1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> UseWideMemcpyLoopLowering( 30 "use-wide-memcpy-loop-lowering", cl::init(false), 31 cl::desc("Enables the new wide memcpy loop lowering in Transforms/Utils."), 32 cl::Hidden); 33 34 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 35 cl::Hidden, 36 cl::desc("Recognize reduction patterns.")); 37 38 namespace { 39 /// \brief No-op implementation of the TTI interface using the utility base 40 /// classes. 41 /// 42 /// This is used when no target specific information is available. 43 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 44 explicit NoTTIImpl(const DataLayout &DL) 45 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 46 }; 47 } 48 49 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 50 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 51 52 TargetTransformInfo::~TargetTransformInfo() {} 53 54 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 55 : TTIImpl(std::move(Arg.TTIImpl)) {} 56 57 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 58 TTIImpl = std::move(RHS.TTIImpl); 59 return *this; 60 } 61 62 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 63 Type *OpTy) const { 64 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 65 assert(Cost >= 0 && "TTI should not produce negative costs!"); 66 return Cost; 67 } 68 69 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 70 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 71 assert(Cost >= 0 && "TTI should not produce negative costs!"); 72 return Cost; 73 } 74 75 int TargetTransformInfo::getCallCost(const Function *F, 76 ArrayRef<const Value *> Arguments) const { 77 int Cost = TTIImpl->getCallCost(F, Arguments); 78 assert(Cost >= 0 && "TTI should not produce negative costs!"); 79 return Cost; 80 } 81 82 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 83 return TTIImpl->getInliningThresholdMultiplier(); 84 } 85 86 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 87 ArrayRef<const Value *> Operands) const { 88 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 89 } 90 91 int TargetTransformInfo::getExtCost(const Instruction *I, 92 const Value *Src) const { 93 return TTIImpl->getExtCost(I, Src); 94 } 95 96 int TargetTransformInfo::getIntrinsicCost( 97 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 98 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 99 assert(Cost >= 0 && "TTI should not produce negative costs!"); 100 return Cost; 101 } 102 103 unsigned 104 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 105 unsigned &JTSize) const { 106 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 107 } 108 109 int TargetTransformInfo::getUserCost(const User *U, 110 ArrayRef<const Value *> Operands) const { 111 int Cost = TTIImpl->getUserCost(U, Operands); 112 assert(Cost >= 0 && "TTI should not produce negative costs!"); 113 return Cost; 114 } 115 116 bool TargetTransformInfo::hasBranchDivergence() const { 117 return TTIImpl->hasBranchDivergence(); 118 } 119 120 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 121 return TTIImpl->isSourceOfDivergence(V); 122 } 123 124 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 125 return TTIImpl->isAlwaysUniform(V); 126 } 127 128 unsigned TargetTransformInfo::getFlatAddressSpace() const { 129 return TTIImpl->getFlatAddressSpace(); 130 } 131 132 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 133 return TTIImpl->isLoweredToCall(F); 134 } 135 136 void TargetTransformInfo::getUnrollingPreferences( 137 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 138 return TTIImpl->getUnrollingPreferences(L, SE, UP); 139 } 140 141 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 142 return TTIImpl->isLegalAddImmediate(Imm); 143 } 144 145 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 146 return TTIImpl->isLegalICmpImmediate(Imm); 147 } 148 149 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 150 int64_t BaseOffset, 151 bool HasBaseReg, 152 int64_t Scale, 153 unsigned AddrSpace, 154 Instruction *I) const { 155 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 156 Scale, AddrSpace, I); 157 } 158 159 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 160 return TTIImpl->isLSRCostLess(C1, C2); 161 } 162 163 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 164 return TTIImpl->isLegalMaskedStore(DataType); 165 } 166 167 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 168 return TTIImpl->isLegalMaskedLoad(DataType); 169 } 170 171 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 172 return TTIImpl->isLegalMaskedGather(DataType); 173 } 174 175 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 176 return TTIImpl->isLegalMaskedScatter(DataType); 177 } 178 179 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 