1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 75 FunctionType *FTy = 76 CI.getCalledFunction()->getFunctionType(); 77 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 78 } 79 80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 81 const CallBase &CI, 82 ElementCount Factor) 83 : RetTy(CI.getType()), IID(Id), VF(Factor) { 84 85 assert(!Factor.isScalable() && "Scalable vectors are not yet supported"); 86 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 87 FMF = FPMO->getFastMathFlags(); 88 89 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 90 FunctionType *FTy = 91 CI.getCalledFunction()->getFunctionType(); 92 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 93 } 94 95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 96 const CallBase &CI, 97 ElementCount Factor, 98 unsigned ScalarCost) 99 : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 100 101 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 102 FMF = FPMO->getFastMathFlags(); 103 104 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 105 FunctionType *FTy = 106 CI.getCalledFunction()->getFunctionType(); 107 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 108 } 109 110 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 111 ArrayRef<Type *> Tys, 112 FastMathFlags Flags) : 113 RetTy(RTy), IID(Id), FMF(Flags) { 114 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 115 } 116 117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 118 ArrayRef<Type *> Tys, 119 FastMathFlags Flags, 120 unsigned ScalarCost) : 121 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 122 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 123 } 124 125 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 126 ArrayRef<Type *> Tys, 127 FastMathFlags Flags, 128 unsigned ScalarCost, 129 const IntrinsicInst *I) : 130 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 131 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 132 } 133 134 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 135 ArrayRef<Type *> Tys) : 136 RetTy(RTy), IID(Id) { 137 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 138 } 139 140 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 141 ArrayRef<const Value *> Args) 142 : RetTy(Ty), IID(Id) { 143 144 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 145 ParamTys.reserve(Arguments.size()); 146 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 147 ParamTys.push_back(Arguments[Idx]->getType()); 148 } 149 150 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 151 LoopInfo &LI, DominatorTree &DT, 152 bool ForceNestedLoop, 153 bool ForceHardwareLoopPHI) { 154 SmallVector<BasicBlock *, 4> ExitingBlocks; 155 L->getExitingBlocks(ExitingBlocks); 156 157 for (BasicBlock *BB : ExitingBlocks) { 158 // If we pass the updated counter back through a phi, we need to know 159 // which latch the updated value will be coming from. 160 if (!L->isLoopLatch(BB)) { 161 if (ForceHardwareLoopPHI || CounterInReg) 162 continue; 163 } 164 165 const SCEV *EC = SE.getExitCount(L, BB); 166 if (isa<SCEVCouldNotCompute>(EC)) 167 continue; 168 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 169 if (ConstEC->getValue()->isZero()) 170 continue; 171 } else if (!SE.isLoopInvariant(EC, L)) 172 continue; 173 174 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 175 continue; 176 177 // If this exiting block is contained in a nested loop, it is not eligible 178 // for insertion of the branch-and-decrement since the inner loop would 179 // end up messing up the value in the CTR. 180 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 181 continue; 182 183 // We now have a loop-invariant count of loop iterations (which is not the 184 // constant zero) for which we know that this loop will not exit via this 185 // existing block. 186 187 // We need to make sure that this block will run on every loop iteration. 188 // For this to be true, we must dominate all blocks with backedges. Such 189 // blocks are in-loop predecessors to the header block. 190 bool NotAlways = false; 191 for (BasicBlock *Pred : predecessors(L->getHeader())) { 192 if (!L->contains(Pred)) 193 continue; 194 195 if (!DT.dominates(BB, Pred)) { 196 NotAlways = true; 197 break; 198 } 199 } 200 201 if (NotAlways) 202 continue; 203 204 // Make sure this blocks ends with a conditional branch. 205 Instruction *TI = BB->getTerminator(); 206 if (!TI) 207 continue; 208 209 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 210 if (!BI->isConditional()) 211 continue; 212 213 ExitBranch = BI; 214 } else 215 continue; 216 217 // Note that this block may not be the loop latch block, even if the loop 218 // has a latch block. 219 ExitBlock = BB; 220 TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType())); 221 222 if (!EC->getType()->isPointerTy() && EC->getType() != CountType) 223 TripCount = SE.getZeroExtendExpr(TripCount, CountType); 224 225 break; 226 } 227 228 if (!ExitBlock) 229 return false; 230 return true; 231 } 232 233 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 234 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 235 236 TargetTransformInfo::~TargetTransformInfo() {} 237 238 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 239 : TTIImpl(std::move(Arg.TTIImpl)) {} 240 241 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 242 TTIImpl = std::move(RHS.TTIImpl); 243 return *this; 244 } 245 246 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 247 return TTIImpl->getInliningThresholdMultiplier(); 248 } 249 250 unsigned 251 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const { 252 return TTIImpl->adjustInliningThreshold(CB); 253 } 254 255 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 256 return TTIImpl->getInlinerVectorBonusPercent(); 257 } 258 259 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 260 ArrayRef<const Value *> Operands, 261 TTI::TargetCostKind CostKind) const { 262 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 263 } 264 265 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 266 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 267 BlockFrequencyInfo *BFI) const { 268 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 269 } 270 271 int TargetTransformInfo::getUserCost(const User *U, 272 ArrayRef<const Value *> Operands, 273 enum TargetCostKind CostKind) const { 274 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 275 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 276 "TTI should not produce negative costs!"); 277 return Cost; 278 } 279 280 bool TargetTransformInfo::hasBranchDivergence() const { 281 return TTIImpl->hasBranchDivergence(); 282 } 283 284 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 285 return TTIImpl->useGPUDivergenceAnalysis(); 286 } 287 288 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 289 return TTIImpl->isSourceOfDivergence(V); 290 } 291 292 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 293 return TTIImpl->isAlwaysUniform(V); 294 } 295 296 unsigned TargetTransformInfo::getFlatAddressSpace() const { 297 return TTIImpl->getFlatAddressSpace(); 298 } 299 300 bool TargetTransformInfo::collectFlatAddressOperands( 301 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 302 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 303 } 304 305 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 306 unsigned ToAS) const { 307 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 308 } 309 310 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const { 311 return TTIImpl->getAssumedAddrSpace(V); 312 } 313 314 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 315 IntrinsicInst *II, Value *OldV, Value *NewV) const { 316 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 317 } 318 319 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 320 return TTIImpl->isLoweredToCall(F); 321 } 322 323 bool TargetTransformInfo::isHardwareLoopProfitable( 324 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 325 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 326 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 327 } 328 329 bool TargetTransformInfo::preferPredicateOverEpilogue( 330 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 331 TargetLibraryInfo *TLI, DominatorTree *DT, 332 const LoopAccessInfo *LAI) const { 333 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 334 } 335 336 bool TargetTransformInfo::emitGetActiveLaneMask() const { 337 return TTIImpl->emitGetActiveLaneMask(); 338 } 339 340 Optional<Instruction *> 341 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC, 342 IntrinsicInst &II) const { 343 return TTIImpl->instCombineIntrinsic(IC, II); 344 } 345 346 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic( 347 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 348 bool &KnownBitsComputed) const { 349 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 350 KnownBitsComputed); 351 } 352 353 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic( 354 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 355 APInt &UndefElts2, APInt &UndefElts3, 356 std::function<void(Instruction *, unsigned, APInt, APInt &)> 357 SimplifyAndSetOp) const { 358 return TTIImpl->simplifyDemandedVectorEltsIntrinsic( 359 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 360 SimplifyAndSetOp); 361 } 362 363 void TargetTransformInfo::getUnrollingPreferences( 364 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 365 return TTIImpl->getUnrollingPreferences(L, SE, UP); 366 } 367 368 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 369 PeelingPreferences &PP) const { 370 return TTIImpl->getPeelingPreferences(L, SE, PP); 371 } 372 373 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 374 return TTIImpl->isLegalAddImmediate(Imm); 375 } 376 377 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 378 return TTIImpl->isLegalICmpImmediate(Imm); 379 } 380 381 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 382 int64_t BaseOffset, 383 bool HasBaseReg, int64_t Scale, 384 unsigned AddrSpace, 385 Instruction *I) const { 386 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 387 Scale, AddrSpace, I); 388 } 389 390 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 391 return TTIImpl->isLSRCostLess(C1, C2); 392 } 393 394 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const { 395 return TTIImpl->isNumRegsMajorCostOfLSR(); 396 } 397 398 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 399 return TTIImpl->isProfitableLSRChainElement(I); 400 } 401 402 bool TargetTransformInfo::canMacroFuseCmp() const { 403 return TTIImpl->canMacroFuseCmp(); 404 } 405 406 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 407 ScalarEvolution *SE, LoopInfo *LI, 408 DominatorTree *DT, AssumptionCache *AC, 409 TargetLibraryInfo *LibInfo) const { 410 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 411 } 412 413 bool TargetTransformInfo::shouldFavorPostInc() const { 414 return TTIImpl->shouldFavorPostInc(); 415 } 416 417 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 418 return TTIImpl->shouldFavorBackedgeIndex(L); 419 } 420 421 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 422 Align Alignment) const { 423 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 424 } 425 426 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 427 Align Alignment) const { 428 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 429 } 430 431 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 432 Align Alignment) const { 433 return TTIImpl->isLegalNTStore(DataType, Alignment); 434 } 