost;
762 }
763 
764 TTI::CastContextHint
765 TargetTransformInfo::getCastContextHint(const Instruction *I) {
766   if (!I)
767     return CastContextHint::None;
768 
769   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
770                              unsigned GatScatOp) {
771     const Instruction *I = dyn_cast<Instruction>(V);
772     if (!I)
773       return CastContextHint::None;
774 
775     if (I->getOpcode() == LdStOp)
776       return CastContextHint::Normal;
777 
778     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
779       if (II->getIntrinsicID() == MaskedOp)
780         return TTI::CastContextHint::Masked;
781       if (II->getIntrinsicID() == GatScatOp)
782         return TTI::CastContextHint::GatherScatter;
783     }
784 
785     return TTI::CastContextHint::None;
786   };
787 
788   switch (I->getOpcode()) {
789   case Instruction::ZExt:
790   case Instruction::SExt:
791   case Instruction::FPExt:
792     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
793                             Intrinsic::masked_load, Intrinsic::masked_gather);
794   case Instruction::Trunc:
795   case Instruction::FPTrunc:
796     if (I->hasOneUse())
797       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
798                               Intrinsic::masked_store,
799                               Intrinsic::masked_scatter);
800     break;
801   default:
802     return CastContextHint::None;
803   }
804 
805   return TTI::CastContextHint::None;
806 }
807 
808 InstructionCost TargetTransformInfo::getCastInstrCost(
809     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
810     TTI::TargetCostKind CostKind, const Instruction *I) const {
811   assert((I == nullptr || I->getOpcode() == Opcode) &&
812          "Opcode should reflect passed instruction.");
813   InstructionCost Cost =
814       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
815   assert(Cost >= 0 && "TTI should not produce negative costs!");
816   return Cost;
817 }
818 
819 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
820     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
821   InstructionCost Cost =
822       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
823   assert(Cost >= 0 && "TTI should not produce negative costs!");
824   return Cost;
825 }
826 
827 InstructionCost TargetTransformInfo::getCFInstrCost(
828     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
829   assert((I == nullptr || I->getOpcode() == Opcode) &&
830          "Opcode should reflect passed instruction.");
831   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
832   assert(Cost >= 0 && "TTI should not produce negative costs!");
833   return Cost;
834 }
835 
836 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
837     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
838     TTI::TargetCostKind CostKind, const Instruction *I) const {
839   assert((I == nullptr || I->getOpcode() == Opcode) &&
840          "Opcode should reflect passed instruction.");
841   InstructionCost Cost =
842       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
843   assert(Cost >= 0 && "TTI should not produce negative costs!");
844   return Cost;
845 }
846 
847 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
848                                                         Type *Val,
849                                                         unsigned Index) const {
850   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
851   assert(Cost >= 0 && "TTI should not produce negative costs!");
852   return Cost;
853 }
854 
855 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
856     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
857     TTI::TargetCostKind CostKind) {
858   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
859       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
860   assert(Cost >= 0 && "TTI should not produce negative costs!");
861   return Cost;
862 }
863 
864 InstructionCost TargetTransformInfo::getMemoryOpCost(
865     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
866     TTI::TargetCostKind CostKind, const Instruction *I) const {
867   assert((I == nullptr || I->getOpcode() == Opcode) &&
868          "Opcode should reflect passed instruction.");
869   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
870                                                   AddressSpace, CostKind, I);
871   assert(Cost >= 0 && "TTI should not produce negative costs!");
872   return Cost;
873 }
874 
875 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
876     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
877     TTI::TargetCostKind CostKind) const {
878   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
879                                                         AddressSpace, CostKind);
880   assert(Cost >= 0 && "TTI should not produce negative costs!");
881   return Cost;
882 }
883 
884 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
885     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
886     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
887   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
888       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
889   assert(Cost >= 0 && "TTI should not produce negative costs!");
890   return Cost;
891 }
892 
893 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
894     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
895     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
896     bool UseMaskForCond, bool UseMaskForGaps) const {
897   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
898       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
899       UseMaskForCond, UseMaskForGaps);
900   assert(Cost >= 0 && "TTI should not produce negative costs!");
901   return Cost;
902 }
903 
904 InstructionCost