180 return TTIImpl->hasDivRemOp(DataType, IsSigned); 181 } 182 183 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 184 unsigned AddrSpace) const { 185 return TTIImpl->hasVolatileVariant(I, AddrSpace); 186 } 187 188 bool TargetTransformInfo::prefersVectorizedAddressing() const { 189 return TTIImpl->prefersVectorizedAddressing(); 190 } 191 192 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 193 int64_t BaseOffset, 194 bool HasBaseReg, 195 int64_t Scale, 196 unsigned AddrSpace) const { 197 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 198 Scale, AddrSpace); 199 assert(Cost >= 0 && "TTI should not produce negative costs!"); 200 return Cost; 201 } 202 203 bool TargetTransformInfo::LSRWithInstrQueries() const { 204 return TTIImpl->LSRWithInstrQueries(); 205 } 206 207 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 208 return TTIImpl->isTruncateFree(Ty1, Ty2); 209 } 210 211 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 212 return TTIImpl->isProfitableToHoist(I); 213 } 214 215 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 216 return TTIImpl->isTypeLegal(Ty); 217 } 218 219 unsigned TargetTransformInfo::getJumpBufAlignment() const { 220 return TTIImpl->getJumpBufAlignment(); 221 } 222 223 unsigned TargetTransformInfo::getJumpBufSize() const { 224 return TTIImpl->getJumpBufSize(); 225 } 226 227 bool TargetTransformInfo::shouldBuildLookupTables() const { 228 return TTIImpl->shouldBuildLookupTables(); 229 } 230 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 231 return TTIImpl->shouldBuildLookupTablesForConstant(C); 232 } 233 234 unsigned TargetTransformInfo:: 235 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 236 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 237 } 238 239 unsigned TargetTransformInfo:: 240 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 241 unsigned VF) const { 242 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 243 } 244 245 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 246 return TTIImpl->supportsEfficientVectorElementLoadStore(); 247 } 248 249 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 250 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 251 } 252 253 bool TargetTransformInfo::enableMemCmpExpansion(unsigned &MaxLoadSize) const { 254 return TTIImpl->enableMemCmpExpansion(MaxLoadSize); 255 } 256 257 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 258 return TTIImpl->enableInterleavedAccessVectorization(); 259 } 260 261 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 262 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 263 } 264 265 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 266 unsigned BitWidth, 267 unsigned AddressSpace, 268 unsigned Alignment, 269 bool *Fast) const { 270 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 271 Alignment, Fast); 272 } 273 274 TargetTransformInfo::PopcntSupportKind 275 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 276 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 277 } 278 279 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 280 return TTIImpl->haveFastSqrt(Ty); 281 } 282 283 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 284 int Cost = TTIImpl->getFPOpCost(Ty); 285 assert(Cost >= 0 && "TTI should not produce negative costs!"); 286 return Cost; 287 } 288 289 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 290 const APInt &Imm, 291 Type *Ty) const { 292 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 293 assert(Cost >= 0 && "TTI should not produce negative costs!"); 294 return Cost; 295 } 296 297 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 298 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 299 assert(Cost >= 0 && "TTI should not produce negative costs!"); 300 return Cost; 301 } 302 303 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 304 const APInt &Imm, Type *Ty) const { 305 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 306 assert(Cost >= 0 && "TTI should not produce negative costs!"); 307 return Cost; 308 } 309 310 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 311 const APInt &Imm, Type *Ty) const { 312 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 313 assert(Cost >= 0 && "TTI should not produce negative costs!"); 314 return Cost; 315 } 316 317 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 318 return TTIImpl->getNumberOfRegisters(Vector); 319 } 320 321 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 322 return TTIImpl->getRegisterBitWidth(Vector); 323 } 324 325 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 326 return TTIImpl->getMinVectorRegisterBitWidth(); 327 } 328 329 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 330 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 