1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "tti" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/Support/CallSite.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 using namespace llvm; 21 22 // Setup the analysis group to manage the TargetTransformInfo passes. 23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 24 char TargetTransformInfo::ID = 0; 25 26 TargetTransformInfo::~TargetTransformInfo() { 27 } 28 29 void TargetTransformInfo::pushTTIStack(Pass *P) { 30 TopTTI = this; 31 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 32 33 // Walk up the chain and update the top TTI pointer. 34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 35 PTTI->TopTTI = this; 36 } 37 38 void TargetTransformInfo::popTTIStack() { 39 TopTTI = 0; 40 41 // Walk up the chain and update the top TTI pointer. 42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 43 PTTI->TopTTI = PrevTTI; 44 45 PrevTTI = 0; 46 } 47 48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequired<TargetTransformInfo>(); 50 } 51 52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 53 Type *OpTy) const { 54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 55 } 56 57 unsigned TargetTransformInfo::getGEPCost( 58 const Value *Ptr, ArrayRef<const Value *> Operands) const { 59 return PrevTTI->getGEPCost(Ptr, Operands); 60 } 61 62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 63 int NumArgs) const { 64 return PrevTTI->getCallCost(FTy, NumArgs); 65 } 66 67 unsigned TargetTransformInfo::getCallCost(const Function *F, 68 int NumArgs) const { 69 return PrevTTI->getCallCost(F, NumArgs); 70 } 71 72 unsigned TargetTransformInfo::getCallCost( 73 const Function *F, ArrayRef<const Value *> Arguments) const { 74 return PrevTTI->getCallCost(F, Arguments); 75 } 76 77 unsigned TargetTransformInfo::getIntrinsicCost( 78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 80 } 81 82 unsigned TargetTransformInfo::getIntrinsicCost( 83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 85 } 86 87 unsigned TargetTransformInfo::getUserCost(const User *U) const { 88 return PrevTTI->getUserCost(U); 89 } 90 91 bool TargetTransformInfo::hasBranchDivergence() const { 92 return PrevTTI->hasBranchDivergence(); 93 } 94 95 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 96 return PrevTTI->isLoweredToCall(F); 97 } 98 99 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 100 return PrevTTI->isLegalAddImmediate(Imm); 101 } 102 103 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 104 return PrevTTI->isLegalICmpImmediate(Imm); 105 } 106 107 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 108 int64_t BaseOffset, 109 bool HasBaseReg, 110 int64_t Scale) const { 111 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 112 Scale); 113 } 114 115 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 116 int64_t BaseOffset, 117 bool HasBaseReg, 118 int64_t Scale) const { 119 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 120 Scale); 121 } 122 123 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 124 return PrevTTI->isTruncateFree(Ty1, Ty2); 125 } 126 127 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 128 return PrevTTI->isTypeLegal(Ty); 129 } 130 131 unsigned TargetTransformInfo::getJumpBufAlignment() const { 132 return PrevTTI->getJumpBufAlignment(); 133 } 134 135 unsigned TargetTransformInfo::getJumpBufSize() const { 136 return PrevTTI->getJumpBufSize(); 137 } 138 139 bool TargetTransformInfo::shouldBuildLookupTables() const { 140 return PrevTTI->shouldBuildLookupTables(); 141 } 142 143 TargetTransformInfo::PopcntSupportKind 144 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 145 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 146 } 147 148 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 149 return PrevTTI->haveFastSqrt(Ty); 150 } 151 152 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 153 return PrevTTI->getIntImmCost(Imm, Ty); 154 } 155 156 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 157 return PrevTTI->getNumberOfRegisters(Vector); 158 } 159 160 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 161 return PrevTTI->getRegisterBitWidth(Vector); 162 } 163 164 unsigned TargetTransformInfo::getMaximumUnrollFactor() const { 165 return PrevTTI->getMaximumUnrollFactor(); 166 } 167 168 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, 169 Type *Ty, 170 OperandValueKind Op1Info, 171 OperandValueKind Op2Info) const { 172 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 173 } 174 175 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 176 int Index, Type *SubTp) const { 177 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 178 } 179 180 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 181 Type *Src) const { 182 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 183 } 184 185 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 186 return PrevTTI->getCFInstrCost(Opcode); 187 } 188 189 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 190 Type *CondTy) const { 191 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 192 } 193 194 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 195 unsigned Index) const { 196 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 197 } 198 199 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 200 unsigned Alignment, 201 unsigned AddressSpace) const { 202 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 203 ; 204 } 205 206 unsigned 207 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 208 Type *RetTy, 209 ArrayRef<Type *> Tys) const { 210 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 211 } 212 213 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 214 return PrevTTI->getNumberOfParts(Tp); 215 } 216 217 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp, 218 bool IsComplex) const { 219 return PrevTTI->getAddressComputationCost(Tp, IsComplex); 220 } 221 222 namespace { 223 224 struct NoTTI : ImmutablePass, TargetTransformInfo { 225 const DataLayout *DL; 226 227 NoTTI() : ImmutablePass(ID), DL(0) { 228 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 229 } 230 231 virtual void initializePass() { 232 // Note that this subclass is special, and must *not* call initializeTTI as 233 // it does not chain. 