1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
58                                                  const CallBase &CI,
59                                                  unsigned ScalarizationCost)
60     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
61       ScalarizationCost(ScalarizationCost) {
62 
63   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
64     FMF = FPMO->getFastMathFlags();
65 
66   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
67   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
68   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
69 }
70 
71 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
72                                                  ArrayRef<Type *> Tys,
73                                                  FastMathFlags Flags,
74                                                  const IntrinsicInst *I,
75                                                  unsigned ScalarCost)
76     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
77   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
78 }
79 
80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
81                                                  ArrayRef<const Value *> Args)
82     : RetTy(Ty), IID(Id) {
83 
84   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
85   ParamTys.reserve(Arguments.size());
86   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
87     ParamTys.push_back(Arguments[Idx]->getType());
88 }
89 
90 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
91                                                  ArrayRef<const Value *> Args,
92                                                  ArrayRef<Type *> Tys,
93                                                  FastMathFlags Flags,
94                                                  const IntrinsicInst *I,
95                                                  unsigned ScalarCost)
96     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
97   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
98   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
99 }
100 
101 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
102                                                LoopInfo &LI, DominatorTree &DT,
103                                                bool ForceNestedLoop,
104                                                bool ForceHardwareLoopPHI) {
105   SmallVector<BasicBlock *, 4> ExitingBlocks;
106   L->getExitingBlocks(ExitingBlocks);
107 
108   for (BasicBlock *BB : ExitingBlocks) {
109     // If we pass the updated counter back through a phi, we need to know
110     // which latch the updated value will be coming from.
111     if (!L->isLoopLatch(BB)) {
112       if (ForceHardwareLoopPHI || CounterInReg)
113         continue;
114     }
115 
116     const SCEV *EC = SE.getExitCount(L, BB);
117     if (isa<SCEVCouldNotCompute>(EC))
118       continue;
119     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
120       if (ConstEC->getValue()->isZero())
121         continue;
122     } else if (!SE.isLoopInvariant(EC, L))
123       continue;
124 
125     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
126       continue;
127 
128     // If this exiting block is contained in a nested loop, it is not eligible
129     // for insertion of the branch-and-decrement since the inner loop would
130     // end up messing up the value in the CTR.
131     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
132       continue;
133 
134     // We now have a loop-invariant count of loop iterations (which is not the
135     // constant zero) for which we know that this loop will not exit via this
136     // existing block.
137 
138     // We need to make sure that this block will run on every loop iteration.
139     // For this to be true, we must dominate all blocks with backedges. Such
140     // blocks are in-loop predecessors to the header block.
141     bool NotAlways = false;
142     for (BasicBlock *Pred : predecessors(L->getHeader())) {
143       if (!L->contains(Pred))
144         continue;
145 
146       if (!DT.dominates(BB, Pred)) {
147         NotAlways = true;
148         break;
149       }
150     }
151 
152     if (NotAlways)
153       continue;
154 
155     // Make sure this blocks ends with a conditional branch.
156     Instruction *TI = BB->getTerminator();
157     if (!TI)
158       continue;
159 
160     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
161       if (!BI->isConditional())
162         continue;
163 
164       ExitBranch = BI;
165     } else
166       continue;
167 
168     // Note that this block may not be the loop latch block, even if the loop
169     // has a latch block.
170     ExitBlock = BB;
171     TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType()));
172 
173     if (!EC->getType()->isPointerTy() && EC->getType() != CountType)
174       TripCount = SE.getZeroExtendExpr(TripCount, CountType);
175 
176     break;
177   }
178 
179   if (!ExitBlock)
180     return false;
181   return true;
182 }
183 
184 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
185     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
186 
187 TargetTransformInfo::~TargetTransformInfo() {}
188 
189 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
190     : TTIImpl(std::move(Arg.TTIImpl)) {}
191 
192 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
193   TTIImpl = std::move(RHS.TTIImpl);
194   return *this;
195 }
196 
197 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
198   return TTIImpl->getInliningThresholdMultiplier();
199 }
200 
201 unsigned
202 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
203   return TTIImpl->adjustInliningThreshold(CB);
204 }
205 
206 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
207   return TTIImpl->getInlinerVectorBonusPercent();
208 }
209 
210 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
211                                     ArrayRef<const Value *> Operands,
212                                     TTI::TargetCostKind CostKind) const {
213   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
214 }
215 
216 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
217     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
218     BlockFrequencyInfo *BFI) const {
219   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
220 }
221 
222 InstructionCost
223 TargetTransformInfo::getUserCost(const User *U,
224                                  ArrayRef<const Value *> Operands,
225                                  enum TargetCostKind CostKind) const {
226   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
227   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
228          "TTI should not produce negative costs!");
229   return Cost;
230 }
231 
232 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
233   return TTIImpl->getPredictableBranchThreshold();
234 }
235 
236 bool TargetTransformInfo::hasBranchDivergence() const {
237   return TTIImpl->hasBranchDivergence();
238 }
239 
240 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
