1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Instruction.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Operator.h" 17 #include "llvm/Support/ErrorHandling.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "tti" 22 23 // Setup the analysis group to manage the TargetTransformInfo passes. 24 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 25 char TargetTransformInfo::ID = 0; 26 27 TargetTransformInfo::~TargetTransformInfo() { 28 } 29 30 void TargetTransformInfo::pushTTIStack(Pass *P) { 31 TopTTI = this; 32 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 33 34 // Walk up the chain and update the top TTI pointer. 35 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 36 PTTI->TopTTI = this; 37 } 38 39 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 40 AU.addRequired<TargetTransformInfo>(); 41 } 42 43 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 44 Type *OpTy) const { 45 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 46 } 47 48 unsigned TargetTransformInfo::getGEPCost( 49 const Value *Ptr, ArrayRef<const Value *> Operands) const { 50 return PrevTTI->getGEPCost(Ptr, Operands); 51 } 52 53 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 54 int NumArgs) const { 55 return PrevTTI->getCallCost(FTy, NumArgs); 56 } 57 58 unsigned TargetTransformInfo::getCallCost(const Function *F, 59 int NumArgs) const { 60 return PrevTTI->getCallCost(F, NumArgs); 61 } 62 63 unsigned TargetTransformInfo::getCallCost( 64 const Function *F, ArrayRef<const Value *> Arguments) const { 65 return PrevTTI->getCallCost(F, Arguments); 66 } 67 68 unsigned TargetTransformInfo::getIntrinsicCost( 69 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 70 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 71 } 72 73 unsigned TargetTransformInfo::getIntrinsicCost( 74 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 75 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 76 } 77 78 unsigned TargetTransformInfo::getUserCost(const User *U) const { 79 return PrevTTI->getUserCost(U); 80 } 81 82 bool TargetTransformInfo::hasBranchDivergence() const { 83 return PrevTTI->hasBranchDivergence(); 84 } 85 86 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 87 return PrevTTI->isLoweredToCall(F); 88 } 89 90 void 91 TargetTransformInfo::getUnrollingPreferences(const Function *F, Loop *L, 92 UnrollingPreferences &UP) const { 93 PrevTTI->getUnrollingPreferences(F, L, UP); 94 } 95 96 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 97 return PrevTTI->isLegalAddImmediate(Imm); 98 } 99 100 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 101 return PrevTTI->isLegalICmpImmediate(Imm); 102 } 103 104 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 105 int Consecutive) const { 106 return false; 107 } 108 109 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 110 int Consecutive) const { 111 return false; 112 } 113 114 115 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 116 int64_t BaseOffset, 117 bool HasBaseReg, 118 int64_t Scale) const { 119 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 120 Scale); 121 } 122 123 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 124 int64_t BaseOffset, 125 bool HasBaseReg, 126 int64_t Scale) const { 127 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 128 Scale); 129 } 130 131 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 132 return PrevTTI->isTruncateFree(Ty1, Ty2); 133 } 134 135 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 136 return PrevTTI->isTypeLegal(Ty); 137 } 138 139 unsigned TargetTransformInfo::getJumpBufAlignment() const { 140 return PrevTTI->getJumpBufAlignment(); 141 } 142 143 unsigned TargetTransformInfo::getJumpBufSize() const { 144 return PrevTTI->getJumpBufSize(); 145 } 146 147 bool TargetTransformInfo::shouldBuildLookupTables() const { 148 return PrevTTI->shouldBuildLookupTables(); 149 } 150 151 TargetTransformInfo::PopcntSupportKind 152 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 153 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 154 } 155 156 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 157 return PrevTTI->haveFastSqrt(Ty); 158 } 159 160 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 161 return PrevTTI->getIntImmCost(Imm, Ty); 162 } 163 164 unsigned TargetTransformInfo::getIntImmCost(unsigned Opc, unsigned Idx, 165 const APInt &Imm, Type *Ty) const { 166 return PrevTTI->getIntImmCost(Opc, Idx, Imm, Ty); 167 } 168 169 unsigned TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 170 const APInt &Imm, Type *Ty) const { 171 return PrevTTI->getIntImmCost(IID, Idx, Imm, Ty); 172 } 173 174 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 175 return PrevTTI->getNumberOfRegisters(Vector); 176 } 177 178 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 179 return PrevTTI->getRegisterBitWidth(Vector); 180 } 181 182 unsigned TargetTransformInfo::getMaxInterleaveFactor() const { 183 return PrevTTI->getMaxInterleaveFactor(); 184 } 185 186 unsigned TargetTransformInfo::getArithmeticInstrCost( 187 unsigned Opcode, Type *Ty, OperandValueKind Op1Info, 188 OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo, 