1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> UseWideMemcpyLoopLowering( 30 "use-wide-memcpy-loop-lowering", cl::init(false), 31 cl::desc("Enables the new wide memcpy loop lowering in Transforms/Utils."), 32 cl::Hidden); 33 34 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 35 cl::Hidden, 36 cl::desc("Recognize reduction patterns.")); 37 38 namespace { 39 /// \brief No-op implementation of the TTI interface using the utility base 40 /// classes. 41 /// 42 /// This is used when no target specific information is available. 43 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 44 explicit NoTTIImpl(const DataLayout &DL) 45 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 46 }; 47 } 48 49 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 50 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 51 52 TargetTransformInfo::~TargetTransformInfo() {} 53 54 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 55 : TTIImpl(std::move(Arg.TTIImpl)) {} 56 57 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 58 TTIImpl = std::move(RHS.TTIImpl); 59 return *this; 60 } 61 62 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 63 Type *OpTy) const { 64 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 65 assert(Cost >= 0 && "TTI should not produce negative costs!"); 66 return Cost; 67 } 68 69 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 70 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 71 assert(Cost >= 0 && "TTI should not produce negative costs!"); 72 return Cost; 73 } 74 75 int TargetTransformInfo::getCallCost(const Function *F, 76 ArrayRef<const Value *> Arguments) const { 77 int Cost = TTIImpl->getCallCost(F, Arguments); 78 assert(Cost >= 0 && "TTI should not produce negative costs!"); 79 return Cost; 80 } 81 82 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 83 return TTIImpl->getInliningThresholdMultiplier(); 84 } 85 86 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 87 ArrayRef<const Value *> Operands) const { 88 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 89 } 90 91 int TargetTransformInfo::getExtCost(const Instruction *I, 92 const Value *Src) const { 93 return TTIImpl->getExtCost(I, Src); 94 } 95 96 int TargetTransformInfo::getIntrinsicCost( 97 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 98 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 99 assert(Cost >= 0 && "TTI should not produce negative costs!"); 100 return Cost; 101 } 102 103 unsigned 104 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 105 unsigned &JTSize) const { 106 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 107 } 108 109 int TargetTransformInfo::getUserCost(const User *U, 110 ArrayRef<const Value *> Operands) const { 111 int Cost = TTIImpl->getUserCost(U, Operands); 112 assert(Cost >= 0 && "TTI should not produce negative costs!"); 113 return Cost; 114 } 115 116 bool TargetTransformInfo::hasBranchDivergence() const { 117 return TTIImpl->hasBranchDivergence(); 118 } 119 120 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 121 return TTIImpl->isSourceOfDivergence(V); 122 } 123 124 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 125 return TTIImpl->isAlwaysUniform(V); 126 } 127 128 unsigned TargetTransformInfo::getFlatAddressSpace() const { 129 return TTIImpl->getFlatAddressSpace(); 130 } 131 132 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 133 return TTIImpl->isLoweredToCall(F); 134 } 135 136 void TargetTransformInfo::getUnrollingPreferences( 137 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 138 return TTIImpl->getUnrollingPreferences(L, SE, UP); 139 } 140 141 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 142 return TTIImpl->isLegalAddImmediate(Imm); 143 } 144 145 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 146 return TTIImpl->isLegalICmpImmediate(Imm); 147 } 148 149 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 150 int64_t BaseOffset, 151 bool HasBaseReg, 152 int64_t Scale, 153 unsigned AddrSpace, 154 Instruction *I) const { 155 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 156 Scale, AddrSpace, I); 157 } 158 159 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 160 return TTIImpl->isLSRCostLess(C1, C2); 161 } 162 163 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 164 return TTIImpl->isLegalMaskedStore(DataType); 165 } 166 167 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 168 return TTIImpl->isLegalMaskedLoad(DataType); 169 } 170 171 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 172 return TTIImpl->isLegalMaskedGather(DataType); 173 } 174 175 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 176 return TTIImpl->isLegalMaskedScatter(DataType); 177 } 178 179 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 180 return