1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 FunctionType *FTy = 75 CI.getCalledFunction()->getFunctionType(); 76 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 77 } 78 79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 80 const CallBase &CI, 81 unsigned Factor) : 82 RetTy(CI.getType()), IID(Id), VF(Factor) { 83 84 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 85 FMF = FPMO->getFastMathFlags(); 86 87 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 88 FunctionType *FTy = 89 CI.getCalledFunction()->getFunctionType(); 90 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 91 } 92 93 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 94 const CallBase &CI, 95 unsigned Factor, 96 unsigned ScalarCost) : 97 RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 98 99 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 100 FMF = FPMO->getFastMathFlags(); 101 102 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 103 FunctionType *FTy = 104 CI.getCalledFunction()->getFunctionType(); 105 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 106 } 107 108 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 109 ArrayRef<Type *> Tys, 110 FastMathFlags Flags) : 111 RetTy(RTy), IID(Id), FMF(Flags) { 112 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 113 } 114 115 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 116 ArrayRef<Type *> Tys, 117 FastMathFlags Flags, 118 unsigned ScalarCost) : 119 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 120 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 121 } 122 123 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 124 ArrayRef<Type *> Tys, 125 FastMathFlags Flags, 126 unsigned ScalarCost, 127 const IntrinsicInst *I) : 128 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 129 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 130 } 131 132 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 133 ArrayRef<Type *> Tys) : 134 RetTy(RTy), IID(Id) { 135 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 136 } 137 138 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 139 ArrayRef<Value *> Args) : 140 RetTy(Ty), IID(Id) { 141 142 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 143 ParamTys.reserve(Arguments.size()); 144 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 145 ParamTys.push_back(Arguments[Idx]->getType()); 146 } 147 148 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 149 LoopInfo &LI, DominatorTree &DT, 150 bool ForceNestedLoop, 151 bool ForceHardwareLoopPHI) { 152 SmallVector<BasicBlock *, 4> ExitingBlocks; 153 L->getExitingBlocks(ExitingBlocks); 154 155 for (BasicBlock *BB : ExitingBlocks) { 156 // If we pass the updated counter back through a phi, we need to know 157 // which latch the updated value will be coming from. 158 if (!L->isLoopLatch(BB)) { 159 if (ForceHardwareLoopPHI || CounterInReg) 160 continue; 161 } 162 163 const SCEV *EC = SE.getExitCount(L, BB); 164 if (isa<SCEVCouldNotCompute>(EC)) 165 continue; 166 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 167 if (ConstEC->getValue()->isZero()) 168 continue; 169 } else if (!SE.isLoopInvariant(EC, L)) 170 continue; 171 172 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 173 continue; 174 175 // If this exiting block is contained in a nested loop, it is not eligible 176 // for insertion of the branch-and-decrement since the inner loop would 177 // end up messing up the value in the CTR. 178 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 179 continue; 180 181 // We now have a loop-invariant count of loop iterations (which is not the 182 // constant zero) for which we know that this loop will not exit via this 183 // existing block. 184 185 // We need to make sure that this block will run on every loop iteration. 186 // For this to be true, we must dominate all blocks with backedges. Such 187 // blocks are in-loop predecessors to the header block. 188 bool NotAlways = false; 189 for (BasicBlock *Pred : predecessors(L->getHeader())) { 190 if (!L->contains(Pred)) 191 continue; 192 193 if (!DT.dominates(BB, Pred)) { 194 NotAlways = true; 195 break; 196 } 197 } 198 199 if (NotAlways) 200 continue; 201 202 // Make sure this blocks ends with a conditional branch. 203 Instruction *TI = BB->getTerminator(); 204 if (!TI) 205 continue; 206 207 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 208 if (!BI->isConditional()) 209 continue; 210 211 ExitBranch = BI; 212 } else 213 continue; 214 215 // Note that this block may not be the loop latch block, even if the loop 216 // has a latch block. 