189 OperandValueProperties Opd2PropInfo) const { 190 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 191 Opd1PropInfo, Opd2PropInfo); 192 } 193 194 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 195 int Index, Type *SubTp) const { 196 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 197 } 198 199 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 200 Type *Src) const { 201 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 202 } 203 204 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 205 return PrevTTI->getCFInstrCost(Opcode); 206 } 207 208 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 209 Type *CondTy) const { 210 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 211 } 212 213 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 214 unsigned Index) const { 215 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 216 } 217 218 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 219 unsigned Alignment, 220 unsigned AddressSpace) const { 221 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 222 } 223 224 unsigned 225 TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 226 unsigned Alignment, 227 unsigned AddressSpace) const { 228 return PrevTTI->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 229 } 230 231 unsigned 232 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 233 Type *RetTy, 234 ArrayRef<Type *> Tys) const { 235 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 236 } 237 238 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 239 return PrevTTI->getNumberOfParts(Tp); 240 } 241 242 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp, 243 bool IsComplex) const { 244 return PrevTTI->getAddressComputationCost(Tp, IsComplex); 245 } 246 247 unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty, 248 bool IsPairwise) const { 249 return PrevTTI->getReductionCost(Opcode, Ty, IsPairwise); 250 } 251 252 unsigned TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) 253 const { 254 return PrevTTI->getCostOfKeepingLiveOverCall(Tys); 255 } 256 257 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 258 IntrinsicInst *Inst, Type *ExpectedType) const { 259 return PrevTTI->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 260 } 261 262 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 263 MemIntrinsicInfo &Info) const { 264 return PrevTTI->getTgtMemIntrinsic(Inst, Info); 265 } 266 267 namespace { 268 269 struct NoTTI final : ImmutablePass, TargetTransformInfo { 270 const DataLayout *DL; 271 272 NoTTI() : ImmutablePass(ID), DL(nullptr) { 273 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 274 } 275 276 void initializePass() override { 277 // Note that this subclass is special, and must *not* call initializeTTI as 278 // it does not chain. 279 TopTTI = this; 280 PrevTTI = nullptr; 281 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 282 DL = DLP ? &DLP->getDataLayout() : nullptr; 283 } 284 285 void getAnalysisUsage(AnalysisUsage &AU) const override { 286 // Note that this subclass is special, and must *not* call 287 // TTI::getAnalysisUsage as it breaks the recursion. 288 } 289 290 /// Pass identification. 291 static char ID; 292 293 /// Provide necessary pointer adjustments for the two base classes. 294 void *getAdjustedAnalysisPointer(const void *ID) override { 295 if (ID == &TargetTransformInfo::ID) 296 return (TargetTransformInfo*)this; 297 return this; 298 } 299 300 unsigned getOperationCost(unsigned Opcode, Type *Ty, 301 Type *OpTy) const override { 302 switch (Opcode) { 303 default: 304 // By default, just classify everything as 'basic'. 305 return TCC_Basic; 306 307 case Instruction::GetElementPtr: 308 llvm_unreachable("Use getGEPCost for GEP operations!"); 309 310 case Instruction::BitCast: 311 assert(OpTy && "Cast instructions must provide the operand type"); 312 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 313 // Identity and pointer-to-pointer casts are free. 314 return TCC_Free; 315 316 // Otherwise, the default basic cost is used. 317 return TCC_Basic; 318 319 case Instruction::IntToPtr: { 320 if (!DL) 321 return TCC_Basic; 322 323 // An inttoptr cast is free so long as the input is a legal integer type 324 // which doesn't contain values outside the range of a pointer. 325 unsigned OpSize = OpTy->getScalarSizeInBits(); 326 if (DL->isLegalInteger(OpSize) && 327 OpSize <= DL->getPointerTypeSizeInBits(Ty)) 328 return TCC_Free; 329 330 // Otherwise it's not a no-op. 331 return TCC_Basic; 332 } 333 case Instruction::PtrToInt: { 334 if (!DL) 335 return TCC_Basic; 336 337 // A ptrtoint cast is free so long as the result is large enough to store 338 // the pointer, and a legal integer type. 339 unsigned DestSize = Ty->getScalarSizeInBits(); 340 if (DL->isLegalInteger(DestSize) && 341 DestSize >= DL->getPointerTypeSizeInBits(OpTy)) 342 return TCC_Free; 343 344 // Otherwise it's not a no-op. 345 return TCC_Basic; 346 } 347 case Instruction::Trunc: 348 // trunc to a native type is free (assuming the target has compare and 349 // shift-right of the same width). 