1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "tti" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Operator.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 using namespace llvm; 21 22 // Setup the analysis group to manage the TargetTransformInfo passes. 23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 24 char TargetTransformInfo::ID = 0; 25 26 TargetTransformInfo::~TargetTransformInfo() { 27 } 28 29 void TargetTransformInfo::pushTTIStack(Pass *P) { 30 TopTTI = this; 31 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 32 33 // Walk up the chain and update the top TTI pointer. 34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 35 PTTI->TopTTI = this; 36 } 37 38 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 39 AU.addRequired<TargetTransformInfo>(); 40 } 41 42 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 43 Type *OpTy) const { 44 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 45 } 46 47 unsigned TargetTransformInfo::getGEPCost( 48 const Value *Ptr, ArrayRef<const Value *> Operands) const { 49 return PrevTTI->getGEPCost(Ptr, Operands); 50 } 51 52 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 53 int NumArgs) const { 54 return PrevTTI->getCallCost(FTy, NumArgs); 55 } 56 57 unsigned TargetTransformInfo::getCallCost(const Function *F, 58 int NumArgs) const { 59 return PrevTTI->getCallCost(F, NumArgs); 60 } 61 62 unsigned TargetTransformInfo::getCallCost( 63 const Function *F, ArrayRef<const Value *> Arguments) const { 64 return PrevTTI->getCallCost(F, Arguments); 65 } 66 67 unsigned TargetTransformInfo::getIntrinsicCost( 68 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 69 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 70 } 71 72 unsigned TargetTransformInfo::getIntrinsicCost( 73 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 74 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 75 } 76 77 unsigned TargetTransformInfo::getUserCost(const User *U) const { 78 return PrevTTI->getUserCost(U); 79 } 80 81 bool TargetTransformInfo::hasBranchDivergence() const { 82 return PrevTTI->hasBranchDivergence(); 83 } 84 85 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 86 return PrevTTI->isLoweredToCall(F); 87 } 88 89 void TargetTransformInfo::getUnrollingPreferences(Loop *L, 90 UnrollingPreferences &UP) const { 91 PrevTTI->getUnrollingPreferences(L, UP); 92 } 93 94 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 95 return PrevTTI->isLegalAddImmediate(Imm); 96 } 97 98 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 99 return PrevTTI->isLegalICmpImmediate(Imm); 100 } 101 102 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 103 int64_t BaseOffset, 104 bool HasBaseReg, 105 int64_t Scale) const { 106 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 107 Scale); 108 } 109 110 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 111 int64_t BaseOffset, 112 bool HasBaseReg, 113 int64_t Scale) const { 114 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 115 Scale); 116 } 117 118 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 119 return PrevTTI->isTruncateFree(Ty1, Ty2); 120 } 121 122 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 123 return PrevTTI->isTypeLegal(Ty); 124 } 125 126 unsigned TargetTransformInfo::getJumpBufAlignment() const { 127 return PrevTTI->getJumpBufAlignment(); 128 } 129 130 unsigned TargetTransformInfo::getJumpBufSize() const { 131 return PrevTTI->getJumpBufSize(); 132 } 133 134 bool TargetTransformInfo::shouldBuildLookupTables() const { 135 return PrevTTI->shouldBuildLookupTables(); 136 } 137 138 TargetTransformInfo::PopcntSupportKind 139 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 140 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 141 } 142 143 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 144 return PrevTTI->haveFastSqrt(Ty); 145 } 146 147 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 148 return PrevTTI->getIntImmCost(Imm, Ty); 149 } 150 151 unsigned TargetTransformInfo::getIntImmCost(unsigned Opcode, const APInt &Imm, 152 Type *Ty) const { 153 return PrevTTI->getIntImmCost(Opcode, Imm, Ty); 154 } 155 156 unsigned TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, const APInt &Imm, 157 Type *Ty) const { 158 return PrevTTI->getIntImmCost(IID, Imm, Ty); 159 } 160 161 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 162 return PrevTTI->getNumberOfRegisters(Vector); 163 } 164 165 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 166 return PrevTTI->getRegisterBitWidth(Vector); 167 } 168 169 unsigned TargetTransformInfo::getMaximumUnrollFactor() const { 170 return PrevTTI->getMaximumUnrollFactor(); 