TTIImpl->hasDivRemOp(DataType, IsSigned); 181 } 182 183 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 184 unsigned AddrSpace) const { 185 return TTIImpl->hasVolatileVariant(I, AddrSpace); 186 } 187 188 bool TargetTransformInfo::prefersVectorizedAddressing() const { 189 return TTIImpl->prefersVectorizedAddressing(); 190 } 191 192 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 193 int64_t BaseOffset, 194 bool HasBaseReg, 195 int64_t Scale, 196 unsigned AddrSpace) const { 197 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 198 Scale, AddrSpace); 199 assert(Cost >= 0 && "TTI should not produce negative costs!"); 200 return Cost; 201 } 202 203 bool TargetTransformInfo::LSRWithInstrQueries() const { 204 return TTIImpl->LSRWithInstrQueries(); 205 } 206 207 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 208 return TTIImpl->isTruncateFree(Ty1, Ty2); 209 } 210 211 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 212 return TTIImpl->isProfitableToHoist(I); 213 } 214 215 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 216 return TTIImpl->isTypeLegal(Ty); 217 } 218 219 unsigned TargetTransformInfo::getJumpBufAlignment() const { 220 return TTIImpl->getJumpBufAlignment(); 221 } 222 223 unsigned TargetTransformInfo::getJumpBufSize() const { 224 return TTIImpl->getJumpBufSize(); 225 } 226 227 bool TargetTransformInfo::shouldBuildLookupTables() const { 228 return TTIImpl->shouldBuildLookupTables(); 229 } 230 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 231 return TTIImpl->shouldBuildLookupTablesForConstant(C); 232 } 233 234 unsigned TargetTransformInfo:: 235 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 236 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 237 } 238 239 unsigned TargetTransformInfo:: 240 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 241 unsigned VF) const { 242 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 243 } 244 245 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 246 return TTIImpl->supportsEfficientVectorElementLoadStore(); 247 } 248 249 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 250 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 251 } 252 253 const TargetTransformInfo::MemCmpExpansionOptions * 254 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 255 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 256 } 257 258 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 259 return TTIImpl->enableInterleavedAccessVectorization(); 260 } 261 262 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 263 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 264 } 265 266 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 267 unsigned BitWidth, 268 unsigned AddressSpace, 269 unsigned Alignment, 270 bool *Fast) const { 271 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 272 Alignment, Fast); 273 } 274 275 TargetTransformInfo::PopcntSupportKind 276 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 277 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 278 } 279 280 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 281 return TTIImpl->haveFastSqrt(Ty); 282 } 283 284 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 285 int Cost = TTIImpl->getFPOpCost(Ty); 286 assert(Cost >= 0 && "TTI should not produce negative costs!"); 287 return Cost; 288 } 289 290 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 291 const APInt &Imm, 292 Type *Ty) const { 293 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 294 assert(Cost >= 0 && "TTI should not produce negative costs!"); 295 return Cost; 296 } 297 298 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 299 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 300 assert(Cost >= 0 && "TTI should not produce negative costs!"); 301 return Cost; 302 } 303 304 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 305 const APInt &Imm, Type *Ty) const { 306 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 307 assert(Cost >= 0 && "TTI should not produce negative costs!"); 308 return Cost; 309 } 310 311 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 312 const APInt &Imm, Type *Ty) const { 313 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 314 assert(Cost >= 0 && "TTI should not produce negative costs!"); 315 return Cost; 316 } 317 318 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 319 return TTIImpl->getNumberOfRegisters(Vector); 320 } 321 322 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 323 return TTIImpl->getRegisterBitWidth(Vector); 324 } 325 326 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 327 return TTIImpl->getMinVectorRegisterBitWidth(); 328 } 329 330 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 331 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 332 return