1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/CFG.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 57 LoopInfo &LI, DominatorTree &DT, 58 bool ForceNestedLoop, 59 bool ForceHardwareLoopPHI) { 60 SmallVector<BasicBlock *, 4> ExitingBlocks; 61 L->getExitingBlocks(ExitingBlocks); 62 63 for (BasicBlock *BB : ExitingBlocks) { 64 // If we pass the updated counter back through a phi, we need to know 65 // which latch the updated value will be coming from. 66 if (!L->isLoopLatch(BB)) { 67 if (ForceHardwareLoopPHI || CounterInReg) 68 continue; 69 } 70 71 const SCEV *EC = SE.getExitCount(L, BB); 72 if (isa<SCEVCouldNotCompute>(EC)) 73 continue; 74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 75 if (ConstEC->getValue()->isZero()) 76 continue; 77 } else if (!SE.isLoopInvariant(EC, L)) 78 continue; 79 80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 81 continue; 82 83 // If this exiting block is contained in a nested loop, it is not eligible 84 // for insertion of the branch-and-decrement since the inner loop would 85 // end up messing up the value in the CTR. 86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 87 continue; 88 89 // We now have a loop-invariant count of loop iterations (which is not the 90 // constant zero) for which we know that this loop will not exit via this 91 // existing block. 92 93 // We need to make sure that this block will run on every loop iteration. 94 // For this to be true, we must dominate all blocks with backedges. Such 95 // blocks are in-loop predecessors to the header block. 96 bool NotAlways = false; 97 for (BasicBlock *Pred : predecessors(L->getHeader())) { 98 if (!L->contains(Pred)) 99 continue; 100 101 if (!DT.dominates(BB, Pred)) { 102 NotAlways = true; 103 break; 104 } 105 } 106 107 if (NotAlways) 108 continue; 109 110 // Make sure this blocks ends with a conditional branch. 111 Instruction *TI = BB->getTerminator(); 112 if (!TI) 113 continue; 114 115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 116 if (!BI->isConditional()) 117 continue; 118 119 ExitBranch = BI; 120 } else 121 continue; 122 123 // Note that this block may not be the loop latch block, even if the loop 124 // has a latch block. 125 ExitBlock = BB; 126 ExitCount = EC; 127 break; 128 } 129 130 if (!ExitBlock) 131 return false; 132 return true; 133 } 134 135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 137 138 TargetTransformInfo::~TargetTransformInfo() {} 139 140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 141 : TTIImpl(std::move(Arg.TTIImpl)) {} 142 143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 144 TTIImpl = std::move(RHS.TTIImpl); 145 return *this; 146 } 147 148 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 149 Type *OpTy) const { 150 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 151 assert(Cost >= 0 && "TTI should not produce negative costs!"); 152 return Cost; 153 } 154 155 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 156 const User *U) const { 157 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 158 assert(Cost >= 0 && "TTI should not produce negative costs!"); 159 return Cost; 160 } 161 162 int TargetTransformInfo::getCallCost(const Function *F, 163 ArrayRef<const Value *> Arguments, 164 const User *U) const { 165 int Cost = TTIImpl->getCallCost(F, Arguments, U); 166 assert(Cost >= 0 && "TTI should not produce negative costs!"); 167 return Cost; 168 } 169 170 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 171 return TTIImpl->getInliningThresholdMultiplier(); 172 } 173 174 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 175 return TTIImpl->getInlinerVectorBonusPercent(); 176 } 177 178 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 179 ArrayRef<const Value *> Operands) const { 180 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 181 } 182 183 int TargetTransformInfo::getExtCost(const Instruction *I, 184 const Value *Src) const { 185 return TTIImpl->getExtCost(I, Src); 186 } 187 188 int TargetTransformInfo::getIntrinsicCost( 189 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 190 const User *U) const { 191 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 192 assert(Cost >= 0 && "TTI should not produce negative costs!"); 193 return Cost; 194 } 195 196 unsigned 197 TargetTransformInfo::getEstimatedNumberOfCaseClusters( 198 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 199 BlockFrequencyInfo *BFI) const { 200 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 201 } 202 203 int TargetTransformInfo::getUserCost(const User *U, 204 ArrayRef<const Value *> Operands) const { 205 int Cost = TTIImpl->getUserCost(U, Operands); 206 assert(Cost >= 0 && "TTI should not produce negative costs!"); 207 return Cost; 208 } 209 210 bool TargetTransformInfo::hasBranchDivergence() const { 211 return TTIImpl->hasBranchDivergence(); 212 } 213 214 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 215 return TTIImpl->isSourceOfDivergence(V); 216 } 217 218 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 219 return TTIImpl->isAlwaysUniform(V); 220 } 221 222 unsigned TargetTransformInfo::getFlatAddressSpace() const { 223 return TTIImpl->getFlatAddressSpace(); 224 } 225 226 bool TargetTransformInfo::collectFlatAddressOperands( 227 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 228 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 229 } 230 231 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 232 IntrinsicInst *II, Value *OldV, Value *NewV) const { 233 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 234 } 235 236 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 237 return TTIImpl->isLoweredToCall(F); 238 } 239 240 bool TargetTransformInfo::isHardwareLoopProfitable( 241 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 242 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 243 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 244 } 245 246 bool TargetTransformInfo::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 247 ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, 248 DominatorTree *DT, const LoopAccessInfo *LAI) const { 249 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 250 } 251 252 void TargetTransformInfo::getUnrollingPreferences( 253 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 254 return TTIImpl->getUnrollingPreferences(L, SE, UP); 255 } 256 257 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 258 return TTIImpl->isLegalAddImmediate(Imm); 259 } 260 261 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 262 return TTIImpl->isLegalICmpImmediate(Imm); 263 } 264 265 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 266 int64_t BaseOffset, 267 bool HasBaseReg, 268 int64_t Scale, 269 unsigned AddrSpace, 270 Instruction *I) const { 271 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 272 Scale, AddrSpace, I); 273 } 274 275 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 276 return TTIImpl->isLSRCostLess(C1, C2); 277 } 278 279 bool TargetTransformInfo::canMacroFuseCmp() const { 280 return TTIImpl->canMacroFuseCmp(); 281 } 282 283 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 284 ScalarEvolution *SE, LoopInfo *LI, 285 DominatorTree *DT, AssumptionCache *AC, 286 TargetLibraryInfo *LibInfo) const { 287 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 288 } 289 290 bool TargetTransformInfo::shouldFavorPostInc() const { 291 return TTIImpl->shouldFavorPostInc(); 292 } 293 294 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 295 return TTIImpl->shouldFavorBackedgeIndex(L); 296 } 297 298 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 299 MaybeAlign Alignment) const { 300 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 301 } 302 303 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 304 MaybeAlign Alignment) const { 305 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 306 } 307 308 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 309 Align Alignment) const { 310 return TTIImpl->isLegalNTStore(DataType, Alignment); 311 } 312 313 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 314 return TTIImpl->isLegalNTLoad(DataType, Alignment); 315 } 316 317 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 318 return TTIImpl->isLegalMaskedGather(DataType); 319 } 320 321 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 322 return TTIImpl->isLegalMaskedScatter(DataType); 323 } 324 325 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 326 return TTIImpl->isLegalMaskedCompressStore(DataType); 327 } 328 329 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 330 return TTIImpl->isLegalMaskedExpandLoad(DataType); 331 } 332 333 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 334 return TTIImpl->hasDivRemOp(DataType, IsSigned); 335 } 336 337 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 338 unsigned AddrSpace) const { 339 return TTIImpl->hasVolatileVariant(I, AddrSpace); 340 } 341 342 bool TargetTransformInfo::prefersVectorizedAddressing() const { 343 return TTIImpl->prefersVectorizedAddressing(); 344 } 345 346 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 347 int64_t BaseOffset, 348 bool HasBaseReg, 349 int64_t Scale, 350 unsigned AddrSpace) const { 351 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 352 Scale, AddrSpace); 353 assert(Cost >= 0 && "TTI should not produce negative costs!"); 354 return Cost; 355 } 356 357 bool TargetTransformInfo::LSRWithInstrQueries() const { 358 return TTIImpl->LSRWithInstrQueries(); 359 } 360 361 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 362 return TTIImpl->isTruncateFree(Ty1, Ty2); 363 } 364 365 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 366 return TTIImpl->isProfitableToHoist(I); 367 } 368 369 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 370 371 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 372 return TTIImpl->isTypeLegal(Ty); 373 } 374 375 bool TargetTransformInfo::shouldBuildLookupTables() const { 376 return TTIImpl->shouldBuildLookupTables(); 377 } 378 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 379 return TTIImpl->shouldBuildLookupTablesForConstant(C); 380 } 381 382 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 383 return TTIImpl->useColdCCForColdCall(F); 384 } 385 386 unsigned TargetTransformInfo:: 387 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 388 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 389 } 390 391 unsigned TargetTransformInfo:: 392 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 393 unsigned VF) const { 394 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 395 } 396 397 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 398 return TTIImpl->supportsEfficientVectorElementLoadStore(); 399 } 400 401 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 402 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 403 } 404 405 TargetTransformInfo::MemCmpExpansionOptions 406 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 407 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 