171 } 172 173 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, 174 Type *Ty, 175 OperandValueKind Op1Info, 176 OperandValueKind Op2Info) const { 177 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 178 } 179 180 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 181 int Index, Type *SubTp) const { 182 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 183 } 184 185 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 186 Type *Src) const { 187 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 188 } 189 190 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 191 return PrevTTI->getCFInstrCost(Opcode); 192 } 193 194 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 195 Type *CondTy) const { 196 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 197 } 198 199 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 200 unsigned Index) const { 201 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 202 } 203 204 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 205 unsigned Alignment, 206 unsigned AddressSpace) const { 207 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 208 ; 209 } 210 211 unsigned 212 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 213 Type *RetTy, 214 ArrayRef<Type *> Tys) const { 215 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 216 } 217 218 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 219 return PrevTTI->getNumberOfParts(Tp); 220 } 221 222 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp, 223 bool IsComplex) const { 224 return PrevTTI->getAddressComputationCost(Tp, IsComplex); 225 } 226 227 unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty, 228 bool IsPairwise) const { 229 return PrevTTI->getReductionCost(Opcode, Ty, IsPairwise); 230 } 231 232 namespace { 233 234 struct NoTTI final : ImmutablePass, TargetTransformInfo { 235 const DataLayout *DL; 236 237 NoTTI() : ImmutablePass(ID), DL(0) { 238 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 239 } 240 241 virtual void initializePass() override { 242 // Note that this subclass is special, and must *not* call initializeTTI as 243 // it does not chain. 244 TopTTI = this; 245 PrevTTI = 0; 246 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 247 DL = DLP ? &DLP->getDataLayout() : 0; 248 } 249 250 virtual void getAnalysisUsage(AnalysisUsage &AU) const override { 251 // Note that this subclass is special, and must *not* call 252 // TTI::getAnalysisUsage as it breaks the recursion. 253 } 254 255 /// Pass identification. 256 static char ID; 257 258 /// Provide necessary pointer adjustments for the two base classes. 259 virtual void *getAdjustedAnalysisPointer(const void *ID) override { 260 if (ID == &TargetTransformInfo::ID) 261 return (TargetTransformInfo*)this; 262 return this; 263 } 264 265 unsigned getOperationCost(unsigned Opcode, Type *Ty, 266 Type *OpTy) const override { 267 switch (Opcode) { 268 default: 269 // By default, just classify everything as 'basic'. 270 return TCC_Basic; 271 272 case Instruction::GetElementPtr: 273 llvm_unreachable("Use getGEPCost for GEP operations!"); 274 275 case Instruction::BitCast: 276 assert(OpTy && "Cast instructions must provide the operand type"); 277 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 278 // Identity and pointer-to-pointer casts are free. 279 return TCC_Free; 280 281 // Otherwise, the default basic cost is used. 282 return TCC_Basic; 283 284 case Instruction::IntToPtr: { 285 if (!DL) 286 return TCC_Basic; 287 288 // An inttoptr cast is free so long as the input is a legal integer type 289 // which doesn't contain values outside the range of a pointer. 290 unsigned OpSize = OpTy->getScalarSizeInBits(); 291 if (DL->isLegalInteger(OpSize) && 292 OpSize <= DL->getPointerTypeSizeInBits(Ty)) 293 return TCC_Free; 294 295 // Otherwise it's not a no-op. 296 return TCC_Basic; 297 } 298 case Instruction::PtrToInt: { 299 if (!DL) 300 return TCC_Basic; 301 302 // A ptrtoint cast is free so long as the result is large enough to store 303 // the pointer, and a legal integer type. 304 unsigned DestSize = Ty->getScalarSizeInBits(); 305 if (DL->isLegalInteger(DestSize) && 306 DestSize >= DL->getPointerTypeSizeInBits(OpTy)) 307 return TCC_Free; 308 309 // Otherwise it's not a no-op. 310 return TCC_Basic; 311 } 312 case Instruction::Trunc: 313 // trunc to a native type is free (assuming the target has compare and 314 // shift-right of the same width). 315 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 316 return TCC_Free; 317 318 return TCC_Basic; 319 } 320 } 321 322 unsigned getGEPCost(const Value *Ptr, 323 ArrayRef<const Value *> Operands) const override { 324 // In the basic model, we just assume that all-constant GEPs will be folded 325 // into their uses via addressing modes. 