435 436 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 437 return TTIImpl->isLegalNTLoad(DataType, Alignment); 438 } 439 440 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 441 Align Alignment) const { 442 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 443 } 444 445 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 446 Align Alignment) const { 447 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 448 } 449 450 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 451 return TTIImpl->isLegalMaskedCompressStore(DataType); 452 } 453 454 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 455 return TTIImpl->isLegalMaskedExpandLoad(DataType); 456 } 457 458 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 459 return TTIImpl->hasDivRemOp(DataType, IsSigned); 460 } 461 462 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 463 unsigned AddrSpace) const { 464 return TTIImpl->hasVolatileVariant(I, AddrSpace); 465 } 466 467 bool TargetTransformInfo::prefersVectorizedAddressing() const { 468 return TTIImpl->prefersVectorizedAddressing(); 469 } 470 471 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 472 int64_t BaseOffset, 473 bool HasBaseReg, int64_t Scale, 474 unsigned AddrSpace) const { 475 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 476 Scale, AddrSpace); 477 assert(Cost >= 0 && "TTI should not produce negative costs!"); 478 return Cost; 479 } 480 481 bool TargetTransformInfo::LSRWithInstrQueries() const { 482 return TTIImpl->LSRWithInstrQueries(); 483 } 484 485 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 486 return TTIImpl->isTruncateFree(Ty1, Ty2); 487 } 488 489 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 490 return TTIImpl->isProfitableToHoist(I); 491 } 492 493 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 494 495 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 496 return TTIImpl->isTypeLegal(Ty); 497 } 498 499 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const { 500 return TTIImpl->getRegUsageForType(Ty); 501 } 502 503 bool TargetTransformInfo::shouldBuildLookupTables() const { 504 return TTIImpl->shouldBuildLookupTables(); 505 } 506 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 507 Constant *C) const { 508 return TTIImpl->shouldBuildLookupTablesForConstant(C); 509 } 510 511 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 512 return TTIImpl->useColdCCForColdCall(F); 513 } 514 515 unsigned 516 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 517 const APInt &DemandedElts, 518 bool Insert, bool Extract) const { 519 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 520 } 521 522 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 523 ArrayRef<const Value *> Args, unsigned VF) const { 524 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 525 } 526 527 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 528 return TTIImpl->supportsEfficientVectorElementLoadStore(); 529 } 530 531 bool TargetTransformInfo::enableAggressiveInterleaving( 532 bool LoopHasReductions) const { 533 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 534 } 535 536 TargetTransformInfo::MemCmpExpansionOptions 537 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 538 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 539 } 540 541 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 542 return TTIImpl->enableInterleavedAccessVectorization(); 543 } 544 545 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 546 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 547 } 548 549 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 550 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 551 } 552 553 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 554 unsigned BitWidth, 555 unsigned AddressSpace, 556 Align Alignment, 557 bool *Fast) const { 558 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 559 AddressSpace, Alignment, Fast); 560 } 561 562 TargetTransformInfo::PopcntSupportKind 563 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 564 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 565 } 566 567 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 568 return TTIImpl->haveFastSqrt(Ty); 569 } 570 571 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 572 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 573 } 574 575 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 576 int Cost = TTIImpl->getFPOpCost(Ty); 577 assert(Cost >= 0 && "TTI should not produce negative costs!"); 578 return Cost; 579 } 580 581 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 582 const APInt &Imm, 583 Type *Ty) const { 584 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 585 assert(Cost >= 0 && "TTI should not produce negative costs!"); 586 return Cost; 587 } 588 589 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 590 TTI::TargetCostKind CostKind) const { 591 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 592 assert(Cost >= 0 && "TTI should not produce negative costs!"); 593 return Cost; 594 } 595 596 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 597 const APInt &Imm, Type *Ty, 598 TTI::TargetCostKind CostKind, 599 Instruction *Inst) const { 600 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 601 assert(Cost >= 0 && "TTI should not produce negative costs!"); 602 return Cost; 603 } 604 605 int 606 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 607 const APInt &Imm, Type *Ty, 608 TTI::TargetCostKind CostKind) const { 609 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 610 assert(Cost >= 0 && "TTI should not produce negative costs!"); 611 return Cost; 612 } 613 614 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 615 return TTIImpl->getNumberOfRegisters(ClassID); 616 } 617 618 