241   return TTIImpl->useGPUDivergenceAnalysis();
242 }
243 
244 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
245   return TTIImpl->isSourceOfDivergence(V);
246 }
247 
248 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
249   return TTIImpl->isAlwaysUniform(V);
250 }
251 
252 unsigned TargetTransformInfo::getFlatAddressSpace() const {
253   return TTIImpl->getFlatAddressSpace();
254 }
255 
256 bool TargetTransformInfo::collectFlatAddressOperands(
257     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
258   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
259 }
260 
261 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
262                                               unsigned ToAS) const {
263   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
264 }
265 
266 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
267   return TTIImpl->getAssumedAddrSpace(V);
268 }
269 
270 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
271     IntrinsicInst *II, Value *OldV, Value *NewV) const {
272   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
273 }
274 
275 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
276   return TTIImpl->isLoweredToCall(F);
277 }
278 
279 bool TargetTransformInfo::isHardwareLoopProfitable(
280     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
281     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
282   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
283 }
284 
285 bool TargetTransformInfo::preferPredicateOverEpilogue(
286     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
287     TargetLibraryInfo *TLI, DominatorTree *DT,
288     const LoopAccessInfo *LAI) const {
289   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
290 }
291 
292 bool TargetTransformInfo::emitGetActiveLaneMask() const {
293   return TTIImpl->emitGetActiveLaneMask();
294 }
295 
296 Optional<Instruction *>
297 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
298                                           IntrinsicInst &II) const {
299   return TTIImpl->instCombineIntrinsic(IC, II);
300 }
301 
302 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
303     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
304     bool &KnownBitsComputed) const {
305   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
306                                                    KnownBitsComputed);
307 }
308 
309 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
310     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
311     APInt &UndefElts2, APInt &UndefElts3,
312     std::function<void(Instruction *, unsigned, APInt, APInt &)>
313         SimplifyAndSetOp) const {
314   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
315       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
316       SimplifyAndSetOp);
317 }
318 
319 void TargetTransformInfo::getUnrollingPreferences(
320     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
321   return TTIImpl->getUnrollingPreferences(L, SE, UP);
322 }
323 
324 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
325                                                 PeelingPreferences &PP) const {
326   return TTIImpl->getPeelingPreferences(L, SE, PP);
327 }
328 
329 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
330   return TTIImpl->isLegalAddImmediate(Imm);
331 }
332 
333 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
334   return TTIImpl->isLegalICmpImmediate(Imm);
335 }
336 
337 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
338                                                 int64_t BaseOffset,
339                                                 bool HasBaseReg, int64_t Scale,
340                                                 unsigned AddrSpace,
341                                                 Instruction *I) const {
342   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
343                                         Scale, AddrSpace, I);
344 }
345 
346 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
347   return TTIImpl->isLSRCostLess(C1, C2);
348 }
349 
350 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
351   return TTIImpl->isNumRegsMajorCostOfLSR();
352 }
353 
354 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
355   return TTIImpl->isProfitableLSRChainElement(I);
356 }
357 
358 bool TargetTransformInfo::canMacroFuseCmp() const {
359   return TTIImpl->canMacroFuseCmp();
360 }
361 
362 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
363                                      ScalarEvolution *SE, LoopInfo *LI,
364                                      DominatorTree *DT, AssumptionCache *AC,
365                                      TargetLibraryInfo *LibInfo) const {
366   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
367 }
368 
369 TTI::AddressingModeKind
370 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
371                                                 ScalarEvolution *SE) const {
372   return TTIImpl->getPreferredAddressingMode(L, SE);
373 }
374 
375 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
376                                              Align Alignment) const {
377   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
378 }
379 
380 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
381                                             Align Alignment) const {
382   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
383 }
384 
385 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
386                                          Align Alignment) const {
387   return TTIImpl->isLegalNTStore(DataType, Alignment);
388 }
389 
390 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
391   return TTIImpl->isLegalNTLoad(DataType, Alignment);
392 }
393 
394 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
395                                               Align Alignment) const {
396   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
397 }
398 
399 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
400                                                Align Alignment) const {
401   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
402 }
403 
404 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
405   return TTIImpl->isLegalMaskedCompressStore(DataType);
406 }
407 
408 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
409   return TTIImpl->isLegalMaskedExpandLoad(DataType);
410 }
411 
412 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
413   return TTIImpl->hasDivRemOp(DataType, IsSigned);
414 }
415 
416 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
417                                              unsigned AddrSpace) const {
418   return TTIImpl->hasVolatileVariant(I, AddrSpace);
419 }
420 
421 bool TargetTransformInfo::prefersVectorizedAddressing() const {
422   return TTIImpl->prefersVectorizedAddressing();
423 }
424 
425 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
426                                               int64_t BaseOffset,
427                                               bool HasBaseReg, int64_t Scale,
