1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 30 cl::Hidden, 31 cl::desc("Recognize reduction patterns.")); 32 33 namespace { 34 /// \brief No-op implementation of the TTI interface using the utility base 35 /// classes. 36 /// 37 /// This is used when no target specific information is available. 38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 39 explicit NoTTIImpl(const DataLayout &DL) 40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 41 }; 42 } 43 44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 46 47 TargetTransformInfo::~TargetTransformInfo() {} 48 49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 50 : TTIImpl(std::move(Arg.TTIImpl)) {} 51 52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 53 TTIImpl = std::move(RHS.TTIImpl); 54 return *this; 55 } 56 57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 58 Type *OpTy) const { 59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 60 assert(Cost >= 0 && "TTI should not produce negative costs!"); 61 return Cost; 62 } 63 64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments) const { 72 int Cost = TTIImpl->getCallCost(F, Arguments); 73 assert(Cost >= 0 && "TTI should not produce negative costs!"); 74 return Cost; 75 } 76 77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 78 return TTIImpl->getInliningThresholdMultiplier(); 79 } 80 81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 82 ArrayRef<const Value *> Operands) const { 83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 84 } 85 86 int TargetTransformInfo::getExtCost(const Instruction *I, 87 const Value *Src) const { 88 return TTIImpl->getExtCost(I, Src); 89 } 90 91 int TargetTransformInfo::getIntrinsicCost( 92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 94 assert(Cost >= 0 && "TTI should not produce negative costs!"); 95 return Cost; 96 } 97 98 unsigned 99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 100 unsigned &JTSize) const { 101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 102 } 103 104 int TargetTransformInfo::getUserCost(const User *U, 105 ArrayRef<const Value *> Operands) const { 106 int Cost = TTIImpl->getUserCost(U, Operands); 107 assert(Cost >= 0 && "TTI should not produce negative costs!"); 108 return Cost; 109 } 110 111 bool TargetTransformInfo::hasBranchDivergence() const { 112 return TTIImpl->hasBranchDivergence(); 113 } 114 115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 116 return TTIImpl->isSourceOfDivergence(V); 117 } 118 119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 120 return TTIImpl->isAlwaysUniform(V); 121 } 122 123 unsigned TargetTransformInfo::getFlatAddressSpace() const { 124 return TTIImpl->getFlatAddressSpace(); 125 } 126 127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 128 return TTIImpl->isLoweredToCall(F); 129 } 130 131 void TargetTransformInfo::getUnrollingPreferences( 132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 133 return TTIImpl->getUnrollingPreferences(L, SE, UP); 134 } 135 136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 137 return TTIImpl->isLegalAddImmediate(Imm); 138 } 139 140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 141 return TTIImpl->isLegalICmpImmediate(Imm); 142 } 143 144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 145 int64_t BaseOffset, 146 bool HasBaseReg, 147 int64_t Scale, 148 unsigned AddrSpace, 149 Instruction *I) const { 150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 151 Scale, AddrSpace, I); 152 } 153 154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 155 return TTIImpl->isLSRCostLess(C1, C2); 156 } 157 158 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 159 return TTIImpl->isLegalMaskedStore(DataType); 160 } 161 162 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 163 return TTIImpl->isLegalMaskedLoad(DataType); 164 } 165 166 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 167 return TTIImpl->isLegalMaskedGather(DataType); 168 } 169 170 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 171 return TTIImpl->isLegalMaskedScatter(DataType); 172 } 173 174 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 175 return TTIImpl->hasDivRemOp(DataType, IsSigned); 176 } 177 178 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 179 unsigned AddrSpace) const { 180 return TTIImpl->hasVolatileVariant(I, AddrSpace); 181 } 182 183 bool TargetTransformInfo::prefersVectorizedAddressing() const { 184 return TTIImpl->prefersVectorizedAddressing(); 185 } 186 187 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 188 int64_t BaseOffset, 189 bool HasBaseReg, 190 int64_t Scale, 191 unsigned AddrSpace) const { 192 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 193 Scale, AddrSpace); 194 assert(Cost >= 0 && "TTI should not produce negative costs!"); 195 return Cost; 196 } 197 198 bool TargetTransformInfo::LSRWithInstrQueries() const { 199 return TTIImpl->LSRWithInstrQueries(); 200 } 201 202 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 203 return TTIImpl->isTruncateFree(Ty1, Ty2); 204 } 205 206 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 207 return TTIImpl->isProfitableToHoist(I); 208 } 209 210 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 211 return TTIImpl->isTypeLegal(Ty); 212 } 213 214 unsigned TargetTransformInfo::getJumpBufAlignment() const { 215 return