TTIImpl->shouldConsiderAddressTypePromotion( 333 I, AllowPromotionWithoutCommonHeader); 334 } 335 336 unsigned TargetTransformInfo::getCacheLineSize() const { 337 return TTIImpl->getCacheLineSize(); 338 } 339 340 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 341 const { 342 return TTIImpl->getCacheSize(Level); 343 } 344 345 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 346 CacheLevel Level) const { 347 return TTIImpl->getCacheAssociativity(Level); 348 } 349 350 unsigned TargetTransformInfo::getPrefetchDistance() const { 351 return TTIImpl->getPrefetchDistance(); 352 } 353 354 unsigned TargetTransformInfo::getMinPrefetchStride() const { 355 return TTIImpl->getMinPrefetchStride(); 356 } 357 358 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 359 return TTIImpl->getMaxPrefetchIterationsAhead(); 360 } 361 362 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 363 return TTIImpl->getMaxInterleaveFactor(VF); 364 } 365 366 int TargetTransformInfo::getArithmeticInstrCost( 367 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 368 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 369 OperandValueProperties Opd2PropInfo, 370 ArrayRef<const Value *> Args) const { 371 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 372 Opd1PropInfo, Opd2PropInfo, Args); 373 assert(Cost >= 0 && "TTI should not produce negative costs!"); 374 return Cost; 375 } 376 377 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 378 Type *SubTp) const { 379 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 380 assert(Cost >= 0 && "TTI should not produce negative costs!"); 381 return Cost; 382 } 383 384 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 385 Type *Src, const Instruction *I) const { 386 assert ((I == nullptr || I->getOpcode() == Opcode) && 387 "Opcode should reflect passed instruction."); 388 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 389 assert(Cost >= 0 && "TTI should not produce negative costs!"); 390 return Cost; 391 } 392 393 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 394 VectorType *VecTy, 395 unsigned Index) const { 396 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 397 assert(Cost >= 0 && "TTI should not produce negative costs!"); 398 return Cost; 399 } 400 401 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 402 int Cost = TTIImpl->getCFInstrCost(Opcode); 403 assert(Cost >= 0 && "TTI should not produce negative costs!"); 404 return Cost; 405 } 406 407 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 408 Type *CondTy, const Instruction *I) const { 409 assert ((I == nullptr || I->getOpcode() == Opcode) && 410 "Opcode should reflect passed instruction."); 411 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 412 assert(Cost >= 0 && "TTI should not produce negative costs!"); 413 return Cost; 414 } 415 416 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 417 unsigned Index) const { 418 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 419 assert(Cost >= 0 && "TTI should not produce negative costs!"); 420 return Cost; 421 } 422 423 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 424 unsigned Alignment, 425 unsigned AddressSpace, 426 const Instruction *I) const { 427 assert ((I == nullptr || I->getOpcode() == Opcode) && 428 "Opcode should reflect passed instruction."); 429 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 430 assert(Cost >= 0 && "TTI should not produce negative costs!"); 431 return Cost; 432 } 433 434 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 435 unsigned Alignment, 436 unsigned AddressSpace) const { 437 int Cost = 438 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 439 assert(Cost >= 0 && "TTI should not produce negative costs!"); 440 return Cost; 441 } 442 443 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 444 Value *Ptr, bool VariableMask, 445 unsigned Alignment) const { 446 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 447 Alignment); 448 assert(Cost >= 0 && "TTI should not produce negative costs!"); 449 return Cost; 450 } 451 452 int TargetTransformInfo::getInterleavedMemoryOpCost( 453 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 454 unsigned Alignment, unsigned AddressSpace) const { 455 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 456 Alignment, AddressSpace); 457 assert(Cost >= 0 && "TTI should not produce negative costs!"); 458 return Cost; 459 } 460 461 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 462 ArrayRef<Type *> Tys, FastMathFlags FMF, 463 unsigned ScalarizationCostPassed) const { 464 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 465 ScalarizationCostPassed); 466 assert(Cost >= 0 && "TTI should not produce negative costs!"); 467 return Cost; 468 } 469 470 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 