428                                               unsigned AddrSpace) const {
429   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
430                                            Scale, AddrSpace);
431   assert(Cost >= 0 && "TTI should not produce negative costs!");
432   return Cost;
433 }
434 
435 bool TargetTransformInfo::LSRWithInstrQueries() const {
436   return TTIImpl->LSRWithInstrQueries();
437 }
438 
439 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
440   return TTIImpl->isTruncateFree(Ty1, Ty2);
441 }
442 
443 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
444   return TTIImpl->isProfitableToHoist(I);
445 }
446 
447 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
448 
449 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
450   return TTIImpl->isTypeLegal(Ty);
451 }
452 
453 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
454   return TTIImpl->getRegUsageForType(Ty);
455 }
456 
457 bool TargetTransformInfo::shouldBuildLookupTables() const {
458   return TTIImpl->shouldBuildLookupTables();
459 }
460 
461 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
462     Constant *C) const {
463   return TTIImpl->shouldBuildLookupTablesForConstant(C);
464 }
465 
466 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
467   return TTIImpl->shouldBuildRelLookupTables();
468 }
469 
470 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
471   return TTIImpl->useColdCCForColdCall(F);
472 }
473 
474 unsigned
475 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
476                                               const APInt &DemandedElts,
477                                               bool Insert, bool Extract) const {
478   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
479 }
480 
481 unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
482     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
483   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
484 }
485 
486 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
487   return TTIImpl->supportsEfficientVectorElementLoadStore();
488 }
489 
490 bool TargetTransformInfo::enableAggressiveInterleaving(
491     bool LoopHasReductions) const {
492   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
493 }
494 
495 TargetTransformInfo::MemCmpExpansionOptions
496 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
497   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
498 }
499 
500 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
501   return TTIImpl->enableInterleavedAccessVectorization();
502 }
503 
504 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
505   return TTIImpl->enableMaskedInterleavedAccessVectorization();
506 }
507 
508 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
509   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
510 }
511 
512 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
513                                                          unsigned BitWidth,
514                                                          unsigned AddressSpace,
515                                                          Align Alignment,
516                                                          bool *Fast) const {
517   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
518                                                  AddressSpace, Alignment, Fast);
519 }
520 
521 TargetTransformInfo::PopcntSupportKind
522 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
523   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
524 }
525 
526 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
527   return TTIImpl->haveFastSqrt(Ty);
528 }
529 
530 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
531   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
532 }
533 
534 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
535   int Cost = TTIImpl->getFPOpCost(Ty);
536   assert(Cost >= 0 && "TTI should not produce negative costs!");
537   return Cost;
538 }
539 
540 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
541                                                const APInt &Imm,
542                                                Type *Ty) const {
543   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
544   assert(Cost >= 0 && "TTI should not produce negative costs!");
545   return Cost;
546 }
547 
548 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
549                                        TTI::TargetCostKind CostKind) const {
550   int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
551   assert(Cost >= 0 && "TTI should not produce negative costs!");
552   return Cost;
553 }
554 
555 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
556                                            const APInt &Imm, Type *Ty,
557                                            TTI::TargetCostKind CostKind,
558                                            Instruction *Inst) const {
559   int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
560   assert(Cost >= 0 && "TTI should not produce negative costs!");
561   return Cost;
562 }
563 
564 int
565 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
566                                          const APInt &Imm, Type *Ty,
567                                          TTI::TargetCostKind CostKind) const {
568   int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
569   assert(Cost >= 0 && "TTI should not produce negative costs!");
570   return Cost;
571 }
572 
573 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
574   return TTIImpl->getNumberOfRegisters(ClassID);
575 }
576 
577 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
578                                                       Type *Ty) const {
579   return TTIImpl->getRegisterClassForType(Vector, Ty);
580 }
581 
582 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
583   return TTIImpl->getRegisterClassName(ClassID);
584 }
585 
586 TypeSize TargetTransformInfo::getRegisterBitWidth(
587     TargetTransformInfo::RegisterKind K) const {
588   return TTIImpl->getRegisterBitWidth(K);
589 }
590 
591 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
592   return TTIImpl->getMinVectorRegisterBitWidth();
593 }
594 
595 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
596   return TTIImpl->getMaxVScale();
597 }
598 
599 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
600   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
601 }
602 
603 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
604                                                bool IsScalable) const {
605   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
606 }
607 
608 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
609                                            unsigned Opcode) const {
610   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
611 }
612 
613 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
614     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
615   return TTIImpl->shouldConsiderAddressTypePromotion(