TTIImpl->getJumpBufAlignment(); 216 } 217 218 unsigned TargetTransformInfo::getJumpBufSize() const { 219 return TTIImpl->getJumpBufSize(); 220 } 221 222 bool TargetTransformInfo::shouldBuildLookupTables() const { 223 return TTIImpl->shouldBuildLookupTables(); 224 } 225 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 226 return TTIImpl->shouldBuildLookupTablesForConstant(C); 227 } 228 229 unsigned TargetTransformInfo:: 230 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 231 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 232 } 233 234 unsigned TargetTransformInfo:: 235 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 236 unsigned VF) const { 237 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 238 } 239 240 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 241 return TTIImpl->supportsEfficientVectorElementLoadStore(); 242 } 243 244 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 245 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 246 } 247 248 const TargetTransformInfo::MemCmpExpansionOptions * 249 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 250 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 251 } 252 253 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 254 return TTIImpl->enableInterleavedAccessVectorization(); 255 } 256 257 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 258 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 259 } 260 261 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 262 unsigned BitWidth, 263 unsigned AddressSpace, 264 unsigned Alignment, 265 bool *Fast) const { 266 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 267 Alignment, Fast); 268 } 269 270 TargetTransformInfo::PopcntSupportKind 271 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 272 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 273 } 274 275 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 276 return TTIImpl->haveFastSqrt(Ty); 277 } 278 279 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 280 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 281 } 282 283 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 284 int Cost = TTIImpl->getFPOpCost(Ty); 285 assert(Cost >= 0 && "TTI should not produce negative costs!"); 286 return Cost; 287 } 288 289 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 290 const APInt &Imm, 291 Type *Ty) const { 292 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 293 assert(Cost >= 0 && "TTI should not produce negative costs!"); 294 return Cost; 295 } 296 297 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 298 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 299 assert(Cost >= 0 && "TTI should not produce negative costs!"); 300 return Cost; 301 } 302 303 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 304 const APInt &Imm, Type *Ty) const { 305 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 306 assert(Cost >= 0 && "TTI should not produce negative costs!"); 307 return Cost; 308 } 309 310 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 311 const APInt &Imm, Type *Ty) const { 312 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 313 assert(Cost >= 0 && "TTI should not produce negative costs!"); 314 return Cost; 315 } 316 317 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 318 return TTIImpl->getNumberOfRegisters(Vector); 319 } 320 321 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 322 return TTIImpl->getRegisterBitWidth(Vector); 323 } 324 325 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 326 return TTIImpl->getMinVectorRegisterBitWidth(); 327 } 328 329 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 330 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 331 return TTIImpl->shouldConsiderAddressTypePromotion( 332 I, AllowPromotionWithoutCommonHeader); 333 } 334 335 unsigned TargetTransformInfo::getCacheLineSize() const { 336 return TTIImpl->getCacheLineSize(); 337 } 338 339 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 340 const { 341 return TTIImpl->getCacheSize(Level); 342 } 343 344 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 345 CacheLevel Level) const { 346 return TTIImpl->getCacheAssociativity(Level); 347 } 348 349 unsigned TargetTransformInfo::getPrefetchDistance() const { 350 return TTIImpl->getPrefetchDistance(); 351 } 352 353 unsigned TargetTransformInfo::getMinPrefetchStride() const { 354 return TTIImpl->getMinPrefetchStride(); 355 } 356 357 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 358 return TTIImpl->getMaxPrefetchIterationsAhead(); 359 } 360 361 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 362 return TTIImpl->getMaxInterleaveFactor(VF); 363 } 364 365 int TargetTransformInfo::getArithmeticInstrCost( 366 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 367 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 368 OperandValueProperties Opd2PropInfo, 369 ArrayRef<const Value *> Args) const { 370 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 371 Opd1PropInfo, Opd2PropInfo, Args); 372 assert(Cost >= 0 && "TTI should not produce negative costs!"); 373 return Cost; 374 } 375 376 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 377 Type *SubTp) const { 378 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 379 assert(Cost >= 0 && "TTI should not produce negative costs!"); 380 return