1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 58 const CallBase &CI, 59 unsigned ScalarizationCost) 60 : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id), 61 ScalarizationCost(ScalarizationCost) { 62 63 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 64 FMF = FPMO->getFastMathFlags(); 65 66 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 67 FunctionType *FTy = CI.getCalledFunction()->getFunctionType(); 68 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 69 } 70 71 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 72 ArrayRef<Type *> Tys, 73 FastMathFlags Flags, 74 const IntrinsicInst *I, 75 unsigned ScalarCost) 76 : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 77 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 78 } 79 80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 81 ArrayRef<const Value *> Args) 82 : RetTy(Ty), IID(Id) { 83 84 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 85 ParamTys.reserve(Arguments.size()); 86 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 87 ParamTys.push_back(Arguments[Idx]->getType()); 88 } 89 90 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 91 ArrayRef<const Value *> Args, 92 ArrayRef<Type *> Tys, 93 FastMathFlags Flags, 94 const IntrinsicInst *I, 95 unsigned ScalarCost) 96 : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 97 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 98 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 99 } 100 101 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 102 LoopInfo &LI, DominatorTree &DT, 103 bool ForceNestedLoop, 104 bool ForceHardwareLoopPHI) { 105 SmallVector<BasicBlock *, 4> ExitingBlocks; 106 L->getExitingBlocks(ExitingBlocks); 107 108 for (BasicBlock *BB : ExitingBlocks) { 109 // If we pass the updated counter back through a phi, we need to know 110 // which latch the updated value will be coming from. 111 if (!L->isLoopLatch(BB)) { 112 if (ForceHardwareLoopPHI || CounterInReg) 113 continue; 114 } 115 116 const SCEV *EC = SE.getExitCount(L, BB); 117 if (isa<SCEVCouldNotCompute>(EC)) 118 continue; 119 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 120 if (ConstEC->getValue()->isZero()) 121 continue; 122 } else if (!SE.isLoopInvariant(EC, L)) 123 continue; 124 125 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 126 continue; 127 128 // If this exiting block is contained in a nested loop, it is not eligible 129 // for insertion of the branch-and-decrement since the inner loop would 130 // end up messing up the value in the CTR. 131 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 132 continue; 133 134 // We now have a loop-invariant count of loop iterations (which is not the 135 // constant zero) for which we know that this loop will not exit via this 136 // existing block. 137 138 // We need to make sure that this block will run on every loop iteration. 139 // For this to be true, we must dominate all blocks with backedges. Such 140 // blocks are in-loop predecessors to the header block. 141 bool NotAlways = false; 142 for (BasicBlock *Pred : predecessors(L->getHeader())) { 143 if (!L->contains(Pred)) 144 continue; 145 146 if (!DT.dominates(BB, Pred)) { 147 NotAlways = true; 148 break; 149 } 150 } 151 152 if (NotAlways) 153 continue; 154 155 // Make sure this blocks ends with a conditional branch. 156 Instruction *TI = BB->getTerminator(); 157 if (!TI) 158 continue; 159 160 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 161 if (!BI->isConditional()) 162 continue; 163 164 ExitBranch = BI; 165 } else 166 continue; 167 168 // Note that this block may not be the loop latch block, even if the loop 169 // has a latch block. 170 ExitBlock = BB; 171 TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType())); 172 173 if (!EC->getType()->isPointerTy() && EC->getType() != CountType) 174 TripCount = SE.getZeroExtendExpr(TripCount, CountType); 175 176 break; 177 } 178 179 if (!ExitBlock) 180 return false; 181 return true; 182 } 183 184 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 185 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 186 187 TargetTransformInfo::~TargetTransformInfo() {} 188 189 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 190 : TTIImpl(std::move(Arg.TTIImpl)) {} 191 192 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 193 TTIImpl = std::move(RHS.TTIImpl); 194 return *this; 195 } 196 197 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 198 return TTIImpl->getInliningThresholdMultiplier(); 199 } 200 201 unsigned 202 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const { 203 return TTIImpl->adjustInliningThreshold(CB); 204 } 205 206 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 207 return TTIImpl->getInlinerVectorBonusPercent(); 208 } 209 210 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 211 ArrayRef<const Value *> Operands, 212 TTI::TargetCostKind CostKind) const { 213 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 214 } 215 216 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 217 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 218 BlockFrequencyInfo *BFI) const { 219 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 220 } 221 222 int TargetTransformInfo::getUserCost(const User *U, 223 ArrayRef<const Value *> Operands, 224 enum TargetCostKind CostKind) const { 225 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 226 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 227 "TTI should not produce negative costs!"); 228 return Cost; 229 } 230 231 bool TargetTransformInfo::hasBranchDivergence() const { 232 return TTIImpl->hasBranchDivergence(); 233 } 