616       I, AllowPromotionWithoutCommonHeader);
617 }
618 
619 unsigned TargetTransformInfo::getCacheLineSize() const {
620   return TTIImpl->getCacheLineSize();
621 }
622 
623 llvm::Optional<unsigned>
624 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
625   return TTIImpl->getCacheSize(Level);
626 }
627 
628 llvm::Optional<unsigned>
629 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
630   return TTIImpl->getCacheAssociativity(Level);
631 }
632 
633 unsigned TargetTransformInfo::getPrefetchDistance() const {
634   return TTIImpl->getPrefetchDistance();
635 }
636 
637 unsigned TargetTransformInfo::getMinPrefetchStride(
638     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
639     unsigned NumPrefetches, bool HasCall) const {
640   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
641                                        NumPrefetches, HasCall);
642 }
643 
644 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
645   return TTIImpl->getMaxPrefetchIterationsAhead();
646 }
647 
648 bool TargetTransformInfo::enableWritePrefetching() const {
649   return TTIImpl->enableWritePrefetching();
650 }
651 
652 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
653   return TTIImpl->getMaxInterleaveFactor(VF);
654 }
655 
656 TargetTransformInfo::OperandValueKind
657 TargetTransformInfo::getOperandInfo(const Value *V,
658                                     OperandValueProperties &OpProps) {
659   OperandValueKind OpInfo = OK_AnyValue;
660   OpProps = OP_None;
661 
662   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
663     if (CI->getValue().isPowerOf2())
664       OpProps = OP_PowerOf2;
665     return OK_UniformConstantValue;
666   }
667 
668   // A broadcast shuffle creates a uniform value.
669   // TODO: Add support for non-zero index broadcasts.
670   // TODO: Add support for different source vector width.
671   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
672     if (ShuffleInst->isZeroEltSplat())
673       OpInfo = OK_UniformValue;
674 
675   const Value *Splat = getSplatValue(V);
676 
677   // Check for a splat of a constant or for a non uniform vector of constants
678   // and check if the constant(s) are all powers of two.
679   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
680     OpInfo = OK_NonUniformConstantValue;
681     if (Splat) {
682       OpInfo = OK_UniformConstantValue;
683       if (auto *CI = dyn_cast<ConstantInt>(Splat))
684         if (CI->getValue().isPowerOf2())
685           OpProps = OP_PowerOf2;
686     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
687       OpProps = OP_PowerOf2;
688       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
689         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
690           if (CI->getValue().isPowerOf2())
691             continue;
692         OpProps = OP_None;
693         break;
694       }
695     }
696   }
697 
698   // Check for a splat of a uniform value. This is not loop aware, so return
699   // true only for the obviously uniform cases (argument, globalvalue)
700   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
701     OpInfo = OK_UniformValue;
702 
703   return OpInfo;
704 }
705 
706 int TargetTransformInfo::getArithmeticInstrCost(
707     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
708     OperandValueKind Opd1Info,
709     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
710     OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
711     const Instruction *CxtI) const {
712   int Cost = TTIImpl->getArithmeticInstrCost(
713       Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
714       Args, CxtI);
715   assert(Cost >= 0 && "TTI should not produce negative costs!");
716   return Cost;
717 }
718 
719 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
720                                         ArrayRef<int> Mask, int Index,
721                                         VectorType *SubTp) const {
722   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
723   assert(Cost >= 0 && "TTI should not produce negative costs!");
724   return Cost;
725 }
726 
727 TTI::CastContextHint
728 TargetTransformInfo::getCastContextHint(const Instruction *I) {
729   if (!I)
730     return CastContextHint::None;
731 
732   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
733                              unsigned GatScatOp) {
734     const Instruction *I = dyn_cast<Instruction>(V);
735     if (!I)
736       return CastContextHint::None;
737 
738     if (I->getOpcode() == LdStOp)
739       return CastContextHint::Normal;
740 
741     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
742       if (II->getIntrinsicID() == MaskedOp)
743         return TTI::CastContextHint::Masked;
744       if (II->getIntrinsicID() == GatScatOp)
745         return TTI::CastContextHint::GatherScatter;
746     }
747 
748     return TTI::CastContextHint::None;
749   };
750 
751   switch (I->getOpcode()) {
752   case Instruction::ZExt:
753   case Instruction::SExt:
754   case Instruction::FPExt:
755     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
756                             Intrinsic::masked_load, Intrinsic::masked_gather);
757   case Instruction::Trunc:
758   case Instruction::FPTrunc:
759     if (I->hasOneUse())
760       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
761                               Intrinsic::masked_store,
762                               Intrinsic::masked_scatter);
763     break;
764   default:
765     return CastContextHint::None;
766   }
767 
768   return TTI::CastContextHint::None;
769 }
770 
771 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
772                                           CastContextHint CCH,
773                                           TTI::TargetCostKind CostKind,
774                                           const Instruction *I) const {
775   assert((I == nullptr || I->getOpcode() == Opcode) &&
776          "Opcode should reflect passed instruction.");
777   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
778   assert(Cost >= 0 && "TTI should not produce negative costs!");
779   return Cost;
780 }
781 
782 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
783                                                   VectorType *VecTy,
784                                                   unsigned Index) const {
785   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
786   assert(Cost >= 0 && "TTI should not produce negative costs!");
787   return Cost;
788 }
789 
790 int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
791                                         TTI::TargetCostKind CostKind,
792                                         const Instruction *I) const {
793   assert((I == nullptr || I->getOpcode() == Opcode) &&
794          "Opcode should reflect passed instruction.");
795   int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
796   assert(Cost >= 0 && "TTI should not produce negative costs!");
797   return Cost;
798 }
799 
800 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
801                                             Type *CondTy,