Cost; 381 } 382 383 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 384 Type *Src, const Instruction *I) const { 385 assert ((I == nullptr || I->getOpcode() == Opcode) && 386 "Opcode should reflect passed instruction."); 387 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 388 assert(Cost >= 0 && "TTI should not produce negative costs!"); 389 return Cost; 390 } 391 392 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 393 VectorType *VecTy, 394 unsigned Index) const { 395 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 396 assert(Cost >= 0 && "TTI should not produce negative costs!"); 397 return Cost; 398 } 399 400 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 401 int Cost = TTIImpl->getCFInstrCost(Opcode); 402 assert(Cost >= 0 && "TTI should not produce negative costs!"); 403 return Cost; 404 } 405 406 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 407 Type *CondTy, const Instruction *I) const { 408 assert ((I == nullptr || I->getOpcode() == Opcode) && 409 "Opcode should reflect passed instruction."); 410 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 411 assert(Cost >= 0 && "TTI should not produce negative costs!"); 412 return Cost; 413 } 414 415 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 416 unsigned Index) const { 417 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 418 assert(Cost >= 0 && "TTI should not produce negative costs!"); 419 return Cost; 420 } 421 422 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 423 unsigned Alignment, 424 unsigned AddressSpace, 425 const Instruction *I) const { 426 assert ((I == nullptr || I->getOpcode() == Opcode) && 427 "Opcode should reflect passed instruction."); 428 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 429 assert(Cost >= 0 && "TTI should not produce negative costs!"); 430 return Cost; 431 } 432 433 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 434 unsigned Alignment, 435 unsigned AddressSpace) const { 436 int Cost = 437 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 438 assert(Cost >= 0 && "TTI should not produce negative costs!"); 439 return Cost; 440 } 441 442 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 443 Value *Ptr, bool VariableMask, 444 unsigned Alignment) const { 445 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 446 Alignment); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getInterleavedMemoryOpCost( 452 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 453 unsigned Alignment, unsigned AddressSpace) const { 454 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 455 Alignment, AddressSpace); 456 assert(Cost >= 0 && "TTI should not produce negative costs!"); 457 return Cost; 458 } 459 460 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 461 ArrayRef<Type *> Tys, FastMathFlags FMF, 462 unsigned ScalarizationCostPassed) const { 463 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 464 ScalarizationCostPassed); 465 assert(Cost >= 0 && "TTI should not produce negative costs!"); 466 return Cost; 467 } 468 469 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 470 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 471 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 477 ArrayRef<Type *> Tys) const { 478 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 479 assert(Cost >= 0 && "TTI should not produce negative costs!"); 480 return Cost; 481 } 482 483 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 484 return TTIImpl->getNumberOfParts(Tp); 485 } 486 487 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 488 ScalarEvolution *SE, 489 const SCEV *Ptr) const { 490 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 491 assert(Cost >= 0 && "TTI should not produce negative costs!"); 492 return Cost; 493 } 494 495 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 496 bool IsPairwiseForm) const { 497 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 498 assert(Cost >= 0 && "TTI should not produce negative costs!"); 499 return Cost; 500 } 501 502 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 503 bool IsPairwiseForm, 504 bool IsUnsigned) const { 505 int Cost = 506 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 507 assert(Cost >= 0 && "TTI should not produce negative costs!"); 508 return Cost; 509 } 510 511 unsigned 512 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 513 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 514 } 515 516 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 517 MemIntrinsicInfo &Info) const { 518 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 519 } 520 521 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 522 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 523 } 524 525 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 526 IntrinsicInst *Inst, Type *ExpectedType) const { 527 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 528 } 529 530 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 531 Value *Length, 532 unsigned SrcAlign, 533 unsigned DestAlign) const { 534 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 535 DestAlign); 536 } 537 538 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 539 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 540 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 541 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 