331 return TTIImpl->shouldConsiderAddressTypePromotion( 332 I, AllowPromotionWithoutCommonHeader); 333 } 334 335 unsigned TargetTransformInfo::getCacheLineSize() const { 336 return TTIImpl->getCacheLineSize(); 337 } 338 339 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 340 const { 341 return TTIImpl->getCacheSize(Level); 342 } 343 344 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 345 CacheLevel Level) const { 346 return TTIImpl->getCacheAssociativity(Level); 347 } 348 349 unsigned TargetTransformInfo::getPrefetchDistance() const { 350 return TTIImpl->getPrefetchDistance(); 351 } 352 353 unsigned TargetTransformInfo::getMinPrefetchStride() const { 354 return TTIImpl->getMinPrefetchStride(); 355 } 356 357 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 358 return TTIImpl->getMaxPrefetchIterationsAhead(); 359 } 360 361 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 362 return TTIImpl->getMaxInterleaveFactor(VF); 363 } 364 365 int TargetTransformInfo::getArithmeticInstrCost( 366 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 367 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 368 OperandValueProperties Opd2PropInfo, 369 ArrayRef<const Value *> Args) const { 370 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 371 Opd1PropInfo, Opd2PropInfo, Args); 372 assert(Cost >= 0 && "TTI should not produce negative costs!"); 373 return Cost; 374 } 375 376 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 377 Type *SubTp) const { 378 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 379 assert(Cost >= 0 && "TTI should not produce negative costs!"); 380 return Cost; 381 } 382 383 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 384 Type *Src, const Instruction *I) const { 385 assert ((I == nullptr || I->getOpcode() == Opcode) && 386 "Opcode should reflect passed instruction."); 387 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 388 assert(Cost >= 0 && "TTI should not produce negative costs!"); 389 return Cost; 390 } 391 392 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 393 VectorType *VecTy, 394 unsigned Index) const { 395 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 396 assert(Cost >= 0 && "TTI should not produce negative costs!"); 397 return Cost; 398 } 399 400 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 401 int Cost = TTIImpl->getCFInstrCost(Opcode); 402 assert(Cost >= 0 && "TTI should not produce negative costs!"); 403 return Cost; 404 } 405 406 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 407 Type *CondTy, const Instruction *I) const { 408 assert ((I == nullptr || I->getOpcode() == Opcode) && 409 "Opcode should reflect passed instruction."); 410 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 411 assert(Cost >= 0 && "TTI should not produce negative costs!"); 412 return Cost; 413 } 414 415 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 416 unsigned Index) const { 417 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 418 assert(Cost >= 0 && "TTI should not produce negative costs!"); 419 return Cost; 420 } 421 422 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 423 unsigned Alignment, 424 unsigned AddressSpace, 425 const Instruction *I) const { 426 assert ((I == nullptr || I->getOpcode() == Opcode) && 427 "Opcode should reflect passed instruction."); 428 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 429 assert(Cost >= 0 && "TTI should not produce negative costs!"); 430 return Cost; 431 } 432 433 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 434 unsigned Alignment, 435 unsigned AddressSpace) const { 436 int Cost = 437 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 438 assert(Cost >= 0 && "TTI should not produce negative costs!"); 439 return Cost; 440 } 441 442 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 443 Value *Ptr, bool VariableMask, 444 unsigned Alignment) const { 445 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 446 Alignment); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getInterleavedMemoryOpCost( 452 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 453 unsigned Alignment, unsigned AddressSpace) const { 454 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 455 Alignment, AddressSpace); 456 assert(Cost >= 0 && "TTI should not produce negative costs!"); 457 return Cost; 458 } 459 460 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 461 ArrayRef<Type *> Tys, FastMathFlags FMF, 462 unsigned ScalarizationCostPassed) const { 463 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 464 ScalarizationCostPassed); 465 assert(Cost >= 0 && "TTI should not produce negative costs!"); 466 return Cost; 467 } 468 469 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 