408 } 409 410 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 411 return TTIImpl->enableInterleavedAccessVectorization(); 412 } 413 414 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 415 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 416 } 417 418 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 419 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 420 } 421 422 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 423 unsigned BitWidth, 424 unsigned AddressSpace, 425 unsigned Alignment, 426 bool *Fast) const { 427 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 428 Alignment, Fast); 429 } 430 431 TargetTransformInfo::PopcntSupportKind 432 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 433 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 434 } 435 436 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 437 return TTIImpl->haveFastSqrt(Ty); 438 } 439 440 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 441 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 442 } 443 444 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 445 int Cost = TTIImpl->getFPOpCost(Ty); 446 assert(Cost >= 0 && "TTI should not produce negative costs!"); 447 return Cost; 448 } 449 450 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 451 const APInt &Imm, 452 Type *Ty) const { 453 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 454 assert(Cost >= 0 && "TTI should not produce negative costs!"); 455 return Cost; 456 } 457 458 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 459 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 460 assert(Cost >= 0 && "TTI should not produce negative costs!"); 461 return Cost; 462 } 463 464 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 465 const APInt &Imm, Type *Ty) const { 466 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 467 assert(Cost >= 0 && "TTI should not produce negative costs!"); 468 return Cost; 469 } 470 471 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 472 const APInt &Imm, Type *Ty) const { 473 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 474 assert(Cost >= 0 && "TTI should not produce negative costs!"); 475 return Cost; 476 } 477 478 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 479 return TTIImpl->getNumberOfRegisters(ClassID); 480 } 481 482 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const { 483 return TTIImpl->getRegisterClassForType(Vector, Ty); 484 } 485 486 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 487 return TTIImpl->getRegisterClassName(ClassID); 488 } 489 490 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 491 return TTIImpl->getRegisterBitWidth(Vector); 492 } 493 494 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 495 return TTIImpl->getMinVectorRegisterBitWidth(); 496 } 497 498 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 499 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 500 } 501 502 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 503 return TTIImpl->getMinimumVF(ElemWidth); 504 } 505 506 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 507 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 508 return TTIImpl->shouldConsiderAddressTypePromotion( 509 I, AllowPromotionWithoutCommonHeader); 510 } 511 512 unsigned TargetTransformInfo::getCacheLineSize() const { 513 return TTIImpl->getCacheLineSize(); 514 } 515 516 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 517 const { 518 return TTIImpl->getCacheSize(Level); 519 } 520 521 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 522 CacheLevel Level) const { 523 return TTIImpl->getCacheAssociativity(Level); 524 } 525 526 unsigned TargetTransformInfo::getPrefetchDistance() const { 527 return TTIImpl->getPrefetchDistance(); 528 } 529 530 unsigned TargetTransformInfo::getMinPrefetchStride() const { 531 return TTIImpl->getMinPrefetchStride(); 532 } 533 534 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 535 return TTIImpl->getMaxPrefetchIterationsAhead(); 536 } 537 538 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 539 return TTIImpl->getMaxInterleaveFactor(VF); 540 } 541 542 TargetTransformInfo::OperandValueKind 543 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 544 OperandValueKind OpInfo = OK_AnyValue; 545 OpProps = OP_None; 546 547 if (auto *CI = dyn_cast<ConstantInt>(V)) { 548 if (CI->getValue().isPowerOf2()) 549 OpProps = OP_PowerOf2; 550 return OK_UniformConstantValue; 551 } 552 553 // A broadcast shuffle creates a uniform value. 554 // TODO: Add support for non-zero index broadcasts. 555 // TODO: Add support for different source vector width. 556 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 557 if (ShuffleInst->isZeroEltSplat()) 558 OpInfo = OK_UniformValue; 559 560 const Value *Splat = getSplatValue(V); 561 562 // Check for a splat of a constant or for a non uniform vector of constants 563 // and check if the constant(s) are all powers of two. 564 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 565 OpInfo = OK_NonUniformConstantValue; 566 if (Splat) { 567 OpInfo = OK_UniformConstantValue; 568 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 569 if (CI->getValue().isPowerOf2()) 570 OpProps = OP_PowerOf2; 571 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 572 OpProps = OP_PowerOf2; 573 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 574 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 575 if (CI->getValue().isPowerOf2()) 576 continue; 