802                                             CmpInst::Predicate VecPred,
803                                             TTI::TargetCostKind CostKind,
804                                             const Instruction *I) const {
805   assert((I == nullptr || I->getOpcode() == Opcode) &&
806          "Opcode should reflect passed instruction.");
807   int Cost =
808       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
809   assert(Cost >= 0 && "TTI should not produce negative costs!");
810   return Cost;
811 }
812 
813 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
814                                             unsigned Index) const {
815   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
816   assert(Cost >= 0 && "TTI should not produce negative costs!");
817   return Cost;
818 }
819 
820 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
821                                          Align Alignment, unsigned AddressSpace,
822                                          TTI::TargetCostKind CostKind,
823                                          const Instruction *I) const {
824   assert((I == nullptr || I->getOpcode() == Opcode) &&
825          "Opcode should reflect passed instruction.");
826   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
827                                       CostKind, I);
828   assert(Cost >= 0 && "TTI should not produce negative costs!");
829   return Cost;
830 }
831 
832 int TargetTransformInfo::getMaskedMemoryOpCost(
833     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
834     TTI::TargetCostKind CostKind) const {
835   int Cost =
836       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
837                                      CostKind);
838   assert(Cost >= 0 && "TTI should not produce negative costs!");
839   return Cost;
840 }
841 
842 int TargetTransformInfo::getGatherScatterOpCost(
843     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
844     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
845   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
846                                              Alignment, CostKind, I);
847   assert(Cost >= 0 && "TTI should not produce negative costs!");
848   return Cost;
849 }
850 
851 int TargetTransformInfo::getInterleavedMemoryOpCost(
852     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
853     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
854     bool UseMaskForCond, bool UseMaskForGaps) const {
855   int Cost = TTIImpl->getInterleavedMemoryOpCost(
856       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
857       UseMaskForCond, UseMaskForGaps);
858   assert(Cost >= 0 && "TTI should not produce negative costs!");
859   return Cost;
860 }
861 
862 InstructionCost
863 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
864                                            TTI::TargetCostKind CostKind) const {
865   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
866   assert(Cost >= 0 && "TTI should not produce negative costs!");
867   return Cost;
868 }
869 
870 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
871                                           ArrayRef<Type *> Tys,
872                                           TTI::TargetCostKind CostKind) const {
873   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
874   assert(Cost >= 0 && "TTI should not produce negative costs!");
875   return Cost;
876 }
877 
878 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
879   return TTIImpl->getNumberOfParts(Tp);
880 }
881 
882 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
883                                                    ScalarEvolution *SE,
884                                                    const SCEV *Ptr) const {
885   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
886   assert(Cost >= 0 && "TTI should not produce negative costs!");
887   return Cost;
888 }
889 
890 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
891   int Cost = TTIImpl->getMemcpyCost(I);
892   assert(Cost >= 0 && "TTI should not produce negative costs!");
893   return Cost;
894 }
895 
896 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
897                                                     VectorType *Ty,
898                                                     bool IsPairwiseForm,
899                                                     TTI::TargetCostKind CostKind) const {
900   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
901                                                  CostKind);
902   assert(Cost >= 0 && "TTI should not produce negative costs!");
903   return Cost;
904 }
905 
906 int TargetTransformInfo::getMinMaxReductionCost(
907     VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
908     TTI::TargetCostKind CostKind) const {
909   int Cost =
910       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
911                                       CostKind);
912   assert(Cost >= 0 && "TTI should not produce negative costs!");
913   return Cost;
914 }
915 
916 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
917     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
918     TTI::TargetCostKind CostKind) const {
919   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
920                                               CostKind);
921 }
922 
923 unsigned
924 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
925   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
926 }
927 
928 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
929                                              MemIntrinsicInfo &Info) const {
930   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
931 }
932 
933 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
934   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
935 }
936 
937 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
938     IntrinsicInst *Inst, Type *ExpectedType) const {
939   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
940 }
941 
942 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
943     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
944     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
945   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
946                                             DestAddrSpace, SrcAlign, DestAlign);
947 }
948 
949 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
950     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
951     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
952     unsigned SrcAlign, unsigned DestAlign) const {
953   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
954                                              SrcAddrSpace, DestAddrSpace,
955                                              SrcAlign, DestAlign);
956 }
957 
958 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
959                                               const Function *Callee) const {
960   return TTIImpl->areInlineCompatible(Caller, Callee);
961 }
962 
963 bool TargetTransformInfo::areFunctionArgsABICompatible(