470 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 471 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 477 ArrayRef<Type *> Tys) const { 478 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 479 assert(Cost >= 0 && "TTI should not produce negative costs!"); 480 return Cost; 481 } 482 483 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 484 return TTIImpl->getNumberOfParts(Tp); 485 } 486 487 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 488 ScalarEvolution *SE, 489 const SCEV *Ptr) const { 490 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 491 assert(Cost >= 0 && "TTI should not produce negative costs!"); 492 return Cost; 493 } 494 495 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 496 bool IsPairwiseForm) const { 497 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 498 assert(Cost >= 0 && "TTI should not produce negative costs!"); 499 return Cost; 500 } 501 502 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 503 bool IsPairwiseForm, 504 bool IsUnsigned) const { 505 int Cost = 506 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 507 assert(Cost >= 0 && "TTI should not produce negative costs!"); 508 return Cost; 509 } 510 511 unsigned 512 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 513 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 514 } 515 516 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 517 MemIntrinsicInfo &Info) const { 518 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 519 } 520 521 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 522 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 523 } 524 525 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 526 IntrinsicInst *Inst, Type *ExpectedType) const { 527 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 528 } 529 530 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 531 Value *Length, 532 unsigned SrcAlign, 533 unsigned DestAlign) const { 534 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 535 DestAlign); 536 } 537 538 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 539 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 540 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 541 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 542 SrcAlign, DestAlign); 543 } 544 545 bool TargetTransformInfo::useWideIRMemcpyLoopLowering() const { 546 return UseWideMemcpyLoopLowering; 547 } 548 549 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 550 const Function *Callee) const { 551 return TTIImpl->areInlineCompatible(Caller, Callee); 552 } 553 554 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 555 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 556 } 557 558 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 559 return TTIImpl->isLegalToVectorizeLoad(LI); 560 } 561 562 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 563 return TTIImpl->isLegalToVectorizeStore(SI); 564 } 565 566 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 567 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 568 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 569 AddrSpace); 570 } 571 572 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 573 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 574 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 575 AddrSpace); 576 } 577 578 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 579 unsigned LoadSize, 580 unsigned ChainSizeInBytes, 581 VectorType *VecTy) const { 582 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 583 } 584 585 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 586 unsigned StoreSize, 587 unsigned ChainSizeInBytes, 588 VectorType *VecTy) const { 589 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 590 } 591 592 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 593 Type *Ty, ReductionFlags Flags) const { 594 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 595 } 596 597 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 598 return TTIImpl->shouldExpandReduction(II); 599 } 600 601 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 602 return TTIImpl->getInstructionLatency(I); 603 } 604 605 static bool isReverseVectorMask(ArrayRef<int> Mask) { 606 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 607 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 608 return false; 609 return true; 610 } 611 612 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 613 bool Vec0 = false; 614 bool Vec1 = false; 615 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 616 if (Mask[i] >= 0) { 617 if ((unsigned)Mask[i] >= NumVecElts) 618 Vec1 = true; 619 else 620 Vec0 = true; 621 } 622 } 623 return !