577 OpProps = OP_None; 578 break; 579 } 580 } 581 } 582 583 // Check for a splat of a uniform value. This is not loop aware, so return 584 // true only for the obviously uniform cases (argument, globalvalue) 585 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 586 OpInfo = OK_UniformValue; 587 588 return OpInfo; 589 } 590 591 int TargetTransformInfo::getArithmeticInstrCost( 592 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 593 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 594 OperandValueProperties Opd2PropInfo, 595 ArrayRef<const Value *> Args) const { 596 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 597 Opd1PropInfo, Opd2PropInfo, Args); 598 assert(Cost >= 0 && "TTI should not produce negative costs!"); 599 return Cost; 600 } 601 602 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 603 Type *SubTp) const { 604 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 605 assert(Cost >= 0 && "TTI should not produce negative costs!"); 606 return Cost; 607 } 608 609 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 610 Type *Src, const Instruction *I) const { 611 assert ((I == nullptr || I->getOpcode() == Opcode) && 612 "Opcode should reflect passed instruction."); 613 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 614 assert(Cost >= 0 && "TTI should not produce negative costs!"); 615 return Cost; 616 } 617 618 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 619 VectorType *VecTy, 620 unsigned Index) const { 621 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 622 assert(Cost >= 0 && "TTI should not produce negative costs!"); 623 return Cost; 624 } 625 626 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 627 int Cost = TTIImpl->getCFInstrCost(Opcode); 628 assert(Cost >= 0 && "TTI should not produce negative costs!"); 629 return Cost; 630 } 631 632 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 633 Type *CondTy, const Instruction *I) const { 634 assert ((I == nullptr || I->getOpcode() == Opcode) && 635 "Opcode should reflect passed instruction."); 636 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 637 assert(Cost >= 0 && "TTI should not produce negative costs!"); 638 return Cost; 639 } 640 641 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 642 unsigned Index) const { 643 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 644 assert(Cost >= 0 && "TTI should not produce negative costs!"); 645 return Cost; 646 } 647 648 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 649 MaybeAlign Alignment, 650 unsigned AddressSpace, 651 const Instruction *I) const { 652 assert ((I == nullptr || I->getOpcode() == Opcode) && 653 "Opcode should reflect passed instruction."); 654 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 655 assert(Cost >= 0 && "TTI should not produce negative costs!"); 656 return Cost; 657 } 658 659 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 660 unsigned Alignment, 661 unsigned AddressSpace) const { 662 int Cost = 663 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 664 assert(Cost >= 0 && "TTI should not produce negative costs!"); 665 return Cost; 666 } 667 668 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 669 Value *Ptr, bool VariableMask, 670 unsigned Alignment) const { 671 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 672 Alignment); 673 assert(Cost >= 0 && "TTI should not produce negative costs!"); 674 return Cost; 675 } 676 677 int TargetTransformInfo::getInterleavedMemoryOpCost( 678 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 679 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 680 bool UseMaskForGaps) const { 681 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 682 Alignment, AddressSpace, 683 UseMaskForCond, 684 UseMaskForGaps); 685 assert(Cost >= 0 && "TTI should not produce negative costs!"); 686 return Cost; 687 } 688 689 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 690 ArrayRef<Type *> Tys, FastMathFlags FMF, 691 unsigned ScalarizationCostPassed) const { 692 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 693 ScalarizationCostPassed); 694 assert(Cost >= 0 && "TTI should not produce negative costs!"); 695 return Cost; 696 } 697 698 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 699 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 700 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 701 assert(Cost >= 0 && "TTI should not produce negative costs!"); 702 return Cost; 703 } 704 705 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 706 ArrayRef<Type *> Tys) const { 707 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 708 assert(Cost >= 0 && "TTI should not produce negative costs!"); 709 return Cost; 710 } 711 712 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 713 return TTIImpl->getNumberOfParts(Tp); 714 } 715 716 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 717 ScalarEvolution *SE, 718 const SCEV *Ptr) const { 719 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 720 assert(Cost >= 0 && "TTI should not produce negative costs!"); 721 return Cost; 722 } 723 724 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 725 int Cost = TTIImpl->getMemcpyCost(I); 726 assert(Cost >= 0 && "TTI should not produce negative costs!"); 727 return Cost; 728 } 729 730 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 731 bool IsPairwiseForm) const { 732 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 733 assert(Cost >= 0 && "TTI should not produce negative costs!"); 734 return