217 ExitBlock = BB; 218 ExitCount = EC; 219 break; 220 } 221 222 if (!ExitBlock) 223 return false; 224 return true; 225 } 226 227 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 228 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 229 230 TargetTransformInfo::~TargetTransformInfo() {} 231 232 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 233 : TTIImpl(std::move(Arg.TTIImpl)) {} 234 235 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 236 TTIImpl = std::move(RHS.TTIImpl); 237 return *this; 238 } 239 240 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 241 return TTIImpl->getInliningThresholdMultiplier(); 242 } 243 244 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 245 return TTIImpl->getInlinerVectorBonusPercent(); 246 } 247 248 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 249 ArrayRef<const Value *> Operands, 250 TTI::TargetCostKind CostKind) const { 251 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 252 } 253 254 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 255 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 256 BlockFrequencyInfo *BFI) const { 257 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 258 } 259 260 int TargetTransformInfo::getUserCost(const User *U, 261 ArrayRef<const Value *> Operands, 262 enum TargetCostKind CostKind) const { 263 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 264 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 265 "TTI should not produce negative costs!"); 266 return Cost; 267 } 268 269 bool TargetTransformInfo::hasBranchDivergence() const { 270 return TTIImpl->hasBranchDivergence(); 271 } 272 273 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 274 return TTIImpl->useGPUDivergenceAnalysis(); 275 } 276 277 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 278 return TTIImpl->isSourceOfDivergence(V); 279 } 280 281 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 282 return TTIImpl->isAlwaysUniform(V); 283 } 284 285 unsigned TargetTransformInfo::getFlatAddressSpace() const { 286 return TTIImpl->getFlatAddressSpace(); 287 } 288 289 bool TargetTransformInfo::collectFlatAddressOperands( 290 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 291 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 292 } 293 294 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 295 unsigned ToAS) const { 296 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 297 } 298 299 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 300 IntrinsicInst *II, Value *OldV, Value *NewV) const { 301 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 302 } 303 304 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 305 return TTIImpl->isLoweredToCall(F); 306 } 307 308 bool TargetTransformInfo::isHardwareLoopProfitable( 309 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 310 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 311 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 312 } 313 314 bool TargetTransformInfo::preferPredicateOverEpilogue( 315 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 316 TargetLibraryInfo *TLI, DominatorTree *DT, 317 const LoopAccessInfo *LAI) const { 318 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 319 } 320 321 bool TargetTransformInfo::emitGetActiveLaneMask() const { 322 return TTIImpl->emitGetActiveLaneMask(); 323 } 324 325 void TargetTransformInfo::getUnrollingPreferences( 326 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 327 return TTIImpl->getUnrollingPreferences(L, SE, UP); 328 } 329 330 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 331 return TTIImpl->isLegalAddImmediate(Imm); 332 } 333 334 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 335 return TTIImpl->isLegalICmpImmediate(Imm); 336 } 337 338 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 339 int64_t BaseOffset, 340 bool HasBaseReg, int64_t Scale, 341 unsigned AddrSpace, 342 Instruction *I) const { 343 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 344 Scale, AddrSpace, I); 345 } 346 347 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 348 return TTIImpl->isLSRCostLess(C1, C2); 349 } 350 351 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 352 return TTIImpl->isProfitableLSRChainElement(I); 353 } 354 355 bool TargetTransformInfo::canMacroFuseCmp() const { 356 return TTIImpl->canMacroFuseCmp(); 357 } 358 359 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 360 ScalarEvolution *SE, LoopInfo *LI, 361 DominatorTree *DT, AssumptionCache *AC, 362 TargetLibraryInfo *LibInfo) const { 363 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 364 } 365 366 bool TargetTransformInfo::shouldFavorPostInc() const { 367 return TTIImpl->shouldFavorPostInc(); 368 } 369 370 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 371 return TTIImpl->shouldFavorBackedgeIndex(L); 372 } 373 374 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 375 Align Alignment) const { 376 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 377 } 378 379 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 380 Align Alignment) const { 381 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 382 } 383 384 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 385 Align Alignment) const { 386 return TTIImpl->isLegalNTStore(DataType, Alignment); 387 } 388 389 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 390 return TTIImpl->isLegalNTLoad(DataType, Alignment); 391 } 392 393 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 394 Align Alignment) const { 395 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 396 } 397 398 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 399 Align Alignment) const { 400 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 401 } 402 403 