471 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 472 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 473 assert(Cost >= 0 && "TTI should not produce negative costs!"); 474 return Cost; 475 } 476 477 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 478 ArrayRef<Type *> Tys) const { 479 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 480 assert(Cost >= 0 && "TTI should not produce negative costs!"); 481 return Cost; 482 } 483 484 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 485 return TTIImpl->getNumberOfParts(Tp); 486 } 487 488 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 489 ScalarEvolution *SE, 490 const SCEV *Ptr) const { 491 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 492 assert(Cost >= 0 && "TTI should not produce negative costs!"); 493 return Cost; 494 } 495 496 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 497 bool IsPairwiseForm) const { 498 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 499 assert(Cost >= 0 && "TTI should not produce negative costs!"); 500 return Cost; 501 } 502 503 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 504 bool IsPairwiseForm, 505 bool IsUnsigned) const { 506 int Cost = 507 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 508 assert(Cost >= 0 && "TTI should not produce negative costs!"); 509 return Cost; 510 } 511 512 unsigned 513 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 514 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 515 } 516 517 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 518 MemIntrinsicInfo &Info) const { 519 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 520 } 521 522 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 523 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 524 } 525 526 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 527 IntrinsicInst *Inst, Type *ExpectedType) const { 528 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 529 } 530 531 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 532 Value *Length, 533 unsigned SrcAlign, 534 unsigned DestAlign) const { 535 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 536 DestAlign); 537 } 538 539 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 540 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 541 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 542 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 543 SrcAlign, DestAlign); 544 } 545 546 bool TargetTransformInfo::useWideIRMemcpyLoopLowering() const { 547 return UseWideMemcpyLoopLowering; 548 } 549 550 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 551 const Function *Callee) const { 552 return TTIImpl->areInlineCompatible(Caller, Callee); 553 } 554 555 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 556 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 557 } 558 559 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 560 return TTIImpl->isLegalToVectorizeLoad(LI); 561 } 562 563 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 564 return TTIImpl->isLegalToVectorizeStore(SI); 565 } 566 567 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 568 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 569 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 570 AddrSpace); 571 } 572 573 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 574 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 575 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 576 AddrSpace); 577 } 578 579 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 580 unsigned LoadSize, 581 unsigned ChainSizeInBytes, 582 VectorType *VecTy) const { 583 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 584 } 585 586 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 587 unsigned StoreSize, 588 unsigned ChainSizeInBytes, 589 VectorType *VecTy) const { 590 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 591 } 592 593 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 594 Type *Ty, ReductionFlags Flags) const { 595 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 596 } 597 598 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 599 return TTIImpl->shouldExpandReduction(II); 600 } 601 602 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 603 return TTIImpl->getInstructionLatency(I); 604 } 605 606 static bool isReverseVectorMask(ArrayRef<int> Mask) { 607 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 608 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 609 return false; 610 return true; 611 } 612 613 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 614 bool Vec0 = false; 615 bool Vec1 = false; 616 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 617 if (Mask[i] >= 0) { 618 if ((unsigned)Mask[i] >= NumVecElts) 619 Vec1 = true; 620 else 621 Vec0 = true; 622 } 623 } 624 return !