1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Instruction.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Module.h" 17 #include "llvm/IR/Operator.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include <utility> 24 25 using namespace llvm; 26 using namespace PatternMatch; 27 28 #define DEBUG_TYPE "tti" 29 30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 31 cl::Hidden, 32 cl::desc("Recognize reduction patterns.")); 33 34 namespace { 35 /// No-op implementation of the TTI interface using the utility base 36 /// classes. 37 /// 38 /// This is used when no target specific information is available. 39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 40 explicit NoTTIImpl(const DataLayout &DL) 41 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 42 }; 43 } 44 45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 46 // If the loop has irreducible control flow, it can not be converted to 47 // Hardware loop. 48 LoopBlocksRPO RPOT(L); 49 RPOT.perform(&LI); 50 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 51 return false; 52 return true; 53 } 54 55 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 56 LoopInfo &LI, DominatorTree &DT, 57 bool ForceNestedLoop, 58 bool ForceHardwareLoopPHI) { 59 SmallVector<BasicBlock *, 4> ExitingBlocks; 60 L->getExitingBlocks(ExitingBlocks); 61 62 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 63 IE = ExitingBlocks.end(); 64 I != IE; ++I) { 65 BasicBlock *BB = *I; 66 67 // If we pass the updated counter back through a phi, we need to know 68 // which latch the updated value will be coming from. 69 if (!L->isLoopLatch(BB)) { 70 if (ForceHardwareLoopPHI || CounterInReg) 71 continue; 72 } 73 74 const SCEV *EC = SE.getExitCount(L, BB); 75 if (isa<SCEVCouldNotCompute>(EC)) 76 continue; 77 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 78 if (ConstEC->getValue()->isZero()) 79 continue; 80 } else if (!SE.isLoopInvariant(EC, L)) 81 continue; 82 83 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 84 continue; 85 86 // If this exiting block is contained in a nested loop, it is not eligible 87 // for insertion of the branch-and-decrement since the inner loop would 88 // end up messing up the value in the CTR. 89 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 90 continue; 91 92 // We now have a loop-invariant count of loop iterations (which is not the 93 // constant zero) for which we know that this loop will not exit via this 94 // existing block. 95 96 // We need to make sure that this block will run on every loop iteration. 97 // For this to be true, we must dominate all blocks with backedges. Such 98 // blocks are in-loop predecessors to the header block. 99 bool NotAlways = false; 100 for (pred_iterator PI = pred_begin(L->getHeader()), 101 PIE = pred_end(L->getHeader()); 102 PI != PIE; ++PI) { 103 if (!L->contains(*PI)) 104 continue; 105 106 if (!DT.dominates(*I, *PI)) { 107 NotAlways = true; 108 break; 109 } 110 } 111 112 if (NotAlways) 113 continue; 114 115 // Make sure this blocks ends with a conditional branch. 116 Instruction *TI = BB->getTerminator(); 117 if (!TI) 118 continue; 119 120 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 121 if (!BI->isConditional()) 122 continue; 123 124 ExitBranch = BI; 125 } else 126 continue; 127 128 // Note that this block may not be the loop latch block, even if the loop 129 // has a latch block. 130 ExitBlock = *I; 131 ExitCount = EC; 132 break; 133 } 134 135 if (!ExitBlock) 136 return false; 137 return true; 138 } 139 140 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 141 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 142 143 TargetTransformInfo::~TargetTransformInfo() {} 144 145 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 146 : TTIImpl(std::move(Arg.TTIImpl)) {} 147 148 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 149 TTIImpl = std::move(RHS.TTIImpl); 150 return *this; 151 } 152 153 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 154 Type *OpTy) const { 155 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 156 assert(Cost >= 0 && "TTI should not produce negative costs!"); 157 return Cost; 158 } 159 160 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 161 const User *U) const { 162 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 163 assert(Cost >= 0 && "TTI should not produce negative costs!"); 164 return Cost; 165 } 166 167 int TargetTransformInfo::getCallCost(const Function *F, 168 ArrayRef<const Value *> Arguments, 169 const User *U) const { 170 int Cost = TTIImpl->getCallCost(F, Arguments, U); 171 assert(Cost >= 0 && "TTI should not produce negative costs!"); 172 return Cost; 173 } 174 175 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 176 return TTIImpl->getInliningThresholdMultiplier(); 177 } 178 179 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 180 ArrayRef<const Value *> Operands) const { 181 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 182 } 183 184 int TargetTransformInfo::getExtCost(const Instruction *I, 185 const Value *Src) const { 186 return TTIImpl->getExtCost(I, Src); 187 } 188 189 int TargetTransformInfo::getIntrinsicCost( 190 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 191 const User *U) const { 192 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 193 assert(Cost >= 0 && "TTI should not produce negative costs!"); 194 return Cost; 195 } 196 197 unsigned 198 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 199 