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 404 return TTIImpl->isLegalMaskedCompressStore(DataType); 405 } 406 407 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 408 return TTIImpl->isLegalMaskedExpandLoad(DataType); 409 } 410 411 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 412 return TTIImpl->hasDivRemOp(DataType, IsSigned); 413 } 414 415 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 416 unsigned AddrSpace) const { 417 return TTIImpl->hasVolatileVariant(I, AddrSpace); 418 } 419 420 bool TargetTransformInfo::prefersVectorizedAddressing() const { 421 return TTIImpl->prefersVectorizedAddressing(); 422 } 423 424 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 425 int64_t BaseOffset, 426 bool HasBaseReg, int64_t Scale, 427 unsigned AddrSpace) const { 428 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 429 Scale, AddrSpace); 430 assert(Cost >= 0 && "TTI should not produce negative costs!"); 431 return Cost; 432 } 433 434 bool TargetTransformInfo::LSRWithInstrQueries() const { 435 return TTIImpl->LSRWithInstrQueries(); 436 } 437 438 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 439 return TTIImpl->isTruncateFree(Ty1, Ty2); 440 } 441 442 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 443 return TTIImpl->isProfitableToHoist(I); 444 } 445 446 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 447 448 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 449 return TTIImpl->isTypeLegal(Ty); 450 } 451 452 bool TargetTransformInfo::shouldBuildLookupTables() const { 453 return TTIImpl->shouldBuildLookupTables(); 454 } 455 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 456 Constant *C) const { 457 return TTIImpl->shouldBuildLookupTablesForConstant(C); 458 } 459 460 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 461 return TTIImpl->useColdCCForColdCall(F); 462 } 463 464 unsigned 465 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 466 const APInt &DemandedElts, 467 bool Insert, bool Extract) const { 468 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 469 } 470 471 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 472 ArrayRef<const Value *> Args, unsigned VF) const { 473 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 474 } 475 476 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 477 return TTIImpl->supportsEfficientVectorElementLoadStore(); 478 } 479 480 bool TargetTransformInfo::enableAggressiveInterleaving( 481 bool LoopHasReductions) const { 482 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 483 } 484 485 TargetTransformInfo::MemCmpExpansionOptions 486 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 487 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 488 } 489 490 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 491 return TTIImpl->enableInterleavedAccessVectorization(); 492 } 493 494 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 495 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 496 } 497 498 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 499 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 500 } 501 502 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 503 unsigned BitWidth, 504 unsigned AddressSpace, 505 unsigned Alignment, 506 bool *Fast) const { 507 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 508 AddressSpace, Alignment, Fast); 509 } 510 511 TargetTransformInfo::PopcntSupportKind 512 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 513 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 514 } 515 516 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 517 return TTIImpl->haveFastSqrt(Ty); 518 } 519 520 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 521 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 522 } 523 524 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 525 int Cost = TTIImpl->getFPOpCost(Ty); 526 assert(Cost >= 0 && "TTI should not produce negative costs!"); 527 return Cost; 528 } 529 530 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 531 const APInt &Imm, 532 Type *Ty) const { 533 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 534 assert(Cost >= 0 && "TTI should not produce negative costs!"); 535 return Cost; 536 } 537 538 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 539 TTI::TargetCostKind CostKind) const { 540 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 541 assert(Cost >= 0 && "TTI should not produce negative costs!"); 542 return Cost; 543 } 544 545 int 546 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 547 const APInt &Imm, Type *Ty, 548 TTI::TargetCostKind CostKind) const { 549 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 550 assert(Cost >= 0 && "TTI should not produce negative costs!"); 551 return Cost; 552 } 553 554 int 555 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 556 const APInt &Imm, Type *Ty, 557 TTI::TargetCostKind CostKind) const { 558 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 559 assert(Cost >= 0 && "TTI should not produce negative costs!"); 560 return Cost; 561 } 562 563 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 564 return TTIImpl->getNumberOfRegisters(ClassID); 