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 619 Type *Ty) const { 620 return TTIImpl->getRegisterClassForType(Vector, Ty); 621 } 622 623 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 624 return TTIImpl->getRegisterClassName(ClassID); 625 } 626 627 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 628 return TTIImpl->getRegisterBitWidth(Vector); 629 } 630 631 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 632 return TTIImpl->getMinVectorRegisterBitWidth(); 633 } 634 635 Optional<unsigned> TargetTransformInfo::getMaxVScale() const { 636 return TTIImpl->getMaxVScale(); 637 } 638 639 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 640 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 641 } 642 643 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth, 644 bool IsScalable) const { 645 return TTIImpl->getMinimumVF(ElemWidth, IsScalable); 646 } 647 648 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth, 649 unsigned Opcode) const { 650 return TTIImpl->getMaximumVF(ElemWidth, Opcode); 651 } 652 653 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 654 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 655 return TTIImpl->shouldConsiderAddressTypePromotion( 656 I, AllowPromotionWithoutCommonHeader); 657 } 658 659 unsigned TargetTransformInfo::getCacheLineSize() const { 660 return TTIImpl->getCacheLineSize(); 661 } 662 663 llvm::Optional<unsigned> 664 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 665 return TTIImpl->getCacheSize(Level); 666 } 667 668 llvm::Optional<unsigned> 669 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 670 return TTIImpl->getCacheAssociativity(Level); 671 } 672 673 unsigned TargetTransformInfo::getPrefetchDistance() const { 674 return TTIImpl->getPrefetchDistance(); 675 } 676 677 unsigned TargetTransformInfo::getMinPrefetchStride( 678 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 679 unsigned NumPrefetches, bool HasCall) const { 680 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 681 NumPrefetches, HasCall); 682 } 683 684 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 685 return TTIImpl->getMaxPrefetchIterationsAhead(); 686 } 687 688 bool TargetTransformInfo::enableWritePrefetching() const { 689 return TTIImpl->enableWritePrefetching(); 690 } 691 692 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 693 return TTIImpl->getMaxInterleaveFactor(VF); 694 } 695 696 TargetTransformInfo::OperandValueKind 697 TargetTransformInfo::getOperandInfo(const Value *V, 698 OperandValueProperties &OpProps) { 699 OperandValueKind OpInfo = OK_AnyValue; 700 OpProps = OP_None; 701 702 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 703 if (CI->getValue().isPowerOf2()) 704 OpProps = OP_PowerOf2; 705 return OK_UniformConstantValue; 706 } 707 708 // A broadcast shuffle creates a uniform value. 709 // TODO: Add support for non-zero index broadcasts. 710 // TODO: Add support for different source vector width. 711 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 712 if (ShuffleInst->isZeroEltSplat()) 713 OpInfo = OK_UniformValue; 714 715 const Value *Splat = getSplatValue(V); 716 717 // Check for a splat of a constant or for a non uniform vector of constants 718 // and check if the constant(s) are all powers of two. 719 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 720 OpInfo = OK_NonUniformConstantValue; 721 if (Splat) { 722 OpInfo = OK_UniformConstantValue; 723 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 724 if (CI->getValue().isPowerOf2()) 725 OpProps = OP_PowerOf2; 726 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 727 OpProps = OP_PowerOf2; 728 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 729 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 730 if (CI->getValue().isPowerOf2()) 731 continue; 732 OpProps = OP_None; 733 break; 734 } 735 } 736 } 737 738 // Check for a splat of a uniform value. This is not loop aware, so return 739 // true only for the obviously uniform cases (argument, globalvalue) 740 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 741 OpInfo = OK_UniformValue; 742 743 return OpInfo; 744 } 745 746 int TargetTransformInfo::getArithmeticInstrCost( 747 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 748 OperandValueKind Opd1Info, 749 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 750 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 751 const Instruction *CxtI) const { 752 int Cost = TTIImpl->getArithmeticInstrCost( 753 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 754 Args, CxtI); 755 assert(Cost >= 0 && "TTI should not produce negative costs!"); 756 return Cost; 757 } 758 759 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 760 int Index, VectorType *SubTp) const { 761 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 762 assert(Cost >= 0 && "TTI should not produce negative costs!"); 763 return Cost; 764 } 765 766 TTI::CastContextHint 767 TargetTransformInfo::getCastContextHint(const Instruction *I) { 768 if (!I) 769 return CastContextHint::None; 770 771 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp, 772 unsigned GatScatOp) { 773 const Instruction *I = dyn_cast<Instruction>(V); 774 if (!I) 775 return CastContextHint::None; 776 777 if (I->getOpcode() == LdStOp) 778 return CastContextHint::Normal; 779 780 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 781 if (II->getIntrinsicID() == MaskedOp) 782 return TTI::CastContextHint::Masked; 783 if (II->getIntrinsicID() == GatScatOp) 784 return TTI::CastContextHint::GatherScatter; 785 } 786 787 return TTI::CastContextHint::None; 788 }; 789 790 switch (I->getOpcode()) { 791 case Instruction::ZExt: 792 case Instruction::SExt: 793 case Instruction::FPExt: 794 return getLoadStoreKind(I->getOperand(0), Instruction::Load, 795 