unsigned &JTSize) const { 200 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 201 } 202 203 int TargetTransformInfo::getUserCost(const User *U, 204 ArrayRef<const Value *> Operands) const { 205 int Cost = TTIImpl->getUserCost(U, Operands); 206 assert(Cost >= 0 && "TTI should not produce negative costs!"); 207 return Cost; 208 } 209 210 bool TargetTransformInfo::hasBranchDivergence() const { 211 return TTIImpl->hasBranchDivergence(); 212 } 213 214 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 215 return TTIImpl->isSourceOfDivergence(V); 216 } 217 218 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 219 return TTIImpl->isAlwaysUniform(V); 220 } 221 222 unsigned TargetTransformInfo::getFlatAddressSpace() const { 223 return TTIImpl->getFlatAddressSpace(); 224 } 225 226 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 227 return TTIImpl->isLoweredToCall(F); 228 } 229 230 bool TargetTransformInfo::isHardwareLoopProfitable( 231 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 232 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 233 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 234 } 235 236 void TargetTransformInfo::getUnrollingPreferences( 237 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 238 return TTIImpl->getUnrollingPreferences(L, SE, UP); 239 } 240 241 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 242 return TTIImpl->isLegalAddImmediate(Imm); 243 } 244 245 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 246 return TTIImpl->isLegalICmpImmediate(Imm); 247 } 248 249 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 250 int64_t BaseOffset, 251 bool HasBaseReg, 252 int64_t Scale, 253 unsigned AddrSpace, 254 Instruction *I) const { 255 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 256 Scale, AddrSpace, I); 257 } 258 259 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 260 return TTIImpl->isLSRCostLess(C1, C2); 261 } 262 263 bool TargetTransformInfo::canMacroFuseCmp() const { 264 return TTIImpl->canMacroFuseCmp(); 265 } 266 267 bool TargetTransformInfo::shouldFavorPostInc() const { 268 return TTIImpl->shouldFavorPostInc(); 269 } 270 271 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 272 return TTIImpl->shouldFavorBackedgeIndex(L); 273 } 274 275 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 276 return TTIImpl->isLegalMaskedStore(DataType); 277 } 278 279 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 280 return TTIImpl->isLegalMaskedLoad(DataType); 281 } 282 283 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 284 unsigned Alignment) const { 285 return TTIImpl->isLegalNTStore(DataType, Alignment); 286 } 287 288 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, 289 unsigned Alignment) const { 290 return TTIImpl->isLegalNTLoad(DataType, Alignment); 291 } 292 293 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 294 return TTIImpl->isLegalMaskedGather(DataType); 295 } 296 297 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 298 return TTIImpl->isLegalMaskedScatter(DataType); 299 } 300 301 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 302 return TTIImpl->isLegalMaskedCompressStore(DataType); 303 } 304 305 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 306 return TTIImpl->isLegalMaskedExpandLoad(DataType); 307 } 308 309 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 310 return TTIImpl->hasDivRemOp(DataType, IsSigned); 311 } 312 313 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 314 unsigned AddrSpace) const { 315 return TTIImpl->hasVolatileVariant(I, AddrSpace); 316 } 317 318 bool TargetTransformInfo::prefersVectorizedAddressing() const { 319 return TTIImpl->prefersVectorizedAddressing(); 320 } 321 322 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 323 int64_t BaseOffset, 324 bool HasBaseReg, 325 int64_t Scale, 326 unsigned AddrSpace) const { 327 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 328 Scale, AddrSpace); 329 assert(Cost >= 0 && "TTI should not produce negative costs!"); 330 return Cost; 331 } 332 333 bool TargetTransformInfo::LSRWithInstrQueries() const { 334 return TTIImpl->LSRWithInstrQueries(); 335 } 336 337 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 338 return TTIImpl->isTruncateFree(Ty1, Ty2); 339 } 340 341 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 342 return TTIImpl->isProfitableToHoist(I); 343 } 344 345 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 346 347 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 348 return TTIImpl->isTypeLegal(Ty); 349 } 350 351 unsigned TargetTransformInfo::getJumpBufAlignment() const { 352 return TTIImpl->getJumpBufAlignment(); 353 } 354 355 unsigned TargetTransformInfo::getJumpBufSize() const { 356 return TTIImpl->getJumpBufSize(); 357 } 358 359 bool TargetTransformInfo::shouldBuildLookupTables() const { 360 return TTIImpl->shouldBuildLookupTables(); 361 } 362 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 363 return TTIImpl->shouldBuildLookupTablesForConstant(C); 364 } 365 366 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 367 return TTIImpl->useColdCCForColdCall(F); 368 } 369 370 unsigned TargetTransformInfo:: 371 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 372 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 373 } 374 375 unsigned TargetTransformInfo:: 376 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 377 unsigned VF) const { 378 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 379 } 