234 235 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 236 return TTIImpl->useGPUDivergenceAnalysis(); 237 } 238 239 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 240 return TTIImpl->isSourceOfDivergence(V); 241 } 242 243 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 244 return TTIImpl->isAlwaysUniform(V); 245 } 246 247 unsigned TargetTransformInfo::getFlatAddressSpace() const { 248 return TTIImpl->getFlatAddressSpace(); 249 } 250 251 bool TargetTransformInfo::collectFlatAddressOperands( 252 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 253 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 254 } 255 256 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 257 unsigned ToAS) const { 258 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 259 } 260 261 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const { 262 return TTIImpl->getAssumedAddrSpace(V); 263 } 264 265 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 266 IntrinsicInst *II, Value *OldV, Value *NewV) const { 267 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 268 } 269 270 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 271 return TTIImpl->isLoweredToCall(F); 272 } 273 274 bool TargetTransformInfo::isHardwareLoopProfitable( 275 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 276 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 277 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 278 } 279 280 bool TargetTransformInfo::preferPredicateOverEpilogue( 281 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 282 TargetLibraryInfo *TLI, DominatorTree *DT, 283 const LoopAccessInfo *LAI) const { 284 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 285 } 286 287 bool TargetTransformInfo::emitGetActiveLaneMask() const { 288 return TTIImpl->emitGetActiveLaneMask(); 289 } 290 291 Optional<Instruction *> 292 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC, 293 IntrinsicInst &II) const { 294 return TTIImpl->instCombineIntrinsic(IC, II); 295 } 296 297 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic( 298 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 299 bool &KnownBitsComputed) const { 300 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 301 KnownBitsComputed); 302 } 303 304 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic( 305 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 306 APInt &UndefElts2, APInt &UndefElts3, 307 std::function<void(Instruction *, unsigned, APInt, APInt &)> 308 SimplifyAndSetOp) const { 309 return TTIImpl->simplifyDemandedVectorEltsIntrinsic( 310 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 311 SimplifyAndSetOp); 312 } 313 314 void TargetTransformInfo::getUnrollingPreferences( 315 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 316 return TTIImpl->getUnrollingPreferences(L, SE, UP); 317 } 318 319 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 320 PeelingPreferences &PP) const { 321 return TTIImpl->getPeelingPreferences(L, SE, PP); 322 } 323 324 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 325 return TTIImpl->isLegalAddImmediate(Imm); 326 } 327 328 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 329 return TTIImpl->isLegalICmpImmediate(Imm); 330 } 331 332 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 333 int64_t BaseOffset, 334 bool HasBaseReg, int64_t Scale, 335 unsigned AddrSpace, 336 Instruction *I) const { 337 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 338 Scale, AddrSpace, I); 339 } 340 341 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 342 return TTIImpl->isLSRCostLess(C1, C2); 343 } 344 345 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const { 346 return TTIImpl->isNumRegsMajorCostOfLSR(); 347 } 348 349 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 350 return TTIImpl->isProfitableLSRChainElement(I); 351 } 352 353 bool TargetTransformInfo::canMacroFuseCmp() const { 354 return TTIImpl->canMacroFuseCmp(); 355 } 356 357 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 358 ScalarEvolution *SE, LoopInfo *LI, 359 DominatorTree *DT, AssumptionCache *AC, 360 TargetLibraryInfo *LibInfo) const { 361 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 362 } 363 364 TTI::AddressingModeKind 365 TargetTransformInfo::getPreferredAddressingMode(const Loop *L, 366 ScalarEvolution *SE) const { 367 return TTIImpl->getPreferredAddressingMode(L, SE); 368 } 369 370 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 371 Align Alignment) const { 372 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 373 } 374 375 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 376 Align Alignment) const { 377 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 378 } 379 380 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 381 Align Alignment) const { 382 return TTIImpl->isLegalNTStore(DataType, Alignment); 383 } 384 385 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 386 return TTIImpl->isLegalNTLoad(DataType, Alignment); 387 } 388 389 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 390 Align Alignment) const { 391 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 392 } 393 394 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 395 Align Alignment) const { 396 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 397 } 398 399 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 400 return TTIImpl->isLegalMaskedCompressStore(DataType); 401 } 402 403 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 404 return TTIImpl->isLegalMaskedExpandLoad(DataType); 405 } 406 407 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 408 return