Intrinsic::masked_load, Intrinsic::masked_gather); 796 case Instruction::Trunc: 797 case Instruction::FPTrunc: 798 if (I->hasOneUse()) 799 return getLoadStoreKind(*I->user_begin(), Instruction::Store, 800 Intrinsic::masked_store, 801 Intrinsic::masked_scatter); 802 break; 803 default: 804 return CastContextHint::None; 805 } 806 807 return TTI::CastContextHint::None; 808 } 809 810 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 811 CastContextHint CCH, 812 TTI::TargetCostKind CostKind, 813 const Instruction *I) const { 814 assert((I == nullptr || I->getOpcode() == Opcode) && 815 "Opcode should reflect passed instruction."); 816 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 817 assert(Cost >= 0 && "TTI should not produce negative costs!"); 818 return Cost; 819 } 820 821 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 822 VectorType *VecTy, 823 unsigned Index) const { 824 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 825 assert(Cost >= 0 && "TTI should not produce negative costs!"); 826 return Cost; 827 } 828 829 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 830 TTI::TargetCostKind CostKind) const { 831 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 832 assert(Cost >= 0 && "TTI should not produce negative costs!"); 833 return Cost; 834 } 835 836 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 837 Type *CondTy, 838 CmpInst::Predicate VecPred, 839 TTI::TargetCostKind CostKind, 840 const Instruction *I) const { 841 assert((I == nullptr || I->getOpcode() == Opcode) && 842 "Opcode should reflect passed instruction."); 843 int Cost = 844 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 845 assert(Cost >= 0 && "TTI should not produce negative costs!"); 846 return Cost; 847 } 848 849 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 850 unsigned Index) const { 851 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 852 assert(Cost >= 0 && "TTI should not produce negative costs!"); 853 return Cost; 854 } 855 856 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 857 Align Alignment, unsigned AddressSpace, 858 TTI::TargetCostKind CostKind, 859 const Instruction *I) const { 860 assert((I == nullptr || I->getOpcode() == Opcode) && 861 "Opcode should reflect passed instruction."); 862 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 863 CostKind, I); 864 assert(Cost >= 0 && "TTI should not produce negative costs!"); 865 return Cost; 866 } 867 868 int TargetTransformInfo::getMaskedMemoryOpCost( 869 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 870 TTI::TargetCostKind CostKind) const { 871 int Cost = 872 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 873 CostKind); 874 assert(Cost >= 0 && "TTI should not produce negative costs!"); 875 return Cost; 876 } 877 878 int TargetTransformInfo::getGatherScatterOpCost( 879 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 880 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 881 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 882 Alignment, CostKind, I); 883 assert(Cost >= 0 && "TTI should not produce negative costs!"); 884 return Cost; 885 } 886 887 int TargetTransformInfo::getInterleavedMemoryOpCost( 888 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 889 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 890 bool UseMaskForCond, bool UseMaskForGaps) const { 891 int Cost = TTIImpl->getInterleavedMemoryOpCost( 892 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 893 UseMaskForCond, UseMaskForGaps); 894 assert(Cost >= 0 && "TTI should not produce negative costs!"); 895 return Cost; 896 } 897 898 int 899 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 900 TTI::TargetCostKind CostKind) const { 901 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 902 assert(Cost >= 0 && "TTI should not produce negative costs!"); 903 return Cost; 904 } 905 906 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 907 ArrayRef<Type *> Tys, 908 TTI::TargetCostKind CostKind) const { 909 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 910 assert(Cost >= 0 && "TTI should not produce negative costs!"); 911 return Cost; 912 } 913 914 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 915 return TTIImpl->getNumberOfParts(Tp); 916 } 917 918 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 919 ScalarEvolution *SE, 920 const SCEV *Ptr) const { 921 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 922 assert(Cost >= 0 && "TTI should not produce negative costs!"); 923 return Cost; 924 } 925 926 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 927 int Cost = TTIImpl->getMemcpyCost(I); 928 assert(Cost >= 0 && "TTI should not produce negative costs!"); 929 return Cost; 930 } 931 932 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 933 VectorType *Ty, 934 bool IsPairwiseForm, 935 TTI::TargetCostKind CostKind) const { 936 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 937 CostKind); 938 assert(Cost >= 0 && "TTI should not produce negative costs!"); 939 return Cost; 940 } 941 942 int TargetTransformInfo::getMinMaxReductionCost( 943 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 944 TTI::TargetCostKind CostKind) const { 945 int Cost = 946 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 947 CostKind); 948 assert(Cost >= 0 && "TTI should not produce negative costs!"); 949 return Cost; 950 } 951 952 InstructionCost TargetTransformInfo::getExtendedAddReductionCost( 953 bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, 954 TTI::TargetCostKind CostKind) const { 955 return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty, 956 CostKind); 957 } 958 959 unsigned 960 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 961 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 962 } 963 964 