565 } 566 567 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 568 Type *Ty) const { 569 return TTIImpl->getRegisterClassForType(Vector, Ty); 570 } 571 572 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 573 return TTIImpl->getRegisterClassName(ClassID); 574 } 575 576 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 577 return TTIImpl->getRegisterBitWidth(Vector); 578 } 579 580 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 581 return TTIImpl->getMinVectorRegisterBitWidth(); 582 } 583 584 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 585 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 586 } 587 588 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 589 return TTIImpl->getMinimumVF(ElemWidth); 590 } 591 592 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 593 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 594 return TTIImpl->shouldConsiderAddressTypePromotion( 595 I, AllowPromotionWithoutCommonHeader); 596 } 597 598 unsigned TargetTransformInfo::getCacheLineSize() const { 599 return TTIImpl->getCacheLineSize(); 600 } 601 602 llvm::Optional<unsigned> 603 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 604 return TTIImpl->getCacheSize(Level); 605 } 606 607 llvm::Optional<unsigned> 608 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 609 return TTIImpl->getCacheAssociativity(Level); 610 } 611 612 unsigned TargetTransformInfo::getPrefetchDistance() const { 613 return TTIImpl->getPrefetchDistance(); 614 } 615 616 unsigned TargetTransformInfo::getMinPrefetchStride( 617 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 618 unsigned NumPrefetches, bool HasCall) const { 619 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 620 NumPrefetches, HasCall); 621 } 622 623 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 624 return TTIImpl->getMaxPrefetchIterationsAhead(); 625 } 626 627 bool TargetTransformInfo::enableWritePrefetching() const { 628 return TTIImpl->enableWritePrefetching(); 629 } 630 631 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 632 return TTIImpl->getMaxInterleaveFactor(VF); 633 } 634 635 TargetTransformInfo::OperandValueKind 636 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 637 OperandValueKind OpInfo = OK_AnyValue; 638 OpProps = OP_None; 639 640 if (auto *CI = dyn_cast<ConstantInt>(V)) { 641 if (CI->getValue().isPowerOf2()) 642 OpProps = OP_PowerOf2; 643 return OK_UniformConstantValue; 644 } 645 646 // A broadcast shuffle creates a uniform value. 647 // TODO: Add support for non-zero index broadcasts. 648 // TODO: Add support for different source vector width. 649 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 650 if (ShuffleInst->isZeroEltSplat()) 651 OpInfo = OK_UniformValue; 652 653 const Value *Splat = getSplatValue(V); 654 655 // Check for a splat of a constant or for a non uniform vector of constants 656 // and check if the constant(s) are all powers of two. 657 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 658 OpInfo = OK_NonUniformConstantValue; 659 if (Splat) { 660 OpInfo = OK_UniformConstantValue; 661 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 662 if (CI->getValue().isPowerOf2()) 663 OpProps = OP_PowerOf2; 664 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 665 OpProps = OP_PowerOf2; 666 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 667 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 668 if (CI->getValue().isPowerOf2()) 669 continue; 670 OpProps = OP_None; 671 break; 672 } 673 } 674 } 675 676 // Check for a splat of a uniform value. This is not loop aware, so return 677 // true only for the obviously uniform cases (argument, globalvalue) 678 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 679 OpInfo = OK_UniformValue; 680 681 return OpInfo; 682 } 683 684 int TargetTransformInfo::getArithmeticInstrCost( 685 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 686 OperandValueKind Opd1Info, 687 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 688 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 689 const Instruction *CxtI) const { 690 int Cost = TTIImpl->getArithmeticInstrCost( 691 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 692 Args, CxtI); 693 assert(Cost >= 0 && "TTI should not produce negative costs!"); 694 return Cost; 695 } 696 697 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 698 int Index, VectorType *SubTp) const { 699 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 700 assert(Cost >= 0 && "TTI should not produce negative costs!"); 701 return Cost; 702 } 703 704 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 705 TTI::TargetCostKind CostKind, 706 const Instruction *I) const { 707 assert((I == nullptr || I->getOpcode() == Opcode) && 708 "Opcode should reflect passed instruction."); 709 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 710 assert(Cost >= 0 && "TTI should not produce negative costs!"); 711 return Cost; 712 } 713 714 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 715 VectorType *VecTy, 716 unsigned Index) const { 717 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 718 assert(Cost >= 0 && "TTI should not produce negative costs!"); 