(Vec0 && Vec1); 625 } 626 627 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 628 for (unsigned i = 0; i < Mask.size(); ++i) 629 if (Mask[i] > 0) 630 return false; 631 return true; 632 } 633 634 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 635 bool isAlternate = true; 636 unsigned MaskSize = Mask.size(); 637 638 // Example: shufflevector A, B, <0,5,2,7> 639 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 640 if (Mask[i] < 0) 641 continue; 642 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 643 } 644 645 if (isAlternate) 646 return true; 647 648 isAlternate = true; 649 // Example: shufflevector A, B, <4,1,6,3> 650 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 651 if (Mask[i] < 0) 652 continue; 653 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 654 } 655 656 return isAlternate; 657 } 658 659 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 660 TargetTransformInfo::OperandValueKind OpInfo = 661 TargetTransformInfo::OK_AnyValue; 662 663 // Check for a splat of a constant or for a non uniform vector of constants. 664 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 665 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 666 if (cast<Constant>(V)->getSplatValue() != nullptr) 667 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 668 } 669 670 // Check for a splat of a uniform value. This is not loop aware, so return 671 // true only for the obviously uniform cases (argument, globalvalue) 672 const Value *Splat = getSplatValue(V); 673 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 674 OpInfo = TargetTransformInfo::OK_UniformValue; 675 676 return OpInfo; 677 } 678 679 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 680 unsigned Level) { 681 // We don't need a shuffle if we just want to have element 0 in position 0 of 682 // the vector. 683 if (!SI && Level == 0 && IsLeft) 684 return true; 685 else if (!SI) 686 return false; 687 688 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 689 690 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 691 // we look at the left or right side. 692 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 693 Mask[i] = val; 694 695 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 696 return Mask == ActualMask; 697 } 698 699 namespace { 700 /// Kind of the reduction data. 701 enum ReductionKind { 702 RK_None, /// Not a reduction. 703 RK_Arithmetic, /// Binary reduction data. 704 RK_MinMax, /// Min/max reduction data. 705 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 706 }; 707 /// Contains opcode + LHS/RHS parts of the reduction operations. 708 struct ReductionData { 709 ReductionData() = delete; 710 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 711 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 712 assert(Kind != RK_None && "expected binary or min/max reduction only."); 713 } 714 unsigned Opcode = 0; 715 Value *LHS = nullptr; 716 Value *RHS = nullptr; 717 ReductionKind Kind = RK_None; 718 bool hasSameData(ReductionData &RD) const { 719 return Kind == RD.Kind && Opcode == RD.Opcode; 720 } 721 }; 722 } // namespace 723 724 static Optional<ReductionData> getReductionData(Instruction *I) { 725 Value *L, *R; 726 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 727 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 728 if (auto *SI = dyn_cast<SelectInst>(I)) { 729 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 730 m_SMax(m_Value(L), m_Value(R)).match(SI) || 731 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 732 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 733 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 734 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 735 auto *CI = cast<CmpInst>(SI->getCondition()); 736 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 737 } 738 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 739 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 740 auto *CI = cast<CmpInst>(SI->getCondition()); 741 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 742 } 743 } 744 return llvm::None; 745 } 746 747 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 748 unsigned Level, 749 unsigned NumLevels) { 750 // Match one level of pairwise operations. 751 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 752 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 753 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 754 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 755 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 756 if (!I) 757 return RK_None; 758 759 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 760 761 Optional<ReductionData> RD = getReductionData(I); 762 if (!RD) 763 return RK_None; 764 765 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 766 if (!LS && Level) 767 return RK_None; 768 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 769 if (!RS && Level) 770 return RK_None; 771 772 // On level 0 we can omit one shufflevector instruction. 