(Vec0 && Vec1); 624 } 625 626 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 627 for (unsigned i = 0; i < Mask.size(); ++i) 628 if (Mask[i] > 0) 629 return false; 630 return true; 631 } 632 633 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 634 bool isAlternate = true; 635 unsigned MaskSize = Mask.size(); 636 637 // Example: shufflevector A, B, <0,5,2,7> 638 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 639 if (Mask[i] < 0) 640 continue; 641 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 642 } 643 644 if (isAlternate) 645 return true; 646 647 isAlternate = true; 648 // Example: shufflevector A, B, <4,1,6,3> 649 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 650 if (Mask[i] < 0) 651 continue; 652 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 653 } 654 655 return isAlternate; 656 } 657 658 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 659 TargetTransformInfo::OperandValueKind OpInfo = 660 TargetTransformInfo::OK_AnyValue; 661 662 // Check for a splat of a constant or for a non uniform vector of constants. 663 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 664 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 665 if (cast<Constant>(V)->getSplatValue() != nullptr) 666 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 667 } 668 669 // Check for a splat of a uniform value. This is not loop aware, so return 670 // true only for the obviously uniform cases (argument, globalvalue) 671 const Value *Splat = getSplatValue(V); 672 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 673 OpInfo = TargetTransformInfo::OK_UniformValue; 674 675 return OpInfo; 676 } 677 678 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 679 unsigned Level) { 680 // We don't need a shuffle if we just want to have element 0 in position 0 of 681 // the vector. 682 if (!SI && Level == 0 && IsLeft) 683 return true; 684 else if (!SI) 685 return false; 686 687 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 688 689 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 690 // we look at the left or right side. 691 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 692 Mask[i] = val; 693 694 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 695 return Mask == ActualMask; 696 } 697 698 namespace { 699 /// Kind of the reduction data. 700 enum ReductionKind { 701 RK_None, /// Not a reduction. 702 RK_Arithmetic, /// Binary reduction data. 703 RK_MinMax, /// Min/max reduction data. 704 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 705 }; 706 /// Contains opcode + LHS/RHS parts of the reduction operations. 707 struct ReductionData { 708 ReductionData() = delete; 709 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 710 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 711 assert(Kind != RK_None && "expected binary or min/max reduction only."); 712 } 713 unsigned Opcode = 0; 714 Value *LHS = nullptr; 715 Value *RHS = nullptr; 716 ReductionKind Kind = RK_None; 717 bool hasSameData(ReductionData &RD) const { 718 return Kind == RD.Kind && Opcode == RD.Opcode; 719 } 720 }; 721 } // namespace 722 723 static Optional<ReductionData> getReductionData(Instruction *I) { 724 Value *L, *R; 725 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 726 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 727 if (auto *SI = dyn_cast<SelectInst>(I)) { 728 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 729 m_SMax(m_Value(L), m_Value(R)).match(SI) || 730 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 731 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 732 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 733 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 734 auto *CI = cast<CmpInst>(SI->getCondition()); 735 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 736 } 737 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 738 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 739 auto *CI = cast<CmpInst>(SI->getCondition()); 740 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 741 } 742 } 743 return llvm::None; 744 } 745 746 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 747 unsigned Level, 748 unsigned NumLevels) { 749 // Match one level of pairwise operations. 750 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 751 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 752 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 753 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 754 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 755 if (!I) 756 return RK_None; 757 758 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 759 760 Optional<ReductionData> RD = getReductionData(I); 761 if (!RD) 762 return RK_None; 763 764 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 765 if (!LS && Level) 766 return RK_None; 767 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 768 if (!RS && Level) 769 return RK_None; 770 771 // On level 0 we can omit one shufflevector instruction. 