380 381 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 382 return TTIImpl->supportsEfficientVectorElementLoadStore(); 383 } 384 385 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 386 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 387 } 388 389 TargetTransformInfo::MemCmpExpansionOptions 390 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 391 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 392 } 393 394 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 395 return TTIImpl->enableInterleavedAccessVectorization(); 396 } 397 398 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 399 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 400 } 401 402 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 403 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 404 } 405 406 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 407 unsigned BitWidth, 408 unsigned AddressSpace, 409 unsigned Alignment, 410 bool *Fast) const { 411 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 412 Alignment, Fast); 413 } 414 415 TargetTransformInfo::PopcntSupportKind 416 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 417 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 418 } 419 420 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 421 return TTIImpl->haveFastSqrt(Ty); 422 } 423 424 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 425 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 426 } 427 428 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 429 int Cost = TTIImpl->getFPOpCost(Ty); 430 assert(Cost >= 0 && "TTI should not produce negative costs!"); 431 return Cost; 432 } 433 434 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 435 const APInt &Imm, 436 Type *Ty) const { 437 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 438 assert(Cost >= 0 && "TTI should not produce negative costs!"); 439 return Cost; 440 } 441 442 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 443 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 444 assert(Cost >= 0 && "TTI should not produce negative costs!"); 445 return Cost; 446 } 447 448 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 449 const APInt &Imm, Type *Ty) const { 450 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 451 assert(Cost >= 0 && "TTI should not produce negative costs!"); 452 return Cost; 453 } 454 455 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 456 const APInt &Imm, Type *Ty) const { 457 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 458 assert(Cost >= 0 && "TTI should not produce negative costs!"); 459 return Cost; 460 } 461 462 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 463 return TTIImpl->getNumberOfRegisters(Vector); 464 } 465 466 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 467 return TTIImpl->getRegisterBitWidth(Vector); 468 } 469 470 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 471 return TTIImpl->getMinVectorRegisterBitWidth(); 472 } 473 474 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 475 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 476 } 477 478 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 479 return TTIImpl->getMinimumVF(ElemWidth); 480 } 481 482 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 483 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 484 return TTIImpl->shouldConsiderAddressTypePromotion( 485 I, AllowPromotionWithoutCommonHeader); 486 } 487 488 unsigned TargetTransformInfo::getCacheLineSize() const { 489 return TTIImpl->getCacheLineSize(); 490 } 491 492 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 493 const { 494 return TTIImpl->getCacheSize(Level); 495 } 496 497 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 498 CacheLevel Level) const { 499 return TTIImpl->getCacheAssociativity(Level); 500 } 501 502 unsigned TargetTransformInfo::getPrefetchDistance() const { 503 return TTIImpl->getPrefetchDistance(); 504 } 505 506 unsigned TargetTransformInfo::getMinPrefetchStride() const { 507 return TTIImpl->getMinPrefetchStride(); 508 } 509 510 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 511 return TTIImpl->getMaxPrefetchIterationsAhead(); 512 } 513 514 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 515 return TTIImpl->getMaxInterleaveFactor(VF); 516 } 517 518 TargetTransformInfo::OperandValueKind 519 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 520 OperandValueKind OpInfo = OK_AnyValue; 521 OpProps = OP_None; 522 523 if (auto *CI = dyn_cast<ConstantInt>(V)) { 524 if (CI->getValue().isPowerOf2()) 525 OpProps = OP_PowerOf2; 526 return OK_UniformConstantValue; 527 } 528 529 // A broadcast shuffle creates a uniform value. 530 // TODO: Add support for non-zero index broadcasts. 531 // TODO: Add support for different source vector width. 