Cost; 735 } 736 737 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 738 bool IsPairwiseForm, 739 bool IsUnsigned) const { 740 int Cost = 741 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 742 assert(Cost >= 0 && "TTI should not produce negative costs!"); 743 return Cost; 744 } 745 746 unsigned 747 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 748 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 749 } 750 751 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 752 MemIntrinsicInfo &Info) const { 753 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 754 } 755 756 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 757 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 758 } 759 760 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 761 IntrinsicInst *Inst, Type *ExpectedType) const { 762 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 763 } 764 765 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 766 Value *Length, 767 unsigned SrcAlign, 768 unsigned DestAlign) const { 769 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 770 DestAlign); 771 } 772 773 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 774 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 775 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 776 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 777 SrcAlign, DestAlign); 778 } 779 780 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 781 const Function *Callee) const { 782 return TTIImpl->areInlineCompatible(Caller, Callee); 783 } 784 785 bool TargetTransformInfo::areFunctionArgsABICompatible( 786 const Function *Caller, const Function *Callee, 787 SmallPtrSetImpl<Argument *> &Args) const { 788 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 789 } 790 791 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 792 Type *Ty) const { 793 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 794 } 795 796 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 797 Type *Ty) const { 798 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 799 } 800 801 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 802 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 803 } 804 805 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 806 return TTIImpl->isLegalToVectorizeLoad(LI); 807 } 808 809 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 810 return TTIImpl->isLegalToVectorizeStore(SI); 811 } 812 813 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 814 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 815 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 816 AddrSpace); 817 } 818 819 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 820 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 821 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 822 AddrSpace); 823 } 824 825 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 826 unsigned LoadSize, 827 unsigned ChainSizeInBytes, 828 VectorType *VecTy) const { 829 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 830 } 831 832 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 833 unsigned StoreSize, 834 unsigned ChainSizeInBytes, 835 VectorType *VecTy) const { 836 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 837 } 838 839 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 840 Type *Ty, ReductionFlags Flags) const { 841 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 842 } 843 844 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 845 return TTIImpl->shouldExpandReduction(II); 846 } 847 848 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 849 return TTIImpl->getGISelRematGlobalCost(); 850 } 851 852 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 853 return TTIImpl->getInstructionLatency(I); 854 } 855 856 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 857 unsigned Level) { 858 // We don't need a shuffle if we just want to have element 0 in position 0 of 859 // the vector. 860 if (!SI && Level == 0 && IsLeft) 861 return true; 862 else if (!SI) 863 return false; 864 865 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 866 867 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 868 // we look at the left or right side. 869 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 870 Mask[i] = val; 871 872 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 873 return Mask == ActualMask; 874 } 875 876 namespace { 877 /// Kind of the reduction data. 878 enum ReductionKind { 879 RK_None, /// Not a reduction. 880 RK_Arithmetic, /// Binary reduction data. 881 RK_MinMax, /// Min/max reduction data. 882 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 883 }; 884 /// Contains opcode + LHS/RHS parts of the reduction operations. 