772 if (!Level && !RS && !LS) 773 return RK_None; 774 775 // Shuffle inputs must match. 776 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 777 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 778 Value *NextLevelOp = nullptr; 779 if (NextLevelOpR && NextLevelOpL) { 780 // If we have two shuffles their operands must match. 781 if (NextLevelOpL != NextLevelOpR) 782 return RK_None; 783 784 NextLevelOp = NextLevelOpL; 785 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 786 // On the first level we can omit the shufflevector <0, undef,...>. So the 787 // input to the other shufflevector <1, undef> must match with one of the 788 // inputs to the current binary operation. 789 // Example: 790 // %NextLevelOpL = shufflevector %R, <1, undef ...> 791 // %BinOp = fadd %NextLevelOpL, %R 792 if (NextLevelOpL && NextLevelOpL != RD->RHS) 793 return RK_None; 794 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 795 return RK_None; 796 797 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 798 } else 799 return RK_None; 800 801 // Check that the next levels binary operation exists and matches with the 802 // current one. 803 if (Level + 1 != NumLevels) { 804 Optional<ReductionData> NextLevelRD = 805 getReductionData(cast<Instruction>(NextLevelOp)); 806 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 807 return RK_None; 808 } 809 810 // Shuffle mask for pairwise operation must match. 811 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 812 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 813 return RK_None; 814 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 815 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 816 return RK_None; 817 } else { 818 return RK_None; 819 } 820 821 if (++Level == NumLevels) 822 return RD->Kind; 823 824 // Match next level. 825 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 826 NumLevels); 827 } 828 829 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 830 unsigned &Opcode, Type *&Ty) { 831 if (!EnableReduxCost) 832 return RK_None; 833 834 // Need to extract the first element. 835 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 836 unsigned Idx = ~0u; 837 if (CI) 838 Idx = CI->getZExtValue(); 839 if (Idx != 0) 840 return RK_None; 841 842 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 843 if (!RdxStart) 844 return RK_None; 845 Optional<ReductionData> RD = getReductionData(RdxStart); 846 if (!RD) 847 return RK_None; 848 849 Type *VecTy = RdxStart->getType(); 850 unsigned NumVecElems = VecTy->getVectorNumElements(); 851 if (!isPowerOf2_32(NumVecElems)) 852 return RK_None; 853 854 // We look for a sequence of shuffle,shuffle,add triples like the following 855 // that builds a pairwise reduction tree. 856 // 857 // (X0, X1, X2, X3) 858 // (X0 + X1, X2 + X3, undef, undef) 859 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 860 // 861 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 862 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 863 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 864 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 865 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 866 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 867 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 868 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 869 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 870 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 871 // %r = extractelement <4 x float> %bin.rdx8, i32 0 872 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 873 RK_None) 874 return RK_None; 875 876 Opcode = RD->Opcode; 877 Ty = VecTy; 878 879 return RD->Kind; 880 } 881 882 static std::pair<Value *, ShuffleVectorInst *> 883 getShuffleAndOtherOprd(Value *L, Value *R) { 884 ShuffleVectorInst *S = nullptr; 885 886 if ((S = dyn_cast<ShuffleVectorInst>(L))) 887 return std::make_pair(R, S); 888 889 S = dyn_cast<ShuffleVectorInst>(R); 890 return std::make_pair(L, S); 891 } 892 893 static ReductionKind 894 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 895 unsigned &Opcode, Type *&Ty) { 896 if (!EnableReduxCost) 897 return RK_None; 898 899 // Need to extract the first element. 