TTIImpl->hasDivRemOp(DataType, IsSigned); 409 } 410 411 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 412 unsigned AddrSpace) const { 413 return TTIImpl->hasVolatileVariant(I, AddrSpace); 414 } 415 416 bool TargetTransformInfo::prefersVectorizedAddressing() const { 417 return TTIImpl->prefersVectorizedAddressing(); 418 } 419 420 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 421 int64_t BaseOffset, 422 bool HasBaseReg, int64_t Scale, 423 unsigned AddrSpace) const { 424 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 425 Scale, AddrSpace); 426 assert(Cost >= 0 && "TTI should not produce negative costs!"); 427 return Cost; 428 } 429 430 bool TargetTransformInfo::LSRWithInstrQueries() const { 431 return TTIImpl->LSRWithInstrQueries(); 432 } 433 434 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 435 return TTIImpl->isTruncateFree(Ty1, Ty2); 436 } 437 438 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 439 return TTIImpl->isProfitableToHoist(I); 440 } 441 442 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 443 444 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 445 return TTIImpl->isTypeLegal(Ty); 446 } 447 448 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const { 449 return TTIImpl->getRegUsageForType(Ty); 450 } 451 452 bool TargetTransformInfo::shouldBuildLookupTables() const { 453 return TTIImpl->shouldBuildLookupTables(); 454 } 455 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 456 Constant *C) const { 457 return TTIImpl->shouldBuildLookupTablesForConstant(C); 458 } 459 460 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 461 return TTIImpl->useColdCCForColdCall(F); 462 } 463 464 unsigned 465 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 466 const APInt &DemandedElts, 467 bool Insert, bool Extract) const { 468 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 469 } 470 471 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 472 ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const { 473 return TTIImpl->getOperandsScalarizationOverhead(Args, Tys); 474 } 475 476 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 477 return TTIImpl->supportsEfficientVectorElementLoadStore(); 478 } 479 480 bool TargetTransformInfo::enableAggressiveInterleaving( 481 bool LoopHasReductions) const { 482 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 483 } 484 485 TargetTransformInfo::MemCmpExpansionOptions 486 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 487 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 488 } 489 490 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 491 return TTIImpl->enableInterleavedAccessVectorization(); 492 } 493 494 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 495 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 496 } 497 498 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 499 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 500 } 501 502 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 503 unsigned BitWidth, 504 unsigned AddressSpace, 505 Align Alignment, 506 bool *Fast) const { 507 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 508 AddressSpace, Alignment, Fast); 509 } 510 511 TargetTransformInfo::PopcntSupportKind 512 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 513 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 514 } 515 516 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 517 return TTIImpl->haveFastSqrt(Ty); 518 } 519 520 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 521 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 522 } 523 524 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 525 int Cost = TTIImpl->getFPOpCost(Ty); 526 assert(Cost >= 0 && "TTI should not produce negative costs!"); 527 return Cost; 528 } 529 530 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 531 const APInt &Imm, 532 Type *Ty) const { 533 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 534 assert(Cost >= 0 && "TTI should not produce negative costs!"); 535 return Cost; 536 } 537 538 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 539 TTI::TargetCostKind CostKind) const { 540 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 541 assert(Cost >= 0 && "TTI should not produce negative costs!"); 542 return Cost; 543 } 544 545 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 546 const APInt &Imm, Type *Ty, 547 TTI::TargetCostKind CostKind, 548 Instruction *Inst) const { 549 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 550 assert(Cost >= 0 && "TTI should not produce negative costs!"); 551 return Cost; 552 } 553 554 int 555 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 556 const APInt &Imm, Type *Ty, 557 TTI::TargetCostKind CostKind) const { 558 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 559 assert(Cost >= 0 && "TTI should not produce negative costs!"); 560 return Cost; 561 } 562 563 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 564 return TTIImpl->getNumberOfRegisters(ClassID); 565 } 566 567 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 568 Type *Ty) const { 569 return TTIImpl->getRegisterClassForType(Vector, Ty); 570 } 571 572 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 573 return TTIImpl->getRegisterClassName(ClassID); 574 } 575 576 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 577 return TTIImpl->getRegisterBitWidth(Vector); 578 } 579 580 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 581 return TTIImpl->getMinVectorRegisterBitWidth(); 582 } 583 584 Optional<unsigned> TargetTransformInfo::getMaxVScale() const { 585 return TTIImpl->getMaxVScale(); 586 } 587 588 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 