719 return Cost; 720 } 721 722 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 723 TTI::TargetCostKind CostKind) const { 724 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 725 assert(Cost >= 0 && "TTI should not produce negative costs!"); 726 return Cost; 727 } 728 729 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 730 Type *CondTy, 731 TTI::TargetCostKind CostKind, 732 const Instruction *I) const { 733 assert((I == nullptr || I->getOpcode() == Opcode) && 734 "Opcode should reflect passed instruction."); 735 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 736 assert(Cost >= 0 && "TTI should not produce negative costs!"); 737 return Cost; 738 } 739 740 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 741 unsigned Index) const { 742 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 743 assert(Cost >= 0 && "TTI should not produce negative costs!"); 744 return Cost; 745 } 746 747 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 748 Align Alignment, unsigned AddressSpace, 749 TTI::TargetCostKind CostKind, 750 const Instruction *I) const { 751 assert((I == nullptr || I->getOpcode() == Opcode) && 752 "Opcode should reflect passed instruction."); 753 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 754 CostKind, I); 755 assert(Cost >= 0 && "TTI should not produce negative costs!"); 756 return Cost; 757 } 758 759 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 760 unsigned Alignment, 761 unsigned AddressSpace, 762 TTI::TargetCostKind CostKind) const { 763 int Cost = 764 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 765 CostKind); 766 assert(Cost >= 0 && "TTI should not produce negative costs!"); 767 return Cost; 768 } 769 770 int TargetTransformInfo::getGatherScatterOpCost( 771 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 772 unsigned Alignment, TTI::TargetCostKind CostKind, 773 const Instruction *I) const { 774 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 775 Alignment, CostKind, I); 776 assert(Cost >= 0 && "TTI should not produce negative costs!"); 777 return Cost; 778 } 779 780 int TargetTransformInfo::getInterleavedMemoryOpCost( 781 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 782 unsigned Alignment, unsigned AddressSpace, 783 TTI::TargetCostKind CostKind, 784 bool UseMaskForCond, bool UseMaskForGaps) const { 785 int Cost = TTIImpl->getInterleavedMemoryOpCost( 786 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 787 UseMaskForCond, UseMaskForGaps); 788 assert(Cost >= 0 && "TTI should not produce negative costs!"); 789 return Cost; 790 } 791 792 int 793 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 794 TTI::TargetCostKind CostKind) const { 795 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 796 assert(Cost >= 0 && "TTI should not produce negative costs!"); 797 return Cost; 798 } 799 800 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 801 ArrayRef<Type *> Tys, 802 TTI::TargetCostKind CostKind) const { 803 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 804 assert(Cost >= 0 && "TTI should not produce negative costs!"); 805 return Cost; 806 } 807 808 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 809 return TTIImpl->getNumberOfParts(Tp); 810 } 811 812 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 813 ScalarEvolution *SE, 814 const SCEV *Ptr) const { 815 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 816 assert(Cost >= 0 && "TTI should not produce negative costs!"); 817 return Cost; 818 } 819 820 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 821 int Cost = TTIImpl->getMemcpyCost(I); 822 assert(Cost >= 0 && "TTI should not produce negative costs!"); 823 return Cost; 824 } 825 826 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 827 VectorType *Ty, 828 bool IsPairwiseForm, 829 TTI::TargetCostKind CostKind) const { 830 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 831 CostKind); 832 assert(Cost >= 0 && "TTI should not produce negative costs!"); 833 return Cost; 834 } 835 836 int TargetTransformInfo::getMinMaxReductionCost( 837 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 838 TTI::TargetCostKind CostKind) const { 839 int Cost = 840 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 841 CostKind); 842 assert(Cost >= 0 && "TTI should not produce negative costs!"); 843 return Cost; 844 } 845 846 unsigned 847 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 848 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 849 } 850 851 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 852 MemIntrinsicInfo &Info) const { 853 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 854 } 855 856 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 857 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 858 } 859 860 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 861 IntrinsicInst *Inst, Type *ExpectedType) const { 862 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 863 } 864 865 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 866 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 867 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 868 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 