900 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 901 unsigned Idx = ~0u; 902 if (CI) 903 Idx = CI->getZExtValue(); 904 if (Idx != 0) 905 return RK_None; 906 907 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 908 if (!RdxStart) 909 return RK_None; 910 Optional<ReductionData> RD = getReductionData(RdxStart); 911 if (!RD) 912 return RK_None; 913 914 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 915 unsigned NumVecElems = VecTy->getVectorNumElements(); 916 if (!isPowerOf2_32(NumVecElems)) 917 return RK_None; 918 919 // We look for a sequence of shuffles and adds like the following matching one 920 // fadd, shuffle vector pair at a time. 921 // 922 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 923 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 924 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 925 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 926 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 927 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 928 // %r = extractelement <4 x float> %bin.rdx8, i32 0 929 930 unsigned MaskStart = 1; 931 Instruction *RdxOp = RdxStart; 932 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 933 unsigned NumVecElemsRemain = NumVecElems; 934 while (NumVecElemsRemain - 1) { 935 // Check for the right reduction operation. 936 if (!RdxOp) 937 return RK_None; 938 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 939 if (!RDLevel || !RDLevel->hasSameData(*RD)) 940 return RK_None; 941 942 Value *NextRdxOp; 943 ShuffleVectorInst *Shuffle; 944 std::tie(NextRdxOp, Shuffle) = 945 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 946 947 // Check the current reduction operation and the shuffle use the same value. 948 if (Shuffle == nullptr) 949 return RK_None; 950 if (Shuffle->getOperand(0) != NextRdxOp) 951 return RK_None; 952 953 // Check that shuffle masks matches. 954 for (unsigned j = 0; j != MaskStart; ++j) 955 ShuffleMask[j] = MaskStart + j; 956 // Fill the rest of the mask with -1 for undef. 957 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 958 959 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 960 if (ShuffleMask != Mask) 961 return RK_None; 962 963 RdxOp = dyn_cast<Instruction>(NextRdxOp); 964 NumVecElemsRemain /= 2; 965 MaskStart *= 2; 966 } 967 968 Opcode = RD->Opcode; 969 Ty = VecTy; 970 return RD->Kind; 971 } 972 973 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 974 switch (I->getOpcode()) { 975 case Instruction::GetElementPtr: 976 return getUserCost(I); 977 978 case Instruction::Ret: 979 case Instruction::PHI: 980 case Instruction::Br: { 981 return getCFInstrCost(I->getOpcode()); 982 } 983 case Instruction::Add: 984 case Instruction::FAdd: 985 case Instruction::Sub: 986 case Instruction::FSub: 987 case Instruction::Mul: 988 case Instruction::FMul: 989 case Instruction::UDiv: 990 case Instruction::SDiv: 991 case Instruction::FDiv: 992 case Instruction::URem: 993 case Instruction::SRem: 994 case Instruction::FRem: 995 case Instruction::Shl: 996 case Instruction::LShr: 997 case Instruction::AShr: 998 case Instruction::And: 999 case Instruction::Or: 1000 case Instruction::Xor: { 1001 TargetTransformInfo::OperandValueKind Op1VK = 1002 getOperandInfo(I->getOperand(0)); 1003 TargetTransformInfo::OperandValueKind Op2VK = 1004 getOperandInfo(I->getOperand(1)); 1005 SmallVector<const Value*, 2> Operands(I->operand_values()); 1006 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1007 Op2VK, TargetTransformInfo::OP_None, 1008 TargetTransformInfo::OP_None, 1009 Operands); 1010 } 1011 case Instruction::Select: { 1012 const SelectInst *SI = cast<SelectInst>(I); 1013 Type *CondTy = SI->getCondition()->getType(); 1014 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1015 } 1016 case Instruction::ICmp: 1017 case Instruction::FCmp: { 1018 Type *ValTy = I->getOperand(0)->getType(); 1019 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1020 } 1021 case Instruction::Store: { 1022 const StoreInst *SI = cast<StoreInst>(I); 1023 Type *ValTy = SI->getValueOperand()->getType(); 1024 return getMemoryOpCost(I->getOpcode(), ValTy, 1025 SI->getAlignment(), 1026 SI->getPointerAddressSpace(), I); 1027 } 1028 case Instruction::Load: { 1029 const LoadInst *LI = cast<LoadInst>(I); 1030 return getMemoryOpCost(I->getOpcode(), I->getType(), 1031 LI->getAlignment(), 1032 LI->getPointerAddressSpace(), I); 1033 } 1034 case Instruction::ZExt: 1035 case Instruction::SExt: 1036 case Instruction::FPToUI: 1037 case Instruction::FPToSI: 1038 case Instruction::FPExt: 1039 case Instruction::PtrToInt: 1040 case Instruction::IntToPtr: 1041 case Instruction::SIToFP: 1042 case Instruction::UIToFP: 1043 case Instruction::Trunc: 1044 case Instruction::FPTrunc: 1045 case Instruction::BitCast: 1046 case Instruction::AddrSpaceCast: { 1047 Type *SrcTy = I->getOperand(0)->getType(); 1048 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1049 } 1050 case Instruction::ExtractElement: { 1051 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1052 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1053 unsigned Idx = -1; 1054 if (CI) 1055 Idx = CI->getZExtValue(); 1056 1057 // Try to match a reduction sequence (series of shufflevector and vector 1058 // adds followed by a extractelement). 