532 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 533 if (ShuffleInst->isZeroEltSplat()) 534 OpInfo = OK_UniformValue; 535 536 const Value *Splat = getSplatValue(V); 537 538 // Check for a splat of a constant or for a non uniform vector of constants 539 // and check if the constant(s) are all powers of two. 540 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 541 OpInfo = OK_NonUniformConstantValue; 542 if (Splat) { 543 OpInfo = OK_UniformConstantValue; 544 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 545 if (CI->getValue().isPowerOf2()) 546 OpProps = OP_PowerOf2; 547 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 548 OpProps = OP_PowerOf2; 549 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 550 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 551 if (CI->getValue().isPowerOf2()) 552 continue; 553 OpProps = OP_None; 554 break; 555 } 556 } 557 } 558 559 // Check for a splat of a uniform value. This is not loop aware, so return 560 // true only for the obviously uniform cases (argument, globalvalue) 561 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 562 OpInfo = OK_UniformValue; 563 564 return OpInfo; 565 } 566 567 int TargetTransformInfo::getArithmeticInstrCost( 568 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 569 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 570 OperandValueProperties Opd2PropInfo, 571 ArrayRef<const Value *> Args) const { 572 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 573 Opd1PropInfo, Opd2PropInfo, Args); 574 assert(Cost >= 0 && "TTI should not produce negative costs!"); 575 return Cost; 576 } 577 578 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 579 Type *SubTp) const { 580 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 581 assert(Cost >= 0 && "TTI should not produce negative costs!"); 582 return Cost; 583 } 584 585 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 586 Type *Src, const Instruction *I) const { 587 assert ((I == nullptr || I->getOpcode() == Opcode) && 588 "Opcode should reflect passed instruction."); 589 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 590 assert(Cost >= 0 && "TTI should not produce negative costs!"); 591 return Cost; 592 } 593 594 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 595 VectorType *VecTy, 596 unsigned Index) const { 597 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 598 assert(Cost >= 0 && "TTI should not produce negative costs!"); 599 return Cost; 600 } 601 602 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 603 int Cost = TTIImpl->getCFInstrCost(Opcode); 604 assert(Cost >= 0 && "TTI should not produce negative costs!"); 605 return Cost; 606 } 607 608 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 609 Type *CondTy, const Instruction *I) const { 610 assert ((I == nullptr || I->getOpcode() == Opcode) && 611 "Opcode should reflect passed instruction."); 612 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 613 assert(Cost >= 0 && "TTI should not produce negative costs!"); 614 return Cost; 615 } 616 617 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 618 unsigned Index) const { 619 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 620 assert(Cost >= 0 && "TTI should not produce negative costs!"); 621 return Cost; 622 } 623 624 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 625 unsigned Alignment, 626 unsigned AddressSpace, 627 const Instruction *I) const { 628 assert ((I == nullptr || I->getOpcode() == Opcode) && 629 "Opcode should reflect passed instruction."); 630 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 636 unsigned Alignment, 637 unsigned AddressSpace) const { 638 int Cost = 639 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 640 assert(Cost >= 0 && "TTI should not produce negative costs!"); 641 return Cost; 642 } 643 644 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 645 Value *Ptr, bool VariableMask, 646 unsigned Alignment) const { 647 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 648 Alignment); 649 assert(Cost >= 0 && "TTI should not produce negative costs!"); 650 return Cost; 651 } 652 653 int TargetTransformInfo::getInterleavedMemoryOpCost( 654 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 655 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 656 bool UseMaskForGaps) const { 657 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 658 Alignment, AddressSpace, 659 UseMaskForCond, 660 UseMaskForGaps); 661 assert(Cost >= 0 && "TTI should not produce negative costs!"); 662 return Cost; 663 } 664 665 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 666 ArrayRef<Type *> Tys, FastMathFlags FMF, 667 unsigned ScalarizationCostPassed) const { 668 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 669 ScalarizationCostPassed); 670 assert(Cost >= 0 && "TTI should not produce negative costs!"); 671 return Cost; 672 } 673 674 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 675 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 676 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 677 assert(Cost >= 0 && "TTI should not produce negative costs!"); 678 return Cost; 679 } 680 681 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 682 ArrayRef<Type *> Tys) const { 683 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 684 assert(Cost >= 0 && "TTI should not produce negative costs!"); 685 return Cost; 686 } 687 688 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 689 return TTIImpl->getNumberOfParts(Tp); 690 } 691 692 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 693 ScalarEvolution *SE, 694 const SCEV *Ptr) const { 695 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 696 assert(Cost >= 0 && "TTI should not produce negative costs!"); 697 return Cost; 698 } 699 700 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 701 int Cost = TTIImpl->getMemcpyCost(I); 702 assert(Cost >= 0 && "TTI should not produce negative costs!"); 703 return Cost; 704 } 705 706 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 707 bool IsPairwiseForm) const { 708 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 709 assert(Cost >= 0 && "TTI should