234 TopTTI = this; 235 PrevTTI = 0; 236 DL = getAnalysisIfAvailable<DataLayout>(); 237 } 238 239 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 240 // Note that this subclass is special, and must *not* call 241 // TTI::getAnalysisUsage as it breaks the recursion. 242 } 243 244 /// Pass identification. 245 static char ID; 246 247 /// Provide necessary pointer adjustments for the two base classes. 248 virtual void *getAdjustedAnalysisPointer(const void *ID) { 249 if (ID == &TargetTransformInfo::ID) 250 return (TargetTransformInfo*)this; 251 return this; 252 } 253 254 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const { 255 switch (Opcode) { 256 default: 257 // By default, just classify everything as 'basic'. 258 return TCC_Basic; 259 260 case Instruction::GetElementPtr: 261 llvm_unreachable("Use getGEPCost for GEP operations!"); 262 263 case Instruction::BitCast: 264 assert(OpTy && "Cast instructions must provide the operand type"); 265 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 266 // Identity and pointer-to-pointer casts are free. 267 return TCC_Free; 268 269 // Otherwise, the default basic cost is used. 270 return TCC_Basic; 271 272 case Instruction::IntToPtr: { 273 if (!DL) 274 return TCC_Basic; 275 276 // An inttoptr cast is free so long as the input is a legal integer type 277 // which doesn't contain values outside the range of a pointer. 278 unsigned OpSize = OpTy->getScalarSizeInBits(); 279 if (DL->isLegalInteger(OpSize) && 280 OpSize <= DL->getPointerTypeSizeInBits(Ty)) 281 return TCC_Free; 282 283 // Otherwise it's not a no-op. 284 return TCC_Basic; 285 } 286 case Instruction::PtrToInt: { 287 if (!DL) 288 return TCC_Basic; 289 290 // A ptrtoint cast is free so long as the result is large enough to store 291 // the pointer, and a legal integer type. 292 unsigned DestSize = Ty->getScalarSizeInBits(); 293 if (DL->isLegalInteger(DestSize) && 294 DestSize >= DL->getPointerTypeSizeInBits(OpTy)) 295 return TCC_Free; 296 297 // Otherwise it's not a no-op. 298 return TCC_Basic; 299 } 300 case Instruction::Trunc: 301 // trunc to a native type is free (assuming the target has compare and 302 // shift-right of the same width). 303 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 304 return TCC_Free; 305 306 return TCC_Basic; 307 } 308 } 309 310 unsigned getGEPCost(const Value *Ptr, 311 ArrayRef<const Value *> Operands) const { 312 // In the basic model, we just assume that all-constant GEPs will be folded 313 // into their uses via addressing modes. 314 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 315 if (!isa<Constant>(Operands[Idx])) 316 return TCC_Basic; 317 318 return TCC_Free; 319 } 320 321 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const { 322 assert(FTy && "FunctionType must be provided to this routine."); 323 324 // The target-independent implementation just measures the size of the 325 // function by approximating that each argument will take on average one 326 // instruction to prepare. 327 328 if (NumArgs < 0) 329 // Set the argument number to the number of explicit arguments in the 330 // function. 331 NumArgs = FTy->getNumParams(); 332 333 return TCC_Basic * (NumArgs + 1); 334 } 335 336 unsigned getCallCost(const Function *F, int NumArgs = -1) const { 337 assert(F && "A concrete function must be provided to this routine."); 338 339 if (NumArgs < 0) 340 // Set the argument number to the number of explicit arguments in the 341 // function. 342 NumArgs = F->arg_size(); 343 344 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 345 FunctionType *FTy = F->getFunctionType(); 346 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 347 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 348 } 349 350 if (!TopTTI->isLoweredToCall(F)) 351 return TCC_Basic; // Give a basic cost if it will be lowered directly. 352 353 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 354 } 355 356 unsigned getCallCost(const Function *F, 357 ArrayRef<const Value *> Arguments) const { 358 // Simply delegate to generic handling of the call. 359 // FIXME: We should use instsimplify or something else to catch calls which 360 // will constant fold with these arguments. 361 return TopTTI->getCallCost(F, Arguments.size()); 362 } 363 364 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 365 ArrayRef<Type *> ParamTys) const { 366 switch (IID) { 367 default: 368 // Intrinsics rarely (if ever) have normal argument setup constraints. 369 // Model them as having a basic instruction cost. 370 // FIXME: This is wrong for libc intrinsics. 371 return TCC_Basic; 372 373 case Intrinsic::dbg_declare: 374 case Intrinsic::dbg_value: 375 case Intrinsic::invariant_start: 376 case Intrinsic::invariant_end: 377 case Intrinsic::lifetime_start: 378 case Intrinsic::lifetime_end: 379 case Intrinsic::objectsize: 380 case Intrinsic::ptr_annotation: 381 case Intrinsic::var_annotation: 382 // These intrinsics don't actually represent code after lowering. 383 return TCC_Free; 384 } 385 } 386 387 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 388 ArrayRef<const Value *> Arguments) const { 389 // Delegate to the generic intrinsic handling code. This mostly provides an 390 // opportunity for targets to (for example) special case the cost of 391 // certain intrinsics based on constants used as arguments. 