350 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 351 return TCC_Free; 352 353 return TCC_Basic; 354 } 355 } 356 357 unsigned getGEPCost(const Value *Ptr, 358 ArrayRef<const Value *> Operands) const override { 359 // In the basic model, we just assume that all-constant GEPs will be folded 360 // into their uses via addressing modes. 361 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 362 if (!isa<Constant>(Operands[Idx])) 363 return TCC_Basic; 364 365 return TCC_Free; 366 } 367 368 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const override 369 { 370 assert(FTy && "FunctionType must be provided to this routine."); 371 372 // The target-independent implementation just measures the size of the 373 // function by approximating that each argument will take on average one 374 // instruction to prepare. 375 376 if (NumArgs < 0) 377 // Set the argument number to the number of explicit arguments in the 378 // function. 379 NumArgs = FTy->getNumParams(); 380 381 return TCC_Basic * (NumArgs + 1); 382 } 383 384 unsigned getCallCost(const Function *F, int NumArgs = -1) const override 385 { 386 assert(F && "A concrete function must be provided to this routine."); 387 388 if (NumArgs < 0) 389 // Set the argument number to the number of explicit arguments in the 390 // function. 391 NumArgs = F->arg_size(); 392 393 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 394 FunctionType *FTy = F->getFunctionType(); 395 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 396 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 397 } 398 399 if (!TopTTI->isLoweredToCall(F)) 400 return TCC_Basic; // Give a basic cost if it will be lowered directly. 401 402 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 403 } 404 405 unsigned getCallCost(const Function *F, 406 ArrayRef<const Value *> Arguments) const override { 407 // Simply delegate to generic handling of the call. 408 // FIXME: We should use instsimplify or something else to catch calls which 409 // will constant fold with these arguments. 410 return TopTTI->getCallCost(F, Arguments.size()); 411 } 412 413 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 414 ArrayRef<Type *> ParamTys) const override { 415 switch (IID) { 416 default: 417 // Intrinsics rarely (if ever) have normal argument setup constraints. 418 // Model them as having a basic instruction cost. 419 // FIXME: This is wrong for libc intrinsics. 420 return TCC_Basic; 421 422 case Intrinsic::annotation: 423 case Intrinsic::assume: 424 case Intrinsic::dbg_declare: 425 case Intrinsic::dbg_value: 426 case Intrinsic::invariant_start: 427 case Intrinsic::invariant_end: 428 case Intrinsic::lifetime_start: 429 case Intrinsic::lifetime_end: 430 case Intrinsic::objectsize: 431 case Intrinsic::ptr_annotation: 432 case Intrinsic::var_annotation: 433 case Intrinsic::experimental_gc_result_int: 434 case Intrinsic::experimental_gc_result_float: 435 case Intrinsic::experimental_gc_result_ptr: 436 case Intrinsic::experimental_gc_result: 437 case Intrinsic::experimental_gc_relocate: 438 // These intrinsics don't actually represent code after lowering. 439 return TCC_Free; 440 } 441 } 442 443 unsigned 444 getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 445 ArrayRef<const Value *> Arguments) const override { 446 // Delegate to the generic intrinsic handling code. This mostly provides an 447 // opportunity for targets to (for example) special case the cost of 448 // certain intrinsics based on constants used as arguments. 449 SmallVector<Type *, 8> ParamTys; 450 ParamTys.reserve(Arguments.size()); 451 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 452 ParamTys.push_back(Arguments[Idx]->getType()); 453 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 454 } 455 456 unsigned getUserCost(const User *U) const override { 457 if (isa<PHINode>(U)) 458 return TCC_Free; // Model all PHI nodes as free. 459 460 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 461 SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end()); 462 return TopTTI->getGEPCost(GEP->getPointerOperand(), Indices); 463 } 464 465 if (ImmutableCallSite CS = U) { 466 const Function *F = CS.getCalledFunction(); 467 if (!F) { 468 // Just use the called value type. 469 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 470 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 471 } 472 473 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end()); 474 return TopTTI->getCallCost(F, Arguments); 475 } 476 477 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 478 // Result of a cmp instruction is often extended (to be used by other 479 // cmp instructions, logical or return instructions). These are usually 480 // nop on most sane targets. 481 if (isa<CmpInst>(CI->getOperand(0))) 482 return TCC_Free; 483 } 484 485 // Otherwise delegate to the fully generic implementations. 486 return getOperationCost(Operator::getOpcode(U), U->getType(), 487 U->getNumOperands() == 1 ? 488 U->getOperand(0)->getType() : nullptr); 489 } 490 491 bool hasBranchDivergence() const override { return false; } 492 493 bool isLoweredToCall(const Function *F) const override { 494 // FIXME: These should almost certainly not be handled here, and instead 495 // handled with the help of TLI or the target itself. This was largely 496 // ported from existing analysis heuristics here so that such refactorings 497 // can take place in the future. 