not produce negative costs!"); 710 return Cost; 711 } 712 713 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 714 bool IsPairwiseForm, 715 bool IsUnsigned) const { 716 int Cost = 717 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 718 assert(Cost >= 0 && "TTI should not produce negative costs!"); 719 return Cost; 720 } 721 722 unsigned 723 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 724 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 725 } 726 727 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 728 MemIntrinsicInfo &Info) const { 729 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 730 } 731 732 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 733 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 734 } 735 736 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 737 IntrinsicInst *Inst, Type *ExpectedType) const { 738 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 739 } 740 741 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 742 Value *Length, 743 unsigned SrcAlign, 744 unsigned DestAlign) const { 745 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 746 DestAlign); 747 } 748 749 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 750 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 751 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 752 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 753 SrcAlign, DestAlign); 754 } 755 756 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 757 const Function *Callee) const { 758 return TTIImpl->areInlineCompatible(Caller, Callee); 759 } 760 761 bool TargetTransformInfo::areFunctionArgsABICompatible( 762 const Function *Caller, const Function *Callee, 763 SmallPtrSetImpl<Argument *> &Args) const { 764 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 765 } 766 767 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 768 Type *Ty) const { 769 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 770 } 771 772 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 773 Type *Ty) const { 774 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 775 } 776 777 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 778 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 779 } 780 781 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 782 return TTIImpl->isLegalToVectorizeLoad(LI); 783 } 784 785 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 786 return TTIImpl->isLegalToVectorizeStore(SI); 787 } 788 789 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 790 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 791 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 792 AddrSpace); 793 } 794 795 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 796 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 797 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 798 AddrSpace); 799 } 800 801 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 802 unsigned LoadSize, 803 unsigned ChainSizeInBytes, 804 VectorType *VecTy) const { 805 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 806 } 807 808 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 809 unsigned StoreSize, 810 unsigned ChainSizeInBytes, 811 VectorType *VecTy) const { 812 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 813 } 814 815 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 816 Type *Ty, ReductionFlags Flags) const { 817 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 818 } 819 820 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 821 return TTIImpl->shouldExpandReduction(II); 822 } 823 824 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 825 return TTIImpl->getGISelRematGlobalCost(); 826 } 827 828 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 829 return TTIImpl->getInstructionLatency(I); 830 } 831 832 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 833 unsigned Level) { 834 // We don't need a shuffle if we just want to have element 0 in position 0 of 835 // the vector. 836 if (!SI && Level == 0 && IsLeft) 837 return true; 838 else if (!SI) 839 return false; 840 841 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 842 843 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 844 // we look at the left or right side. 845 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 846 Mask[i] = val; 847 848 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 849 return Mask == ActualMask; 850 } 851 852 namespace { 853 /// Kind of the reduction data. 854 enum ReductionKind { 855 RK_None, /// Not a reduction. 856 RK_Arithmetic, /// Binary reduction data. 857 RK_MinMax, /// Min/max reduction data. 858 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 859 }; 860 /// Contains opcode + LHS/RHS parts of the reduction operations. 