905 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
906                                            TTI::TargetCostKind CostKind) const {
907   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
908   assert(Cost >= 0 && "TTI should not produce negative costs!");
909   return Cost;
910 }
911 
912 InstructionCost
913 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
914                                       ArrayRef<Type *> Tys,
915                                       TTI::TargetCostKind CostKind) const {
916   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
917   assert(Cost >= 0 && "TTI should not produce negative costs!");
918   return Cost;
919 }
920 
921 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
922   return TTIImpl->getNumberOfParts(Tp);
923 }
924 
925 InstructionCost
926 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
927                                                const SCEV *Ptr) const {
928   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
929   assert(Cost >= 0 && "TTI should not produce negative costs!");
930   return Cost;
931 }
932 
933 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
934   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
935   assert(Cost >= 0 && "TTI should not produce negative costs!");
936   return Cost;
937 }
938 
939 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
940     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
941     TTI::TargetCostKind CostKind) const {
942   InstructionCost Cost =
943       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
944   assert(Cost >= 0 && "TTI should not produce negative costs!");
945   return Cost;
946 }
947 
948 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
949     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
950     TTI::TargetCostKind CostKind) const {
951   InstructionCost Cost =
952       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
953   assert(Cost >= 0 && "TTI should not produce negative costs!");
954   return Cost;
955 }
956 
957 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
958     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
959     TTI::TargetCostKind CostKind) const {
960   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
961                                               CostKind);
962 }
963 
964 InstructionCost
965 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
966   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
967 }
968 
969 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
970                                              MemIntrinsicInfo &Info) const {
971   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
972 }
973 
974 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
975   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
976 }
977 
978 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
979     IntrinsicInst *Inst, Type *ExpectedType) const {
980   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
981 }
982 
983 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
984     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
985     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
986     Optional<uint32_t> AtomicElementSize) const {
987   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
988                                             DestAddrSpace, SrcAlign, DestAlign,
989                                             AtomicElementSize);
990 }
991 
992 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
993     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
994     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
995     unsigned SrcAlign, unsigned DestAlign,
996     Optional<uint32_t> AtomicCpySize) const {
997   TTIImpl->getMemcpyLoopResidualLoweringType(
998       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
999       DestAlign, AtomicCpySize);
1000 }
1001 
1002 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1003                                               const Function *Callee) const {
1004   return TTIImpl->areInlineCompatible(Caller, Callee);
1005 }
1006 
1007 bool TargetTransformInfo::areTypesABICompatible(
1008     const Function *Caller, const Function *Callee,
1009     const ArrayRef<Type *> &Types) const {
1010   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1011 }
1012 
1013 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1014                                              Type *Ty) const {
1015   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1016 }
1017 
1018 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1019                                               Type *Ty) const {
1020   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1021 }
1022 
1023 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1024   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1025 }
1026 
1027 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1028   return TTIImpl->isLegalToVectorizeLoad(LI);
1029 }
1030 
1031 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1032   return TTIImpl->isLegalToVectorizeStore(SI);
1033 }
1034 
1035 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1036     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1037   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1038                                               AddrSpace);
1039 }
1040 
1041 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1042     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1043   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1044                                                AddrSpace);
1045 }
1046 
1047 bool TargetTransformInfo::isLegalToVectorizeReduction(
1048     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1049   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1050 }
1051 