542 SrcAlign, DestAlign); 543 } 544 545 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 546 const Function *Callee) const { 547 return TTIImpl->areInlineCompatible(Caller, Callee); 548 } 549 550 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 551 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 552 } 553 554 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 555 return TTIImpl->isLegalToVectorizeLoad(LI); 556 } 557 558 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 559 return TTIImpl->isLegalToVectorizeStore(SI); 560 } 561 562 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 563 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 564 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 565 AddrSpace); 566 } 567 568 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 569 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 570 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 571 AddrSpace); 572 } 573 574 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 575 unsigned LoadSize, 576 unsigned ChainSizeInBytes, 577 VectorType *VecTy) const { 578 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 579 } 580 581 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 582 unsigned StoreSize, 583 unsigned ChainSizeInBytes, 584 VectorType *VecTy) const { 585 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 586 } 587 588 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 589 Type *Ty, ReductionFlags Flags) const { 590 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 591 } 592 593 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 594 return TTIImpl->shouldExpandReduction(II); 595 } 596 597 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 598 return TTIImpl->getInstructionLatency(I); 599 } 600 601 static bool isReverseVectorMask(ArrayRef<int> Mask) { 602 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 603 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 604 return false; 605 return true; 606 } 607 608 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 609 bool Vec0 = false; 610 bool Vec1 = false; 611 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 612 if (Mask[i] >= 0) { 613 if ((unsigned)Mask[i] >= NumVecElts) 614 Vec1 = true; 615 else 616 Vec0 = true; 617 } 618 } 619 return !(Vec0 && Vec1); 620 } 621 622 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 623 for (unsigned i = 0; i < Mask.size(); ++i) 624 if (Mask[i] > 0) 625 return false; 626 return true; 627 } 628 629 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 630 bool isAlternate = true; 631 unsigned MaskSize = Mask.size(); 632 633 // Example: shufflevector A, B, <0,5,2,7> 634 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 635 if (Mask[i] < 0) 636 continue; 637 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 638 } 639 640 if (isAlternate) 641 return true; 642 643 isAlternate = true; 644 // Example: shufflevector A, B, <4,1,6,3> 645 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 646 if (Mask[i] < 0) 647 continue; 648 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 649 } 650 651 return isAlternate; 652 } 653 654 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 655 TargetTransformInfo::OperandValueKind OpInfo = 656 TargetTransformInfo::OK_AnyValue; 657 658 // Check for a splat of a constant or for a non uniform vector of constants. 659 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 660 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 661 if (cast<Constant>(V)->getSplatValue() != nullptr) 662 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 663 } 664 665 // Check for a splat of a uniform value. This is not loop aware, so return 666 // true only for the obviously uniform cases (argument, globalvalue) 667 const Value *Splat = getSplatValue(V); 668 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 669 OpInfo = TargetTransformInfo::OK_UniformValue; 670 671 return OpInfo; 672 } 673 674 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 675 unsigned Level) { 676 // We don't need a shuffle if we just want to have element 0 in position 0 of 677 // the vector. 678 if (!SI && Level == 0 && IsLeft) 679 return true; 680 else if (!SI) 681 return false; 682 683 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 684 685 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 686 // we look at the left or right side. 687 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 688 Mask[i] = val; 689 690 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 691 return Mask == ActualMask; 692 } 693 694 namespace { 695 /// Kind of the reduction data. 696 enum ReductionKind { 697 RK_None, /// Not a reduction. 698 RK_Arithmetic, /// Binary reduction data. 699 RK_MinMax, /// Min/max reduction data. 700 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 701 }; 702 /// Contains opcode + LHS/RHS parts of the reduction operations. 