861 struct ReductionData { 862 ReductionData() = delete; 863 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 864 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 865 assert(Kind != RK_None && "expected binary or min/max reduction only."); 866 } 867 unsigned Opcode = 0; 868 Value *LHS = nullptr; 869 Value *RHS = nullptr; 870 ReductionKind Kind = RK_None; 871 bool hasSameData(ReductionData &RD) const { 872 return Kind == RD.Kind && Opcode == RD.Opcode; 873 } 874 }; 875 } // namespace 876 877 static Optional<ReductionData> getReductionData(Instruction *I) { 878 Value *L, *R; 879 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 880 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 881 if (auto *SI = dyn_cast<SelectInst>(I)) { 882 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 883 m_SMax(m_Value(L), m_Value(R)).match(SI) || 884 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 885 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 886 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 887 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 888 auto *CI = cast<CmpInst>(SI->getCondition()); 889 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 890 } 891 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 892 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 893 auto *CI = cast<CmpInst>(SI->getCondition()); 894 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 895 } 896 } 897 return llvm::None; 898 } 899 900 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 901 unsigned Level, 902 unsigned NumLevels) { 903 // Match one level of pairwise operations. 904 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 905 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 906 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 907 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 908 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 909 if (!I) 910 return RK_None; 911 912 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 913 914 Optional<ReductionData> RD = getReductionData(I); 915 if (!RD) 916 return RK_None; 917 918 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 919 if (!LS && Level) 920 return RK_None; 921 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 922 if (!RS && Level) 923 return RK_None; 924 925 // On level 0 we can omit one shufflevector instruction. 926 if (!Level && !RS && !LS) 927 return RK_None; 928 929 // Shuffle inputs must match. 930 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 931 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 932 Value *NextLevelOp = nullptr; 933 if (NextLevelOpR && NextLevelOpL) { 934 // If we have two shuffles their operands must match. 935 if (NextLevelOpL != NextLevelOpR) 936 return RK_None; 937 938 NextLevelOp = NextLevelOpL; 939 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 940 // On the first level we can omit the shufflevector <0, undef,...>. So the 941 // input to the other shufflevector <1, undef> must match with one of the 942 // inputs to the current binary operation. 943 // Example: 944 // %NextLevelOpL = shufflevector %R, <1, undef ...> 945 // %BinOp = fadd %NextLevelOpL, %R 946 if (NextLevelOpL && NextLevelOpL != RD->RHS) 947 return RK_None; 948 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 949 return RK_None; 950 951 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 952 } else 953 return RK_None; 954 955 // Check that the next levels binary operation exists and matches with the 956 // current one. 957 if (Level + 1 != NumLevels) { 958 Optional<ReductionData> NextLevelRD = 959 getReductionData(cast<Instruction>(NextLevelOp)); 960 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 961 return RK_None; 962 } 963 964 // Shuffle mask for pairwise operation must match. 965 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 966 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 967 return RK_None; 968 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 969 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 970 return RK_None; 971 } else { 972 return RK_None; 973 } 974 975 if (++Level == NumLevels) 976 return RD->Kind; 977 978 // Match next level. 979 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 980 NumLevels); 981 } 982 983 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 984 unsigned &Opcode, Type *&Ty) { 985 if (!EnableReduxCost) 986 return RK_None; 987 988 // Need to extract the first element. 989 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 990 unsigned Idx = ~0u; 991 if (CI) 992 Idx = CI->getZExtValue(); 993 if (Idx != 0) 994 return RK_None; 995 996 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 997 if (!RdxStart) 998 return RK_None; 999 Optional<ReductionData> RD = getReductionData(RdxStart); 1000 if (!RD) 1001 return RK_None; 1002 1003 Type *VecTy = RdxStart->getType(); 1004 unsigned NumVecElems = VecTy->getVectorNumElements(); 1005 if (!isPowerOf2_32(NumVecElems)) 1006 return RK_None; 1007 1008 // We look for a sequence of shuffle,shuffle,add triples like the following 1009 // that builds a pairwise reduction tree. 1010 // 1011 // (X0, X1, X2, X3) 1012 // (X0 + X1, X2 + X3, undef, undef) 1013 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1014 // 1015 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1016 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1017 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1018 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1019 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1020 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1021 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1022 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1023 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1024 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1025 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1026 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1027 RK_None) 1028 return RK_None; 1029 1030 Opcode = RD->Opcode; 1031 Ty = VecTy; 1032 1033 return RD->Kind; 1034 } 1035 1036 static std::pair<Value *, ShuffleVectorInst *> 1037 getShuffleAndOtherOprd(Value *L, Value *R) { 1038 ShuffleVectorInst *S = nullptr; 1039 1040 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1041 return std::make_pair(R, S); 1042 1043 S = dyn_cast<ShuffleVectorInst>(R); 1044 return std::make_pair(L, S); 1045 } 1046 1047 static ReductionKind 1048 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1049 unsigned &Opcode, Type *&Ty) { 1050 if (!EnableReduxCost) 1051 return RK_None; 1052 1053 // Need to extract the first element. 