392 SmallVector<Type *, 8> ParamTys; 393 ParamTys.reserve(Arguments.size()); 394 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 395 ParamTys.push_back(Arguments[Idx]->getType()); 396 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 397 } 398 399 unsigned getUserCost(const User *U) const { 400 if (isa<PHINode>(U)) 401 return TCC_Free; // Model all PHI nodes as free. 402 403 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) 404 // In the basic model we just assume that all-constant GEPs will be 405 // folded into their uses via addressing modes. 406 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic; 407 408 if (ImmutableCallSite CS = U) { 409 const Function *F = CS.getCalledFunction(); 410 if (!F) { 411 // Just use the called value type. 412 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 413 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 414 } 415 416 SmallVector<const Value *, 8> Arguments; 417 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), 418 AE = CS.arg_end(); 419 AI != AE; ++AI) 420 Arguments.push_back(*AI); 421 422 return TopTTI->getCallCost(F, Arguments); 423 } 424 425 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 426 // Result of a cmp instruction is often extended (to be used by other 427 // cmp instructions, logical or return instructions). These are usually 428 // nop on most sane targets. 429 if (isa<CmpInst>(CI->getOperand(0))) 430 return TCC_Free; 431 } 432 433 // Otherwise delegate to the fully generic implementations. 434 return getOperationCost(Operator::getOpcode(U), U->getType(), 435 U->getNumOperands() == 1 ? 436 U->getOperand(0)->getType() : 0); 437 } 438 439 bool hasBranchDivergence() const { return false; } 440 441 bool isLoweredToCall(const Function *F) const { 442 // FIXME: These should almost certainly not be handled here, and instead 443 // handled with the help of TLI or the target itself. This was largely 444 // ported from existing analysis heuristics here so that such refactorings 445 // can take place in the future. 446 447 if (F->isIntrinsic()) 448 return false; 449 450 if (F->hasLocalLinkage() || !F->hasName()) 451 return true; 452 453 StringRef Name = F->getName(); 454 455 // These will all likely lower to a single selection DAG node. 456 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 457 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 458 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 459 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 460 return false; 461 462 // These are all likely to be optimized into something smaller. 463 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 464 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 465 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 466 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 467 return false; 468 469 return true; 470 } 471 472 bool isLegalAddImmediate(int64_t Imm) const { 473 return false; 474 } 475 476 bool isLegalICmpImmediate(int64_t Imm) const { 477 return false; 478 } 479 480 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 481 bool HasBaseReg, int64_t Scale) const { 482 // Guess that reg+reg addressing is allowed. This heuristic is taken from 483 // the implementation of LSR. 484 return !BaseGV && BaseOffset == 0 && Scale <= 1; 485 } 486 487 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 488 bool HasBaseReg, int64_t Scale) const { 489 // Guess that all legal addressing mode are free. 490 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 491 return 0; 492 return -1; 493 } 494 495 496 bool isTruncateFree(Type *Ty1, Type *Ty2) const { 497 return false; 498 } 499 500 bool isTypeLegal(Type *Ty) const { 501 return false; 502 } 503 504 unsigned getJumpBufAlignment() const { 505 return 0; 506 } 507 508 unsigned getJumpBufSize() const { 509 return 0; 510 } 511 512 bool shouldBuildLookupTables() const { 513 return true; 514 } 515 516 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const { 517 return PSK_Software; 518 } 519 520 bool haveFastSqrt(Type *Ty) const { 521 return false; 522 } 523 524 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const { 525 return 1; 526 } 527 528 unsigned getNumberOfRegisters(bool Vector) const { 529 return 8; 530 } 531 532 unsigned getRegisterBitWidth(bool Vector) const { 533 return 32; 534 } 535 536 unsigned getMaximumUnrollFactor() const { 537 return 1; 538 } 539 540 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 541 OperandValueKind) const { 542 return 1; 543 } 544 545 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 546 int Index = 0, Type *SubTp = 0) const { 547 return 1; 548 } 549 550 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 551 Type *Src) const { 552 return 1; 553 } 554 555 unsigned getCFInstrCost(unsigned Opcode) const { 556 return 1; 557 } 558 559 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 560 Type *CondTy = 0) const { 561 return 1; 562 } 563 564 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 565 unsigned Index = -1) const { 566 return 1; 567 } 568 569 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 570 unsigned Alignment, 571 unsigned AddressSpace) const { 572 return 1; 573 } 574 575 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, 576 Type *RetTy, 577 ArrayRef<Type*> Tys) const { 578 return 1; 579 } 580 581 unsigned getNumberOfParts(Type *Tp) const { 582 return 0; 583 } 584 585 unsigned getAddressComputationCost(Type *Tp, bool) const { 586 return 0; 587 } 588 }; 589 590 } // end anonymous namespace 591 592 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 593 "No target information", true, true, true) 594 char NoTTI::ID = 0; 595 596 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 597 return new NoTTI(); 598 } 599