703 struct ReductionData { 704 ReductionData() = delete; 705 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 706 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 707 assert(Kind != RK_None && "expected binary or min/max reduction only."); 708 } 709 unsigned Opcode = 0; 710 Value *LHS = nullptr; 711 Value *RHS = nullptr; 712 ReductionKind Kind = RK_None; 713 bool hasSameData(ReductionData &RD) const { 714 return Kind == RD.Kind && Opcode == RD.Opcode; 715 } 716 }; 717 } // namespace 718 719 static Optional<ReductionData> getReductionData(Instruction *I) { 720 Value *L, *R; 721 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 722 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 723 if (auto *SI = dyn_cast<SelectInst>(I)) { 724 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 725 m_SMax(m_Value(L), m_Value(R)).match(SI) || 726 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 727 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 728 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 729 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 730 auto *CI = cast<CmpInst>(SI->getCondition()); 731 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 732 } 733 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 734 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 735 auto *CI = cast<CmpInst>(SI->getCondition()); 736 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 737 } 738 } 739 return llvm::None; 740 } 741 742 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 743 unsigned Level, 744 unsigned NumLevels) { 745 // Match one level of pairwise operations. 746 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 747 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 748 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 749 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 750 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 751 if (!I) 752 return RK_None; 753 754 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 755 756 Optional<ReductionData> RD = getReductionData(I); 757 if (!RD) 758 return RK_None; 759 760 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 761 if (!LS && Level) 762 return RK_None; 763 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 764 if (!RS && Level) 765 return RK_None; 766 767 // On level 0 we can omit one shufflevector instruction. 768 if (!Level && !RS && !LS) 769 return RK_None; 770 771 // Shuffle inputs must match. 772 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 773 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 774 Value *NextLevelOp = nullptr; 775 if (NextLevelOpR && NextLevelOpL) { 776 // If we have two shuffles their operands must match. 777 if (NextLevelOpL != NextLevelOpR) 778 return RK_None; 779 780 NextLevelOp = NextLevelOpL; 781 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 782 // On the first level we can omit the shufflevector <0, undef,...>. So the 783 // input to the other shufflevector <1, undef> must match with one of the 784 // inputs to the current binary operation. 785 // Example: 786 // %NextLevelOpL = shufflevector %R, <1, undef ...> 787 // %BinOp = fadd %NextLevelOpL, %R 788 if (NextLevelOpL && NextLevelOpL != RD->RHS) 789 return RK_None; 790 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 791 return RK_None; 792 793 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 794 } else 795 return RK_None; 796 797 // Check that the next levels binary operation exists and matches with the 798 // current one. 799 if (Level + 1 != NumLevels) { 800 Optional<ReductionData> NextLevelRD = 801 getReductionData(cast<Instruction>(NextLevelOp)); 802 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 803 return RK_None; 804 } 805 806 // Shuffle mask for pairwise operation must match. 807 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 808 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 809 return RK_None; 810 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 811 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 812 return RK_None; 813 } else { 814 return RK_None; 815 } 816 817 if (++Level == NumLevels) 818 return RD->Kind; 819 820 // Match next level. 821 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 822 NumLevels); 823 } 824 825 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 826 unsigned &Opcode, Type *&Ty) { 827 if (!EnableReduxCost) 828 return RK_None; 829 830 // Need to extract the first element. 831 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 832 unsigned Idx = ~0u; 833 if (CI) 834 Idx = CI->getZExtValue(); 835 if (Idx != 0) 836 return RK_None; 837 838 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 839 if (!RdxStart) 840 return RK_None; 841 Optional<ReductionData> RD = getReductionData(RdxStart); 842 if (!RD) 843 return RK_None; 844 845 Type *VecTy = RdxStart->getType(); 846 unsigned NumVecElems = VecTy->getVectorNumElements(); 847 if (!isPowerOf2_32(NumVecElems)) 848 return RK_None; 849 850 // We look for a sequence of shuffle,shuffle,add triples like the following 851 // that builds a pairwise reduction tree. 852 // 853 // (X0, X1, X2, X3) 854 // (X0 + X1, X2 + X3, undef, undef) 855 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 856 // 857 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 858 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 859 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 860 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 861 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 862 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 863 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 864 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 865 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 