885 struct ReductionData { 886 ReductionData() = delete; 887 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 888 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 889 assert(Kind != RK_None && "expected binary or min/max reduction only."); 890 } 891 unsigned Opcode = 0; 892 Value *LHS = nullptr; 893 Value *RHS = nullptr; 894 ReductionKind Kind = RK_None; 895 bool hasSameData(ReductionData &RD) const { 896 return Kind == RD.Kind && Opcode == RD.Opcode; 897 } 898 }; 899 } // namespace 900 901 static Optional<ReductionData> getReductionData(Instruction *I) { 902 Value *L, *R; 903 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 904 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 905 if (auto *SI = dyn_cast<SelectInst>(I)) { 906 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 907 m_SMax(m_Value(L), m_Value(R)).match(SI) || 908 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 909 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 910 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 911 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 912 auto *CI = cast<CmpInst>(SI->getCondition()); 913 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 914 } 915 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 916 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 917 auto *CI = cast<CmpInst>(SI->getCondition()); 918 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 919 } 920 } 921 return llvm::None; 922 } 923 924 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 925 unsigned Level, 926 unsigned NumLevels) { 927 // Match one level of pairwise operations. 928 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 929 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 930 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 931 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 932 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 933 if (!I) 934 return RK_None; 935 936 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 937 938 Optional<ReductionData> RD = getReductionData(I); 939 if (!RD) 940 return RK_None; 941 942 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 943 if (!LS && Level) 944 return RK_None; 945 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 946 if (!RS && Level) 947 return RK_None; 948 949 // On level 0 we can omit one shufflevector instruction. 950 if (!Level && !RS && !LS) 951 return RK_None; 952 953 // Shuffle inputs must match. 954 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 955 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 956 Value *NextLevelOp = nullptr; 957 if (NextLevelOpR && NextLevelOpL) { 958 // If we have two shuffles their operands must match. 959 if (NextLevelOpL != NextLevelOpR) 960 return RK_None; 961 962 NextLevelOp = NextLevelOpL; 963 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 964 // On the first level we can omit the shufflevector <0, undef,...>. So the 965 // input to the other shufflevector <1, undef> must match with one of the 966 // inputs to the current binary operation. 967 // Example: 968 // %NextLevelOpL = shufflevector %R, <1, undef ...> 969 // %BinOp = fadd %NextLevelOpL, %R 970 if (NextLevelOpL && NextLevelOpL != RD->RHS) 971 return RK_None; 972 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 973 return RK_None; 974 975 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 976 } else 977 return RK_None; 978 979 // Check that the next levels binary operation exists and matches with the 980 // current one. 981 if (Level + 1 != NumLevels) { 982 Optional<ReductionData> NextLevelRD = 983 getReductionData(cast<Instruction>(NextLevelOp)); 984 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 985 return RK_None; 986 } 987 988 // Shuffle mask for pairwise operation must match. 989 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 990 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 991 return RK_None; 992 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 993 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 994 return RK_None; 995 } else { 996 return RK_None; 997 } 998 999 if (++Level == NumLevels) 1000 return RD->Kind; 1001 1002 // Match next level. 1003 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1004 NumLevels); 1005 } 1006 1007 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1008 unsigned &Opcode, Type *&Ty) { 1009 if (!EnableReduxCost) 1010 return RK_None; 1011 1012 // Need to extract the first element. 1013 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1014 unsigned Idx = ~0u; 1015 if (CI) 1016 Idx = CI->getZExtValue(); 1017 if (Idx != 0) 1018 return RK_None; 1019 1020 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1021 if (!RdxStart) 1022 return RK_None; 1023 Optional<ReductionData> RD = getReductionData(RdxStart); 1024 if (!RD) 1025 return RK_None; 1026 1027 Type *VecTy = RdxStart->getType(); 1028 unsigned NumVecElems = VecTy->getVectorNumElements(); 1029 if (!isPowerOf2_32(NumVecElems)) 1030 return RK_None; 1031 1032 // We look for a sequence of shuffle,shuffle,add triples like the following 1033 // that builds a pairwise reduction tree. 1034 // 1035 // (X0, X1, X2, X3) 1036 // (X0 + X1, X2 + X3, undef, undef) 1037 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1038 // 1039 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1040 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1041 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1042 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1043 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1044 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1045 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1046 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1047 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1048 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1049 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1050 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1051 RK_None) 1052 return RK_None; 1053 1054 Opcode = RD->Opcode; 1055 Ty = VecTy; 1056 1057 return RD->Kind; 1058 } 1059 1060 static std::pair<Value *, ShuffleVectorInst *> 1061 getShuffleAndOtherOprd(Value *L, Value *R) { 1062 ShuffleVectorInst *S = nullptr; 1063 1064 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1065 return std::make_pair(R, S); 1066 1067 S = dyn_cast<ShuffleVectorInst>(R); 1068 return std::make_pair(L, S); 1069 } 1070 1071 static ReductionKind 1072 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1073 unsigned &Opcode, Type *&Ty) { 1074 if (!EnableReduxCost) 1075 return RK_None; 1076 1077 // Need to extract the first element. 