589 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 590 } 591 592 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth, 593 bool IsScalable) const { 594 return TTIImpl->getMinimumVF(ElemWidth, IsScalable); 595 } 596 597 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth, 598 unsigned Opcode) const { 599 return TTIImpl->getMaximumVF(ElemWidth, Opcode); 600 } 601 602 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 603 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 604 return TTIImpl->shouldConsiderAddressTypePromotion( 605 I, AllowPromotionWithoutCommonHeader); 606 } 607 608 unsigned TargetTransformInfo::getCacheLineSize() const { 609 return TTIImpl->getCacheLineSize(); 610 } 611 612 llvm::Optional<unsigned> 613 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 614 return TTIImpl->getCacheSize(Level); 615 } 616 617 llvm::Optional<unsigned> 618 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 619 return TTIImpl->getCacheAssociativity(Level); 620 } 621 622 unsigned TargetTransformInfo::getPrefetchDistance() const { 623 return TTIImpl->getPrefetchDistance(); 624 } 625 626 unsigned TargetTransformInfo::getMinPrefetchStride( 627 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 628 unsigned NumPrefetches, bool HasCall) const { 629 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 630 NumPrefetches, HasCall); 631 } 632 633 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 634 return TTIImpl->getMaxPrefetchIterationsAhead(); 635 } 636 637 bool TargetTransformInfo::enableWritePrefetching() const { 638 return TTIImpl->enableWritePrefetching(); 639 } 640 641 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 642 return TTIImpl->getMaxInterleaveFactor(VF); 643 } 644 645 TargetTransformInfo::OperandValueKind 646 TargetTransformInfo::getOperandInfo(const Value *V, 647 OperandValueProperties &OpProps) { 648 OperandValueKind OpInfo = OK_AnyValue; 649 OpProps = OP_None; 650 651 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 652 if (CI->getValue().isPowerOf2()) 653 OpProps = OP_PowerOf2; 654 return OK_UniformConstantValue; 655 } 656 657 // A broadcast shuffle creates a uniform value. 658 // TODO: Add support for non-zero index broadcasts. 659 // TODO: Add support for different source vector width. 660 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 661 if (ShuffleInst->isZeroEltSplat()) 662 OpInfo = OK_UniformValue; 663 664 const Value *Splat = getSplatValue(V); 665 666 // Check for a splat of a constant or for a non uniform vector of constants 667 // and check if the constant(s) are all powers of two. 668 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 669 OpInfo = OK_NonUniformConstantValue; 670 if (Splat) { 671 OpInfo = OK_UniformConstantValue; 672 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 673 if (CI->getValue().isPowerOf2()) 674 OpProps = OP_PowerOf2; 675 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 676 OpProps = OP_PowerOf2; 677 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 678 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 679 if (CI->getValue().isPowerOf2()) 680 continue; 681 OpProps = OP_None; 682 break; 683 } 684 } 685 } 686 687 // Check for a splat of a uniform value. This is not loop aware, so return 688 // true only for the obviously uniform cases (argument, globalvalue) 689 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 690 OpInfo = OK_UniformValue; 691 692 return OpInfo; 693 } 694 695 int TargetTransformInfo::getArithmeticInstrCost( 696 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 697 OperandValueKind Opd1Info, 698 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 699 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 700 const Instruction *CxtI) const { 701 int Cost = TTIImpl->getArithmeticInstrCost( 702 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 703 Args, CxtI); 704 assert(Cost >= 0 && "TTI should not produce negative costs!"); 705 return Cost; 706 } 707 708 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 709 int Index, VectorType *SubTp) const { 710 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 711 assert(Cost >= 0 && "TTI should not produce negative costs!"); 712 return Cost; 713 } 714 715 TTI::CastContextHint 716 TargetTransformInfo::getCastContextHint(const Instruction *I) { 717 if (!I) 718 return CastContextHint::None; 719 720 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp, 721 unsigned GatScatOp) { 722 const Instruction *I = dyn_cast<Instruction>(V); 723 if (!I) 724 return CastContextHint::None; 725 726 if (I->getOpcode() == LdStOp) 727 return CastContextHint::Normal; 728 729 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 730 if (II->getIntrinsicID() == MaskedOp) 731 return TTI::CastContextHint::Masked; 732 if (II->getIntrinsicID() == GatScatOp) 733 return TTI::CastContextHint::GatherScatter; 734 } 735 736 return TTI::CastContextHint::None; 737 }; 738 739 switch (I->getOpcode()) { 740 case Instruction::ZExt: 741 case Instruction::SExt: 742 case Instruction::FPExt: 743 return getLoadStoreKind(I->getOperand(0), Instruction::Load, 744 Intrinsic::masked_load, Intrinsic::masked_gather); 745 case Instruction::Trunc: 746 case Instruction::FPTrunc: 747 if (I->hasOneUse()) 748 return getLoadStoreKind(*I->user_begin(), Instruction::Store, 749 Intrinsic::masked_store, 750 Intrinsic::masked_scatter); 751 break; 752 default: 753 return CastContextHint::None; 754 } 755 756 return TTI::CastContextHint::None; 757 } 758 759 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 760 CastContextHint CCH, 761 TTI::TargetCostKind CostKind, 762 const