773 if (!Level && !RS && !LS) 774 return RK_None; 775 776 // Shuffle inputs must match. 777 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 778 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 779 Value *NextLevelOp = nullptr; 780 if (NextLevelOpR && NextLevelOpL) { 781 // If we have two shuffles their operands must match. 782 if (NextLevelOpL != NextLevelOpR) 783 return RK_None; 784 785 NextLevelOp = NextLevelOpL; 786 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 787 // On the first level we can omit the shufflevector <0, undef,...>. So the 788 // input to the other shufflevector <1, undef> must match with one of the 789 // inputs to the current binary operation. 790 // Example: 791 // %NextLevelOpL = shufflevector %R, <1, undef ...> 792 // %BinOp = fadd %NextLevelOpL, %R 793 if (NextLevelOpL && NextLevelOpL != RD->RHS) 794 return RK_None; 795 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 796 return RK_None; 797 798 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 799 } else 800 return RK_None; 801 802 // Check that the next levels binary operation exists and matches with the 803 // current one. 804 if (Level + 1 != NumLevels) { 805 Optional<ReductionData> NextLevelRD = 806 getReductionData(cast<Instruction>(NextLevelOp)); 807 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 808 return RK_None; 809 } 810 811 // Shuffle mask for pairwise operation must match. 812 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 813 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 814 return RK_None; 815 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 816 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 817 return RK_None; 818 } else { 819 return RK_None; 820 } 821 822 if (++Level == NumLevels) 823 return RD->Kind; 824 825 // Match next level. 826 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 827 NumLevels); 828 } 829 830 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 831 unsigned &Opcode, Type *&Ty) { 832 if (!EnableReduxCost) 833 return RK_None; 834 835 // Need to extract the first element. 836 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 837 unsigned Idx = ~0u; 838 if (CI) 839 Idx = CI->getZExtValue(); 840 if (Idx != 0) 841 return RK_None; 842 843 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 844 if (!RdxStart) 845 return RK_None; 846 Optional<ReductionData> RD = getReductionData(RdxStart); 847 if (!RD) 848 return RK_None; 849 850 Type *VecTy = RdxStart->getType(); 851 unsigned NumVecElems = VecTy->getVectorNumElements(); 852 if (!isPowerOf2_32(NumVecElems)) 853 return RK_None; 854 855 // We look for a sequence of shuffle,shuffle,add triples like the following 856 // that builds a pairwise reduction tree. 857 // 858 // (X0, X1, X2, X3) 859 // (X0 + X1, X2 + X3, undef, undef) 860 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 861 // 862 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 863 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 864 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 865 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 866 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 867 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 868 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 869 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 870 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 871 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 872 // %r = extractelement <4 x float> %bin.rdx8, i32 0 873 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 874 RK_None) 875 return RK_None; 876 877 Opcode = RD->Opcode; 878 Ty = VecTy; 879 880 return RD->Kind; 881 } 882 883 static std::pair<Value *, ShuffleVectorInst *> 884 getShuffleAndOtherOprd(Value *L, Value *R) { 885 ShuffleVectorInst *S = nullptr; 886 887 if ((S = dyn_cast<ShuffleVectorInst>(L))) 888 return std::make_pair(R, S); 889 890 S = dyn_cast<ShuffleVectorInst>(R); 891 return std::make_pair(L, S); 892 } 893 894 static ReductionKind 895 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 896 unsigned &Opcode, Type *&Ty) { 897 if (!EnableReduxCost) 898 return RK_None; 899 900 // Need to extract the first element. 