1078 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1079 unsigned Idx = ~0u; 1080 if (CI) 1081 Idx = CI->getZExtValue(); 1082 if (Idx != 0) 1083 return RK_None; 1084 1085 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1086 if (!RdxStart) 1087 return RK_None; 1088 Optional<ReductionData> RD = getReductionData(RdxStart); 1089 if (!RD) 1090 return RK_None; 1091 1092 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 1093 unsigned NumVecElems = VecTy->getVectorNumElements(); 1094 if (!isPowerOf2_32(NumVecElems)) 1095 return RK_None; 1096 1097 // We look for a sequence of shuffles and adds like the following matching one 1098 // fadd, shuffle vector pair at a time. 1099 // 1100 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1101 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1102 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1103 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1104 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1105 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1106 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1107 1108 unsigned MaskStart = 1; 1109 Instruction *RdxOp = RdxStart; 1110 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1111 unsigned NumVecElemsRemain = NumVecElems; 1112 while (NumVecElemsRemain - 1) { 1113 // Check for the right reduction operation. 1114 if (!RdxOp) 1115 return RK_None; 1116 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1117 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1118 return RK_None; 1119 1120 Value *NextRdxOp; 1121 ShuffleVectorInst *Shuffle; 1122 std::tie(NextRdxOp, Shuffle) = 1123 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1124 1125 // Check the current reduction operation and the shuffle use the same value. 1126 if (Shuffle == nullptr) 1127 return RK_None; 1128 if (Shuffle->getOperand(0) != NextRdxOp) 1129 return RK_None; 1130 1131 // Check that shuffle masks matches. 1132 for (unsigned j = 0; j != MaskStart; ++j) 1133 ShuffleMask[j] = MaskStart + j; 1134 // Fill the rest of the mask with -1 for undef. 1135 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1136 1137 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1138 if (ShuffleMask != Mask) 1139 return RK_None; 1140 1141 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1142 NumVecElemsRemain /= 2; 1143 MaskStart *= 2; 1144 } 1145 1146 Opcode = RD->Opcode; 1147 Ty = VecTy; 1148 return RD->Kind; 1149 } 1150 1151 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1152 switch (I->getOpcode()) { 1153 case Instruction::GetElementPtr: 1154 return getUserCost(I); 1155 1156 case Instruction::Ret: 1157 case Instruction::PHI: 1158 case Instruction::Br: { 1159 return getCFInstrCost(I->getOpcode()); 1160 } 1161 case Instruction::Add: 1162 case Instruction::FAdd: 1163 case Instruction::Sub: 1164 case Instruction::FSub: 1165 case Instruction::Mul: 1166 case Instruction::FMul: 1167 case Instruction::UDiv: 1168 case Instruction::SDiv: 1169 case Instruction::FDiv: 1170 case Instruction::URem: 1171 case Instruction::SRem: 1172 case Instruction::FRem: 1173 case Instruction::Shl: 1174 case Instruction::LShr: 1175 case Instruction::AShr: 1176 case Instruction::And: 1177 case Instruction::Or: 1178 case Instruction::Xor: { 1179 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1180 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1181 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1182 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1183 SmallVector<const Value *, 2> Operands(I->operand_values()); 1184 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1185 Op1VP, Op2VP, Operands); 1186 } 1187 case Instruction::FNeg: { 1188 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1189 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1190 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1191 Op2VK = OK_AnyValue; 1192 Op2VP = OP_None; 1193 SmallVector<const Value *, 2> Operands(I->operand_values()); 1194 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1195 Op1VP, Op2VP, Operands); 1196 } 1197 case Instruction::Select: { 1198 const SelectInst *SI = cast<SelectInst>(I); 1199 Type *CondTy = SI->getCondition()->getType(); 1200 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1201 } 1202 case Instruction::ICmp: 1203 case Instruction::FCmp: { 1204 Type *ValTy = I->getOperand(0)->getType(); 1205 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1206 } 1207 case Instruction::Store: { 1208 const StoreInst *SI = cast<StoreInst>(I); 1209 Type *ValTy = SI->getValueOperand()->getType(); 1210 return getMemoryOpCost(I->getOpcode(), ValTy, 1211 MaybeAlign(SI->getAlignment()), 1212 SI->getPointerAddressSpace(), I); 1213 } 1214 case Instruction::Load: { 1215 const LoadInst *LI = cast<LoadInst>(I); 1216 return getMemoryOpCost(I->getOpcode(), I->getType(), 1217 MaybeAlign(LI->getAlignment()), 1218 LI->getPointerAddressSpace(), I); 1219 } 1220 case Instruction::ZExt: 1221 case Instruction::SExt: 1222 case Instruction::FPToUI: 1223 case Instruction::FPToSI: 1224 case Instruction::FPExt: 1225 case Instruction::PtrToInt: 1226 case Instruction::IntToPtr: 1227 case Instruction::SIToFP: 1228 case Instruction::UIToFP: 1229 case Instruction::Trunc: 1230 case Instruction::FPTrunc: 1231 case Instruction::BitCast: 1232 case Instruction::AddrSpaceCast: { 1233 Type *SrcTy = I->getOperand(0)->getType(); 1234 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1235 } 1236 case Instruction::ExtractElement: { 1237 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1238 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1239 unsigned Idx = -1; 1240 if (CI) 1241 Idx = CI->getZExtValue(); 1242 1243 // Try to match a reduction sequence (series of shufflevector and vector 1244 // adds followed by a extractelement). 