326 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 327 if (!isa<Constant>(Operands[Idx])) 328 return TCC_Basic; 329 330 return TCC_Free; 331 } 332 333 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const override 334 { 335 assert(FTy && "FunctionType must be provided to this routine."); 336 337 // The target-independent implementation just measures the size of the 338 // function by approximating that each argument will take on average one 339 // instruction to prepare. 340 341 if (NumArgs < 0) 342 // Set the argument number to the number of explicit arguments in the 343 // function. 344 NumArgs = FTy->getNumParams(); 345 346 return TCC_Basic * (NumArgs + 1); 347 } 348 349 unsigned getCallCost(const Function *F, int NumArgs = -1) const override 350 { 351 assert(F && "A concrete function must be provided to this routine."); 352 353 if (NumArgs < 0) 354 // Set the argument number to the number of explicit arguments in the 355 // function. 356 NumArgs = F->arg_size(); 357 358 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 359 FunctionType *FTy = F->getFunctionType(); 360 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 361 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 362 } 363 364 if (!TopTTI->isLoweredToCall(F)) 365 return TCC_Basic; // Give a basic cost if it will be lowered directly. 366 367 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 368 } 369 370 unsigned getCallCost(const Function *F, 371 ArrayRef<const Value *> Arguments) const override { 372 // Simply delegate to generic handling of the call. 373 // FIXME: We should use instsimplify or something else to catch calls which 374 // will constant fold with these arguments. 375 return TopTTI->getCallCost(F, Arguments.size()); 376 } 377 378 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 379 ArrayRef<Type *> ParamTys) const override { 380 switch (IID) { 381 default: 382 // Intrinsics rarely (if ever) have normal argument setup constraints. 383 // Model them as having a basic instruction cost. 384 // FIXME: This is wrong for libc intrinsics. 385 return TCC_Basic; 386 387 case Intrinsic::dbg_declare: 388 case Intrinsic::dbg_value: 389 case Intrinsic::invariant_start: 390 case Intrinsic::invariant_end: 391 case Intrinsic::lifetime_start: 392 case Intrinsic::lifetime_end: 393 case Intrinsic::objectsize: 394 case Intrinsic::ptr_annotation: 395 case Intrinsic::var_annotation: 396 // These intrinsics don't actually represent code after lowering. 397 return TCC_Free; 398 } 399 } 400 401 unsigned 402 getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 403 ArrayRef<const Value *> Arguments) const override { 404 // Delegate to the generic intrinsic handling code. This mostly provides an 405 // opportunity for targets to (for example) special case the cost of 406 // certain intrinsics based on constants used as arguments. 407 SmallVector<Type *, 8> ParamTys; 408 ParamTys.reserve(Arguments.size()); 409 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 410 ParamTys.push_back(Arguments[Idx]->getType()); 411 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 412 } 413 414 unsigned getUserCost(const User *U) const override { 415 if (isa<PHINode>(U)) 416 return TCC_Free; // Model all PHI nodes as free. 417 418 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) 419 // In the basic model we just assume that all-constant GEPs will be 420 // folded into their uses via addressing modes. 421 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic; 422 423 if (ImmutableCallSite CS = U) { 424 const Function *F = CS.getCalledFunction(); 425 if (!F) { 426 // Just use the called value type. 427 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 428 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 429 } 430 431 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end()); 432 return TopTTI->getCallCost(F, Arguments); 433 } 434 435 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 436 // Result of a cmp instruction is often extended (to be used by other 437 // cmp instructions, logical or return instructions). These are usually 438 // nop on most sane targets. 439 if (isa<CmpInst>(CI->getOperand(0))) 440 return TCC_Free; 441 } 442 443 // Otherwise delegate to the fully generic implementations. 444 return getOperationCost(Operator::getOpcode(U), U->getType(), 445 U->getNumOperands() == 1 ? 