1054 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1055 unsigned Idx = ~0u; 1056 if (CI) 1057 Idx = CI->getZExtValue(); 1058 if (Idx != 0) 1059 return RK_None; 1060 1061 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1062 if (!RdxStart) 1063 return RK_None; 1064 Optional<ReductionData> RD = getReductionData(RdxStart); 1065 if (!RD) 1066 return RK_None; 1067 1068 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 1069 unsigned NumVecElems = VecTy->getVectorNumElements(); 1070 if (!isPowerOf2_32(NumVecElems)) 1071 return RK_None; 1072 1073 // We look for a sequence of shuffles and adds like the following matching one 1074 // fadd, shuffle vector pair at a time. 1075 // 1076 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1077 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1078 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1079 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1080 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1081 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1082 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1083 1084 unsigned MaskStart = 1; 1085 Instruction *RdxOp = RdxStart; 1086 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1087 unsigned NumVecElemsRemain = NumVecElems; 1088 while (NumVecElemsRemain - 1) { 1089 // Check for the right reduction operation. 1090 if (!RdxOp) 1091 return RK_None; 1092 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1093 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1094 return RK_None; 1095 1096 Value *NextRdxOp; 1097 ShuffleVectorInst *Shuffle; 1098 std::tie(NextRdxOp, Shuffle) = 1099 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1100 1101 // Check the current reduction operation and the shuffle use the same value. 1102 if (Shuffle == nullptr) 1103 return RK_None; 1104 if (Shuffle->getOperand(0) != NextRdxOp) 1105 return RK_None; 1106 1107 // Check that shuffle masks matches. 1108 for (unsigned j = 0; j != MaskStart; ++j) 1109 ShuffleMask[j] = MaskStart + j; 1110 // Fill the rest of the mask with -1 for undef. 1111 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1112 1113 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1114 if (ShuffleMask != Mask) 1115 return RK_None; 1116 1117 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1118 NumVecElemsRemain /= 2; 1119 MaskStart *= 2; 1120 } 1121 1122 Opcode = RD->Opcode; 1123 Ty = VecTy; 1124 return RD->Kind; 1125 } 1126 1127 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1128 switch (I->getOpcode()) { 1129 case Instruction::GetElementPtr: 1130 return getUserCost(I); 1131 1132 case Instruction::Ret: 1133 case Instruction::PHI: 1134 case Instruction::Br: { 1135 return getCFInstrCost(I->getOpcode()); 1136 } 1137 case Instruction::Add: 1138 case Instruction::FAdd: 1139 case Instruction::Sub: 1140 case Instruction::FSub: 1141 case Instruction::Mul: 1142 case Instruction::FMul: 1143 case Instruction::UDiv: 1144 case Instruction::SDiv: 1145 case Instruction::FDiv: 1146 case Instruction::URem: 1147 case Instruction::SRem: 1148 case Instruction::FRem: 1149 case Instruction::Shl: 1150 case Instruction::LShr: 1151 case Instruction::AShr: 1152 case Instruction::And: 1153 case Instruction::Or: 1154 case Instruction::Xor: { 1155 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1156 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1157 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1158 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1159 SmallVector<const Value *, 2> Operands(I->operand_values()); 1160 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1161 Op1VP, Op2VP, Operands); 1162 } 1163 case Instruction::FNeg: { 1164 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1165 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1166 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1167 Op2VK = OK_AnyValue; 1168 Op2VP = OP_None; 1169 SmallVector<const Value *, 2> Operands(I->operand_values()); 1170 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1171 Op1VP, Op2VP, Operands); 1172 } 1173 case Instruction::Select: { 1174 const SelectInst *SI = cast<SelectInst>(I); 1175 Type *CondTy = SI->getCondition()->getType(); 1176 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1177 } 1178 case Instruction::ICmp: 1179 case Instruction::FCmp: { 1180 Type *ValTy = I->getOperand(0)->getType(); 1181 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1182 } 1183 case Instruction::Store: { 1184 const StoreInst *SI = cast<StoreInst>(I); 1185 Type *ValTy = SI->getValueOperand()->getType(); 1186 return getMemoryOpCost(I->getOpcode(), ValTy, 1187 SI->getAlignment(), 1188 SI->getPointerAddressSpace(), I); 1189 } 1190 case Instruction::Load: { 1191 const LoadInst *LI = cast<LoadInst>(I); 1192 return getMemoryOpCost(I->getOpcode(), I->getType(), 1193 LI->getAlignment(), 1194 LI->getPointerAddressSpace(), I); 1195 } 1196 case Instruction::ZExt: 1197 case Instruction::SExt: 1198 case Instruction::FPToUI: 1199 case Instruction::FPToSI: 1200 case Instruction::FPExt: 1201 case Instruction::PtrToInt: 1202 case Instruction::IntToPtr: 1203 case Instruction::SIToFP: 1204 case Instruction::UIToFP: 1205 case Instruction::Trunc: 1206 case Instruction::FPTrunc: 1207 case Instruction::BitCast: 1208 case Instruction::AddrSpaceCast: { 1209 Type *SrcTy = I->getOperand(0)->getType(); 1210 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1211 } 1212 case Instruction::ExtractElement: { 1213 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1214 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1215 unsigned Idx = -1; 1216 if (CI) 1217 Idx = CI->getZExtValue(); 1218 1219 // Try to match a reduction sequence (series of shufflevector and vector 1220 // adds followed by a extractelement). 