901 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 902 unsigned Idx = ~0u; 903 if (CI) 904 Idx = CI->getZExtValue(); 905 if (Idx != 0) 906 return RK_None; 907 908 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 909 if (!RdxStart) 910 return RK_None; 911 Optional<ReductionData> RD = getReductionData(RdxStart); 912 if (!RD) 913 return RK_None; 914 915 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 916 unsigned NumVecElems = VecTy->getVectorNumElements(); 917 if (!isPowerOf2_32(NumVecElems)) 918 return RK_None; 919 920 // We look for a sequence of shuffles and adds like the following matching one 921 // fadd, shuffle vector pair at a time. 922 // 923 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 924 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 925 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 926 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 927 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 928 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 929 // %r = extractelement <4 x float> %bin.rdx8, i32 0 930 931 unsigned MaskStart = 1; 932 Instruction *RdxOp = RdxStart; 933 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 934 unsigned NumVecElemsRemain = NumVecElems; 935 while (NumVecElemsRemain - 1) { 936 // Check for the right reduction operation. 937 if (!RdxOp) 938 return RK_None; 939 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 940 if (!RDLevel || !RDLevel->hasSameData(*RD)) 941 return RK_None; 942 943 Value *NextRdxOp; 944 ShuffleVectorInst *Shuffle; 945 std::tie(NextRdxOp, Shuffle) = 946 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 947 948 // Check the current reduction operation and the shuffle use the same value. 949 if (Shuffle == nullptr) 950 return RK_None; 951 if (Shuffle->getOperand(0) != NextRdxOp) 952 return RK_None; 953 954 // Check that shuffle masks matches. 955 for (unsigned j = 0; j != MaskStart; ++j) 956 ShuffleMask[j] = MaskStart + j; 957 // Fill the rest of the mask with -1 for undef. 958 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 959 960 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 961 if (ShuffleMask != Mask) 962 return RK_None; 963 964 RdxOp = dyn_cast<Instruction>(NextRdxOp); 965 NumVecElemsRemain /= 2; 966 MaskStart *= 2; 967 } 968 969 Opcode = RD->Opcode; 970 Ty = VecTy; 971 return RD->Kind; 972 } 973 974 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 975 switch (I->getOpcode()) { 976 case Instruction::GetElementPtr: 977 return getUserCost(I); 978 979 case Instruction::Ret: 980 case Instruction::PHI: 981 case Instruction::Br: { 982 return getCFInstrCost(I->getOpcode()); 983 } 984 case Instruction::Add: 985 case Instruction::FAdd: 986 case Instruction::Sub: 987 case Instruction::FSub: 988 case Instruction::Mul: 989 case Instruction::FMul: 990 case Instruction::UDiv: 991 case Instruction::SDiv: 992 case Instruction::FDiv: 993 case Instruction::URem: 994 case Instruction::SRem: 995 case Instruction::FRem: 996 case Instruction::Shl: 997 case Instruction::LShr: 998 case Instruction::AShr: 999 case Instruction::And: 1000 case Instruction::Or: 1001 case Instruction::Xor: { 1002 TargetTransformInfo::OperandValueKind Op1VK = 1003 getOperandInfo(I->getOperand(0)); 1004 TargetTransformInfo::OperandValueKind Op2VK = 1005 getOperandInfo(I->getOperand(1)); 1006 SmallVector<const Value*, 2> Operands(I->operand_values()); 1007 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1008 Op2VK, TargetTransformInfo::OP_None, 1009 TargetTransformInfo::OP_None, 1010 Operands); 1011 } 1012 case Instruction::Select: { 1013 const SelectInst *SI = cast<SelectInst>(I); 1014 Type *CondTy = SI->getCondition()->getType(); 1015 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1016 } 1017 case Instruction::ICmp: 1018 case Instruction::FCmp: { 1019 Type *ValTy = I->getOperand(0)->getType(); 1020 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1021 } 1022 case Instruction::Store: { 1023 const StoreInst *SI = cast<StoreInst>(I); 1024 Type *ValTy = SI->getValueOperand()->getType(); 1025 return getMemoryOpCost(I->getOpcode(), ValTy, 1026 SI->getAlignment(), 1027 SI->getPointerAddressSpace(), I); 1028 } 1029 case Instruction::Load: { 1030 const LoadInst *LI = cast<LoadInst>(I); 1031 return getMemoryOpCost(I->getOpcode(), I->getType(), 1032 LI->getAlignment(), 1033 LI->getPointerAddressSpace(), I); 1034 } 1035 case Instruction::ZExt: 1036 case Instruction::SExt: 1037 case Instruction::FPToUI: 1038 case Instruction::FPToSI: 1039 case Instruction::FPExt: 1040 case Instruction::PtrToInt: 1041 case Instruction::IntToPtr: 1042 case Instruction::SIToFP: 1043 case Instruction::UIToFP: 1044 case Instruction::Trunc: 1045 case Instruction::FPTrunc: 1046 case Instruction::BitCast: 1047 case Instruction::AddrSpaceCast: { 1048 Type *SrcTy = I->getOperand(0)->getType(); 1049 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1050 } 1051 case Instruction::ExtractElement: { 1052 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1053 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1054 unsigned Idx = -1; 1055 if (CI) 1056 Idx = CI->getZExtValue(); 1057 1058 // Try to match a reduction sequence (series of shufflevector and vector 1059 // adds followed by a extractelement). 