1245 unsigned ReduxOpCode; 1246 Type *ReduxType; 1247 1248 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1249 case RK_Arithmetic: 1250 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1251 /*IsPairwiseForm=*/false); 1252 case RK_MinMax: 1253 return getMinMaxReductionCost( 1254 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1255 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1256 case RK_UnsignedMinMax: 1257 return getMinMaxReductionCost( 1258 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1259 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1260 case RK_None: 1261 break; 1262 } 1263 1264 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1265 case RK_Arithmetic: 1266 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1267 /*IsPairwiseForm=*/true); 1268 case RK_MinMax: 1269 return getMinMaxReductionCost( 1270 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1271 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1272 case RK_UnsignedMinMax: 1273 return getMinMaxReductionCost( 1274 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1275 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1276 case RK_None: 1277 break; 1278 } 1279 1280 return getVectorInstrCost(I->getOpcode(), 1281 EEI->getOperand(0)->getType(), Idx); 1282 } 1283 case Instruction::InsertElement: { 1284 const InsertElementInst * IE = cast<InsertElementInst>(I); 1285 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1286 unsigned Idx = -1; 1287 if (CI) 1288 Idx = CI->getZExtValue(); 1289 return getVectorInstrCost(I->getOpcode(), 1290 IE->getType(), Idx); 1291 } 1292 case Instruction::ExtractValue: 1293 return 0; // Model all ExtractValue nodes as free. 1294 case Instruction::ShuffleVector: { 1295 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1296 Type *Ty = Shuffle->getType(); 1297 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1298 1299 // TODO: Identify and add costs for insert subvector, etc. 1300 int SubIndex; 1301 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1302 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1303 1304 if (Shuffle->changesLength()) 1305 return -1; 1306 1307 if (Shuffle->isIdentity()) 1308 return 0; 1309 1310 if (Shuffle->isReverse()) 1311 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1312 1313 if (Shuffle->isSelect()) 1314 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1315 1316 if (Shuffle->isTranspose()) 1317 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1318 1319 if (Shuffle->isZeroEltSplat()) 1320 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1321 1322 if (Shuffle->isSingleSource()) 1323 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1324 1325 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1326 } 1327 case Instruction::Call: 1328 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1329 SmallVector<Value *, 4> Args(II->arg_operands()); 1330 1331 FastMathFlags FMF; 1332 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1333 FMF = FPMO->getFastMathFlags(); 1334 1335 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1336 Args, FMF); 1337 } 1338 return -1; 1339 default: 1340 // We don't have any information on this instruction. 1341 return -1; 1342 } 1343 } 1344 1345 TargetTransformInfo::Concept::~Concept() {} 1346 1347 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1348 1349 TargetIRAnalysis::TargetIRAnalysis( 1350 std::function<Result(const Function &)> TTICallback) 1351 : TTICallback(std::move(TTICallback)) {} 1352 1353 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1354 FunctionAnalysisManager &) { 1355 return TTICallback(F); 1356 } 1357 1358 AnalysisKey TargetIRAnalysis::Key; 1359 1360 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1361 return Result(F.getParent()->getDataLayout()); 1362 } 1363 1364 // Register the basic pass. 1365 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1366 "Target Transform Information", false, true) 1367 char TargetTransformInfoWrapperPass::ID = 0; 1368 1369 void TargetTransformInfoWrapperPass::anchor() {} 1370 1371 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1372 : ImmutablePass(ID) { 1373 initializeTargetTransformInfoWrapperPassPass( 1374 *PassRegistry::getPassRegistry()); 1375 } 1376 1377 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1378 TargetIRAnalysis TIRA) 1379 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1380 initializeTargetTransformInfoWrapperPassPass( 1381 *PassRegistry::getPassRegistry()); 1382 } 1383 1384 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1385 FunctionAnalysisManager DummyFAM; 1386 TTI = TIRA.run(F, DummyFAM); 1387 return *TTI; 1388 } 1389 1390 ImmutablePass * 1391 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1392 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1393 } 1394