1221 unsigned ReduxOpCode; 1222 Type *ReduxType; 1223 1224 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1225 case RK_Arithmetic: 1226 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1227 /*IsPairwiseForm=*/false); 1228 case RK_MinMax: 1229 return getMinMaxReductionCost( 1230 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1231 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1232 case RK_UnsignedMinMax: 1233 return getMinMaxReductionCost( 1234 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1235 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1236 case RK_None: 1237 break; 1238 } 1239 1240 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1241 case RK_Arithmetic: 1242 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1243 /*IsPairwiseForm=*/true); 1244 case RK_MinMax: 1245 return getMinMaxReductionCost( 1246 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1247 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1248 case RK_UnsignedMinMax: 1249 return getMinMaxReductionCost( 1250 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1251 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1252 case RK_None: 1253 break; 1254 } 1255 1256 return getVectorInstrCost(I->getOpcode(), 1257 EEI->getOperand(0)->getType(), Idx); 1258 } 1259 case Instruction::InsertElement: { 1260 const InsertElementInst * IE = cast<InsertElementInst>(I); 1261 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1262 unsigned Idx = -1; 1263 if (CI) 1264 Idx = CI->getZExtValue(); 1265 return getVectorInstrCost(I->getOpcode(), 1266 IE->getType(), Idx); 1267 } 1268 case Instruction::ShuffleVector: { 1269 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1270 Type *Ty = Shuffle->getType(); 1271 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1272 1273 // TODO: Identify and add costs for insert subvector, etc. 1274 int SubIndex; 1275 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1276 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1277 1278 if (Shuffle->changesLength()) 1279 return -1; 1280 1281 if (Shuffle->isIdentity()) 1282 return 0; 1283 1284 if (Shuffle->isReverse()) 1285 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1286 1287 if (Shuffle->isSelect()) 1288 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1289 1290 if (Shuffle->isTranspose()) 1291 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1292 1293 if (Shuffle->isZeroEltSplat()) 1294 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1295 1296 if (Shuffle->isSingleSource()) 1297 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1298 1299 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1300 } 1301 case Instruction::Call: 1302 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1303 SmallVector<Value *, 4> Args(II->arg_operands()); 1304 1305 FastMathFlags FMF; 1306 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1307 FMF = FPMO->getFastMathFlags(); 1308 1309 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1310 Args, FMF); 1311 } 1312 return -1; 1313 default: 1314 // We don't have any information on this instruction. 1315 return -1; 1316 } 1317 } 1318 1319 TargetTransformInfo::Concept::~Concept() {} 1320 1321 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1322 1323 TargetIRAnalysis::TargetIRAnalysis( 1324 std::function<Result(const Function &)> TTICallback) 1325 : TTICallback(std::move(TTICallback)) {} 1326 1327 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1328 FunctionAnalysisManager &) { 1329 return TTICallback(F); 1330 } 1331 1332 AnalysisKey TargetIRAnalysis::Key; 1333 1334 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1335 return Result(F.getParent()->getDataLayout()); 1336 } 1337 1338 // Register the basic pass. 1339 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1340 "Target Transform Information", false, true) 1341 char TargetTransformInfoWrapperPass::ID = 0; 1342 1343 void TargetTransformInfoWrapperPass::anchor() {} 1344 1345 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1346 : ImmutablePass(ID) { 1347 initializeTargetTransformInfoWrapperPassPass( 1348 *PassRegistry::getPassRegistry()); 1349 } 1350 1351 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1352 TargetIRAnalysis TIRA) 1353 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1354 initializeTargetTransformInfoWrapperPassPass( 1355 *PassRegistry::getPassRegistry()); 1356 } 1357 1358 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1359 FunctionAnalysisManager DummyFAM; 1360 TTI = TIRA.run(F, DummyFAM); 1361 return *TTI; 1362 } 1363 1364 ImmutablePass * 1365 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1366 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1367 } 1368