869 DestAddrSpace, SrcAlign, DestAlign); 870 } 871 872 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 873 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 874 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 875 unsigned SrcAlign, unsigned DestAlign) const { 876 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 877 SrcAddrSpace, DestAddrSpace, 878 SrcAlign, DestAlign); 879 } 880 881 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 882 const Function *Callee) const { 883 return TTIImpl->areInlineCompatible(Caller, Callee); 884 } 885 886 bool TargetTransformInfo::areFunctionArgsABICompatible( 887 const Function *Caller, const Function *Callee, 888 SmallPtrSetImpl<Argument *> &Args) const { 889 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 890 } 891 892 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 893 Type *Ty) const { 894 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 895 } 896 897 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 898 Type *Ty) const { 899 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 900 } 901 902 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 903 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 904 } 905 906 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 907 return TTIImpl->isLegalToVectorizeLoad(LI); 908 } 909 910 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 911 return TTIImpl->isLegalToVectorizeStore(SI); 912 } 913 914 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 915 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 916 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 917 AddrSpace); 918 } 919 920 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 921 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 922 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 923 AddrSpace); 924 } 925 926 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 927 unsigned LoadSize, 928 unsigned ChainSizeInBytes, 929 VectorType *VecTy) const { 930 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 931 } 932 933 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 934 unsigned StoreSize, 935 unsigned ChainSizeInBytes, 936 VectorType *VecTy) const { 937 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 938 } 939 940 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 941 ReductionFlags Flags) const { 942 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 943 } 944 945 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 946 return TTIImpl->shouldExpandReduction(II); 947 } 948 949 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 950 return TTIImpl->getGISelRematGlobalCost(); 951 } 952 953 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 954 return TTIImpl->getInstructionLatency(I); 955 } 956 957 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 958 unsigned Level) { 959 // We don't need a shuffle if we just want to have element 0 in position 0 of 960 // the vector. 961 if (!SI && Level == 0 && IsLeft) 962 return true; 963 else if (!SI) 964 return false; 965 966 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 967 968 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 969 // we look at the left or right side. 970 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 971 Mask[i] = val; 972 973 ArrayRef<int> ActualMask = SI->getShuffleMask(); 974 return Mask == ActualMask; 975 } 976 977 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 978 Value *L, *R; 979 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 980 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 981 if (auto *SI = dyn_cast<SelectInst>(I)) { 982 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 983 m_SMax(m_Value(L), m_Value(R)).match(SI) || 984 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 985 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 986 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 987 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 988 auto *CI = cast<CmpInst>(SI->getCondition()); 989 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 990 } 991 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 992 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 993 auto *CI = cast<CmpInst>(SI->getCondition()); 994 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 995 } 996 } 997 return llvm::None; 998 } 999 1000 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1001 unsigned Level, 1002 unsigned NumLevels) { 1003 // Match one level of pairwise operations. 1004 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1005 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1006 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1007 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1008 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1009 if (!I) 1010 return TTI::RK_None; 1011 1012 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1013 1014 Optional<TTI::ReductionData> RD = getReductionData(I); 1015 if (!RD) 1016 return TTI::RK_None; 1017 1018 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1019 if (!LS && Level) 1020 return TTI::RK_None; 1021 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1022 if (!RS && Level) 1023 return TTI::RK_None; 1024 1025 // On level 0 we can omit one shufflevector instruction. 