Instruction *I) const { 763 assert((I == nullptr || I->getOpcode() == Opcode) && 764 "Opcode should reflect passed instruction."); 765 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 766 assert(Cost >= 0 && "TTI should not produce negative costs!"); 767 return Cost; 768 } 769 770 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 771 VectorType *VecTy, 772 unsigned Index) const { 773 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 774 assert(Cost >= 0 && "TTI should not produce negative costs!"); 775 return Cost; 776 } 777 778 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 779 TTI::TargetCostKind CostKind) const { 780 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 781 assert(Cost >= 0 && "TTI should not produce negative costs!"); 782 return Cost; 783 } 784 785 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 786 Type *CondTy, 787 CmpInst::Predicate VecPred, 788 TTI::TargetCostKind CostKind, 789 const Instruction *I) const { 790 assert((I == nullptr || I->getOpcode() == Opcode) && 791 "Opcode should reflect passed instruction."); 792 int Cost = 793 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 794 assert(Cost >= 0 && "TTI should not produce negative costs!"); 795 return Cost; 796 } 797 798 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 799 unsigned Index) const { 800 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 801 assert(Cost >= 0 && "TTI should not produce negative costs!"); 802 return Cost; 803 } 804 805 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 806 Align Alignment, unsigned AddressSpace, 807 TTI::TargetCostKind CostKind, 808 const Instruction *I) const { 809 assert((I == nullptr || I->getOpcode() == Opcode) && 810 "Opcode should reflect passed instruction."); 811 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 812 CostKind, I); 813 assert(Cost >= 0 && "TTI should not produce negative costs!"); 814 return Cost; 815 } 816 817 int TargetTransformInfo::getMaskedMemoryOpCost( 818 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 819 TTI::TargetCostKind CostKind) const { 820 int Cost = 821 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 822 CostKind); 823 assert(Cost >= 0 && "TTI should not produce negative costs!"); 824 return Cost; 825 } 826 827 int TargetTransformInfo::getGatherScatterOpCost( 828 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 829 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 830 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 831 Alignment, CostKind, I); 832 assert(Cost >= 0 && "TTI should not produce negative costs!"); 833 return Cost; 834 } 835 836 int TargetTransformInfo::getInterleavedMemoryOpCost( 837 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 838 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 839 bool UseMaskForCond, bool UseMaskForGaps) const { 840 int Cost = TTIImpl->getInterleavedMemoryOpCost( 841 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 842 UseMaskForCond, UseMaskForGaps); 843 assert(Cost >= 0 && "TTI should not produce negative costs!"); 844 return Cost; 845 } 846 847 int 848 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 849 TTI::TargetCostKind CostKind) const { 850 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 851 assert(Cost >= 0 && "TTI should not produce negative costs!"); 852 return Cost; 853 } 854 855 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 856 ArrayRef<Type *> Tys, 857 TTI::TargetCostKind CostKind) const { 858 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 859 assert(Cost >= 0 && "TTI should not produce negative costs!"); 860 return Cost; 861 } 862 863 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 864 return TTIImpl->getNumberOfParts(Tp); 865 } 866 867 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 868 ScalarEvolution *SE, 869 const SCEV *Ptr) const { 870 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 871 assert(Cost >= 0 && "TTI should not produce negative costs!"); 872 return Cost; 873 } 874 875 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 876 int Cost = TTIImpl->getMemcpyCost(I); 877 assert(Cost >= 0 && "TTI should not produce negative costs!"); 878 return Cost; 879 } 880 881 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 882 VectorType *Ty, 883 bool IsPairwiseForm, 884 TTI::TargetCostKind CostKind) const { 885 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 886 CostKind); 887 assert(Cost >= 0 && "TTI should not produce negative costs!"); 888 return Cost; 889 } 890 891 int TargetTransformInfo::getMinMaxReductionCost( 892 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 893 TTI::TargetCostKind CostKind) const { 894 int Cost = 895 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 896 CostKind); 897 assert(Cost >= 0 && "TTI should not produce negative costs!"); 898 return Cost; 899 } 900 901 InstructionCost TargetTransformInfo::getExtendedAddReductionCost( 902 bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, 903 TTI::TargetCostKind CostKind) const { 904 return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty, 905 CostKind); 906 } 907 908 unsigned 909 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 910 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 911 } 912 913 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 914 MemIntrinsicInfo &Info) const { 915 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 916 } 917 918 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 919 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 920 } 921 922 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 923 IntrinsicInst *Inst, Type *ExpectedType) const { 924 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 925 } 926 927 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 928 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 929 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 930 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 931 DestAddrSpace, SrcAlign, DestAlign); 932 } 933 934 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 935 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 936 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 937 unsigned SrcAlign, unsigned DestAlign) const { 938 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 939 SrcAddrSpace, DestAddrSpace, 940 SrcAlign, DestAlign); 941 } 942 943 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 944 const Function *Callee) const { 945 return TTIImpl->areInlineCompatible(Caller, Callee); 946 } 947 948 bool TargetTransformInfo::areFunctionArgsABICompatible( 949 const Function *Caller, const Function *Callee, 950 SmallPtrSetImpl<Argument *> &Args) const { 951 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 952 } 953 954 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 955 Type *Ty) const { 956 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 957 } 958 959 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 960 Type *Ty) const { 961 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 962 } 963 964 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 965 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 966 } 967 968 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 969 return TTIImpl->isLegalToVectorizeLoad(LI); 970 } 971 972 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 973 return TTIImpl->isLegalToVectorizeStore(SI); 974 } 975 976 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 977 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 978 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 979 AddrSpace); 980 } 981 982 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 983 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 984 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 985 AddrSpace); 986 } 987 988 bool TargetTransformInfo::isLegalToVectorizeReduction( 989 RecurrenceDescriptor RdxDesc, ElementCount VF) const { 990 return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF); 991 } 992 993 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 994 unsigned LoadSize, 995 unsigned ChainSizeInBytes, 996 VectorType *VecTy) const { 997 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 998 } 999 1000 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 1001 unsigned StoreSize, 1002 unsigned ChainSizeInBytes, 1003 VectorType *VecTy) const { 1004 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 1005 } 1006 1007 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty, 1008 ReductionFlags Flags) const { 1009 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags); 1010 } 1011 1012 bool TargetTransformInfo::preferPredicatedReductionSelect( 1013 unsigned Opcode, Type *Ty, ReductionFlags Flags) const { 1014 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags); 1015 } 1016 1017 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 1018 return TTIImpl->shouldExpandReduction(II); 1019 } 1020 1021 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 1022 return TTIImpl->getGISelRematGlobalCost(); 1023 } 1024 1025 bool TargetTransformInfo::supportsScalableVectors() const { 1026 return TTIImpl->supportsScalableVectors(); 1027 } 1028 1029 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 1030 return TTIImpl->getInstructionLatency(I); 1031 } 1032 1033 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 1034 unsigned Level) { 1035 // We don't need a shuffle if we just want to have element 0 in position 0 of 1036 // the vector. 1037 if (!SI && Level == 0 && IsLeft) 1038 return true; 1039 else if (!SI) 1040 return false; 1041 1042 SmallVector<int, 32> Mask( 1043 cast<FixedVectorType>(SI->getType())->getNumElements(), -1); 1044 1045 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 1046 // we look at the left or right side. 1047 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 1048 Mask[i] = val; 1049 1050 ArrayRef<int> ActualMask = SI->getShuffleMask(); 1051 return Mask == ActualMask; 1052 } 1053 1054 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 1055 Value *L, *R; 1056 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 1057 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 1058 if (auto *SI = dyn_cast<SelectInst>(I)) { 1059 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 1060 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1061 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1062 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1063 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1064 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1065 auto *CI = cast<CmpInst>(SI->getCondition()); 1066 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 1067 } 1068 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1069 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1070 auto *CI = cast<CmpInst>(SI->getCondition()); 1071 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 1072 } 1073 } 1074 return llvm::None; 1075 } 1076 1077 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1078 unsigned Level, 1079 unsigned NumLevels) { 1080 // Match one level of pairwise operations. 