964     const Function *Caller, const Function *Callee,
965     SmallPtrSetImpl<Argument *> &Args) const {
966   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
967 }
968 
969 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
970                                              Type *Ty) const {
971   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
972 }
973 
974 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
975                                               Type *Ty) const {
976   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
977 }
978 
979 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
980   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
981 }
982 
983 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
984   return TTIImpl->isLegalToVectorizeLoad(LI);
985 }
986 
987 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
988   return TTIImpl->isLegalToVectorizeStore(SI);
989 }
990 
991 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
992     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
993   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
994                                               AddrSpace);
995 }
996 
997 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
998     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
999   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1000                                                AddrSpace);
1001 }
1002 
1003 bool TargetTransformInfo::isLegalToVectorizeReduction(
1004     RecurrenceDescriptor RdxDesc, ElementCount VF) const {
1005   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1006 }
1007 
1008 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1009                                                   unsigned LoadSize,
1010                                                   unsigned ChainSizeInBytes,
1011                                                   VectorType *VecTy) const {
1012   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1013 }
1014 
1015 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1016                                                    unsigned StoreSize,
1017                                                    unsigned ChainSizeInBytes,
1018                                                    VectorType *VecTy) const {
1019   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1020 }
1021 
1022 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1023                                                 ReductionFlags Flags) const {
1024   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1025 }
1026 
1027 bool TargetTransformInfo::preferPredicatedReductionSelect(
1028     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1029   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1030 }
1031 
1032 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1033   return TTIImpl->shouldExpandReduction(II);
1034 }
1035 
1036 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1037   return TTIImpl->getGISelRematGlobalCost();
1038 }
1039 
1040 bool TargetTransformInfo::supportsScalableVectors() const {
1041   return TTIImpl->supportsScalableVectors();
1042 }
1043 
1044 InstructionCost
1045 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1046   return TTIImpl->getInstructionLatency(I);
1047 }
1048 
1049 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
1050                                      unsigned Level) {
1051   // We don't need a shuffle if we just want to have element 0 in position 0 of
1052   // the vector.
1053   if (!SI && Level == 0 && IsLeft)
1054     return true;
1055   else if (!SI)
1056     return false;
1057 
1058   SmallVector<int, 32> Mask(
1059       cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
1060 
1061   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
1062   // we look at the left or right side.
1063   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
1064     Mask[i] = val;
1065 
1066   ArrayRef<int> ActualMask = SI->getShuffleMask();
1067   return Mask == ActualMask;
1068 }
1069 
1070 static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
1071   Value *L, *R;
1072   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
1073     return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
1074   if (auto *SI = dyn_cast<SelectInst>(I)) {
1075     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
1076         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
1077         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
1078         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
1079         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
1080         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
1081       auto *CI = cast<CmpInst>(SI->getCondition());
1082       return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
1083     }
1084     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
1085         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
1086       auto *CI = cast<CmpInst>(SI->getCondition());
1087       return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
1088     }
1089   }
1090   return llvm::None;
1091 }
1092 
1093 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
1094                                                         unsigned Level,
1095                                                         unsigned NumLevels) {
1096   // Match one level of pairwise operations.
1097   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1098   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1099   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1100   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1101   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1102   if (!I)
1103     return TTI::RK_None;
1104 
1105   assert(I->getType()->isVectorTy() && "Expecting a vector type");
1106 
1107   Optional<TTI::ReductionData> RD = getReductionData(I);
1108   if (!RD)
1109     return TTI::RK_None;
1110 
1111   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
1112   if (!LS && Level)
1113     return TTI::RK_None;
1114   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
1115   if (!RS && Level)
1116     return TTI::RK_None;
1117 
1118   // On level 0 we can omit one shufflevector instruction.
1119   if (!Level && !RS && !LS)
1120     return TTI::RK_None;
1121 
1122   // Shuffle inputs must match.
1123   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
1124   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
1125   Value *NextLevelOp = nullptr;
1126   if (NextLevelOpR && NextLevelOpL) {
1127     // If we have two shuffles their operands must match.
1128     if (NextLevelOpL != NextLevelOpR)
1129       return TTI::RK_None;
1130 
1131     NextLevelOp = NextLevelOpL;
1132   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
1133     // On the first level we can omit the shufflevector <0, undef,...>. So the
1134     // input to the other shufflevector <1, undef> must match with one of the
1135     // inputs to the current binary operation.