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 965 MemIntrinsicInfo &Info) const { 966 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 967 } 968 969 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 970 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 971 } 972 973 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 974 IntrinsicInst *Inst, Type *ExpectedType) const { 975 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 976 } 977 978 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 979 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 980 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 981 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 982 DestAddrSpace, SrcAlign, DestAlign); 983 } 984 985 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 986 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 987 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 988 unsigned SrcAlign, unsigned DestAlign) const { 989 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 990 SrcAddrSpace, DestAddrSpace, 991 SrcAlign, DestAlign); 992 } 993 994 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 995 const Function *Callee) const { 996 return TTIImpl->areInlineCompatible(Caller, Callee); 997 } 998 999 bool TargetTransformInfo::areFunctionArgsABICompatible( 1000 const Function *Caller, const Function *Callee, 1001 SmallPtrSetImpl<Argument *> &Args) const { 1002 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 1003 } 1004 1005 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 1006 Type *Ty) const { 1007 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 1008 } 1009 1010 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 1011 Type *Ty) const { 1012 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 1013 } 1014 1015 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 1016 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 1017 } 1018 1019 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 1020 return TTIImpl->isLegalToVectorizeLoad(LI); 1021 } 1022 1023 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 1024 return TTIImpl->isLegalToVectorizeStore(SI); 1025 } 1026 1027 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 1028 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1029 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 1030 AddrSpace); 1031 } 1032 1033 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 1034 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1035 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 1036 AddrSpace); 1037 } 1038 1039 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 1040 unsigned LoadSize, 1041 unsigned ChainSizeInBytes, 1042 VectorType *VecTy) const { 1043 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 1044 } 1045 1046 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 1047 unsigned StoreSize, 1048 unsigned ChainSizeInBytes, 1049 VectorType *VecTy) const { 1050 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 1051 } 1052 1053 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1054 ReductionFlags Flags) const { 1055 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 1056 } 1057 1058 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty, 1059 ReductionFlags Flags) const { 1060 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags); 1061 } 1062 1063 bool TargetTransformInfo::preferPredicatedReductionSelect( 1064 unsigned Opcode, Type *Ty, ReductionFlags Flags) const { 1065 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags); 1066 } 1067 1068 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 1069 return TTIImpl->shouldExpandReduction(II); 1070 } 1071 1072 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 1073 return TTIImpl->getGISelRematGlobalCost(); 1074 } 1075 1076 bool TargetTransformInfo::supportsScalableVectors() const { 1077 return TTIImpl->supportsScalableVectors(); 1078 } 1079 1080 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 1081 return TTIImpl->getInstructionLatency(I); 1082 } 1083 1084 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 1085 unsigned Level) { 1086 // We don't need a shuffle if we just want to have element 0 in position 0 of 1087 // the vector. 1088 if (!SI && Level == 0 && IsLeft) 1089 return true; 1090 else if (!SI) 1091 return false; 1092 1093 SmallVector<int, 32> Mask( 1094 cast<FixedVectorType>(SI->getType())->getNumElements(), -1); 1095 1096 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 1097 // we look at the left or right side. 1098 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 1099 Mask[i] = val; 1100 1101 ArrayRef<int> ActualMask = SI->getShuffleMask(); 1102 return Mask == ActualMask; 1103 } 1104 1105 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 1106 Value *L, *R; 1107 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 1108 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 1109 if (auto *SI = dyn_cast<SelectInst>(I)) { 1110 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 1111 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1112 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1113 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1114 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1115 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1116 auto *CI = cast<CmpInst>(SI->getCondition()); 1117 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 1118 } 1119 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1120 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1121 auto *CI = cast<CmpInst>(SI->getCondition()); 1122 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 1123 } 1124 } 1125 return llvm::None; 1126 } 1127 1128 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1129 unsigned Level, 1130 unsigned NumLevels) { 1131 // Match one level of pairwise operations. 