1059 unsigned ReduxOpCode; 1060 Type *ReduxType; 1061 1062 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1063 case RK_Arithmetic: 1064 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1065 /*IsPairwiseForm=*/false); 1066 case RK_MinMax: 1067 return getMinMaxReductionCost( 1068 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1069 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1070 case RK_UnsignedMinMax: 1071 return getMinMaxReductionCost( 1072 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1073 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1074 case RK_None: 1075 break; 1076 } 1077 1078 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1079 case RK_Arithmetic: 1080 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1081 /*IsPairwiseForm=*/true); 1082 case RK_MinMax: 1083 return getMinMaxReductionCost( 1084 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1085 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1086 case RK_UnsignedMinMax: 1087 return getMinMaxReductionCost( 1088 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1089 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1090 case RK_None: 1091 break; 1092 } 1093 1094 return getVectorInstrCost(I->getOpcode(), 1095 EEI->getOperand(0)->getType(), Idx); 1096 } 1097 case Instruction::InsertElement: { 1098 const InsertElementInst * IE = cast<InsertElementInst>(I); 1099 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1100 unsigned Idx = -1; 1101 if (CI) 1102 Idx = CI->getZExtValue(); 1103 return getVectorInstrCost(I->getOpcode(), 1104 IE->getType(), Idx); 1105 } 1106 case Instruction::ShuffleVector: { 1107 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1108 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1109 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1110 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1111 1112 if (NumVecElems == Mask.size()) { 1113 if (isReverseVectorMask(Mask)) 1114 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1115 0, nullptr); 1116 if (isAlternateVectorMask(Mask)) 1117 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1118 VecTypOp0, 0, nullptr); 1119 1120 if (isZeroEltBroadcastVectorMask(Mask)) 1121 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1122 VecTypOp0, 0, nullptr); 1123 1124 if (isSingleSourceVectorMask(Mask)) 1125 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1126 VecTypOp0, 0, nullptr); 1127 1128 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1129 VecTypOp0, 0, nullptr); 1130 } 1131 1132 return -1; 1133 } 1134 case Instruction::Call: 1135 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1136 SmallVector<Value *, 4> Args(II->arg_operands()); 1137 1138 FastMathFlags FMF; 1139 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1140 FMF = FPMO->getFastMathFlags(); 1141 1142 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1143 Args, FMF); 1144 } 1145 return -1; 1146 default: 1147 // We don't have any information on this instruction. 1148 return -1; 1149 } 1150 } 1151 1152 TargetTransformInfo::Concept::~Concept() {} 1153 1154 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1155 1156 TargetIRAnalysis::TargetIRAnalysis( 1157 std::function<Result(const Function &)> TTICallback) 1158 : TTICallback(std::move(TTICallback)) {} 1159 1160 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1161 FunctionAnalysisManager &) { 1162 return TTICallback(F); 1163 } 1164 1165 AnalysisKey TargetIRAnalysis::Key; 1166 1167 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1168 return Result(F.getParent()->getDataLayout()); 1169 } 1170 1171 // Register the basic pass. 1172 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1173 "Target Transform Information", false, true) 1174 char TargetTransformInfoWrapperPass::ID = 0; 1175 1176 void TargetTransformInfoWrapperPass::anchor() {} 1177 1178 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1179 : ImmutablePass(ID) { 1180 initializeTargetTransformInfoWrapperPassPass( 1181 *PassRegistry::getPassRegistry()); 1182 } 1183 1184 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1185 TargetIRAnalysis TIRA) 1186 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1187 initializeTargetTransformInfoWrapperPassPass( 1188 *PassRegistry::getPassRegistry()); 1189 } 1190 1191 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1192 FunctionAnalysisManager DummyFAM; 1193 TTI = TIRA.run(F, DummyFAM); 1194 return *TTI; 1195 } 1196 1197 ImmutablePass * 1198 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1199 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1200 } 1201