1136     // Example:
1137     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
1138     //  %BinOp        = fadd          %NextLevelOpL, %R
1139     if (NextLevelOpL && NextLevelOpL != RD->RHS)
1140       return TTI::RK_None;
1141     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
1142       return TTI::RK_None;
1143 
1144     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
1145   } else
1146     return TTI::RK_None;
1147 
1148   // Check that the next levels binary operation exists and matches with the
1149   // current one.
1150   if (Level + 1 != NumLevels) {
1151     if (!isa<Instruction>(NextLevelOp))
1152       return TTI::RK_None;
1153     Optional<TTI::ReductionData> NextLevelRD =
1154         getReductionData(cast<Instruction>(NextLevelOp));
1155     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
1156       return TTI::RK_None;
1157   }
1158 
1159   // Shuffle mask for pairwise operation must match.
1160   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
1161     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
1162       return TTI::RK_None;
1163   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
1164     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
1165       return TTI::RK_None;
1166   } else {
1167     return TTI::RK_None;
1168   }
1169 
1170   if (++Level == NumLevels)
1171     return RD->Kind;
1172 
1173   // Match next level.
1174   return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
1175                                        NumLevels);
1176 }
1177 
1178 TTI::ReductionKind TTI::matchPairwiseReduction(
1179   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
1180   if (!EnableReduxCost)
1181     return TTI::RK_None;
1182 
1183   // Need to extract the first element.
1184   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1185   unsigned Idx = ~0u;
1186   if (CI)
1187     Idx = CI->getZExtValue();
1188   if (Idx != 0)
1189     return TTI::RK_None;
1190 
1191   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1192   if (!RdxStart)
1193     return TTI::RK_None;
1194   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
1195   if (!RD)
1196     return TTI::RK_None;
1197 
1198   auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
1199   unsigned NumVecElems = VecTy->getNumElements();
1200   if (!isPowerOf2_32(NumVecElems))
1201     return TTI::RK_None;
1202 
1203   // We look for a sequence of shuffle,shuffle,add triples like the following
1204   // that builds a pairwise reduction tree.
1205   //
1206   //  (X0, X1, X2, X3)
1207   //   (X0 + X1, X2 + X3, undef, undef)
1208   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
1209   //
1210   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1211   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1212   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1213   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1214   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1215   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1216   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1217   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1218   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1219   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1220   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1221   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1222       TTI::RK_None)
1223     return TTI::RK_None;
1224 
1225   Opcode = RD->Opcode;
1226   Ty = VecTy;
1227 
1228   return RD->Kind;
1229 }
1230 
1231 static std::pair<Value *, ShuffleVectorInst *>
1232 getShuffleAndOtherOprd(Value *L, Value *R) {
1233   ShuffleVectorInst *S = nullptr;
1234 
1235   if ((S = dyn_cast<ShuffleVectorInst>(L)))
1236     return std::make_pair(R, S);
1237 
1238   S = dyn_cast<ShuffleVectorInst>(R);
1239   return std::make_pair(L, S);
1240 }
1241 
1242 TTI::ReductionKind TTI::matchVectorSplittingReduction(
1243   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
1244 
1245   if (!EnableReduxCost)
1246     return TTI::RK_None;
1247 
1248   // Need to extract the first element.
1249   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1250   unsigned Idx = ~0u;
1251   if (CI)
1252     Idx = CI->getZExtValue();
1253   if (Idx != 0)
1254     return TTI::RK_None;
1255 
1256   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1257   if (!RdxStart)
1258     return TTI::RK_None;
1259   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
1260   if (!RD)
1261     return TTI::RK_None;
1262 
1263   auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
1264   unsigned NumVecElems = VecTy->getNumElements();
1265   if (!isPowerOf2_32(NumVecElems))
1266     return TTI::RK_None;
1267 
1268   // We look for a sequence of shuffles and adds like the following matching one
1269   // fadd, shuffle vector pair at a time.
1270   //
1271   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1272   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1273   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1274   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1275   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1276   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1277   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1278 
1279   unsigned MaskStart = 1;
1280   Instruction *RdxOp = RdxStart;
1281   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1282   unsigned NumVecElemsRemain = NumVecElems;
1283   while (NumVecElemsRemain - 1) {
1284     // Check for the right reduction operation.
1285     if (!RdxOp)
1286       return TTI::RK_None;
1287     Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
1288     if (!RDLevel || !RDLevel->hasSameData(*RD))
1289       return TTI::RK_None;
1290 
1291     Value *NextRdxOp;
1292     ShuffleVectorInst *Shuffle;
1293     std::tie(NextRdxOp, Shuffle) =
1294         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1295 
1296     // Check the current reduction operation and the shuffle use the same value.