866 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 867 // %r = extractelement <4 x float> %bin.rdx8, i32 0 868 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 869 RK_None) 870 return RK_None; 871 872 Opcode = RD->Opcode; 873 Ty = VecTy; 874 875 return RD->Kind; 876 } 877 878 static std::pair<Value *, ShuffleVectorInst *> 879 getShuffleAndOtherOprd(Value *L, Value *R) { 880 ShuffleVectorInst *S = nullptr; 881 882 if ((S = dyn_cast<ShuffleVectorInst>(L))) 883 return std::make_pair(R, S); 884 885 S = dyn_cast<ShuffleVectorInst>(R); 886 return std::make_pair(L, S); 887 } 888 889 static ReductionKind 890 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 891 unsigned &Opcode, Type *&Ty) { 892 if (!EnableReduxCost) 893 return RK_None; 894 895 // Need to extract the first element. 896 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 897 unsigned Idx = ~0u; 898 if (CI) 899 Idx = CI->getZExtValue(); 900 if (Idx != 0) 901 return RK_None; 902 903 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 904 if (!RdxStart) 905 return RK_None; 906 Optional<ReductionData> RD = getReductionData(RdxStart); 907 if (!RD) 908 return RK_None; 909 910 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 911 unsigned NumVecElems = VecTy->getVectorNumElements(); 912 if (!isPowerOf2_32(NumVecElems)) 913 return RK_None; 914 915 // We look for a sequence of shuffles and adds like the following matching one 916 // fadd, shuffle vector pair at a time. 917 // 918 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 919 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 920 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 921 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 922 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 923 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 924 // %r = extractelement <4 x float> %bin.rdx8, i32 0 925 926 unsigned MaskStart = 1; 927 Instruction *RdxOp = RdxStart; 928 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 929 unsigned NumVecElemsRemain = NumVecElems; 930 while (NumVecElemsRemain - 1) { 931 // Check for the right reduction operation. 932 if (!RdxOp) 933 return RK_None; 934 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 935 if (!RDLevel || !RDLevel->hasSameData(*RD)) 936 return RK_None; 937 938 Value *NextRdxOp; 939 ShuffleVectorInst *Shuffle; 940 std::tie(NextRdxOp, Shuffle) = 941 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 942 943 // Check the current reduction operation and the shuffle use the same value. 944 if (Shuffle == nullptr) 945 return RK_None; 946 if (Shuffle->getOperand(0) != NextRdxOp) 947 return RK_None; 948 949 // Check that shuffle masks matches. 950 for (unsigned j = 0; j != MaskStart; ++j) 951 ShuffleMask[j] = MaskStart + j; 952 // Fill the rest of the mask with -1 for undef. 953 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 954 955 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 956 if (ShuffleMask != Mask) 957 return RK_None; 958 959 RdxOp = dyn_cast<Instruction>(NextRdxOp); 960 NumVecElemsRemain /= 2; 961 MaskStart *= 2; 962 } 963 964 Opcode = RD->Opcode; 965 Ty = VecTy; 966 return RD->Kind; 967 } 968 969 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 970 switch (I->getOpcode()) { 971 case Instruction::GetElementPtr: 972 return getUserCost(I); 973 974 case Instruction::Ret: 975 case Instruction::PHI: 976 case Instruction::Br: { 977 return getCFInstrCost(I->getOpcode()); 978 } 979 case Instruction::Add: 980 case Instruction::FAdd: 981 case Instruction::Sub: 982 case Instruction::FSub: 983 case Instruction::Mul: 984 case Instruction::FMul: 985 case Instruction::UDiv: 986 case Instruction::SDiv: 987 case Instruction::FDiv: 988 case Instruction::URem: 989 case Instruction::SRem: 990 case Instruction::FRem: 991 case Instruction::Shl: 992 case Instruction::LShr: 993 case Instruction::AShr: 994 case Instruction::And: 995 case Instruction::Or: 996 case Instruction::Xor: { 997 TargetTransformInfo::OperandValueKind Op1VK = 998 getOperandInfo(I->getOperand(0)); 999 TargetTransformInfo::OperandValueKind Op2VK = 1000 getOperandInfo(I->getOperand(1)); 1001 SmallVector<const Value*, 2> Operands(I->operand_values()); 1002 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1003 Op2VK, TargetTransformInfo::OP_None, 1004 TargetTransformInfo::OP_None, 1005 Operands); 1006 } 1007 case Instruction::Select: { 1008 const SelectInst *SI = cast<SelectInst>(I); 1009 Type *CondTy = SI->getCondition()->getType(); 1010 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1011 } 1012 case Instruction::ICmp: 1013 case Instruction::FCmp: { 1014 Type *ValTy = I->getOperand(0)->getType(); 1015 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1016 } 1017 case Instruction::Store: { 1018 const StoreInst *SI = cast<StoreInst>(I); 1019 Type *ValTy = SI->getValueOperand()->getType(); 1020 return getMemoryOpCost(I->getOpcode(), ValTy, 1021 SI->getAlignment(), 1022 SI->getPointerAddressSpace(), I); 1023 } 1024 case Instruction::Load: { 1025 const LoadInst *LI = cast<LoadInst>(I); 1026 return getMemoryOpCost(I->getOpcode(), I->getType(), 1027 LI->getAlignment(), 1028 LI->getPointerAddressSpace(), I); 1029 } 1030 case Instruction::ZExt: 1031 case Instruction::SExt: 1032 case Instruction::FPToUI: 1033 case Instruction::FPToSI: 1034 case Instruction::FPExt: 1035 case Instruction::PtrToInt: 1036 case Instruction::IntToPtr: 1037 case Instruction::SIToFP: 1038 case Instruction::UIToFP: 1039 case Instruction::Trunc: 1040 case Instruction::FPTrunc: 1041 case Instruction::BitCast: 1042 case Instruction::AddrSpaceCast: { 1043 Type *SrcTy = I->getOperand(0)->getType(); 1044 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1045 } 1046 case Instruction::ExtractElement: { 1047 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1048 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1049 unsigned Idx = -1; 1050 if (CI) 1051 Idx = CI->getZExtValue(); 1052 1053 // Try to match a reduction sequence (series of shufflevector and vector 1054 // adds followed by a extractelement). 