1081 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1082 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1083 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1084 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1085 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1086 if (!I) 1087 return TTI::RK_None; 1088 1089 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1090 1091 Optional<TTI::ReductionData> RD = getReductionData(I); 1092 if (!RD) 1093 return TTI::RK_None; 1094 1095 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1096 if (!LS && Level) 1097 return TTI::RK_None; 1098 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1099 if (!RS && Level) 1100 return TTI::RK_None; 1101 1102 // On level 0 we can omit one shufflevector instruction. 1103 if (!Level && !RS && !LS) 1104 return TTI::RK_None; 1105 1106 // Shuffle inputs must match. 1107 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1108 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1109 Value *NextLevelOp = nullptr; 1110 if (NextLevelOpR && NextLevelOpL) { 1111 // If we have two shuffles their operands must match. 1112 if (NextLevelOpL != NextLevelOpR) 1113 return TTI::RK_None; 1114 1115 NextLevelOp = NextLevelOpL; 1116 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1117 // On the first level we can omit the shufflevector <0, undef,...>. So the 1118 // input to the other shufflevector <1, undef> must match with one of the 1119 // inputs to the current binary operation. 1120 // Example: 1121 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1122 // %BinOp = fadd %NextLevelOpL, %R 1123 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1124 return TTI::RK_None; 1125 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1126 return TTI::RK_None; 1127 1128 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1129 } else 1130 return TTI::RK_None; 1131 1132 // Check that the next levels binary operation exists and matches with the 1133 // current one. 1134 if (Level + 1 != NumLevels) { 1135 if (!isa<Instruction>(NextLevelOp)) 1136 return TTI::RK_None; 1137 Optional<TTI::ReductionData> NextLevelRD = 1138 getReductionData(cast<Instruction>(NextLevelOp)); 1139 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1140 return TTI::RK_None; 1141 } 1142 1143 // Shuffle mask for pairwise operation must match. 1144 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1145 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1146 return TTI::RK_None; 1147 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1148 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1149 return TTI::RK_None; 1150 } else { 1151 return TTI::RK_None; 1152 } 1153 1154 if (++Level == NumLevels) 1155 return RD->Kind; 1156 1157 // Match next level. 1158 return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level, 1159 NumLevels); 1160 } 1161 1162 TTI::ReductionKind TTI::matchPairwiseReduction( 1163 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1164 if (!EnableReduxCost) 1165 return TTI::RK_None; 1166 1167 // Need to extract the first element. 1168 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1169 unsigned Idx = ~0u; 1170 if (CI) 1171 Idx = CI->getZExtValue(); 1172 if (Idx != 0) 1173 return TTI::RK_None; 1174 1175 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1176 if (!RdxStart) 1177 return TTI::RK_None; 1178 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1179 if (!RD) 1180 return TTI::RK_None; 1181 1182 auto *VecTy = cast<FixedVectorType>(RdxStart->getType()); 1183 unsigned NumVecElems = VecTy->getNumElements(); 1184 if (!isPowerOf2_32(NumVecElems)) 1185 return TTI::RK_None; 1186 1187 // We look for a sequence of shuffle,shuffle,add triples like the following 1188 // that builds a pairwise reduction tree. 1189 // 1190 // (X0, X1, X2, X3) 1191 // (X0 + X1, X2 + X3, undef, undef) 1192 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1193 // 1194 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1195 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1196 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1197 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1198 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1199 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1200 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1201 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1202 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1203 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1204 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1205 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1206 TTI::RK_None) 1207 return TTI::RK_None; 1208 1209 Opcode = RD->Opcode; 1210 Ty = VecTy; 1211 1212 return RD->Kind; 1213 } 1214 1215 static std::pair<Value *, ShuffleVectorInst *> 1216 getShuffleAndOtherOprd(Value *L, Value *R) { 1217 ShuffleVectorInst *S = nullptr; 1218 1219 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1220 return std::make_pair(R, S); 1221 1222 S = dyn_cast<ShuffleVectorInst>(R); 1223 return std::make_pair(L, S); 1224 } 1225 1226 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1227 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1228 1229 if (!EnableReduxCost) 1230 return TTI::RK_None; 1231 1232 // Need to extract the first element. 