1026 if (!Level && !RS && !LS) 1027 return TTI::RK_None; 1028 1029 // Shuffle inputs must match. 1030 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1031 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1032 Value *NextLevelOp = nullptr; 1033 if (NextLevelOpR && NextLevelOpL) { 1034 // If we have two shuffles their operands must match. 1035 if (NextLevelOpL != NextLevelOpR) 1036 return TTI::RK_None; 1037 1038 NextLevelOp = NextLevelOpL; 1039 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1040 // On the first level we can omit the shufflevector <0, undef,...>. So the 1041 // input to the other shufflevector <1, undef> must match with one of the 1042 // inputs to the current binary operation. 1043 // Example: 1044 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1045 // %BinOp = fadd %NextLevelOpL, %R 1046 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1047 return TTI::RK_None; 1048 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1049 return TTI::RK_None; 1050 1051 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1052 } else 1053 return TTI::RK_None; 1054 1055 // Check that the next levels binary operation exists and matches with the 1056 // current one. 1057 if (Level + 1 != NumLevels) { 1058 Optional<TTI::ReductionData> NextLevelRD = 1059 getReductionData(cast<Instruction>(NextLevelOp)); 1060 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1061 return TTI::RK_None; 1062 } 1063 1064 // Shuffle mask for pairwise operation must match. 1065 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1066 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1067 return TTI::RK_None; 1068 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1069 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1070 return TTI::RK_None; 1071 } else { 1072 return TTI::RK_None; 1073 } 1074 1075 if (++Level == NumLevels) 1076 return RD->Kind; 1077 1078 // Match next level. 1079 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1080 NumLevels); 1081 } 1082 1083 TTI::ReductionKind TTI::matchPairwiseReduction( 1084 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1085 if (!EnableReduxCost) 1086 return TTI::RK_None; 1087 1088 // Need to extract the first element. 1089 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1090 unsigned Idx = ~0u; 1091 if (CI) 1092 Idx = CI->getZExtValue(); 1093 if (Idx != 0) 1094 return TTI::RK_None; 1095 1096 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1097 if (!RdxStart) 1098 return TTI::RK_None; 1099 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1100 if (!RD) 1101 return TTI::RK_None; 1102 1103 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1104 unsigned NumVecElems = VecTy->getNumElements(); 1105 if (!isPowerOf2_32(NumVecElems)) 1106 return TTI::RK_None; 1107 1108 // We look for a sequence of shuffle,shuffle,add triples like the following 1109 // that builds a pairwise reduction tree. 1110 // 1111 // (X0, X1, X2, X3) 1112 // (X0 + X1, X2 + X3, undef, undef) 1113 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1114 // 1115 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1116 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1117 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1118 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1119 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1120 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1121 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1122 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1123 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1124 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1125 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1126 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1127 TTI::RK_None) 1128 return TTI::RK_None; 1129 1130 Opcode = RD->Opcode; 1131 Ty = VecTy; 1132 1133 return RD->Kind; 1134 } 1135 1136 static std::pair<Value *, ShuffleVectorInst *> 1137 getShuffleAndOtherOprd(Value *L, Value *R) { 1138 ShuffleVectorInst *S = nullptr; 1139 1140 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1141 return std::make_pair(R, S); 1142 1143 S = dyn_cast<ShuffleVectorInst>(R); 1144 return std::make_pair(L, S); 1145 } 1146 1147 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1148 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1149 1150 if (!EnableReduxCost) 1151 return TTI::RK_None; 1152 1153 // Need to extract the first element. 