498 499 if (F->isIntrinsic()) 500 return false; 501 502 if (F->hasLocalLinkage() || !F->hasName()) 503 return true; 504 505 StringRef Name = F->getName(); 506 507 // These will all likely lower to a single selection DAG node. 508 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 509 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 510 Name == "fmin" || Name == "fminf" || Name == "fminl" || 511 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || 512 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 513 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 514 return false; 515 516 // These are all likely to be optimized into something smaller. 517 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 518 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 519 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 520 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 521 return false; 522 523 return true; 524 } 525 526 void getUnrollingPreferences(const Function *, Loop *, 527 UnrollingPreferences &) const override {} 528 529 bool isLegalAddImmediate(int64_t Imm) const override { 530 return false; 531 } 532 533 bool isLegalICmpImmediate(int64_t Imm) const override { 534 return false; 535 } 536 537 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 538 bool HasBaseReg, int64_t Scale) const override 539 { 540 // Guess that reg+reg addressing is allowed. This heuristic is taken from 541 // the implementation of LSR. 542 return !BaseGV && BaseOffset == 0 && Scale <= 1; 543 } 544 545 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 546 bool HasBaseReg, int64_t Scale) const override { 547 // Guess that all legal addressing mode are free. 548 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 549 return 0; 550 return -1; 551 } 552 553 bool isTruncateFree(Type *Ty1, Type *Ty2) const override { 554 return false; 555 } 556 557 bool isTypeLegal(Type *Ty) const override { 558 return false; 559 } 560 561 unsigned getJumpBufAlignment() const override { 562 return 0; 563 } 564 565 unsigned getJumpBufSize() const override { 566 return 0; 567 } 568 569 bool shouldBuildLookupTables() const override { 570 return true; 571 } 572 573 PopcntSupportKind 574 getPopcntSupport(unsigned IntTyWidthInBit) const override { 575 return PSK_Software; 576 } 577 578 bool haveFastSqrt(Type *Ty) const override { 579 return false; 580 } 581 582 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override { 583 return TCC_Basic; 584 } 585 586 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 587 Type *Ty) const override { 588 return TCC_Free; 589 } 590 591 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 592 Type *Ty) const override { 593 return TCC_Free; 594 } 595 596 unsigned getNumberOfRegisters(bool Vector) const override { 597 return 8; 598 } 599 600 unsigned getRegisterBitWidth(bool Vector) const override { 601 return 32; 602 } 603 604 unsigned getMaxInterleaveFactor() const override { 605 return 1; 606 } 607 608 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 609 OperandValueKind, OperandValueProperties, 610 OperandValueProperties) const override { 611 return 1; 612 } 613 614 unsigned getShuffleCost(ShuffleKind Kind, Type *Ty, 615 int Index = 0, Type *SubTp = nullptr) const override { 616 return 1; 617 } 618 619 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 620 Type *Src) const override { 621 return 1; 622 } 623 624 unsigned getCFInstrCost(unsigned Opcode) const override { 625 return 1; 626 } 627 628 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 629 Type *CondTy = nullptr) const override { 630 return 1; 631 } 632 633 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 634 unsigned Index = -1) const override { 635 return 1; 636 } 637 638 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 639 unsigned AddressSpace) const override { 640 return 1; 641 } 642 643 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 644 unsigned AddressSpace) const override { 645 return 1; 646 } 647 648 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 649 ArrayRef<Type*> Tys) const override { 650 return 1; 651 } 652 653 unsigned getNumberOfParts(Type *Tp) const override { 654 return 0; 655 } 656 657 unsigned getAddressComputationCost(Type *Tp, bool) const override { 658 return 0; 659 } 660 661 unsigned getReductionCost(unsigned, Type *, bool) const override { 662 return 1; 663 } 664 665 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override { 666 return 0; 667 } 668 669 bool getTgtMemIntrinsic(IntrinsicInst *Inst, 670 MemIntrinsicInfo &Info) const override { 671 return false; 672 } 673 674 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 675 Type *ExpectedType) const override { 676 return nullptr; 677 } 678 }; 679 680 } // end anonymous namespace 681 682 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 683 "No target information", true, true, true) 684 char NoTTI::ID = 0; 685 686 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 687 return new NoTTI(); 688 } 689