1052 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1053   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1054 }
1055 
1056 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1057                                                   unsigned LoadSize,
1058                                                   unsigned ChainSizeInBytes,
1059                                                   VectorType *VecTy) const {
1060   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1061 }
1062 
1063 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1064                                                    unsigned StoreSize,
1065                                                    unsigned ChainSizeInBytes,
1066                                                    VectorType *VecTy) const {
1067   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1068 }
1069 
1070 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1071                                                 ReductionFlags Flags) const {
1072   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1073 }
1074 
1075 bool TargetTransformInfo::preferPredicatedReductionSelect(
1076     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1077   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1078 }
1079 
1080 TargetTransformInfo::VPLegalization
1081 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1082   return TTIImpl->getVPLegalizationStrategy(VPI);
1083 }
1084 
1085 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1086   return TTIImpl->shouldExpandReduction(II);
1087 }
1088 
1089 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1090   return TTIImpl->getGISelRematGlobalCost();
1091 }
1092 
1093 bool TargetTransformInfo::supportsScalableVectors() const {
1094   return TTIImpl->supportsScalableVectors();
1095 }
1096 
1097 bool TargetTransformInfo::enableScalableVectorization() const {
1098   return TTIImpl->enableScalableVectorization();
1099 }
1100 
1101 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1102                                                 Align Alignment) const {
1103   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1104 }
1105 
1106 InstructionCost
1107 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1108   return TTIImpl->getInstructionLatency(I);
1109 }
1110 
1111 InstructionCost
1112 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1113   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1114 
1115   switch (I->getOpcode()) {
1116   case Instruction::GetElementPtr:
1117   case Instruction::Ret:
1118   case Instruction::PHI:
1119   case Instruction::Br:
1120   case Instruction::Add:
1121   case Instruction::FAdd:
1122   case Instruction::Sub:
1123   case Instruction::FSub:
1124   case Instruction::Mul:
1125   case Instruction::FMul:
1126   case Instruction::UDiv:
1127   case Instruction::SDiv:
1128   case Instruction::FDiv:
1129   case Instruction::URem:
1130   case Instruction::SRem:
1131   case Instruction::FRem:
1132   case Instruction::Shl:
1133   case Instruction::LShr:
1134   case Instruction::AShr:
1135   case Instruction::And:
1136   case Instruction::Or:
1137   case Instruction::Xor:
1138   case Instruction::FNeg:
1139   case Instruction::Select:
1140   case Instruction::ICmp:
1141   case Instruction::FCmp:
1142   case Instruction::Store:
1143   case Instruction::Load:
1144   case Instruction::ZExt:
1145   case Instruction::SExt:
1146   case Instruction::FPToUI:
1147   case Instruction::FPToSI:
1148   case Instruction::FPExt:
1149   case Instruction::PtrToInt:
1150   case Instruction::IntToPtr:
1151   case Instruction::SIToFP:
1152   case Instruction::UIToFP:
1153   case Instruction::Trunc:
1154   case Instruction::FPTrunc:
1155   case Instruction::BitCast:
1156   case Instruction::AddrSpaceCast:
1157   case Instruction::ExtractElement:
1158   case Instruction::InsertElement:
1159   case Instruction::ExtractValue:
1160   case Instruction::ShuffleVector:
1161   case Instruction::Call:
1162   case Instruction::Switch:
1163     return getUserCost(I, CostKind);
1164   default:
1165     // We don't have any information on this instruction.
1166     return -1;
1167   }
1168 }
1169 
1170 TargetTransformInfo::Concept::~Concept() = default;
1171 
1172 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1173 
1174 TargetIRAnalysis::TargetIRAnalysis(
1175     std::function<Result(const Function &)> TTICallback)
1176     : TTICallback(std::move(TTICallback)) {}
1177 
1178 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1179                                                FunctionAnalysisManager &) {
1180   return TTICallback(F);
1181 }
1182 
1183 AnalysisKey TargetIRAnalysis::Key;
1184 
1185 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1186   return Result(F.getParent()->getDataLayout());
1187 }
1188 
1189 // Register the basic pass.
1190 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1191                 "Target Transform Information", false, true)
1192 char TargetTransformInfoWrapperPass::ID = 0;
1193 
1194 void TargetTransformInfoWrapperPass::anchor() {}
1195 
1196 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1197     : ImmutablePass(ID) {
1198   initializeTargetTransformInfoWrapperPassPass(
1199       *PassRegistry::getPassRegistry());
1200 }
1201 
1202 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1203     TargetIRAnalysis TIRA)
1204     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1205   initializeTargetTransformInfoWrapperPassPass(
1206       *PassRegistry::getPassRegistry());
1207 }
1208 
1209 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1210   FunctionAnalysisManager DummyFAM;
1211   TTI = TIRA.run(F, DummyFAM);
1212   return *TTI;
1213 }
1214 
1215 ImmutablePass *
1216 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1217   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1218 }
1219