1233 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1234 unsigned Idx = ~0u; 1235 if (CI) 1236 Idx = CI->getZExtValue(); 1237 if (Idx != 0) 1238 return TTI::RK_None; 1239 1240 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1241 if (!RdxStart) 1242 return TTI::RK_None; 1243 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1244 if (!RD) 1245 return TTI::RK_None; 1246 1247 auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType()); 1248 unsigned NumVecElems = VecTy->getNumElements(); 1249 if (!isPowerOf2_32(NumVecElems)) 1250 return TTI::RK_None; 1251 1252 // We look for a sequence of shuffles and adds like the following matching one 1253 // fadd, shuffle vector pair at a time. 1254 // 1255 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1256 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1257 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1258 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1259 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1260 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1261 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1262 1263 unsigned MaskStart = 1; 1264 Instruction *RdxOp = RdxStart; 1265 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1266 unsigned NumVecElemsRemain = NumVecElems; 1267 while (NumVecElemsRemain - 1) { 1268 // Check for the right reduction operation. 1269 if (!RdxOp) 1270 return TTI::RK_None; 1271 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1272 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1273 return TTI::RK_None; 1274 1275 Value *NextRdxOp; 1276 ShuffleVectorInst *Shuffle; 1277 std::tie(NextRdxOp, Shuffle) = 1278 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1279 1280 // Check the current reduction operation and the shuffle use the same value. 1281 if (Shuffle == nullptr) 1282 return TTI::RK_None; 1283 if (Shuffle->getOperand(0) != NextRdxOp) 1284 return TTI::RK_None; 1285 1286 // Check that shuffle masks matches. 1287 for (unsigned j = 0; j != MaskStart; ++j) 1288 ShuffleMask[j] = MaskStart + j; 1289 // Fill the rest of the mask with -1 for undef. 1290 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1291 1292 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1293 if (ShuffleMask != Mask) 1294 return TTI::RK_None; 1295 1296 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1297 NumVecElemsRemain /= 2; 1298 MaskStart *= 2; 1299 } 1300 1301 Opcode = RD->Opcode; 1302 Ty = VecTy; 1303 return RD->Kind; 1304 } 1305 1306 TTI::ReductionKind 1307 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode, 1308 VectorType *&Ty, bool &IsPairwise) { 1309 TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty); 1310 if (RdxKind != TTI::ReductionKind::RK_None) { 1311 IsPairwise = false; 1312 return RdxKind; 1313 } 1314 IsPairwise = true; 1315 return matchPairwiseReduction(Root, Opcode, Ty); 1316 } 1317 1318 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1319 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1320 1321 switch (I->getOpcode()) { 1322 case Instruction::GetElementPtr: 1323 case Instruction::Ret: 1324 case Instruction::PHI: 1325 case Instruction::Br: 1326 case Instruction::Add: 1327 case Instruction::FAdd: 1328 case Instruction::Sub: 1329 case Instruction::FSub: 1330 case Instruction::Mul: 1331 case Instruction::FMul: 1332 case Instruction::UDiv: 1333 case Instruction::SDiv: 1334 case Instruction::FDiv: 1335 case Instruction::URem: 1336 case Instruction::SRem: 1337 case Instruction::FRem: 1338 case Instruction::Shl: 1339 case Instruction::LShr: 1340 case Instruction::AShr: 1341 case Instruction::And: 1342 case Instruction::Or: 1343 case Instruction::Xor: 1344 case Instruction::FNeg: 1345 case Instruction::Select: 1346 case Instruction::ICmp: 1347 case Instruction::FCmp: 1348 case Instruction::Store: 1349 case Instruction::Load: 1350 case Instruction::ZExt: 1351 case Instruction::SExt: 1352 case Instruction::FPToUI: 1353 case Instruction::FPToSI: 1354 case Instruction::FPExt: 1355 case Instruction::PtrToInt: 1356 case Instruction::IntToPtr: 1357 case Instruction::SIToFP: 1358 case Instruction::UIToFP: 1359 case Instruction::Trunc: 1360 case Instruction::FPTrunc: 1361 case Instruction::BitCast: 1362 case Instruction::AddrSpaceCast: 1363 case Instruction::ExtractElement: 1364 case Instruction::InsertElement: 1365 case Instruction::ExtractValue: 1366 case Instruction::ShuffleVector: 1367 case Instruction::Call: 1368 return getUserCost(I, CostKind); 1369 default: 1370 // We don't have any information on this instruction. 1371 return -1; 1372 } 1373 } 1374 1375 TargetTransformInfo::Concept::~Concept() {} 1376 1377 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1378 1379 TargetIRAnalysis::TargetIRAnalysis( 1380 std::function<Result(const Function &)> TTICallback) 1381 : TTICallback(std::move(TTICallback)) {} 1382 1383 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1384 FunctionAnalysisManager &) { 1385 return TTICallback(F); 1386 } 1387 1388 AnalysisKey TargetIRAnalysis::Key; 1389 1390 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1391 return Result(F.getParent()->getDataLayout()); 1392 } 1393 1394 // Register the basic pass. 1395 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1396 "Target Transform Information", false, true) 1397 char TargetTransformInfoWrapperPass::ID = 0; 1398 1399 void TargetTransformInfoWrapperPass::anchor() {} 1400 1401 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1402 : ImmutablePass(ID) { 1403 initializeTargetTransformInfoWrapperPassPass( 1404 *PassRegistry::getPassRegistry()); 1405 } 1406 1407 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1408 TargetIRAnalysis TIRA) 1409 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1410 initializeTargetTransformInfoWrapperPassPass( 1411 *PassRegistry::getPassRegistry()); 1412 } 1413 1414 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1415 FunctionAnalysisManager DummyFAM; 1416 TTI = TIRA.run(F, DummyFAM); 1417 return *TTI; 1418 } 1419 1420 ImmutablePass * 1421 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1422 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1423 } 1424