1132 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1133 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1134 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1135 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1136 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1137 if (!I) 1138 return TTI::RK_None; 1139 1140 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1141 1142 Optional<TTI::ReductionData> RD = getReductionData(I); 1143 if (!RD) 1144 return TTI::RK_None; 1145 1146 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1147 if (!LS && Level) 1148 return TTI::RK_None; 1149 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1150 if (!RS && Level) 1151 return TTI::RK_None; 1152 1153 // On level 0 we can omit one shufflevector instruction. 1154 if (!Level && !RS && !LS) 1155 return TTI::RK_None; 1156 1157 // Shuffle inputs must match. 1158 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1159 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1160 Value *NextLevelOp = nullptr; 1161 if (NextLevelOpR && NextLevelOpL) { 1162 // If we have two shuffles their operands must match. 1163 if (NextLevelOpL != NextLevelOpR) 1164 return TTI::RK_None; 1165 1166 NextLevelOp = NextLevelOpL; 1167 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1168 // On the first level we can omit the shufflevector <0, undef,...>. So the 1169 // input to the other shufflevector <1, undef> must match with one of the 1170 // inputs to the current binary operation. 1171 // Example: 1172 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1173 // %BinOp = fadd %NextLevelOpL, %R 1174 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1175 return TTI::RK_None; 1176 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1177 return TTI::RK_None; 1178 1179 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1180 } else 1181 return TTI::RK_None; 1182 1183 // Check that the next levels binary operation exists and matches with the 1184 // current one. 1185 if (Level + 1 != NumLevels) { 1186 if (!isa<Instruction>(NextLevelOp)) 1187 return TTI::RK_None; 1188 Optional<TTI::ReductionData> NextLevelRD = 1189 getReductionData(cast<Instruction>(NextLevelOp)); 1190 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1191 return TTI::RK_None; 1192 } 1193 1194 // Shuffle mask for pairwise operation must match. 1195 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1196 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1197 return TTI::RK_None; 1198 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1199 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1200 return TTI::RK_None; 1201 } else { 1202 return TTI::RK_None; 1203 } 1204 1205 if (++Level == NumLevels) 1206 return RD->Kind; 1207 1208 // Match next level. 1209 return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level, 1210 NumLevels); 1211 } 1212 1213 TTI::ReductionKind TTI::matchPairwiseReduction( 1214 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1215 if (!EnableReduxCost) 1216 return TTI::RK_None; 1217 1218 // Need to extract the first element. 1219 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1220 unsigned Idx = ~0u; 1221 if (CI) 1222 Idx = CI->getZExtValue(); 1223 if (Idx != 0) 1224 return TTI::RK_None; 1225 1226 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1227 if (!RdxStart) 1228 return TTI::RK_None; 1229 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1230 if (!RD) 1231 return TTI::RK_None; 1232 1233 auto *VecTy = cast<FixedVectorType>(RdxStart->getType()); 1234 unsigned NumVecElems = VecTy->getNumElements(); 1235 if (!isPowerOf2_32(NumVecElems)) 1236 return TTI::RK_None; 1237 1238 // We look for a sequence of shuffle,shuffle,add triples like the following 1239 // that builds a pairwise reduction tree. 1240 // 1241 // (X0, X1, X2, X3) 1242 // (X0 + X1, X2 + X3, undef, undef) 1243 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1244 // 1245 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1246 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1247 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1248 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1249 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1250 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1251 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1252 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1253 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1254 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1255 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1256 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1257 TTI::RK_None) 1258 return TTI::RK_None; 1259 1260 Opcode = RD->Opcode; 1261 Ty = VecTy; 1262 1263 return RD->Kind; 1264 } 1265 1266 static std::pair<Value *, ShuffleVectorInst *> 1267 getShuffleAndOtherOprd(Value *L, Value *R) { 1268 ShuffleVectorInst *S = nullptr; 1269 1270 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1271 return std::make_pair(R, S); 1272 1273 S = dyn_cast<ShuffleVectorInst>(R); 1274 return std::make_pair(L, S); 1275 } 1276 1277 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1278 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1279 1280 if (!EnableReduxCost) 1281 return TTI::RK_None; 1282 1283 // Need to extract the first element. 