1297     if (Shuffle == nullptr)
1298       return TTI::RK_None;
1299     if (Shuffle->getOperand(0) != NextRdxOp)
1300       return TTI::RK_None;
1301 
1302     // Check that shuffle masks matches.
1303     for (unsigned j = 0; j != MaskStart; ++j)
1304       ShuffleMask[j] = MaskStart + j;
1305     // Fill the rest of the mask with -1 for undef.
1306     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1307 
1308     ArrayRef<int> Mask = Shuffle->getShuffleMask();
1309     if (ShuffleMask != Mask)
1310       return TTI::RK_None;
1311 
1312     RdxOp = dyn_cast<Instruction>(NextRdxOp);
1313     NumVecElemsRemain /= 2;
1314     MaskStart *= 2;
1315   }
1316 
1317   Opcode = RD->Opcode;
1318   Ty = VecTy;
1319   return RD->Kind;
1320 }
1321 
1322 TTI::ReductionKind
1323 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode,
1324                           VectorType *&Ty, bool &IsPairwise) {
1325   TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty);
1326   if (RdxKind != TTI::ReductionKind::RK_None) {
1327     IsPairwise = false;
1328     return RdxKind;
1329   }
1330   IsPairwise = true;
1331   return matchPairwiseReduction(Root, Opcode, Ty);
1332 }
1333 
1334 InstructionCost
1335 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1336   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1337 
1338   switch (I->getOpcode()) {
1339   case Instruction::GetElementPtr:
1340   case Instruction::Ret:
1341   case Instruction::PHI:
1342   case Instruction::Br:
1343   case Instruction::Add:
1344   case Instruction::FAdd:
1345   case Instruction::Sub:
1346   case Instruction::FSub:
1347   case Instruction::Mul:
1348   case Instruction::FMul:
1349   case Instruction::UDiv:
1350   case Instruction::SDiv:
1351   case Instruction::FDiv:
1352   case Instruction::URem:
1353   case Instruction::SRem:
1354   case Instruction::FRem:
1355   case Instruction::Shl:
1356   case Instruction::LShr:
1357   case Instruction::AShr:
1358   case Instruction::And:
1359   case Instruction::Or:
1360   case Instruction::Xor:
1361   case Instruction::FNeg:
1362   case Instruction::Select:
1363   case Instruction::ICmp:
1364   case Instruction::FCmp:
1365   case Instruction::Store:
1366   case Instruction::Load:
1367   case Instruction::ZExt:
1368   case Instruction::SExt:
1369   case Instruction::FPToUI:
1370   case Instruction::FPToSI:
1371   case Instruction::FPExt:
1372   case Instruction::PtrToInt:
1373   case Instruction::IntToPtr:
1374   case Instruction::SIToFP:
1375   case Instruction::UIToFP:
1376   case Instruction::Trunc:
1377   case Instruction::FPTrunc:
1378   case Instruction::BitCast:
1379   case Instruction::AddrSpaceCast:
1380   case Instruction::ExtractElement:
1381   case Instruction::InsertElement:
1382   case Instruction::ExtractValue:
1383   case Instruction::ShuffleVector:
1384   case Instruction::Call:
1385   case Instruction::Switch:
1386     return getUserCost(I, CostKind);
1387   default:
1388     // We don't have any information on this instruction.
1389     return -1;
1390   }
1391 }
1392 
1393 TargetTransformInfo::Concept::~Concept() {}
1394 
1395 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1396 
1397 TargetIRAnalysis::TargetIRAnalysis(
1398     std::function<Result(const Function &)> TTICallback)
1399     : TTICallback(std::move(TTICallback)) {}
1400 
1401 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1402                                                FunctionAnalysisManager &) {
1403   return TTICallback(F);
1404 }
1405 
1406 AnalysisKey TargetIRAnalysis::Key;
1407 
1408 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1409   return Result(F.getParent()->getDataLayout());
1410 }
1411 
1412 // Register the basic pass.
1413 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1414                 "Target Transform Information", false, true)
1415 char TargetTransformInfoWrapperPass::ID = 0;
1416 
1417 void TargetTransformInfoWrapperPass::anchor() {}
1418 
1419 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1420     : ImmutablePass(ID) {
1421   initializeTargetTransformInfoWrapperPassPass(
1422       *PassRegistry::getPassRegistry());
1423 }
1424 
1425 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1426     TargetIRAnalysis TIRA)
1427     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1428   initializeTargetTransformInfoWrapperPassPass(
1429       *PassRegistry::getPassRegistry());
1430 }
1431 
1432 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1433   FunctionAnalysisManager DummyFAM;
1434   TTI = TIRA.run(F, DummyFAM);
1435   return *TTI;
1436 }
1437 
1438 ImmutablePass *
1439 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1440   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1441 }
1442