446 U->getOperand(0)->getType() : 0); 447 } 448 449 bool hasBranchDivergence() const override { return false; } 450 451 bool isLoweredToCall(const Function *F) const override { 452 // FIXME: These should almost certainly not be handled here, and instead 453 // handled with the help of TLI or the target itself. This was largely 454 // ported from existing analysis heuristics here so that such refactorings 455 // can take place in the future. 456 457 if (F->isIntrinsic()) 458 return false; 459 460 if (F->hasLocalLinkage() || !F->hasName()) 461 return true; 462 463 StringRef Name = F->getName(); 464 465 // These will all likely lower to a single selection DAG node. 466 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 467 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 468 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 469 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 470 return false; 471 472 // These are all likely to be optimized into something smaller. 473 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 474 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 475 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 476 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 477 return false; 478 479 return true; 480 } 481 482 void getUnrollingPreferences(Loop *, UnrollingPreferences &) const override { 483 } 484 485 bool isLegalAddImmediate(int64_t Imm) const override { 486 return false; 487 } 488 489 bool isLegalICmpImmediate(int64_t Imm) const override { 490 return false; 491 } 492 493 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 494 bool HasBaseReg, int64_t Scale) const override 495 { 496 // Guess that reg+reg addressing is allowed. This heuristic is taken from 497 // the implementation of LSR. 498 return !BaseGV && BaseOffset == 0 && Scale <= 1; 499 } 500 501 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 502 bool HasBaseReg, int64_t Scale) const override { 503 // Guess that all legal addressing mode are free. 504 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 505 return 0; 506 return -1; 507 } 508 509 bool isTruncateFree(Type *Ty1, Type *Ty2) const override { 510 return false; 511 } 512 513 bool isTypeLegal(Type *Ty) const override { 514 return false; 515 } 516 517 unsigned getJumpBufAlignment() const override { 518 return 0; 519 } 520 521 unsigned getJumpBufSize() const override { 522 return 0; 523 } 524 525 bool shouldBuildLookupTables() const override { 526 return true; 527 } 528 529 PopcntSupportKind 530 getPopcntSupport(unsigned IntTyWidthInBit) const override { 531 return PSK_Software; 532 } 533 534 bool haveFastSqrt(Type *Ty) const override { 535 return false; 536 } 537 538 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override { 539 return TCC_Basic; 540 } 541 542 unsigned getIntImmCost(unsigned Opcode, const APInt &Imm, 543 Type *Ty) const override { 544 return TCC_Free; 545 } 546 547 unsigned getIntImmCost(Intrinsic::ID IID, const APInt &Imm, 548 Type *Ty) const override { 549 return TCC_Free; 550 } 551 552 unsigned getNumberOfRegisters(bool Vector) const override { 553 return 8; 554 } 555 556 unsigned getRegisterBitWidth(bool Vector) const override { 557 return 32; 558 } 559 560 unsigned getMaximumUnrollFactor() const override { 561 return 1; 562 } 563 564 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 565 OperandValueKind) const override { 566 return 1; 567 } 568 569 unsigned getShuffleCost(ShuffleKind Kind, Type *Ty, 570 int Index = 0, Type *SubTp = 0) const override { 571 return 1; 572 } 573 574 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 575 Type *Src) const override { 576 return 1; 577 } 578 579 unsigned getCFInstrCost(unsigned Opcode) const override { 580 return 1; 581 } 582 583 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 584 Type *CondTy = 0) const override { 585 return 1; 586 } 587 588 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 589 unsigned Index = -1) const override { 590 return 1; 591 } 592 593 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 594 unsigned AddressSpace) const override { 595 return 1; 596 } 597 598 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 599 ArrayRef<Type*> Tys) const override { 600 return 1; 601 } 602 603 unsigned getNumberOfParts(Type *Tp) const override { 604 return 0; 605 } 606 607 unsigned getAddressComputationCost(Type *Tp, bool) const override { 608 return 0; 609 } 610 611 unsigned getReductionCost(unsigned, Type *, bool) const override { 612 return 1; 613 } 614 }; 615 616 } // end anonymous namespace 617 618 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 619 "No target information", true, true, true) 620 char NoTTI::ID = 0; 621 622 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 623 return new NoTTI(); 624 } 625