1284 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1285 unsigned Idx = ~0u; 1286 if (CI) 1287 Idx = CI->getZExtValue(); 1288 if (Idx != 0) 1289 return TTI::RK_None; 1290 1291 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1292 if (!RdxStart) 1293 return TTI::RK_None; 1294 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1295 if (!RD) 1296 return TTI::RK_None; 1297 1298 auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType()); 1299 unsigned NumVecElems = VecTy->getNumElements(); 1300 if (!isPowerOf2_32(NumVecElems)) 1301 return TTI::RK_None; 1302 1303 // We look for a sequence of shuffles and adds like the following matching one 1304 // fadd, shuffle vector pair at a time. 1305 // 1306 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1307 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1308 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1309 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1310 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1311 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1312 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1313 1314 unsigned MaskStart = 1; 1315 Instruction *RdxOp = RdxStart; 1316 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1317 unsigned NumVecElemsRemain = NumVecElems; 1318 while (NumVecElemsRemain - 1) { 1319 // Check for the right reduction operation. 1320 if (!RdxOp) 1321 return TTI::RK_None; 1322 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1323 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1324 return TTI::RK_None; 1325 1326 Value *NextRdxOp; 1327 ShuffleVectorInst *Shuffle; 1328 std::tie(NextRdxOp, Shuffle) = 1329 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1330 1331 // Check the current reduction operation and the shuffle use the same value. 1332 if (Shuffle == nullptr) 1333 return TTI::RK_None; 1334 if (Shuffle->getOperand(0) != NextRdxOp) 1335 return TTI::RK_None; 1336 1337 // Check that shuffle masks matches. 1338 for (unsigned j = 0; j != MaskStart; ++j) 1339 ShuffleMask[j] = MaskStart + j; 1340 // Fill the rest of the mask with -1 for undef. 1341 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1342 1343 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1344 if (ShuffleMask != Mask) 1345 return TTI::RK_None; 1346 1347 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1348 NumVecElemsRemain /= 2; 1349 MaskStart *= 2; 1350 } 1351 1352 Opcode = RD->Opcode; 1353 Ty = VecTy; 1354 return RD->Kind; 1355 } 1356 1357 TTI::ReductionKind 1358 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode, 1359 VectorType *&Ty, bool &IsPairwise) { 1360 TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty); 1361 if (RdxKind != TTI::ReductionKind::RK_None) { 1362 IsPairwise = false; 1363 return RdxKind; 1364 } 1365 IsPairwise = true; 1366 return matchPairwiseReduction(Root, Opcode, Ty); 1367 } 1368 1369 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1370 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1371 1372 switch (I->getOpcode()) { 1373 case Instruction::GetElementPtr: 1374 case Instruction::Ret: 1375 case Instruction::PHI: 1376 case Instruction::Br: 1377 case Instruction::Add: 1378 case Instruction::FAdd: 1379 case Instruction::Sub: 1380 case Instruction::FSub: 1381 case Instruction::Mul: 1382 case Instruction::FMul: 1383 case Instruction::UDiv: 1384 case Instruction::SDiv: 1385 case Instruction::FDiv: 1386 case Instruction::URem: 1387 case Instruction::SRem: 1388 case Instruction::FRem: 1389 case Instruction::Shl: 1390 case Instruction::LShr: 1391 case Instruction::AShr: 1392 case Instruction::And: 1393 case Instruction::Or: 1394 case Instruction::Xor: 1395 case Instruction::FNeg: 1396 case Instruction::Select: 1397 case Instruction::ICmp: 1398 case Instruction::FCmp: 1399 case Instruction::Store: 1400 case Instruction::Load: 1401 case Instruction::ZExt: 1402 case Instruction::SExt: 1403 case Instruction::FPToUI: 1404 case Instruction::FPToSI: 1405 case Instruction::FPExt: 1406 case Instruction::PtrToInt: 1407 case Instruction::IntToPtr: 1408 case Instruction::SIToFP: 1409 case Instruction::UIToFP: 1410 case Instruction::Trunc: 1411 case Instruction::FPTrunc: 1412 case Instruction::BitCast: 1413 case Instruction::AddrSpaceCast: 1414 case Instruction::ExtractElement: 1415 case Instruction::InsertElement: 1416 case Instruction::ExtractValue: 1417 case Instruction::ShuffleVector: 1418 case Instruction::Call: 1419 return getUserCost(I, CostKind); 1420 default: 1421 // We don't have any information on this instruction. 1422 return -1; 1423 } 1424 } 1425 1426 TargetTransformInfo::Concept::~Concept() {} 1427 1428 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1429 1430 TargetIRAnalysis::TargetIRAnalysis( 1431 std::function<Result(const Function &)> TTICallback) 1432 : TTICallback(std::move(TTICallback)) {} 1433 1434 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1435 FunctionAnalysisManager &) { 1436 return TTICallback(F); 1437 } 1438 1439 AnalysisKey TargetIRAnalysis::Key; 1440 1441 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1442 return Result(F.getParent()->getDataLayout()); 1443 } 1444 1445 // Register the basic pass. 1446 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1447 "Target Transform Information", false, true) 1448 char TargetTransformInfoWrapperPass::ID = 0; 1449 1450 void TargetTransformInfoWrapperPass::anchor() {} 1451 1452 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1453 : ImmutablePass(ID) { 1454 initializeTargetTransformInfoWrapperPassPass( 1455 *PassRegistry::getPassRegistry()); 1456 } 1457 1458 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1459 TargetIRAnalysis TIRA) 1460 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1461 initializeTargetTransformInfoWrapperPassPass( 1462 *PassRegistry::getPassRegistry()); 1463 } 1464 1465 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1466 FunctionAnalysisManager DummyFAM; 1467 TTI = TIRA.run(F, DummyFAM); 1468 return *TTI; 1469 } 1470 1471 ImmutablePass * 1472 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1473 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1474 } 1475