1060 unsigned ReduxOpCode; 1061 Type *ReduxType; 1062 1063 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1064 case RK_Arithmetic: 1065 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1066 /*IsPairwiseForm=*/false); 1067 case RK_MinMax: 1068 return getMinMaxReductionCost( 1069 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1070 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1071 case RK_UnsignedMinMax: 1072 return getMinMaxReductionCost( 1073 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1074 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1075 case RK_None: 1076 break; 1077 } 1078 1079 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1080 case RK_Arithmetic: 1081 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1082 /*IsPairwiseForm=*/true); 1083 case RK_MinMax: 1084 return getMinMaxReductionCost( 1085 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1086 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1087 case RK_UnsignedMinMax: 1088 return getMinMaxReductionCost( 1089 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1090 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1091 case RK_None: 1092 break; 1093 } 1094 1095 return getVectorInstrCost(I->getOpcode(), 1096 EEI->getOperand(0)->getType(), Idx); 1097 } 1098 case Instruction::InsertElement: { 1099 const InsertElementInst * IE = cast<InsertElementInst>(I); 1100 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1101 unsigned Idx = -1; 1102 if (CI) 1103 Idx = CI->getZExtValue(); 1104 return getVectorInstrCost(I->getOpcode(), 1105 IE->getType(), Idx); 1106 } 1107 case Instruction::ShuffleVector: { 1108 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1109 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1110 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1111 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1112 1113 if (NumVecElems == Mask.size()) { 1114 if (isReverseVectorMask(Mask)) 1115 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1116 0, nullptr); 1117 if (isAlternateVectorMask(Mask)) 1118 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1119 VecTypOp0, 0, nullptr); 1120 1121 if (isZeroEltBroadcastVectorMask(Mask)) 1122 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1123 VecTypOp0, 0, nullptr); 1124 1125 if (isSingleSourceVectorMask(Mask)) 1126 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1127 VecTypOp0, 0, nullptr); 1128 1129 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1130 VecTypOp0, 0, nullptr); 1131 } 1132 1133 return -1; 1134 } 1135 case Instruction::Call: 1136 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1137 SmallVector<Value *, 4> Args(II->arg_operands()); 1138 1139 FastMathFlags FMF; 1140 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1141 FMF = FPMO->getFastMathFlags(); 1142 1143 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1144 Args, FMF); 1145 } 1146 return -1; 1147 default: 1148 // We don't have any information on this instruction. 1149 return -1; 1150 } 1151 } 1152 1153 TargetTransformInfo::Concept::~Concept() {} 1154 1155 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1156 1157 TargetIRAnalysis::TargetIRAnalysis( 1158 std::function<Result(const Function &)> TTICallback) 1159 : TTICallback(std::move(TTICallback)) {} 1160 1161 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1162 FunctionAnalysisManager &) { 1163 return TTICallback(F); 1164 } 1165 1166 AnalysisKey TargetIRAnalysis::Key; 1167 1168 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1169 return Result(F.getParent()->getDataLayout()); 1170 } 1171 1172 // Register the basic pass. 1173 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1174 "Target Transform Information", false, true) 1175 char TargetTransformInfoWrapperPass::ID = 0; 1176 1177 void TargetTransformInfoWrapperPass::anchor() {} 1178 1179 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1180 : ImmutablePass(ID) { 1181 initializeTargetTransformInfoWrapperPassPass( 1182 *PassRegistry::getPassRegistry()); 1183 } 1184 1185 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1186 TargetIRAnalysis TIRA) 1187 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1188 initializeTargetTransformInfoWrapperPassPass( 1189 *PassRegistry::getPassRegistry()); 1190 } 1191 1192 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1193 FunctionAnalysisManager DummyFAM; 1194 TTI = TIRA.run(F, DummyFAM); 1195 return *TTI; 1196 } 1197 1198 ImmutablePass * 1199 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1200 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1201 } 1202