1055 unsigned ReduxOpCode; 1056 Type *ReduxType; 1057 1058 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1059 case RK_Arithmetic: 1060 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1061 /*IsPairwiseForm=*/false); 1062 case RK_MinMax: 1063 return getMinMaxReductionCost( 1064 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1065 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1066 case RK_UnsignedMinMax: 1067 return getMinMaxReductionCost( 1068 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1069 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1070 case RK_None: 1071 break; 1072 } 1073 1074 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1075 case RK_Arithmetic: 1076 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1077 /*IsPairwiseForm=*/true); 1078 case RK_MinMax: 1079 return getMinMaxReductionCost( 1080 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1081 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1082 case RK_UnsignedMinMax: 1083 return getMinMaxReductionCost( 1084 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1085 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1086 case RK_None: 1087 break; 1088 } 1089 1090 return getVectorInstrCost(I->getOpcode(), 1091 EEI->getOperand(0)->getType(), Idx); 1092 } 1093 case Instruction::InsertElement: { 1094 const InsertElementInst * IE = cast<InsertElementInst>(I); 1095 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1096 unsigned Idx = -1; 1097 if (CI) 1098 Idx = CI->getZExtValue(); 1099 return getVectorInstrCost(I->getOpcode(), 1100 IE->getType(), Idx); 1101 } 1102 case Instruction::ShuffleVector: { 1103 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1104 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1105 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1106 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1107 1108 if (NumVecElems == Mask.size()) { 1109 if (isReverseVectorMask(Mask)) 1110 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1111 0, nullptr); 1112 if (isAlternateVectorMask(Mask)) 1113 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1114 VecTypOp0, 0, nullptr); 1115 1116 if (isZeroEltBroadcastVectorMask(Mask)) 1117 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1118 VecTypOp0, 0, nullptr); 1119 1120 if (isSingleSourceVectorMask(Mask)) 1121 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1122 VecTypOp0, 0, nullptr); 1123 1124 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1125 VecTypOp0, 0, nullptr); 1126 } 1127 1128 return -1; 1129 } 1130 case Instruction::Call: 1131 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1132 SmallVector<Value *, 4> Args(II->arg_operands()); 1133 1134 FastMathFlags FMF; 1135 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1136 FMF = FPMO->getFastMathFlags(); 1137 1138 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1139 Args, FMF); 1140 } 1141 return -1; 1142 default: 1143 // We don't have any information on this instruction. 1144 return -1; 1145 } 1146 } 1147 1148 TargetTransformInfo::Concept::~Concept() {} 1149 1150 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1151 1152 TargetIRAnalysis::TargetIRAnalysis( 1153 std::function<Result(const Function &)> TTICallback) 1154 : TTICallback(std::move(TTICallback)) {} 1155 1156 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1157 FunctionAnalysisManager &) { 1158 return TTICallback(F); 1159 } 1160 1161 AnalysisKey TargetIRAnalysis::Key; 1162 1163 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1164 return Result(F.getParent()->getDataLayout()); 1165 } 1166 1167 // Register the basic pass. 1168 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1169 "Target Transform Information", false, true) 1170 char TargetTransformInfoWrapperPass::ID = 0; 1171 1172 void TargetTransformInfoWrapperPass::anchor() {} 1173 1174 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1175 : ImmutablePass(ID) { 1176 initializeTargetTransformInfoWrapperPassPass( 1177 *PassRegistry::getPassRegistry()); 1178 } 1179 1180 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1181 TargetIRAnalysis TIRA) 1182 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1183 initializeTargetTransformInfoWrapperPassPass( 1184 *PassRegistry::getPassRegistry()); 1185 } 1186 1187 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1188 FunctionAnalysisManager DummyFAM; 1189 TTI = TIRA.run(F, DummyFAM); 1190 return *TTI; 1191 } 1192 1193 ImmutablePass * 1194 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1195 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1196 } 1197