1154 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1155 unsigned Idx = ~0u; 1156 if (CI) 1157 Idx = CI->getZExtValue(); 1158 if (Idx != 0) 1159 return TTI::RK_None; 1160 1161 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1162 if (!RdxStart) 1163 return TTI::RK_None; 1164 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1165 if (!RD) 1166 return TTI::RK_None; 1167 1168 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1169 unsigned NumVecElems = VecTy->getNumElements(); 1170 if (!isPowerOf2_32(NumVecElems)) 1171 return TTI::RK_None; 1172 1173 // We look for a sequence of shuffles and adds like the following matching one 1174 // fadd, shuffle vector pair at a time. 1175 // 1176 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1177 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1178 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1179 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1180 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1181 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1182 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1183 1184 unsigned MaskStart = 1; 1185 Instruction *RdxOp = RdxStart; 1186 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1187 unsigned NumVecElemsRemain = NumVecElems; 1188 while (NumVecElemsRemain - 1) { 1189 // Check for the right reduction operation. 1190 if (!RdxOp) 1191 return TTI::RK_None; 1192 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1193 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1194 return TTI::RK_None; 1195 1196 Value *NextRdxOp; 1197 ShuffleVectorInst *Shuffle; 1198 std::tie(NextRdxOp, Shuffle) = 1199 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1200 1201 // Check the current reduction operation and the shuffle use the same value. 1202 if (Shuffle == nullptr) 1203 return TTI::RK_None; 1204 if (Shuffle->getOperand(0) != NextRdxOp) 1205 return TTI::RK_None; 1206 1207 // Check that shuffle masks matches. 1208 for (unsigned j = 0; j != MaskStart; ++j) 1209 ShuffleMask[j] = MaskStart + j; 1210 // Fill the rest of the mask with -1 for undef. 1211 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1212 1213 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1214 if (ShuffleMask != Mask) 1215 return TTI::RK_None; 1216 1217 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1218 NumVecElemsRemain /= 2; 1219 MaskStart *= 2; 1220 } 1221 1222 Opcode = RD->Opcode; 1223 Ty = VecTy; 1224 return RD->Kind; 1225 } 1226 1227 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1228 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1229 1230 switch (I->getOpcode()) { 1231 case Instruction::GetElementPtr: 1232 case Instruction::Ret: 1233 case Instruction::PHI: 1234 case Instruction::Br: 1235 case Instruction::Add: 1236 case Instruction::FAdd: 1237 case Instruction::Sub: 1238 case Instruction::FSub: 1239 case Instruction::Mul: 1240 case Instruction::FMul: 1241 case Instruction::UDiv: 1242 case Instruction::SDiv: 1243 case Instruction::FDiv: 1244 case Instruction::URem: 1245 case Instruction::SRem: 1246 case Instruction::FRem: 1247 case Instruction::Shl: 1248 case Instruction::LShr: 1249 case Instruction::AShr: 1250 case Instruction::And: 1251 case Instruction::Or: 1252 case Instruction::Xor: 1253 case Instruction::FNeg: 1254 case Instruction::Select: 1255 case Instruction::ICmp: 1256 case Instruction::FCmp: 1257 case Instruction::Store: 1258 case Instruction::Load: 1259 case Instruction::ZExt: 1260 case Instruction::SExt: 1261 case Instruction::FPToUI: 1262 case Instruction::FPToSI: 1263 case Instruction::FPExt: 1264 case Instruction::PtrToInt: 1265 case Instruction::IntToPtr: 1266 case Instruction::SIToFP: 1267 case Instruction::UIToFP: 1268 case Instruction::Trunc: 1269 case Instruction::FPTrunc: 1270 case Instruction::BitCast: 1271 case Instruction::AddrSpaceCast: 1272 case Instruction::ExtractElement: 1273 case Instruction::InsertElement: 1274 case Instruction::ExtractValue: 1275 case Instruction::ShuffleVector: 1276 case Instruction::Call: 1277 return getUserCost(I, CostKind); 1278 default: 1279 // We don't have any information on this instruction. 1280 return -1; 1281 } 1282 } 1283 1284 TargetTransformInfo::Concept::~Concept() {} 1285 1286 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1287 1288 TargetIRAnalysis::TargetIRAnalysis( 1289 std::function<Result(const Function &)> TTICallback) 1290 : TTICallback(std::move(TTICallback)) {} 1291 1292 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1293 FunctionAnalysisManager &) { 1294 return TTICallback(F); 1295 } 1296 1297 AnalysisKey TargetIRAnalysis::Key; 1298 1299 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1300 return Result(F.getParent()->getDataLayout()); 1301 } 1302 1303 // Register the basic pass. 1304 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1305 "Target Transform Information", false, true) 1306 char TargetTransformInfoWrapperPass::ID = 0; 1307 1308 void TargetTransformInfoWrapperPass::anchor() {} 1309 1310 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1311 : ImmutablePass(ID) { 1312 initializeTargetTransformInfoWrapperPassPass( 1313 *PassRegistry::getPassRegistry()); 1314 } 1315 1316 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1317 TargetIRAnalysis TIRA) 1318 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1319 initializeTargetTransformInfoWrapperPassPass( 1320 *PassRegistry::getPassRegistry()); 1321 } 1322 1323 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1324 FunctionAnalysisManager DummyFAM; 1325 TTI = TIRA.run(F, DummyFAM); 1326 return *TTI; 1327 } 1328 1329 ImmutablePass * 1330 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1331 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1332 } 1333